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Abstract

The accuracy of monocular 3D human pose estimation
depends on the viewpoint from which the image is captured.
While freely moving cameras, such as on drones, provide
control over this viewpoint, automatically positioning them
at the location which will yield the highest accuracy re-
mains an open problem. This is the problem that we address
in this paper. Specifically, given a short video sequence,
we introduce an algorithm that predicts which viewpoints
should be chosen to capture future frames so as to max-
imize 3D human pose estimation accuracy. The key idea
underlying our approach is a method to estimate the un-
certainty of the 3D body pose estimates. We integrate sev-
eral sources of uncertainty, originating from deep learning
based regressors and temporal smoothness. Our motion
planner yields improved 3D body pose estimates and out-
performs or matches existing ones that are based on person
following and orbiting.

1. Introduction

Monocular approaches for 3D human pose estimation
have improved significantly in recent years, but their ac-
curacy remains relatively low. In this paper, we explore the
use of a moving camera whose motion we can control to re-
solve ambiguities inherent to monocular 3D reconstruction
and to increase pose estimation accuracy. This is known as
active vision and has received surprisingly little attention in
the context of using modern approaches to body pose esti-
mation. An active motion capture system, such as one based
on a personal drone, would allow one to film themselves
performing a physical activity and analyze their motion,
for example to get feedback on their performance. When
using only one camera, the quality of such feedback will
strongly depend on selecting the most beneficial viewpoints
for pose estimation. Fig. 1 depicts an overview of our ap-
proach based on a drone-based monocular camera.

In this paper, we introduce an algorithm designed to con-
tinuously position a moving camera at optimal viewpoints

Figure 1. Method overview. The 2D and 3D human pose is in-
ferred from the current frame of the drone footage, using off the
shelf CNNs. The 2D pose and relative 3D pose of the last k frames
is then used to optimize for the global 3D human motion. The next
view of the drone is chosen so that the uncertainty of the human
pose estimation from that view is minimized, which improves re-
construction accuracy.

to maximize the 3D pose estimation accuracy for a freely
moving subject. We achieve this by moving the camera in
6D pose space to viewpoints that maximize a utility func-
tion designed to predict reconstruction accuracy. However,
the utility function cannot be defined in terms of reconstruc-
tion accuracy because doing so would require knowing the
true person and camera position, leading to a chicken and
egg problem. Instead we use prediction uncertainty as a sur-
rogate for accuracy. This is a common strategy used in robot
navigation systems for unknown scenes where the robot ex-
plores areas that are most incomplete in its internal map
representation [20]. However, in our situation, estimating
uncertainty is much more difficult since multiple sources of
uncertainty need to be considered. These include uncertain-
ties about what the subject will do next, the reliability of
the pose estimation algorithm, and the accuracy of distance
estimation along the camera’s line of sight.



Our key contribution is therefore a formal model that
provides an estimate of the posterior variance and proba-
bilistically fuses these sources of uncertainty with appro-
priate prior distributions. This has enabled us to develop
an active motion capture technique that takes raw video
footage as input from a moving aerial camera and contin-
uously computes future target viewpoints for positioning
the camera, in a way that is optimized for human motion
capture. We demonstrate our algorithm in two different
scenarios and compare it against standard heuristics, such
as constantly rotating around the subject and maintaining
a constant angle with respect to the subject. We find that
when allowed to choose the next viewpoint without phys-
ical constraints, our algorithm outperforms the baselines
consistently. For simulated drone flight, our results are on
par with constant rotation, which we conclude is the best
trajectory to choose in the case of no obstacles blocking
the circular flight path. Our code is available at https:
//github.com/senakicir/ActiveMoCap

2. Related work
Most recent approaches to markerless motion capture

rely on deep networks that regress 3D pose from monocular
images [16, 17, 21, 38, 25, 31, 22, 44, 36, 34, 41, 39, 15].
While a few of these methods improve robustness by en-
forcing temporal consistency [23], none considers the effect
that actively controlling the camera may have on accuracy.
The methods most closely related to ours are therefore those
that optimize camera placement in multi-camera setups and
those that guide robots in a previously-unknown environ-
ment.

