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ABSTRACT

The performance of speech processing systems degrades signifi-
cantly in far-field scenarios where the distance between the user and
microphones increases, leading to low signal-to-noise and signal-
to-reverberation ratios. To address this challenge, combining the
denoising and dereverberation techniques in both parallel and cas-
cade configurations has been widely studied. However, a parallel
or cascade combination may not be efficient while imposing a large
computational complexity. We propose a constrained Kalman filter
based multichannel linear prediction method to jointly perform de-
noising and dereverberation efficiently using an online processing
algorithm. In contrast to previously proposed methods which utilize
steering vectors based on the relative early transfer function, our
algorithm is implemented using a direct relative transfer function
based steering vector, which aims at extracting the direct sound as
opposed to preserving the early reflections. We show that the pro-
posed algorithm outperforms existing online implementations of in-
tegrated beamformer and linear prediction methods on the REVERB
challenge speech enhancement task while being computationally
less complex.

Index Terms— Dereverberation, denoising, constrained Kalman
filter, multichannel linear prediction.

1. INTRODUCTION

The performance of speech processing applications, e.g., hands-
free teleconferencing systems and automatic speech recognition
and identification systems significantly decreases in far-field sce-
narios where the microphone is located at far distances from the
sound source. This causes a significant distortion in speech quality
and intelligibility [1, 2]. Microphone arrays, which allow spa-
tial filtering of the arriving signals, have been employed to sup-
press interfering sound and enhance the desired signal. Statisti-
cally optimal beamformers such as minimum variance distortion-
less response (MVDR) [3], linearly constrained minimum vari-
ance (LCMV) [4, 5], MVDR with a constrained Kalman filter [6, 7]
and generalized sidelobe canceler (GSC) [8] have been widely uti-
lized for speech extraction in noisy environments. The performance
of linear spatial filters is limited in suppressing reverberation, which
is typically time-varying and spatially diffuse. Dereverberation
methods based on multichannel linear prediction (MCLP) have
been shown to be highly effective [9, 10]. In the MCLP model,
the reverberation is represented by an autoregressive model, and
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can therefore be predicted from previous frames of the microphone
signals [9, 10].

When considering also additive noise in MCLP model, finding
the correct dereverberation filter becomes a more complex prob-
lem. Joint denoising and dereverberation methods based on the
MCLP model have been proposed in [2, 11]. Furthermore, combi-
nations of beamforming with MCLP based dereverberation methods
to suppress both reverberation and noise have been proposed by
cascaded systems in [11–14]. To overcome the possibly inefficient
cascade [12], unified approaches have recently been proposed, e. g.,
integrated sidelobe cancellation and linear prediction (ISCLP) [15],
weighted power minimization distortionless response beamformer
(WPD) [16], and recursive WPD and recursive least-squares WPD
(RLS-WPD) methods [17]. The online processing version WPD-
RLS [17] is similar to the ISCLP structure by using a GSC beam-
former. While the ISCLP and WPD methods reduce the computa-
tional complexity compared to the cascade configuration, they are
shown to perform on par or better than the cascade [15, 17]. Fur-
thermore, the ISCLP and WPD methods both utilize steering vectors
based on the relative early transfer functions (RETFs), which are
estimated either by computationally rather complex methods using
the generalized eigenvalue decomposition method [5,18] or a neural
network-based mask [17, 19, 20].

In this paper, we propose an algorithm for joint beamform-
ing and dereverberation using a constrained Kalman filter with the
MCLP signal model. This algorithm may overcome the problem of
signal distortion along the look direction which typically occurs in
GSC-based algorithms. While we found that the GSC based ISCLP
suffers from heavy speech cancellation when using direct relative
transfer functions (DRTFs), which seemed to motivate the choice
of using RETFs, we show that our proposed algorithm is robust
enough to use either DRTFs or RETF. The proposed overall system
can be implemented with less complexity than previously proposed
methods, as any simple geometry-based direction-of-arrival (DOA)
estimator can be used to obtain the steering vector, and additionally,
the constrained Kalman filter yields slightly less complexity than
the GSC [15] due to the absence of a blocking matrix. We evaluate
the proposed method in noisy and reverberant environments using
the REVERB challenge dataset [21, 22]. Experimental results show
that our proposed method outperforms comparable state-of-the-art
methods.

