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ABSTRACT

We present our solution for unsupervised rapid speaker adaptation
in a state-of-art presentation and intelligent meeting transcription
system. We adopt the Kullback-Leibler (KL) divergence regular-
ized model adaptation paradigm. For the adaptation architecture, we
found that the linear projection layer adaptation yields competitive
performance with the additional benefit in its simplicity and robust-
ness to small amount of adaptation data. To address the imperfect
supervision, we use a supervision committee formed by multiple
systems or single-system n-best to mask possibly mislabeled frames.
To relieve the data sparsity issue, we apply noise and speaking rate
perturbation data augmentation techniques to create a richer adapta-
tion data set. In summary, the proposed solution consists of the KL-
divergence regularized linear projection layer adaptation with frame
masking and data augmentation. On a presentation transcription and
a meeting transcription task, our proposed methodology yields 7.3 %
and 7.9 % relative word error rate (WER) reduction against a strong
baseline model trained from tens of thousand hour speech. To the
best of our knowledge, this is a first reported work on rapid speaker
adaptation on a state-of-art production system.

Index Terms— Acoustic model adaptation, speaker adaption,
unsupervised adaptation, meeting transcription

1. INTRODUCTION

The increasingly more sophisticated neural network acoustic model
trained from tens of thousand hour speech is believed to be relatively
robust to speaker variability. The main challenges of the rapid unsu-
pervised speaker adaptation are the imperfect supervision generated
from the first-pass decoding and the limited amount of adaptation
data. In this paper, we would like to answer the question whether the
rapid unsupervised speaker adaptation is still beneficial for a state-
of-art presentation and intelligent meeting transcription system.

There was abundant previous work on the neural network acous-
tic model adaptation. In a tandem system [1], the Maximum a-
posterior (MAP) [2], and the Maximum likelihood linear regression
(MLLR) [3, 4] adaptation techniques can be applied to the Gaussian
mixture model (GMM) [5, 6]. In a hybrid or an end-to-end system,
the neural network acoustic model are directly adapted. Given the
large number of model parameters and limited amount of adapta-
tion data, methodologies in this category mainly focus on differ-
ent strategies to improve its robustness and avoid over-fitting [7–
17]. For example, the transformation [18, 19], the learning hidden
unit contribution (LHUC) [20,21], the singular value decomposition
(SVD) [22], and the factorized subspace adaptation [23], constrain
the model adaptation in a reduced or highly compressed parameter
space. Alternatively, the Kullback-Leibler (KL) divergence regu-
larized adaptation [9, 24] and the Bayesian neural network adapta-
tion [17, 25] make use of specially formulated objectives to prevent

catastrophic forgetting and over-fitting. Lastly, the i-vector [26, 27]
and the speaking code based adaptation [28] utilize the speaker-level
representation as the auxiliary input for the conditioning model.

In this paper, we present our practical solution for the unsuper-
vised rapid speaker adaptation for a bi-directional long short-term
memory acoustic model (LSTM) in a presentation and intelligent
meeting transcription system. We adopt the KL-divergence regular-
ized model adaptation paradigm [9]. For the adaptation architecture,
we compared adapting different component of the original network
or additional speaker-specific network components. We found that
the linear projection layer adaptation yields competitive performance
comparing to the LHUC [20] or the factorized sub-space adapta-
tion [23]. This is consistent with a previous study on a research
system [29]. To address the imperfect supervision [30], we adopt
a supervision committee formed by multiple systems or the single-
system n-best list to mask the incorrectly labeled frames. To re-
lieve the data sparsity, we applied different data augmentation tech-
niques [31] to create a richer and relevant data set.

We compare different adaptation methodologies for both super-
vised and unsupervised adaptation. Our proposed solution, which
consists of the KL-divergence regularized linear projection layer
adaptation with frame masking and data augmentation, yields 7.3 %
and 7.9 % relative WER reduction for the presentation transcrip-
tion and the intelligent meeting transcription task respectively. The
adaptation data amount ranges from 2 to 20 minutes per speaker.