Optimal Camera Placement for Motion Capture. Op-
timal camera placement is a well-studied problem in the
context of static multi-view setups. Existing solutions rely
on maximizing image resolution while minimizing self-
occlusion of body parts [5, 2] or target point occlusion and
triangulation errors [27]. However, these methods operate
offline and on pre-recorded exemplar motions. This makes
them unsuitable for motion capture using a single mov-
ing camera that films a priori unknown motions in a much
larger scene where estimation noise can be high.

In [24] multiple cameras poses are optimized for tri-
angulation of joints in a dome environment using a self-
supervised reinforcement learning approach. In our case,
we consider the monocular problem. Our method is not
learning based, we try to obtain the next best view from
the loss function itself.

View Planning for Static and People Reconstruction.
There has been much robotics work on active reconstruction
and view planning. This usually involves moving so as to
maximize information gain while minimizing motion cost,
for example by a discretizing space into a volumetric grid

and counting previously unseen voxels [14, 8] or by accu-
mulating estimation uncertainty [20]. When a coarse scene
model is available, an optimal trajectory can be found us-
ing offline optimization [30, 13]. This has also been done to
achieve desired aesthetic properties in cinematography [11].
Another approach is to use reinforcement learning to de-
fine policies [7] or to learn a metric [12] for later online
path planning. These methods deal with rigid unchang-
ing scenes, except the one in [6] that performs volumet-
ric scanning of people during information gain maximiza-
tion. However, this approach can only deal with very slowly
moving people who stay where they are.

Human Motion Capture on Drones. Drones can be
viewed as flying cameras and are therefore natural targets
for our approach. One problem, however, is that the drone
must keep the person in its field of view. To achieve this,
the algorithm of [45] uses 2D human pose estimation in a
monocular video and non-rigid structure from motion to re-
construct the articulated 3D pose of a subject, while that
of [18] reacts online to the subject’s motion to keep them in
view and to optimize for screen-space framing objectives.
AirCap [32] calculates trajectories of multiple drones that
aim to keep the person in view while simultaneously per-
forming object avoidance. This was extended in [35] so as
to optimize multiple MAV trajectories by minimizing the
uncertainty of the 3D human joint positions being tracked,
but focusing on the 3D human pose estimation as an offline
step. In [19], this was integrated into an autonomous sys-
tem that actively directs a swarm of drones and simultane-
ously reconstructs 3D human and drone poses from onboard
cameras. This strategy implements a pre-defined policy to
stay at constant distance to the subject and uses pre-defined
view angles (90◦ between two drones) to maximize trian-
gulation accuracy. This enables mobile large-scale motion
capture, but relies on markers for accurate 2D pose estima-
tion. In [40], three drones are used for markerless motion
capture, using an RGBD video input for tracking the sub-
ject.

In short, existing methods either optimize for drone
placement but for mostly rigid scenes, or estimate 3D hu-
man pose but without optimizing the camera placement.
[24] performs optimal camera placement for multiple cam-
eras. Here, we propose an approach that aims to find the
best next drone location for monocular view so as to maxi-
mize 3D human pose estimation accuracy.

3. Active Human Motion Capture

Our goal is to continuously position the camera in 6D
pose space so that the acquired by the camera can be used
to achieve the best overall human pose estimation accuracy.
What makes this problem challenging is that, when we de-
cide where to send the camera, we do not yet know where
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the subject will be and in what position exactly. We there-
fore have to guess. To this end, we propose the following
three-step approach depicted by Fig. 1:

1. Estimate the 3D pose up to the current time instant.
2. Predict the person’s future location and 3D pose at the

time the camera acquires the next image, including an
uncertainty estimate.

3. Select the optimal camera pose based on the uncer-
tainty estimate and move the camera to that viewpoint.

We will consider two ways the camera can move. In the
first case, the camera can teleport from one location to the
next without restriction, allowing us to explore the theo-
retical limits of our approach. Such a teleportation mode
can be simulated using a multi-camera setup, enabling us to
evaluate our model on both simulated data and real image
datasets acquired from multiple viewpoints. In the second,
more realistic scenario, the camera is carried by a simulated
drone, and we must take into account physical limits about
the motion it can undertake.

