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ABSTRACT

We propose to use the personalized speech synthesis and the neu-
ral language generator to synthesize content relevant personalized
speech for rapid speaker adaptation. It has two distinct aspects:
First, it relieves the general data sparsity issue in rapid adaptation via
making use of additional synthesized personalized speech; Second,
it circumvents the obstacle of the explicit labeling error in unsuper-
vised adaptation by converting it to pseudo-supervised adaptation.
In this setup, the labeling error is implicitly rendered as less dam-
aging speech distortion in the personalized synthesized speech. This
results in significant performance breakthrough in the rapid unsuper-
vised speaker adaptation. We apply the proposed methodology to a
speaker adaptation task in a state-of-art speech transcription system.
With 1 minute (min) adaptation data, our proposed approach yields
9.19 % or 5.98 % relative word error rate (WER) reduction for the
supervised and the unsupervised adaptation, comparing to the negli-
gible gain when adapting only with 1 min original speech. With 10
min adaptation data, it yields 12.53 % or 7.89 % relative WER re-
duction, doubling the gain of the baseline adaptation. The proposed
approach is particularly suitable for unsupervised adaptation.

Index Terms— Acoustic model adaptation, speaker adaptation,
speech synthesis, neural language generation

1. INTRODUCTION

The increasingly more sophisticated neural network acoustic model
trained from tens of thousand hour speech is believed to be rela-
tively robust to speaker variability. Rapid speaker adaptation for a
well-trained large-scale neural network model is challenging due to
the massive number of model parameters and the limited amount of
adaptation data. Furthermore, the labeling error from the first-pass
decoding result can lead to catastrophic gradient update. This makes
effective rapid unsupervised speaker adaptation even more difficult.

There was abundant previous work in improving the robustness
of neural network adaptation [1–12]. For example, the transforma-
tion [13, 14], the linear hidden unit contribution (LHUC) [15, 16],
the singular value decomposition (SVD) [17], and the factorized
sub-space [8] adaptation, constrain the adaptation in a reduced or
highly compressed parameter space to address data sparsity. Alter-
natively, the Kullback-Leibler (KL) divergence regularized adapta-
tion [3, 18] and the Bayesian adaptation [11, 12] make use of spe-
cially formulated objectives to prevent catastrophic forgetting and
thus prevent overfitting. Furthermore, the i-vector [19, 20] and the
speaking code [21] model adaptation utilize the speaker-level repre-
sentation as the auxiliary input of a conditioning model.

In this paper, we propose to utilize the personalized speech syn-
thesis [22–25] and the neural language generator [26, 27] to directly
address the general data sparsity issue in the rapid model adapta-
tion. We consider rapid adaptation with no more than 10 min speech

in a system with millions of acoustic model parameters. Specifi-
cally, we first train a speaker embedding for the personalized speech
synthesis; then use the neural language generator to generate rele-
vant or even some random text to synthesize speech. The synthe-
sized speech is added to the original data for adaptation. We adopt
the KL-divergence regularized adaptation paradigm [3] and the sub-
net adaptation [28]. The configuration is designed to be consistent
and rigorous. For example, in the unsupervised adaptation, only the
first-pass decoding result of the original data is used in the speaker
embedding training, neural language generation, and acoustic model
adaptation; no human transcription is used.

There are several distinct aspects in the proposed approach.
First, unlike data augmentation with noise or speaking rate perturba-
tion [29], this approach can generate arbitrary personalized speech
with no constraints on the content and data amount; therefore it
fundamentally alleviates data sparsity in the rapid adaptation. Sec-
ond, it implicitly converts an unsupervised adaptation to a pseudo-
supervised one through the introduction of the personalized speech
synthesis. The labeling error of the adaptation data is smoothed
through the speaker embedding training. The rendered synthesized
speech seldom exhibits perceptible mismatch with the text despite
that our unsupervised adaptation is rigorously configured without
using the human transcription at any step. Consequently, when con-
suming the synthesized speech for adaptation, catastrophic gradient
update due to the explicit labeling error, a root-cause for the failure
of unsupervised adaptation, is no longer a distinct obstacle.