This paper demonstrates the success of rapid unsupervised
speaker adaptation in a state-of-art system. To the best of our knowl-
edge, this is a first reported work on rapid speaker adaptation on an
up-to-date production scale system; previous study was primarily
conducted on research benchmarks. By carefully selecting and com-
bining several existing technologies with extensions, we establish
a practical solution which advances the rapid unsupervised speaker
adaptation in a practical speech service system.

The rest of this paper is organized as follows: Section 2 in-
troduces our proposed methodology; Section 3 presents the exper-
iments and results; Section 4 concludes this paper.

2. METHODOLOGIES

In this section, we present our proposed methodology for rapid un-
supervised adaptation.

2.1. Adaptation Architecture

The unstructured neural network model information distribution
makes it difficult to identify specific network component for speaker
variability. Therefore, most speaker adaptation solutions empirically
associate certain existing sub neural network or introduce additional
network component as the speaker signature for model adaptation.



In the sub-network adaptation, certain component of the original
network is chosen as the speaker signature to be adapted. It does
not introduce additional model parameters or modify the original
network structure. For training, we identify the selected nodes to
receive gradient update and keep others unchanged during back-
propagation. When using the adapted model in a practical system,
switching to the speaker adapted model only involves swapping
some neural network layers to the speaker adapted layers. This ap-
proach does not introduce additional run-time latency and is simple
to implement from the engineering perspective.

For adaptation with additional network component, we studied
the activation function based adaptation [20, 21] and the factorized
subspace-based adaptation [23] for comparison. The activation func-
tion based adaptation learns a speaker-specific hidden-unit contribu-
tion. As illustrated in Eq.(1), hlm is the re-weighted hidden unit
activation for the m-th speaker at the l-th layer; W l is the speaker
independent parameters of the l-th layer; φl(.) is the non-linearity
function of the l-th layer; rlm is the speaker-dependent parameters
used to re-weight the hidden-unit contribution of the l-th layer for
m-th speaker and α(.) is used to constrain the range of rlm:

hlm = α(rlm) · φl((W l)Thl−1
m ). (1)

The factorized subspace adaptation [23] formulates the speaker-
specific parameter residue using the factorized low-rank represen-
tation. As illustrated in Eq.(2), W l

m is the adapted model, W l
0 is

the baseline model, ΓlmD
l
mΨl

m is the low-rank representation of the
speaker-specific residue matrix. The rank of Γlm and Ψl

m defines the
dimension of the adaptation parameter space:

W l
m = W l

0 + ΓlmD
l
mΨl

m

T
. (2)

Both of these two approaches represent the speaker-specific net-
work component in a low-dimensional space and thus significantly
reduce the number of additional model parameters. Empirically, the
adaptation performance is often determined by the representation ca-
pacity and the appropriate trade-off with the data amount.

2.2. Supervision Committee

One key issue in the unsupervised model adaptation is the imperfect
supervision. Incorrect gradient generated from the incorrect super-
vision can lead to catastrophic parameter update during adaptation.

We propose to use a hypothesis committee to mask likely mis-
labeled frames. We first use the baseline and the alternative systems
(or single system n-best) to generate multiple word-level hypothe-
ses; then obtain the senone-level hypothesis via aligning the word-
level hypotheses with the baseline model. The degree of agreement
is used to determine whether a specific frame should be used or par-
tially used. Formally, the committee-based KL-regularized objective
is defined as

CEKL,Committee =
∑
i

(p̂i log pi)f(l
(0)
i , l

(1)
i , · · · , l(M)

i ), (3)

where pi is the posterior of the adapted model, p̂i is the KL-
regularized target, M is the total number of alternative systems,
i is the frame index. The KL-regularized target (p̂i) is the linear
combination of the posterior from the baseline model (p̄i) and the
0-1 hard label p̃i, α is the combination weight:

p̂i = (1 − α)p̃i + αp̄i. (4)

Fig. 1. System performance with respect to different speaking rate
(top) and SNR (bottom) for 10K hr LSTM, 3K hr LSTM, and 3K
hr DNN. The top figure depicts the WER performance of the three
systems with respect to different speaking rate. The bottom figure
depicts the performance with respect to SNR.