3.1. 3D Pose Estimation

The 3D pose estimation step takes as input the video
feed from the on-board camera over the past N frames and
outputs for each frame, t ∈ (1, . . . , N), the 3D human
pose, represented as 15 3D points Θt ∈ R15×3, and the
drone pose, as 3D position and rotation angles Dt ∈ R2×3.
Our focus is on estimating the 3D human pose using the
real-time method proposed by [3], which detects the 2D
locations of the human’s major joints in the image plane,
Mt ∈ R15×2, and the subsequent use of [36], which lifts
these 2D predictions to 3D pose, Lt ∈ R15×3. However,
these per-frame estimates are error prone and relative to the
camera. To remedy this, we fuse 2D and 3D predictions
with temporal smoothness and bone-length constraints in
a space-time optimization. This exploits the fact that the
drone is constantly moving so as to disambiguate the indi-
vidual estimates. The bone lengths, bcalib, of the subject’s
skeleton are computed during an apriori calibration stage,
where the subject has to stand still for 20 seconds. This is
performed only once for each subject. Formally, we opti-
mize for the global 3D human pose by minimizing an ob-
jective function Epose, which we detail below.

3.1.1 Formulation

Our primary goal is to improve the global 3D human pose
estimation of a subject changing position and pose. We op-
timize the time-varying pose trajectories across the last k
frames. Let t be the last observed frame. We capture the
trajectory of poses Θt−k to Θt in the pose matrix Θ. We
then write an energy function

Epose = Eproj(Θ,M,D) + Elift(Θ,L)

+ Esmooth(Θ) + Ebone(Θ,b) . (1)

The individual terms are defined as follows. The lift term,
Elift, leverages the 3D pose estimates, L, from LiftNet [36].
Because these are relative to the hip and without absolute
scale, we subtract the hip position from our absolute 3D
pose, Θt, and apply a scale factor m to L to match the bone
lengths bcalib in the least-square sense. We write

Elift(Θ,L) = ωl

t∑
i=t−k

‖m · Li − (Θi −Θi
hip joint)‖22 , (2)

with ωl its relative weight.
The projection term measures the difference between the

detected 2D joint locations and the projection of the esti-
mated 3D pose in the least-square sense. We write it as

Eproj(Θ,M,D) = ωp

t∑
i=t−k

‖Mi −Π(Θi,Di,K)‖22 ,

(3)

where Π is the perspective projection function, K is the
matrix of camera intrinsic parameters, and ωp is a weight
that controls the influence of this term.

The smoothness term exploits that we are using a contin-
uous video feed and that the motion is smooth by penalizing
velocity computed by finite differences as

Esmooth(Θ) = ωs

t∑
i=t−k+1

‖(Θi+1 −Θi)‖22 . (4)

with ωs as its weight.
To further constrain the solution space, we use our

knowledge of the bone lengths bcalib found during cali-
bration and penalize deviations in length. The length of
each bone b in the set of all bones ball is found as bt

b =
‖(Θb1 −Θb2)‖2 for frame t. The bone length term is then
defined as

Ebone(Θ) = ωb

t∑
i=t−k

∑
b∈ball

d(bi
b,bcalib,b) , (5)

with ωb as its weight.
The complete energy Epose is minimized by gradient de-

scent at the beginning of each control cycle, to get a pose
estimate for control. The resulting pose estimate Θ̂ is the
maximum a posteriori estimate in a probabilistic view.

3.1.2 Calibration Mode

Calibration mode only has to be run once for each subject to
find the bone lengths, bcalib. In this mode, the subject is as-
sumed to be stationary. The situation is equivalent to having
the scene observed from multiple stationary cameras, such
as in [29]. We find the single static pose Θc that minimizes

Ecalib = Eproj(Θ
c,M,D) + Esymmetry(Θc). (6)
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Figure 2. Probabilistic interpretation. Left: A quadratic energy
function and its associated Gaussian error distribution. Right: A
complex energy function, which is locally approximated with a
Gaussian (blue) near the minimum. The curvature of the energy
function is a measure of the confidence in the estimate and the vari-
ance of the associated error distribution. The energy on the right
is more constrained and its error distribution has a lower variance.