We apply the proposed methodology to a speaker adaptation
task in a state-of-art conversational speech transcription system. In
the 1 min adaptation setup, our proposed approach yields 9.19 %
or 5.98 % relative WER reduction for the supervised and unsuper-
vised adaptation respectively, while adapting with the original 1 min
speech only yields negligible gain. In the 10 min adaptation setup,
the proposed approach roughly doubles the gain of adapting with the
original 10 min speech. We further found that the content-relevant
target text generated by the neural language generator outperforms
the random text with small but consistent performance gain.

Our approach results in significant performance breakthrough in
unsupervised adaptation, especially for rapid unsupervised adapta-
tion. To the best of our knowledge, we are not aware of any previous
work in using personalized speech synthesis and neural text gener-
ation for rapid hybrid acoustic model adaptation. In [30], speech
synthesis was only used for speller training in an end-to-end system.

The rest of this paper is organized as: Section 2 introduces the
methodology; Section 3 presents the experiments and results; Sec-
tion 4 concludes the paper.

2. METHODOLOGY

We describe our proposed methodology of using personalized syn-
thesis and neural language generator for rapid model adaptation.



Fig. 1. System architecture of the proposed approach. Label can be
human transcription or the first-pass decoding result, corresponding
to the supervised and the unsupervised adaptation.

2.1. System Architecture

The proposed approach consists of personalized speech synthesis,
neural language generator, and acoustic model adaption depicted in
Figure 1. We first train a speaker embedding for the neural TTS to
synthesize personalized speech using the adaptation data. Then we
use a neural language generator to generate content relevant target
text from the label of the adaptation data. Alternatively, random con-
versational speech text can be used. Lastly, the synthesized speech
with the corresponding text is added to the original data for adap-
tation. In the supervised setup, we use the human transcription of
the original adaptation speech to train the speaker embedding for
personalized speech synthesis, to generate relevant text to be syn-
thesized, and to supervise the model adaptation. Otherwise in the
unsupervised setup, the first-pass decoding result is used. We dis-
cuss each component of the system in the rest of this section.

2.2. Acoustic Model Adaptation

We adopt the KL-divergence regularized model adaptation in this pa-
per. The KL-divergence regularization is added to the adaptation cri-
terion to prevent catastrophic forgetting and overfitting. The detailed
formulation can be referred to in [3]. For the adaptation structure, we
compared adapting different components of the original model or ad-
ditional sub-space speaker-specific network components. We found
that the linear projection layer sub-net adaptation yields competitive
performance and thus adopt it throughout this work. The detail of
the adaptation can be referred to in [28].

Data sparsity is a major barrier in rapid speaker adaptation.
Adaptation with extremely small amount of data tends to result in
overfitting. We studied data augmentation with noise and speaking
rate perturbation and found that they are quite effective for rapid
speaker adaptation [28]; nevertheless they cannot address the lim-
ited phonetic coverage. Utilizing personalized synthesized speech
can flexibly generate arbitrary speech with rich phonetic coverage
and even with desired relevant content.

Imperfect supervision is the fundamental challenge of unsuper-
vised adaptation. When the first-pass decoding makes a mistake and
is subsequently translated into the senone state error, this results in
incorrect gradient update. The proposed methodology initiates a new
perspective in how to consume the unlabeled speech for adaptation.
Instead of directly using the unlabeled speech for adaptation, we use
it to train a speaker embedding for personalized speech synthesis.
The transcription error in the speaker embedding training is not ex-
pected to be directly translated into an explicit error in synthesized
speech. Instead, it is more likely rendered as perceptible or imper-
ceptible minor speech distortion.

Fig. 2. Diagram of the personalized speech synthesis.

2.3. Personalized Speech Synthesis

We use a multi-speaker neural TTS system for personalized speech
synthesis. As depicted in Figure 2, it consists a spectrum predictor
and a neural vocoder. The spectrum predictor converts the input text
into the Mel spectral. The neural vocoder generates the waveform
conditioning on the Mel spectral. We use an encoder-decoder with
attention model for spectrum prediction and WaveNet as the neu-
ral vocoder [22]. Speaker embedding is introduced to pool multi-
speaker data during training so that we can efficiently create per-
sonalized speech for new speakers [23]. We use an in-house TTS
corpus with around 30 professional en-US speakers and more than
200 hours phonetic-rich recordings for model training. The spectrum
predictor is adapted to each target speaker as the speaker embedding
given some registration data. The vocoder is a universal WaveNet
trained with the same corpus without adaptation. The detail of per-
sonalized speech synthesis can be referred to in [23].