The rest of the paper is organized as follows. In Section 2, we
define the model of the signal. In Section 3, we describe the ISCLP.
We present a derivation of the proposed method in Section 4. We
then evaluate the performance of our proposed algorithm for speech
enhancement systems in Section 5. Conclusions are presented in
Section 6.
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2. SIGNAL MODEL

We assume that M microphones capture the sound in a rever-
berant and noisy environment. The m-th microphone signal in
the short-time Fourier transform (STFT) domain is denoted by
ym(k, n), where k and n are the frequency and time indices,
respectively. We describe the vector of microphone signals as
y(k, n) = [y1(k, n), · · · , yM (k, n)]T , which can be formulated as

y(k, n) = x(k, n)g(k, n) + r(k, n) + v(k, n), (1)

where x(k, n) is the desired signal at the reference microphone,
g(k, n) is a relative transfer function, and r(k, n) and v(k, n) de-
note the late reverberation and additive noise, respectively. The fre-
quency index k is omitted in the rest of the paper for better readabil-
ity. The vector g(n) can either represent the DRTFs or the RETFs,
which changes the desired signal x(n) accordingly to represent ei-
ther the direct sound at the reference microphone, or to contain also
early reflections. We assume that the desired speech signal x(n) has
a zero-mean complex Gaussian distribution

x(n) ∼ N (0,Φx(n)), (2)

where Φx(n) is the power spectral density (PSD) of x(n). We de-
scribe the late reverberation using the MCLP model [23] as a delayed
prediction by D from the past L frames by

r(n) =

L∑
l=D

Wr,l(n)y(n− l), (3)

where Wr,l(n) denotes the MCLP coefficients, and L > D > 1.

3. REVIEW OF INTEGRATED SIDELOBE
CANCELLATION AND LINEAR PREDICTION

In this section, we review the ISCLP method which integrates a
GSC beamformer structure, where the sidelobe canceler aims at can-
celling the noise at the fixed beamformer output, and a MCLP branch
aiming at estimating the reverberation at the output of the beam-
former [15]. The sidelobe canceler branch is given by

uSC(n) = BH(n)y(n), (4)

where B(n) is a blocking matrix such that BH(n)g(n) = 0. The
output signal of the ISCLP framework is given by

eISCLP(n) = wH
g (n)y(n)−wH

SC(n)uSC(n) (5)

−
L∑
l=D

wH
LP(l, n)y(n− l),

where wg = g/‖g‖22 are fixed beamformer coefficients, wSC(n) is
the SC filter aiming at cancelling noise, and wLP(l, n) are MCLP
coefficients predicting the reverberation at the output of the GSC.
The filters wSC(n) and wLP(l, n) are estimated jointly by a Kalman
filter [15] or using RLS [17] by considering eISCLP(n) as the error
signal. In both methods, the steering vector g is modeled as the
RETF, aiming at fully preserving early reflections.

4. MVDR BEAMFORMER WITH LINEAR PREDICTION

In this section, we propose a method for joint adaptive MVDR beam-
forming and MCLP based reverberation cancellation at the beam-
former output. We refer to the proposed method as the constrained
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Fig. 1: The structure of joint beamforming and dereverberation using
a constrained Kalman filter.

Kalman beamformer with linear prediction (CKBLP). In contrast to
the GSC method, which employs a blocking matrix and minimizes
the output signal power, we directly employ a constrained minimiza-
tion without the need for a blocking matrix. Firstly, we define the
adaptive beamformer output as

xb(n) = wH
b (n)y(n), (6)

where wb are the beamformer coefficients. Note that the beam-
former branch xb(n) only filters the current frame. Secondly, using
the MCLP model (3), the reverberation at the output of the beam-
former is given by

xr(n) =

L∑
l=D

wH
b (n)Wr,l(n)y(n− l) (7)

=

L∑
l=D

wH
r,l(n)y(n− l),

where wr,l(n) are the prediction coefficients after beamforming. As
shown in Fig.1, the desired signal is then estimated by subtracting
the predicted reverberation from the output of the beamformer as

x̂(n) = xb(n)− xr(n). (8)