In this objective, the projection term,Eproj, is akin to the one
in our main formulation but acts on all calibration frames.
It can be written as

Eproj(Θ
c,M,D) = ωp

t∑
i=0

‖Mi −Π(Θc,Di,K)‖22 , (7)

with ωp controlling its influence. The symmetry term,
Esymmetry, ensures that the left and right limbs of the es-
timated skeleton have the same lengths by penalizing the
squared difference of their lengths.

3.2. Next Best View Selection

Our goal is to find the next best view for the drone
at the future time step t + 1, Dt+1. We will model the
uncertainty of the pose estimate in a probabilistic setting.
Let p(Θ|M,D,L,b) be the posterior distribution of poses.
Then, Epose is its negative logarithm and its minimization
corresponds to maximum a posteriori (MAP) estimation.
In this formalism, the sum of the individual terms in Epose
models that our posterior distribution is composed of in-
dependent likelihood and prior distributions. For a purely
quadratic term, E(x) = ω(x − µ)2, the corresponding dis-
tribution pE = exp (−E) is a Gaussian with mean µ and
standard deviation σ = 1√

2ω
. Notably, σ is directly linked

to the weight ω of the energy. Most of our energy terms
involve non-linear operations, such as perspective projec-
tion in Eproj, and therefore induce non-Gaussian distribu-
tions, as visualized in Fig. 2. Nevertheless, as for the simple
quadratic case, the weights ωp and ωl of Eproj and Elift can
be interpreted as surrogates for the amount of measurement
noise in the 2D and 3D pose estimates.

A good measure of uncertainty is the sum of the eigen-
values of the covariance Σp of the underlying distribution

Figure 3. Uncertainty estimates for each candidate drone posi-
tion, visualized on the left as 3D ellipsoids and on the right from
a 2D top-down view. Each ellipse visualizes the eigenvalues of
the hip location when incorporating an additional view from its
displayed position. Here, the previous image was taken from the
top (position 16) and uncertainty is minimized by moving to an
orthogonal view. The complete distribution has more than three
eigenvectors and cannot straightforwardly be visualized in 3D.

p. The sum of the eigenvalues captures the spread of a mul-
tivariate distribution with a single variable, similarly to the
variance in the univariate case. To exploit this uncertainty
estimation for our problem, we now extend Epose to model
not only the current and past poses but also the future ones
and condition it on the choice of the future drone position.
To determine the best next drone pose, we sample candi-
date positions and chose the one with the lowest uncertainty.
This process is illustrated in Figure 3.

Future pose forecasting. In our setting, accounting for
the dynamic motion of the person is key to successfully po-
sitioning the camera. We model the motion of the person
from the current frame t to the next M future frames t + i,
i ∈ (1, . . . ,M) linearly, i.e. we aim to keep the velocity of
the joints constant across our window of frames. We also
constrain the future poses by the bone length term. The fu-
ture pose vectors Θt+i are constrained by the smoothness
and bone length terms, but for now not by any image-based
term since the future images are not yet available at time
t. Minimizing this extended Epose for future poses gives
the MAP poses Θ̂t+i. It continues the motion Θ̂t−k,··· ,t+K

smoothly while maintaining the bone lengths. As we pre-
dict only the near future, we have found this simple extrap-
olation to be sufficient. We leave as future work the use of
more advanced methods [10, 42] to forecast further.

Future measurement forecasting. We aim to find the
future drone position, Dt+1, that reduces the posterior un-
certainty, but we do not have footage from future viewpoints
to condition the posterior on. Instead, we use the predicted
future human pose Θ̂t+i, i ∈ (1, . . . ,M), as a proxy for
Lt+i and approximate Mt+i with the projection



M̂t+1 = Π(Θ̂t+1,Dt+1,K) . (8)

At first glance, constraining the future pose on these vir-
tual estimates in Epose does not add anything since the
terms Eproj and Elift are zero at Θ̂t+1 by this construction.
However, it changes the energy landscape and models how
strong a future observation would constrain the pose poste-
rior. In particular, the projection term, Eproj, narrows down
the solution space in the direction of the image plane but
cannot constrain it in the depth direction, creating an el-
liptical uncertainty as visualized in Fig 3. The combined
influence of all terms is conveniently modeled as the energy
landscape of Epose and its corresponding posterior.