f(.) is a function which measures the degree of agreement between
the primary hypothesis (l(0)i ) generated by the baseline system and
the alternative hypothesis (l(j)i ) from other systems in the committee:

f(l
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where δ is a delta function, β (≥ 1) is a warping parameter used to
further dampen the weight for frames with only partial agreement.
Larger β penalizes frames with partial agreement more severely. We
simply set β = 1 in all experiments throughout this paper. Eq. (5)
provides a soft weighting for frames with partial hypothesis com-
mittee agreement. When only one alternative system is used, Eq. (5)
becomes a simple 0-1 valued function. A frame is discarded if the
alternative system disagrees with the primary system.

2.3. Data augmentation

Data sparsity is another barrier in rapid speaker adaptation for a
large-scale model with massive number of parameters. Inspired by
the study on the model robustness to varied speaking rate and SNR,
we proposed to apply the duration and noise perturbation techniques
to generate multiple samples of faster, slower, or noisier speech to
address the data sparsity. These techniques are not new, which have
been used in previous work [31]. As an initial study, we trained a
pair of DNN and LSTM using 3K hour speech and another LSTM
with 10K hour speech. All models share the same 80-dimension log-
filter bank (LFB) front-end and 9404 tied senone states. We measure
the speaking rate and SNR dependent WER using 100 hour test data
similarly to [32]. As depicted in Figure 1, in a model with more
advanced structure and enlarged training data, the robustness pattern
respect to different speaking rate and SNR remains similar.

3. EXPERIMENTS AND RESULTS

In this section, we present experimental results. All experiments
were conducted on anonymized data with personally identifiable in-
formation removed.



Fig. 2. Performance comparison of different model adaptation struc-
ture in supervised adaptation.

3.1. Experimental Setup

The presentation transcription consists of 19 speakers, each with 2
to 20 minutes of speech. For each speaker, the first half of speech is
used for training and the rest for testing. We conducted supervised
and unsupervised adaptation for comparison on this task.

The intelligent meeting transcription task consists of 14 meet-
ings and 100 meeting speakers. Each meeting consists of 3 to 15
speakers and each speaker has 3 to 20 minutes of speech. The
multi-channel far-field speech first passes through our far-field
multi-channel audio processing to generate the single-channel en-
hanced speech. The speech is segmented into speaker homogeneous
regions using the audio-visual signal and the speaker profile [33].
We only conduct the unsupervised adaptation on this task.

The baseline is a bidirectional LSTM model trained from tens of
thousand hour speech. It has 6 bidirectional LSTM layers followed
by a fully connected top layer. Each layer has 2048 hidden units.
The input consists of a 80-dim log-filter bank feature (LFB). The
output layer has 9404 senone states.

3.2. Adaptation Structure

We first compare adapting different component of the original net-
work illustrated in Figure 2. Li refers to adapting the i-th recurrent
layer; LPi refers to adapting the projection layer of the i-th recurrent
layer, e.g. LP1 refers to adapting the projection layer of the bottom
recurrent layer, LP1 6 refers to adapting the projection layer of all
six recurrent layers. LHUC refers to the learning hidden unit con-
tribution based adaptation. Factor refers to the factorization-based
adaptation. We use the relative WER reduction (WER.R) to mea-
sure the adaptation performance throughout this paper.

We found that the linear projection layer adaptation (LP1 6)
yields robust adaptation performance for both supervised and un-
supervised adaptation. In particular, adapting the recurrent layer is
not as effective as adapting the projection linear layer. It is likely
due to the fact that the recurrent layer is harder to optimize, espe-
cially with limited amount of data. On the other hand, the linear
projection layer adaptation provides a good trade-off between the
representation capacity and ease of training.

We further implemented the LHUC and the factorized sub-space
adaptation. We found that the LHUC and the factorized sub-space
adaptation yield similar adaptation performance. Comparing to the
linear projection layer adaptation, they are not notably better. We
hypothesize that the LHUC and the factorized sub-space adaptation
may perform better when the adaptation data is even smaller. We
therefore reduce the data to half or quarter of the current setup and
repeat the same experiments. As shown in Fig 3, with the reduced
adaptation data, the LHUC and the factorized sub-space adaptation

Fig. 3. Adaptation performance with reduced data amount. HALF
and QUARTER refer to using 50 % or 25 % of ALL for adaptation.