One particular challenge is that, in unsupervised adaptation,
only the first-pass decoding result is available. The imperfect tran-
scription may affect the speaker embedding training. Furthermore,
rapid adaptation with as little as 1 min speech also makes robust
speaker embedding estimation more difficult. The quality of the
synthesized speech, according to our listening test, is quite robust
even with only 1 min data and imperfect transcription. Lastly, al-
though some data selection based on the quality of the synthesized
speech may further help improve the adaptation performance, we
didn’t apply any data filtering throughout this paper.

2.4. Neural Language Generator

We use an LSTM language model [26] with a beam search algo-
rithm [27] to generate content relevant target text. Specifically, each
sentence is provided as a prompt to the neural language generator
to generate various continuations of the prompts. Similar to [27],
we impose diversity constraints during the beam search, namely by
penalizing repeated tokens, restricting the number of beams that end
with the same bigram, and preventing n-gram repetitions within a
beam. The language model has a vocabulary size of 59K byte pair
encoding (BPE) tokens [31] and three LSTM layers, with a total of
220M parameters. We trained the language model to convergence
on 3B words of paragraph level web-crawled data.

3. EXPERIMENTS AND RESULTS

In this section, we present results on using personalized synthesized
speech for model adaptation in a presentation transcription system.
All our experiments were conducted on anonymized data with per-
sonally identifiable information removed.



3.1. Experimental Setup

The baseline is a bi-directional LSTM trained from tens of thousand
hour speech. It has six bi-directional LSTM layers followed by a
fully connected top layer. Each layer has 2048 hidden units. The
input is 80-dim log-filter bank feature. The output layer has 10K
senone states. The speaker adaptation task consists of six speakers
(three native and three non-native speakers), each with 10 min for
training and 20 min for testing.

The quality of synthesized personalized speech depends upon
the original data amount and the label quality. The relevancy of the
text script used for speech synthesis may as well affect the adaptation
performance. We therefore configured eight setups, specified by the
amount of the original adaptation data (e.g. 1 or 10 min), the label
type (e.g. human transcription or the first-pass decoding result), and
the text script type (e.g. random text or target text), summarized in
Table 1. The acoustic model adaptation uses an identical setup as
the acoustic model adaptation. This consistent setup allows rigorous
study on the impact of adaptation with synthesized speech.

Table 1. Configuration of the personalized speech synthesis, speci-
fied by the original data amount, the label type, and the text type.

1 min 10 min
SUP [1, Human, Random] [10 Human, Random]
SUP [1, Human, Target] [10, Human, Target]
UNSUP [1, ASR, Random] [10, ASR, Randrom]
UNSUP [1, ASR, Target] [10, ASR, Target]

3.2. Baseline Adaptation Result

We adopt the KL-regularized sub-net adaptation. The baseline adap-
tation performance is summarized in Table 2. We use the relative
WER reduction (WER.R) to measure the adaptation performance
throughout this paper. With 1 min adaption data, neither supervised
nor unsupervised adaptation yields noticeable gain due to insuffi-
cient data. As the adaptation data amount increases to 10 min, the
supervised and the unsupervised adaptation yield 7.60 % and 3.61 %
relative WER reduction respectively. The unsupervised adaptation
only achieves half of the gain of the supervised adaptation due to the
imperfect supervision.

Table 2. Baseline sup/unsup adaptation performance with 1 min or
10 min data. WER.R referes to the relative WER reduction.

Model 1 min WER.R 10 min WER.R
Baseline 14.65 NA 14.65 NA
SUP 14.53 0.82 13.54 7.60
UNSUP 14.52 0.88 14.13 3.61

3.3. Adaptation with Synthesized Speech

Table 3 presents the adaptation performance of combining the syn-
thesized personalized speech with the original speech. We will fo-
cus on setups with target text (tar) here, while leaving its comparison
with the random text to Section 3.6.