4.1. Derivation of constrained Kalman filter

We derive a Kalman filter to jointly estimate the beamformer and
reverberation prediction weights wb(n) and wr,l(n). To obtain a
compact vector notation, we insert (6) and (7) into (8), i. e.,

x̂(n) = wH
b (n)y(n)−

L∑
l=D

wH
r,l(n) y(n− l)

=
[
wH
b (n) −wH

r,D(n) · · · −wH
r,L(n)

]︸ ︷︷ ︸
w̃H (n)


y(n)

y(n−D)
...

y(n−L)


︸ ︷︷ ︸

ỹ(n)

, (9)
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where ỹ(n) are stacked microphone signals, and w̃(n) are stacked
beamformer and reverberation prediction coefficient vectors, respec-
tively [16, 17]. Now we can estimate the weight coefficients w̃(n)
by minimizing the power of the desired signal x̂(n) under a distor-
tionless constraint for the steering vector, i.e.,

min
w̃

E[|w̃H(n)ỹ(n)|2] s.t. w̃H g̃ = 1, (10)

where g̃ = [gT , 0, 0, · · · , 0]T is a vector containing g and zero-
padded by M(L − D + 1) zeros. We can reformulate the obser-
vation and the constraint into a two-equation system [6, 24], where
the first row is obtained by re-arranging the complex conjugate of
(9), and the second row is the distortionless constraint in (10). Then,
the measurement equation [6, 24] of the constrained Kalman filter is
written as [

ỹH(n)
g̃H

]
︸ ︷︷ ︸

P(n)

w̃(n) +

[
−x̂∗(n)
εg(n)

]
︸ ︷︷ ︸

ε(n)

=

[
0
1

]
︸︷︷︸

c

, (11)

where εg(n) is the steering error, modeling inaccuracies between the
estimated and true steering vector, which we model independently
from x̂(n) as a zero-mean normal random variable, and ∗ denotes the
complex conjugate. ε(n) = [−x̂∗(n) εg(n)]T is the measurement
noise vector with the correlation matrix

Φε(n) =

[
Φx(n) 0
0 Φg(n)

]
. (12)

The unknown evolution of the time-varying filter w̃(n) can be mod-
eled by a state-vector using a first-order Markov process

w̃(n) = Aw̃(n− 1) + vw(n), (13)

where the matrix A is a prediction matrix and vw(n) is the driving-
noise vector modeled by a zero-mean Gaussian random process with
the covariance matrix Φv(n).

From the observation and state equations (11) and (13), we es-
timate the weight vector coefficients recursively using the Kalman
filter [25] by

w̃(n|n− 1)) = Aw̃(n− 1|n− 1) (14)

M(n|n− 1) = AM(n− 1|n− 1)AH + Φv(n) (15)

k(n) = M(n|n− 1)PH(n)

×
(
Φε(n) + P(n)M(n|n− 1)PH(n)

)−1

(16)

w̃(n|n)=w̃(n|n−1) +k(n)(c−P(n)w̃(n|n−1)) (17)
M(n|n) = M(n|n− 1)−k(n)P(n)M(n|n−1). (18)

Here, M(n) is the M(L−D + 2)×M(L−D + 2) estimation
error covariance matrix, and k(n) is the Kalman filter gain.

4.2. Parameter estimation

We propose to model the estimation error covariance matrix as a
diagonal matrix with fixed errors corresponding to the temporal up-
date variances of the beamformer and linear prediction coefficients,
Φb and Φp, respectively. The filter error covariance matrix is then
given by

Φv(n) = diag
{

[Φb, . . . ,Φb︸ ︷︷ ︸
M

, Φp, . . . ,Φp︸ ︷︷ ︸
M(L−D+1)

]T
}
, (19)

where diag{} constructs a matrix with the argument on the main
diagonal and zero elsewhere.