In our current implementation we assume that the 2D and
3D detections are affected by pose-independent noise, and
their variance is captured by ωp and ωl, respectively. These
factors could, in principle, be view dependent and in rela-
tion to the person’s pose. For instance, [4] may be more ac-
curate at reconstructing a front view than a side view. How-
ever, while estimating the uncertainty in deep networks is
an active research field [26], predicting the expected uncer-
tainty for an unobserved view has not yet been attempted for
pose estimation. It is an interesting future work direction.

Variance estimator. Epose and its corresponding pos-
terior has a complex form due to the projection and prior
terms. Hence, the sought-after covariance Σp cannot be ex-
pressed in closed form and approximating it by sampling
the space of all possible poses would be expensive. In-
stead, for the sake of uncertainty estimation, we approxi-
mate p(Θ|D,M,L,b) locally with a Gaussian distribution
q, such that

Σp(Θ|D,M,L) ≈ Σq where q = N(Θ|Θ̂,Σq) , (9)

with Θ̂ and Σq the Gaussians mean and covariance matrix,
respectively. Such an approximation is exemplified in Fig-
ure 2. For a Gaussian, the covariance of q can be com-
puted in closed form as the inverse of the Hessian of the
negative log likelihood, Σq = H−1− log q , where H− log q =
∂2−log q(Θ)

∂Θ

∣∣∣
Θ=Θ̂

. Under the Gaussian assumption, Σp is
thereby well approximated by the second order gradients,
H−1Epose

, of Epose. Our experiments show that this simplifica-
tion holds well for the introduced error terms.

To select the view with minimum uncertainty among a
set of K candidate drone trajectories, we therefore

1. optimize Epose once to forecast M human poses Θ̂t+i,
for 1 ≤ i ≤M

2. use these forecasted poses to set L̂t+i and M̂t+i for
each 1 ≤ i ≤M for each candidate trajectory c,

3. compute the second order derivatives of Epose for each
c, which form Hc, and

4. compute and sum up the respective eigenvalues to se-
lect the candidate with the least uncertainty.

Discussion. In principle, p(Θ|M,D,L,b), i.e. the
probability of the most likely pose, could also act as a mea-
sure of certainty, as implicitly used in [27] on a known mo-
tion trajectory to minimize triangulation error. However,
the term Eproj(Θ̂, M̂) of Epose is zero for the future time
step t + i, because the projection of Θ̂t+i is by construc-
tion equal to M̂t+i and therefore uninformative. Another
alternative that has been proposed in the literature is to ap-
proximate the covariance through first order estimates [37],
as a function of the Jakobi matrix. However, as also the first
order gradients of Eproj vanish at the MAP estimate, this
approximation is not possible in our case.

3.3. Drone Control Policies and Flight Model

In the experiments where we simulate drone flight, the
algorithm decides between 9 candidate trajectories in the di-
rections up, down, left, right, up-right, up-left, down-right,
down-left and center. To ensure that the drone stays a fixed
distance away from the person, the direction vector is nor-
malized by the fixed-distance value.

In the remainder of this section, we describe how we
model the flight of the drone so that we can predict the po-
sition of the drone along a potential trajectory in future time
steps. By forecasting the future M locations of the drone
on a potential trajectory c, we can predict the 2D pose esti-
mations M̂t+i for each {i}Mi=1 more accurately.

We control the flight of our drone by passing it the de-
sired velocity vector and the desired yaw rotation amount
with the maximum speed kept constant at 5 m/s. The drone
is sent new commands once every ∆t = 0.2 seconds.

We model the drone flight in the following manner. We
assume that the drone moves with constant acceleration
during a time step ∆t. If the drone has current position
xcurrent and velocity Vcurrent, then with an current accelera-
tion acurrent, its next position xgoal in ∆t time will be

xgoal = xcurrent + Vcurrent∆t+ 0.5acurrent∆t
2 . (10)

The current acceleration at time t is found as a weighted
average of the input acceleration ainput and the acceleration
of the previous step aprevious. This can be written as

acurrent = αainput + (1− α)aprevious. (11)

ainput is determined according to the candidate trajectory
being evaluated. The direction of the acceleration vector is
set to the direction of the candidate trajectory. We determine
the magnitude of the input acceleration through least-square
minimization of the difference between the predicted xgoal
and the actual drone position. α is found by line search.