In the 1 min adaption setup, the supervised and the unsupervised
adaptation with additional 100 min synthesized speech yield 6.72 %
and 5.70 % relative WER reduction respectively. Both significantly
outperform the baseline adaptation with only the original data. With
the personalized synthesized speech, adaptation with 1 min speech
becomes beneficial even in this well-trained large-scale system. For
the 10 min adaptation, the baseline sup/unsup adaption yield 7.60 %

and 3.61 % relative WER reduction; after adding the synthesized
speech, the corresponding gain increases to 9.35 % and 6.82 %.

The benefit of using the synthesized speech for unsupervised
adaptation is clear. For example, in the 1 min setup, when the
additional synthesized speech is used, the unsupervised adaptation
achieves comparable performance as the supervised adaptation. In
the 10 min setup, the gap of supervised and unsupervised adaptation
shrinks after adding synthesized speech. This confirms our hypoth-
esis that the proposed approach can implicitly smooth and disperse
the impact of labeling error, which essentially converts an unsuper-
vised adaptation to a pseudo-supervised one. With this property, the
1 min unsupervised adaption, previously exhibiting as an extremely
challenging problem, becomes feasible and practically effective.

We further apply some weighting to the original speech to bal-
ance the relative amount of the original speech and the synthesized
speech. The original speech is weighted by 10 or 5 for the 1 min and
10 min setup respectively. The relative WER reduction increases
from 6.72 % to 9.19 % and 9.35 % to 12.53 % for 1 min and 10
min supervised adaptation, respectively. This suggests that it is im-
portant to maintain reasonable representatives of the original speech,
especially given we can theoretically generate unlimited synthesized
speech. Moreover, it is interesting to observe that the data weighting
is helpful but with smaller impact on the unsupervised adaptation
side. The original data with imperfect label in unsupervised adap-
tation is not as valuable as the human transcription in supervised
adaptation. This, on the other hand, again confirms the favorable
utilization of synthesized speech in unsupervised adaptation.

Table 3. Performance of the sup/unsup speaker adaptation with 100
min synthesized speech. When annotated with (w), the original data
is weighted by 10 or 5 for the 1 min and the 10 min adaptation.

Model 1min WER.R 10min WER.R
Baseline 14.65 NA 14.65 NA
SUP 14.53 0.82 13.54 7.60
SUP+tar(100) 13.67 6.72 13.28 9.35
SUP+tar(100)(w) 13.31 9.19 12.82 12.53
SUP+rand(100) 13.91 5.10 13.34 8.94
SUP+rand(100)(w) 13.58 7.32 12.91 11.87
UNSUP 14.52 0.88 14.13 3.61
UNSUP+tar(100) 13.82 5.70 13.65 6.82
UNSUP+tar(100)(w) 13.82 5.98 13.50 7.89
UNSUP+rand(100) 13.92 5.04 13.68 6.63
UNSUP+rand(100)(w) 13.81 5.79 13.53 7.70

3.4. Random Text versus Target Text

It is generally believed that it is beneficial to use relevant speech for
adaption in an end-to-end ASR system. In the hybrid model, the
advantage of relevant content is not obvious. It may have a better
matched senone coverage and thus can possibly help the adaptation.
As speech synthesis has the flexibility to render an arbitrary text, we
would like to find out whether content relevancy is important for the
hybrid model adaptation. We experiment with adaptation using syn-
thesized random conversational speech text. The pair-wise compar-
ison with the content relevant target text counterpart is presented in
Table 3. We can see that adaptation with the target text consistently
outperforms the random text with around 1 % relative WER reduc-
tion. Despite of the relatively small additional performance gain, the
consistent gain across all setups suggests that in the hybrid system,
adaptation with content relevant data is also beneficial.



Fig. 3. Adaptation performance with added 10, 50, 100, 200 min
synthesized speech (+) or only with 100 min synthesized speech.

3.5. Adaptation with Different Data Amount

Figure 3 illustrates the adaptation performance with different amount
of added synthesized speech or synthesis speech alone. No weight-
ing for the original data is applied, which would otherwise yield
larger gain when large amount of synthesized speech is added as
discussed earlier. Both supervised and unsupervised adaptation im-
proves with more synthesized data. The performance gain has not
plateaued even with 200 min synthesized speech. The improvement
slope is steeper for the 1 min setup as the proposed approach is more
beneficial for very rapid adaptation. Unsupervised adaptation also
exhibits steeper performance gain as the proposed approach circum-
vents the direct labeling error in unsupervised adaption.