The desired signal PSD can be estimated using the decision-
directed approach [2, 26] as a weighting between the current esti-
mate using the previously estimated filter coefficients and the actual
estimate of the previous frame, i. e.,

Φx(n) = β|x̂(n− 1)|2 + (1− β)|w̃H(n− 1)ỹ(n)|2, (20)

where 0 < β < 1 is the decision-directed weighting factor.
The steering vector g(n) can be estimated either as the RETF

as in prior work [15, 16], or as the DRTF. The advantage of us-
ing DRTFs is that the beamformer will also reduce early reflections
to some extent in contrast to using RETFs which fully preserves
the early reflections. The DRTF steering vector can be estimated
e. g. using the recently proposed approach in [27] based on spatial
probabilities, modelling the DRTFs assuming ideal omni-directional
microphones from the array geometry. The RETF steering can be es-
timated using the generalized eigendecomposition method described
in [15]. To make the implementation online capable, the non-causal
averaging operation of the RETFs over the whole audio file can be
replaced by causal recursive averaging similarly as in [28], equations
(39) and (40).

5. EXPERIMENTAL RESULTS

In this section, the CKBLP and the ISCLP methods are evaluated us-
ing the REVERB challenge dataset [21] which gives insights on the
overall system performance compared to WPD-RLS method [17].
We present the results considering both steering vector estimation
approaches based on the DRTFs and RETFs, respectively.

5.1. Experimental setup

We utilize the original evaluation metrics from the REVERB
challenge [21, 29], i. e., perceptual evaluation of speech quality
(PESQ), cepstral distance (CD), frequency-weighted segmental
SNR (fwsSNR), speech-to-reverberation modulation energy ratio
(SRMR) and log likelihood ratio (LLR) [29]. We used a subset
of 200 files of the REVERB simulated development dataset (Sim-
Data dt) for optimizing parameters and show results for the whole
evaluation set. The evaluation data contains acoustic conditions in
three different rooms with reverberation time (T60) of about 0.25 s,
0.5 s, 0.7 s, and two speaker-microphone distances, 50 cm (near),
and 250 cm (far). An 8-channel circular array with 20 cm diame-
ter was used. The simulated evaluation dataset contains recorded
background noise with a signal-to-noise ratio (SNR) of about 20 dB.

In our experiments, we used a sampling rate of 16 kHz, and a
512 point STFT with 50% overlap. The prediction delay wasD = 2
frames and the MCLP filter length varied for each frequency band
with L = {12, 15, 6} from low to high with transition frequencies
{800, 2000} Hz. We initialized M(0|0) = Φv(0) using Φb(0) =
10−5, Φp(0) = 0.03, and chose Φb(n) = 4 × 10−7, Φp(n) =
6×10−6 and Φg(n) = 10−12. We chose A = IM×(L−D+2), where
I is the identity matrix. All parameters were obtained by tuning on
the development subset.

5.2. Results

Tables 1 and 2 show the REVERB challenge simulated data evalu-
ation set results for each room and distance condition, and the aver-
age results. We show the unprocessed direct sound, and two variants
of each of the proposed CKBLP and ISCLP methods, using either
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Table 1: Objective speech enhancement evaluation using REVERB
challenge dataset for different rooms and microphone distances (near
and far). The steering vector is estimated using the DRTF method.
Boldface shows the best performance.

Unprocessed
Condition PESQ CD fwsSNR SRMR LLR

Room 1 near 3.02 1.99 8.13 4.50 0.35
Room 1 far 2.28 2.67 6.68 4.58 0.38

Room 2 near 2.04 4.63 3.35 3.74 0.49
Room 2 far 1.66 5.21 1.04 2.97 0.75

Room 3 near 1.92 4.38 2.27 3.57 0.65
Room 3 far 1.57 4.96 0.24 2.73 0.84

Average 2.08 3.98 3.62 3.68 0.57
ISCLP-DRTF

Room 1 near 1.96 4.60 2.23 4.78 0.64
Room 1 far 1.64 4.82 1.11 3.51 0.70

Room 2 near 1.96 4.69 -0.75 2.77 1.00
Room 2 far 1.66 5.28 -0.86 2.65 1.00

Room 3 near 1.97 4.76 1.64 3.75 0.82
Room 3 far 1.78 5.01 0.69 2.98 0.94

Average 1.83 4.86 0.68 3.41 0.85
CKBLP-DRTF (Proposed)

Room 1 near 3.31 1.88 10.06 4.88 0.34
Room 1 far 2.67 2.22 9.04 5.28 0.39

Room 2 near 2.47 3.88 6.72 4.58 0.40
Room 2 far 2.04 4.42 4.93 4.80 0.52

Room 3 near 2.36 3.53 5.37 4.61 0.52
Room 3 far 1.94 3.97 3.89 4.42 0.59

Average 2.46 3.32 6.67 4.76 0.46

the DRTF steering vector [27], referred to as the CKBLP-DRTF and
ISCLP-DRTF, or using the RETF steering vector [15], referred to as
the CKBLP-RETF and ISCLP-RETF.