By estimating the future positions of the drone, we are
able to forecast more accurate future 2D pose estimations,



Figure 4. Predicted trajectories as the drone is circling the sub-
ject. The future drone positions are predicted for the future 3 steps,
represented by triangle markers on the trajectories. Red depicts the
chosen trajectory.

leading to more accurate decision making. Examples of pre-
dicted trajectories are shown in Figure 4. Further details are
provided in the supplementary material.

4. Evaluation

In this section we evaluate the improvement on 3D hu-
man pose estimation that is achieved through optimization
of the drone flight.

Simulation environment. Although [28, 3, 36] run in
real time, and online SLAM from a monocular camera [9]
is possible, we use a drone simulator since the integration of
all components onto constrained drone hardware is difficult
and beyond our expertise. We make simulation realistic by
driving our characters with real motion capture data from
the CMU Graphics Lab Motion Capture Database [1] and
using the AirSim [33] drone simulator that builds upon the
Unreal game engine and therefore produces realistic images
of natural environments. Simulation also has the advantage
that the same experiment can be repeated with different pa-
rameters and be directly compared to baseline methods and
ground-truth motion.

Simulated test set. We test our approach on three CMU
motions of increasing difficulty: Walking straight (subject
2, trial 1), Dance with twirling (subject 5, trial 8), and Run-
ning in a circle (subject 38, trial 3). Additionally, we use
a validation set consisting of Basketball dribble (subject 6,
trial 13), and Sitting on a stool (subject 13, trial 6), to con-
duct a grid search for hyperparameters.

Real test set. To show that our planner also works out-
side the simulator, we evaluate our approach on a section of
the MPI-INF-3DHP dataset, which includes motions such
as running around in a circle and waving arms in the air.
The dataset provides 14 fixed viewpoints that are at varying
distances from one another and from the subject, as depicted
in Figure 6. In this case, the best next view is restricted to
one of the 14 fixed viewpoints. This dataset lets us evaluate
whether the object detector of [28], the 2D pose estimation
method of [4], and the 3D pose regression technique of [36]

Average errorPredicted uncertainty

Figure 5. Uncertainties estimates across potential viewpoints
(left image) compared with the average error we would obtain if
we were to visit these locations (right image). The star represents
the location of the subject and the large circle depicts the chosen
viewpoint according to the lowest uncertainty.

Figure 6. MPI INF 3DHP dataset, which has images taken from
14 viewpoints with various distances to the subject. We use this
dataset to evaluate our performance on datasets with realistic cam-
era positioning and real images.

are reliable enough in real environments. Since we cannot
control the camera in this setting, we remove those cam-
eras from the candidate locations where we predict that the
subject will be out of the viewpoint.

Baselines. Existing drone-based pose estimation meth-
ods use predefined policies to control the drone position
relative to the human. Either the human is followed from
a constant angle and the angle is set externally by the
user [19] or the drone undergoes a constant rotation around
the human [45]. As another baseline, we use a random de-
cision policy, where the drone picks uniformly randomly
among the proposed viewpoints. Finally, the oracle is ob-
tained by moving the drone to the viewpoint where the re-
construction in the next time step will have the lowest aver-
age error, which is achieved by exhaustively trying all view-
points with the corresponding image in the next time frame.

Hyper parameters. We set the weights of the loss term
for the reconstruction as follows: ωp = 0.0001 (projec-



Noisy ground truth Networks
CMU-Walk CMU-Dance CMU-Run MPI-INF-3DHP MPI-INF-3DHP Total

Oracle 0.101±0.001 0.101±0.001 0.109±0.001 0.136±0.002 0.17±0.0005 0.142±0.027
Ours (Active) 0.113±0.001 0.116±0.003 0.19±0.001 0.145±0.006 0.21±0.0008 0.155±0.39
Random 0.123±0.002 0.125±0.003 0.159±0.003 0.286±0.027 0.28±0.03 0.195±0.07
Constant Rotation 0.157±0.002 0.146±0.004 0.223±0.003 0.265±0.010 0.29±0.03 0.216±0.06
Constant Angle 0.895±0.54 0.683±0.31 0.985±0.24 1.73±0.61 1.26±0.53 1.11±0.36