We further discard the original speech and only use the 100 min
synthesized speech for adaptation. This reflects how the personal-
ized speech synthesis can distill the speaker trait from small amount
of original speech and render it robustly. In the 1 min setup, speaker
adaptation with only synthesized speech performs significantly bet-
ter than adaptation with the original data. In the 10 min unsuper-
vised setup, adaptation with synthesized speech also outperforms or
performs as well as adaptation with the original data. The only ex-
ception is the 10 min supervised adaptation setup, where adaptation
with the original speech wins with a small margin. This suggests
that the proposed approach can effectively distill speaker trait and
render it with additional phonetic and phonological knowledge em-
bedded in the synthesis model and language knowledge embedded
in the neural language generator. In all cases, adding original speech
is still helpful, especially in the 10 min setup and in the supervised
case. This indicates that the original speech is still valuable, espe-
cially when with reasonable amount and with the human label.

3.6. Analysis of Speaker Embedding Robustness

Acoustic model adaptation is highly sensitive to speech data amount
and the label quality. This is clearly illustrated in Section 3.2. How
would these affect the speaker embedding training and the conse-
quent speaker adaptation performance which consumes the synthe-
sized speech? In adaptations with synthesized speech only, as the
original speech is not used in adaptation, the sup/unsup adaptation
only differ in how the speaker embedding is trained. Consequently,
we can measure the impact of the label quality and the data amount
on the speaker embedding by comparing speaker adaptation perfor-
mance with synthesized speech on different setups. To facilitate this
comparison, we re-organize the relevant results in Table 4.

Adaptation with synthesized speech based on speaker embed-
ding trained from 10 min consistently outperforms from 1 min and
the performance gap is small. This suggests that the speaker embed-
ding is robust even when small amount of data is available. More-
over, as the original speech is not used in adaptation, the supervised
and unsupervised adaptation here only differ in whether speaker em-
bedding is trained from human transcription or the first-pass decod-
ing result. For the random text setup, the supervised adaptation is
noticeably better than the unsupervised counterpart both in the 1 min
and the 10 min setup. This suggests that the imperfect transcription
affect the speaker embedding training and consequently degrades the
synthesized speech quality. We listened to the synthesized speech in
different setups carefully and found that the transcription error is ren-
dered as perceptible or imperceptible minor sound distortion, instead
of being translated into distinct errors in synthesized speech.

Table 4. Performance of sup/unsup adaptation with 100 min synthe-
sized speech. The synthesized speech is generated from the speaker
embedding trained from 1 or 10 min in the sup/unsup setup.

Model 1min WER.R 10min WER.R
Baseline 14.65 NA 14.65 NA
SUP 14.53 0.82 13.54 7.60
UNSUP 14.52 0.88 14.13 3.61
SUPtar(100) 13.87 5.36 13.74 6.23
UNSUPtar(100) 13.90 5.10 13.87 5.36
SUPrand(100) 13.90 5.15 13.91 5.11
UNSUPrand(100) 14.12 3.63 14.09 3.82

3.7. Others

We compared the proposed methodology with noise and speaking
rate perturbation based data augmentation. All three are beneficial,
but the proposed methodology performs notably better. They are also
found to be complimentary. We analyzed the performance for the
native and the non-native speakers. The gain for non-native speakers
is more significant. We think this is because the baseline is a strong
native model.

4. CONCLUSION

In summary, we presented using the personalized speech synthesis
and the neural language generator to synthesize personalized speech
for rapid speaker adaptation. This approach not only alleviates the
data sparsity in rapid speaker adaptation, but also circumvents the
obstacle of the explicit labeling error in unsupervised adaptation.
This makes it particularly suitable for unsupervised adaptation. The
proposed approach yields 9.19 % or 5.98 % relative WER reduction
for sup/unsup adaptation while the baseline 1 min adaptation only
yields negligible gain. In the 10 min adaptation setup, it roughly
doubles the gain of the baseline adaptation.

Future work includes applying this approach to the far-field
speech recognition applications which would require the person-
alized speech synthesis to be robust to channel and environmental
noise. We are also considering ways to improve the run-time effi-
ciency of synthesis. Lastly, we plan to apply it to an end-to-end ASR
system and expect similarly interesting results with some nuisance.
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