Fig. 4. Comparison of supervised and unsupervised adaptation mea-
sured by relative WER reduction (WER.R). The only difference be-
tween the sup/unsup adaptation compared here is whether the human
transcription or the first-pass decoding is used.

indeed performs slightly better than the linear projection layer adap-
tation. Due to the adaptation training run-time cost, we choose to
only adapt speakers with reasonable amount of data and discard oth-
ers with too little data (e.g. ≤ 3 min). In that operating point, the
projection layer adaptation performs the best.

3.3. Hypothesis Committee

To illustrate the impact of supervision quality, we conduct a pair of
supervised and unsupervised model adaptation, which only differs in
whether human transcription or the first-pass decoding result is used
as supervision. As depicted in Figure 4, imperfect supervision in un-
supervised adaptation results in significant performance gap between
sup/unsup adaptation.

Table 1 presents the results of adaptation with different hypoth-
esis committees. The hypothesis committee consists of complimen-
tary acoustic models with varied model structures or different front-
end. For example, S0 is the baseline system, S1 is a uni-direction
LSTM with 40-dim LFB feature, S2 is a structurally different bi-
direction LSTM with fewer number of layers and memory cells.
2 -system (S0/trans) refers to joining the human transcription with
the transcription generated from the baseline first pass decoding; 2-
system (S0/S1) and 3-system (S0/S1/S2) refer to joining the tran-
scription generated from the alternative systems (S1 or S1/S2) with
the transcription from the baseline system (S0).

As discussed in Section 2.2, the unsupervised adaptation reduces
the gain of the supervised adaptation by more than half, i.e. 4.1 %
relative WER reduction for the unsupervised adaptation and 8.0 %
for the supervised counterpart. 2-system (S0/trans) joins the unsu-
pervised transcription with the human transcription and thus per-
fectly masks the incorrectly labeled frames. It yields 7.6 % relative
WER reduction, which is the oracle performance upper bound given
the unsupervised transcription quality.



Instead of using the human transcription, we introduce a second
system (S1) to generate alternative transcription and form the su-
pervision committee. 2-system (S0/S1) yields 6.3 % relative WER
reduction. Further adding a third system (S2), 3-system (S0/S1/S2)
yields 6.4 % relative WER reduction, only slightly better. It is to
be noted that the gain here is due to the effective masking of the
incorrectly labeled frames. It is different from rover as our super-
vision committee formulation in Eq.(3) does not use transcription
from the alternative systems for adaption. As running an alterna-
tive system introduces additional cost, we apply the same idea to the
single-system n-best hypothesis. We use the n-best of the baseline
system to form the hypothesis committee for frame masking. As in
Table 1, 1-best, 3-best, and 5-best yield 6.1 %, 6.5 %, and 6.1 %
relative WER reduction respectively.

Table 1. Adaptation performance of applying the supervision com-
mittee for the unsupervised adaptation.

Model WER.R
SUP (KL=0.5) 8.1
UNSUP (1-system, 1-best) (KL=0.8) 4.0
UNSUP (2-System, S0/trans)(KL=0.8)1 7.6
UNSUP (2-System, S0/S1) (KL=0.8) 6.3
UNSUP (3-System, S0/S1/S2) (KL=0.8) 6.4
UNSUP (1-System, 2-best) (KL=0.8) 6.1
UNSUP (1-System, 3-best) (KL=0.8) 6.5
UNSUP (1-System, 5-best) (KL=0.8) 6.1
UNSUP (1-system, 1-best, conf) (KL=0.8) 4.6
UNSUP (3-System, S0/S1/S2, rover) 3.5

We further experimented with the single-system confidence
based data selection similar to [34], but only achieve moderate
additional gain. This is likely due to the sub-optimal confidence
classifier. We also conducted rover without adaptation. The stan-
dard rover using S0/S1/S3 results in 3.5 % relative WER reduction.