Table 1. 3D pose accuracy on the teleportation experiment, using noisy ground truth to estimate M and L in the first three columns,
and using the networks of [43, 36] in the fourth column. We outperform all predefined baseline trajectories and approach the accuracy of
the oracle that has access to the average error of each candidate position.

tion), ωs = 1 (smoothness), ωl = 0.1 (lift term), ωb = 1
(bone length), which were found by grid search. We set the
weights for the decision making as ωp = 0.001, ωs = 1,
ωl = 0.1, ωb = 1 . Our reasoning is, we need to set
the weights of the projection and lift terms slightly lower
because they are estimated with large noise, which is intro-
duced by the neural networks or as additive noise. However,
they do not need to be as low for the uncertainty estimation.

4.1. Analyzing Reconstruction Accuracy

We report the mean Euclidean distance per joint in me-
ters in the middle frame of the temporal window we opti-
mize over. For teleportation mode, the size of the temporal
window is set to k = 2 past frames and 1 future frame, and
for the drone flight simulations, to k = 6 for past frames
and 3 future frames.

Simulation Initialization. The frames are initialized by
back-projecting the 2D joint locations estimated in the first
frame, Mt=0, to a distance d from the camera that is chosen
such that the back-projected bone lengths match with the
average human height. We then refine this initialization by
running the optimization without the smoothness term, as
there is only one frame. All the sequences are evaluated for
120 frames, with the animation sequences played at 5 Hz.

Teleportation Mode. To understand whether our uncer-
tainty predictions for potential viewpoints coincide with the
actual 3D pose errors we will have at these locations, we run
the following simulation: We sample a total of 18 points on
a ring around the person, as shown in Fig. 5, and allow the
drone to teleport to any of these points. We optimize over
a total of k = 2 past frames and forecast 1 frame into the
future. We chose this window size to emphasize the impor-
tance of the next choice of frame.

We perform two variants of this experiment. In the first
one, we simulate the 2D and 3D pose estimates, M,L, by
adding Gaussian noise to the ground-truth data. The mean
and standard deviation of this noise is set as the error of [3]
and [36], run on the validation set of animations. Figure 7
shows a comparison between the ground truth values, noisy
ground truth values and the network results. The results
of this experiment are reported in Table 1, where we also
provide the standard deviations across 5 trials with vary-
ing noise and starting from different viewpoints. On the
MPI-INF-3DHP dataset, we also provide results using [3]

d) Liftnet Resultc) Openpose Result

a) GT 2D Pose b) GT Relative 3D Pose

e) Noisy GT 

2D Pose

f) Noisy GT 

    Relative3D Pose

Figure 7. Example image from the MPI-INF-3DHP dataset
along with the 2D pose detections M and 3D relative pose detec-
tions L obtained using ground truth, noisy ground truth or the net-
works of [3] and [36]. The noise we add on the ground truth poses
is determined according to the statistics of [3] and [36], measured
on our validation set.

and [36] on the simulator images to obtain the 2D and 3D
pose estimates. Further results are in the supplementary
material.

Altogether, the results show that our active motion plan-
ner achieves consistently lower error values than the base-
lines and we come the closest to achieving the best possible
error for these sequences and viewpoints, despite having no
access to the true error. The random baseline also performs
quite well in these experiments, as it takes advantage of the
drone teleporting to a varied set of viewpoints. The trajec-
tories generated by our active planner and the baselines is
depicted in Figure 8. Importantly, Figure 5 evidences that
our predicted uncertainties accurately reflect the true pose
errors, thus making them well suited to our goal.

Simulating Drone Flight. To evaluate more realistic
cases where the drone is actively controlled and constrained
to only move to nearby locations, we simulate the drone
flight using the AirSim environment. While simulating
drone flight, we target a fixed radius of 7m from the sub-
ject and therefore provide direction candidates that lead to
preserving this distance. We do not provide samples at dif-
ferent distances, as moving closer is unsafe and moving far-
ther leads to more concentrated image projections and thus
higher 3D errors. We also restrict the drone from flying out-
side the altitude range 0.25m-3.5m, so as to avoid crashing
into the ground and flying above the subject.