As shown in Table 1, the proposed CKBLP-DRTF method
achieves the best performance for the average of the results in all
types of room conditions and also for each room condition individ-
ually. While we confirmed the ISCLP-DRTF improves STOI [30],
it here degrades most of our considered metrics in most conditions.
The GSC is known to suffer from speech cancellation, which is
prevented by using RETFs. In contrast, the CKBLP performs well
using both RETFs and DRTFs. As shown in Table 2, the CKBLP-
RETF outperforms the ISCLP-RETF method for the average of all
conditions. In addition, the CKBLP-DRTF also slightly outperforms
the online system proposed in [17] with single pass over the data
(i.e., true online processing), which uses a neural network based
RETF estimator on pre-dereverberated signals using an additional
weighted prediction error (WPE) pre-processing stage. In contrast,
our proposed CKBLP-DRTF method is a more direct and potentially
less complex system, as it only uses a low-complexity DOA estima-
tor and then directly estimates the beamformer. Using the proposed
CKBLP-DRTF, the SRMR is enhanced by 30% compared to the
unprocessed signals, 15% compared to the ISCLP-RETF method,
and 40% compared to the ISCLP-DRTF method. Also, the averaged
fwsSNR is improved by 84% compared to the unprocessed signals,
and 43% compared to the ISCLP-RETF method.

Employing the spatial probability-based DRTFs in the proposed
method not only does improve the performance of the speech en-
hancement systems, but also imposes lower computational complex-

Table 2: Objective speech enhancement evaluation using REVERB
challenge dataset for different rooms and microphone distances (near
and far). The steering vector is estimated using the RETF method.
Boldface shows the best performance.

Condition PESQ CD fwsSNR SRMR LLR
ISCLP-RETF

Room 1 near 2.87 2.37 7.64 4.30 0.43
Room 1 far 2.35 2.97 6.43 4.67 0.48

Room 2 near 2.30 4.20 4.90 4.04 0.45
Room 2 far 1.89 4.85 3.30 4.12 0.62

Room 3 near 2.26 3.92 3.72 4.07 0.63
Room 3 far 1.82 4.49 2.05 3.75 0.75

Average 2.25 3.80 4.67 4.16 0.56
CKBLP-RETF (Proposed)

Room 1 near 2.41 3.10 6.68 4.83 0.45
Room 1 far 2.83 2.52 7.90 4.80 0.42

Room 2 near 2.06 4.27 4.95 4.79 0.53
Room 2 far 2.66 3.23 7.41 4.57 0.41

Room 3 near 1.94 4.03 4.12 4.56 0.57
Room 3 far 2.35 3.80 5.52 4.52 0.48

Average 2.37 3.49 6.10 4.68 0.47

ity to the system. Particularly, the beamformer using the DRTFs par-
tially reduces early reflections in contrast to the RETFs which main-
tain early reflections. Although it is difficult to exactly compare the
computational complexity of steering vector estimation methods, we
measured the total runtime of our non-optimized Matlab implemen-
tations. The total runtime using the DRTF-based steering vector was
about 30% faster than the eigenvalue decomposition based RETF
steering vector.

6. CONCLUSIONS

In this paper, we have presented a new algorithm for joint beamform-
ing and reverberation cancellation of speech signals. The proposed
algorithm, which is derived based on the constrained Kalman filter
with multichannel linear prediction, jointly estimates the beam-
former and reverberation canceler filters. Experimental results for
the REVERB challenge dataset show that the proposed method
significantly reduces the noise and reverberation, and improves the
speech quality compared to state-of-the-art methods. While exist-
ing GSC-based integrated solution degrades the speech when using
DRTF-based steering vector, our proposed method achieves signifi-
cant improvements using both the RETF- and DRTF-based steering
vectors, where the latter yields a better performance while being
simpler to compute.
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