3.4. Data Augmentation

For the speaking rate perturbation, two sets of speaking rate aug-
mentation range (e.g. 0.9-1.1 and 0.8-1.2) were used with a post-
processing to filter out the utterances with speaking rate out of nor-
mal speaking rate range. For the noise perturbation, we generate
one or two copies of the data with additive noise and combine with
the original data for adaptation. As the noise perturbation is primar-
ily for regularization, we only add mild noise without significantly
reducing the SNR. Table 2 presents supervised and unsupervised
adaptation result. We observed consistent gains using the duration
augmentation for both the supervised and the unsupervised adapta-
tion. The noise perturbation yields smaller but still consistent perfor-
mance gain. Adding more noisy simulations might make the original
data underrepresented in the data and therefore does not help further.

Table 2. Accuracy performance of data augmentation for supervised
and unsupervised adaptation.
Model WER.R Model WER.R
SUP (KL=0.5) 8.0 UNSUP (KL=0.8) 4.1
SUP (Dur0.9-1.1) 9.0 UNSUP (Dur0.9-1.1) 5.1
SUP (Dur0.8-1.2) 8.6 UNSUP (Dur0.8-1.2) 5.0
SUP (Noise1copy) 8.5 UNSUP (Noise1copy) 4.6
SUP (Noise2copy) 7.8 UNSUP (Noise2copy) 4.4

We combine the supervision committee with data augmenta-
tion. As reported in Table 3, 2-system combination with noise and

1As the human transcription is used in the hypothesis committee, it pro-
vides a performance upper bound for the committee-based approach.

speaking-rate perturbation yields 7.3 % relative WER reduction. To
avoid running two systems, using 3-best from 1 system only com-
bined with data augmentation can also yield 7.1 % relative WER
reduction. We didn’t further experiment with combining 3-system
with data augmentation as it is lack of interest to us due to the addi-
tional computation cost in a practical solution.

Table 3. Performance of unsupervised model adaptation with super-
vision committee and data augmentation.

Model WER.R
SUP (KL=0.5) 8.0
UNSUP (KL=0.8) 4.1
2 System (S0/S1) 6.3
2 System (S0/S1) + Dur0.9-1.1 + Noise1copy 7.3
1 System (S0/3-best) 6.5
1 System (S0/3-best) + Dur0.9-1.1 + Noise1copy 7.1

3.5. Speaker Adaptation for Meetings

For intelligent meeting transcription, the speaker adaption is per-
formed on speaker segmented speech after speaker diarization. Ta-
ble 4 presents the overall unsupervised speaker adaptation result. On
14 meetings with around 100 meeting speakers, the adaptation yields
7.9 % average relative WER reduction for speakers with at least 10
minutes speech. For speakers with too little data, we choose not to
adapt for cost-effective concern. It is to be noted that the diariza-
tion error can also affect the adaptation performance. The reported
result is based on an end-to-end run of the meeting transcription sys-
tem [33] with real diarization. We also evaluate the adaption based
on the ground truth diarization and obtain slightly better results.

Table 4. Performance of unsupervised speaker adaptation on the
intelligent meeting transcription system.

Meeting WER.R Meeting WER.R
Meeting001 4.7 Meeting008 10.9
Meeting002 6.0 Meeting009 2.6
Meeting003 15.0 Meeting010 3.0
Meeting004 6.1 Meeting011 7.7
Meeting005 8.1 Meeting012 10.0
Meeting006 6.9 Meeting013 2.0
Meeting007 4.7 Meeting014 4.6

Average = 7.9

4. CONCLUSION

In summary, we presented our acoustic model adaptation solution
for a practical presentation and meeting transcription system. We
found the simple linear projection layer adaptation with supervision
committee and data augmentation can yield competitive adaptation
performance. Our results suggest that the state-of-art neural network
acoustic model can still benefit from rapid unsupervised speaker
adaptation. It is practical to deploy this technology for an offline
speech transcription system. For online streaming adaptation, we
think it is a very interesting but still extremely challenging topic.
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