In this set of experiments, we fly the drone using the
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MPI-INF-3DHP

a) Active b) Random c)  Constant Rotation

Figure 8. Trajectories found by our active planner along with
random and constant rotation baselines. The first row depicts the
trajectories for the MPI-INF-3DHP dataset, and the second row
shows the trajectories for the dancing motion. The trajectories ob-
tained with our algorithm are regular and look different from the
random trajectories, especially for the dancing motion. Our algo-
rithm prefers trajectories resulting in large angular variance with
respect to the subject between viewpoints.

CMU-Walk CMU-Dance CMU-Run Total
Ours (Active) 0.26±0.03 0.22±0.04 0.44±0.04 0.31±0.10
Constant Rotation 0.28±0.06 0.21±0.04 0.41±0.02 0.30±0.08
Random 0.60±0.13 0.44±0.19 0.81±0.16 0.62±0.15
Constant Angle 0.41±0.07 0.63± 0.06 1.26±0.17 0.77±0.36

Table 2. Results of drone full flight simulation, using noisy
ground truth as input to estimate M and L. The results of constant
rotation are the average of 10 runs, with 5 runs rotating clockwise
and 5 counter-clockwise. Our approach yields results comparable
to those of constant rotation, outperforming the other baselines.
The trajectory our algorithm draws also results in a constant rota-
tion, the only difference being the rotation direction.

simulator’s realistic physics engine. To this end, we sam-
ple 9 candidate directions towards up, down, left, right, up-
right, up-left, down-right, down-left and center. We then
predict the 3 consecutive future locations using our simpli-
fied (closed form) physics model, to get and estimate where
the drone will be at when continuing in each of the 9 di-
rections. We then estimate the uncertainty at these sampled
viewpoints and choose the minimum.

We achieve comparable results to constant rotation on
simulated drone flight. In fact, except for the first few
frames where the drone starts flying, we observe the same
trajectory as constant rotation, only the rotation direction
varies. Constant rotation being optimal in this setting is not
counter-intuitive, as constant rotation is very useful for pre-
serving momentum. This allows the drone to sample view-
points as far apart from one another as possible, while keep-
ing the subject in view. Figure 9 depicts the different base-
line trajectories and the active trajectory.

a) Active b) Random c)  Constant Rotation

Figure 9. Trajectories found during flight by our active planner
and the baselines. Our algorithm also chose to perform constant
rotation. Because of the drone momentum, the random baseline
cannot increase the distance between its camera viewpoints.

5. Conclusion and Future Work

We have proposed a theoretical framework for estimating
the uncertainty of future measurements from a viewpoint.
This permits us to improve 3D human pose estimation by
optimizing the viewpoint selection to visit those locations
with the lowest expected uncertainty. We have demon-
strated with increasingly complex examples, in simulation
with synthetic and real footage, that this theory translates to
closed-loop drone control and improves pose estimation ac-
curacy. We envision our approach being developed further
for improving the performance of athletes and performance
artists. It is important to preserve the subjects’ privacy in
such autonomous systems. We encourage researchers to be
sensitive to this issue.

Key to the success of our approach is the integration of
several sources of uncertainty. Our primary goal was to
make uncertainty estimation tractable, but further improve-
ments are needed to run it on an embedded drone system.
The current implementation runs at 0.1Hz, but the opti-
mization is implemented in Python using the convenient but
slow automatic differentiation of PyTorch to obtain second
derivatives. Furthermore, we have considered a physically
plausible drone model but neglected physical obstacles and
virtual no-go areas that would restrict the possible flight tra-
jectories. In the case of complex scenes with dynamic ob-
stacles, we expect our algorithm to outperform any simple,
predefined policy. Currently, we assume a constant error for
the 2D and 3D pose estimates. In future work, we will in-
vestigate how to derive situation-dependent noise models of
deep neural networks. Furthermore, we plan to study new
ways of estimating the uncertainty of the deployed deep
learning methods and extend our work to optimize drone
trajectories for different computer vision tasks.
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