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Abstract
Learning how to predict future events from
patterns of past events is difficult when the set of
possible event types is large. Training an unre-
stricted neural model might overfit to spurious
patterns. To exploit domain-specific knowledge
of how past events might affect an event’s present
probability, we propose using a temporal deduc-
tive database to track structured facts over time.
Rules serve to prove facts from other facts and
from past events. Each fact has a time-varying
state—a vector computed by a neural net whose
topology is determined by the fact’s provenance,
including its experience of past events. The pos-
sible event types at any time are given by special
facts, whose probabilities are neurally modeled
alongside their states. In both synthetic and real-
world domains, we show that neural probabilistic
models derived from concise Datalog programs
improve prediction by encoding appropriate
domain knowledge in their architecture.

1. Introduction
Temporal sequences are abundant in applied machine
learning. A common task is to predict the future from
the past or to impute other missing events. Often this is
done by fitting a generative probability model. For evenly
spaced sequences, historically popular generative models
have included hidden Markov models and discrete-time lin-
ear dynamical systems, with more recent interest in recur-
rent neural network models such as LSTMs. For irregularly
spaced sequences, a good starting point is the Hawkes pro-
cess (a self-exciting temporal point process) and its many
variants, including neuralized versions based on LSTMs.

Under any of these models, each event ei updates the
state of the system from si to si+1, which then deter-
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mines the distribution from which the next event ei+1 is
drawn.Alas, when the relationship between events and the
system state is unrestricted—when anything can potentially
affect anything—fitting an accurate model is very difficult,
particularly in a real-world domain that allows millions of
event types including many rare types. Thus, one would
like to introduce domain-specific structure into the model.

For example, one might declare that the probability that
Alice travels to Chicago is determined entirely by Alice’s
state, the states of Alice’s coworkers such as Bob, and the
state of affairs in Chicago. Given that modeling assump-
tion, parameter estimation can no longer incorrectly overfit
this probability using spurious features based on unrelated
temporal patterns of (say) wheat sales and soccer goals.

To improve extrapolation, one can reuse this “Alice travels
to Chicago” model for any person A traveling to any place
C. Our main contribution is a modeling language that can
concisely model all these traveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltravel(A,C) probabilities using
a few rules over variables A, B, C. Here B ranges over A’s
coworkers, where the coworker relation is also governed
by rules and can itself be affected by stochastic events.

In our paradigm, a domain expert simply writes down the
rules of a temporal deductive database, which tracks the
possible event types and other boolean facts over time. This
logic program is then used to automatically construct a
deep recurrent neural architecture, whose distributed state
consists of vector-space embeddings of all present facts. Its
output specifies the distribution of the next event.

What sort of rules? An event has a structured description
with zero or more participating entities. When an event
happens, pattern-matching against its description triggers
update rules, which modify the database facts to reflect
the new properties and relationships of these entities. Up-
dates may have a cascading effect if the database contains
deductive rules that derive further facts from existing
ones at any time. (For example, coworker(A,B) is jointly
implied by boss(U,A) and boss(U,B)). In particular, de-
ductive rules can state that entities combine into a possible
event type whenever they have the appropriate properties
and relationships. (For example, traveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltraveltravel(A,C) is possible
if C is a place and A is a person who is not already at C.)
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Since the database defines possible events and is updated
by the event that happens, it already resembles the system
state si of a temporal model. We enrich this logical state
by associating an embedding with each fact currently in
the database. This time-varying vector represents the state
of that fact; recall that the set of facts may also change over
time. When a fact is added by events or derived from other
facts, its embedding is derived from their embeddings in
a standard way, using parameters associated with the rules
that established the fact. In this way, the model’s rules to-
gether with the past events and the initial facts define the
topology of a deep recurrent neural architecture, which can
be trained via back-propagation through time (Williams &
Zipser, 1989). For the facts that state that specific event
types are possible, the architecture computes not only em-
beddings but also the probabilities of these event types.

The number of parameters of such a model grows only with
the number of rules, not with the much larger number of
event types or other facts. This is analogous to how a prob-
abilistic relational model (Getoor & Taskar, 2007; Richard-
son & Domingos, 2006) derives a graphical model structure
from a database, building random variables from database
entities and repeating subgraphs with shared parameters.

Unlike graphical models, ours is a neural-symbolic hybrid.
The system state si includes both rule-governed discrete
elements (the set of facts) and learned continuous elements
(the embeddings of those facts). It can learn a neural
probabilistic model of people’s movements while relying
on a discrete symbolic deductive database to cheaply and
accurately record who is where. A purely neural model
such as our neural Hawkes process (Mei & Eisner, 2017)
would have to learn how to encode every location fact in
some very high-dimensional state vector, and retain and
update it, with no generalization across people and places.

In our experiments, we show how to write down some
domain-specific models for irregularly spaced event se-
quences in continuous time, and demonstrate that their
structure improves their ability to predict held-out data.

2. Our Modeling Language
We gradually introduce our specification language by de-
veloping a fragment of a human activity model. Similar
examples could be developed in many other domains—
epidemiology, medicine, education, organizational behav-
ior, consumer behavior, economic supply chains, etc. Such
specifications can be trained and evaluated using our im-
plementation, which can be found at https://github.
com/HMEIatJHU/neural-datalog-through-time.

For pedagogical reasons, §2 will focus on our high-level
scheme (see also the animated drawings in our ICML 2020
talk video). We defer the actual neural formulas until §3.

2.1. Datalog

We adapt our notation from Datalog (Ceri et al., 1989),
where one can write deductive rules of the form

head :- condit1, . . ., conditN. (1)
Such a rule states that the head is true provided that the
conditions are all true.1 In a simple case, the head and
conditions are atoms, i.e., structured terms that represent
boolean propositions. For example,

1 compatible(eve,adam)
:- likes(eve,apples), likes(adam,apples).

If N = 0, the rule simply states that the head is true. This
case is useful to assert basic facts:

2 likes(eve,apples).

Notice that in this case, the :- symbol is omitted.

A rule that contains variables (capitalized identifiers) rep-
resents the infinite collection of ground rules obtained by
instantiating (grounding) those variables. For example,

3 compatible(X,Y) :- likes(X,U), likes(Y,U).

says that any two entities X and Y are compatible provided
that there exists any U that they both like.

A Datalog program is an unordered set of rules. The atoms
that can be proved from these rules are called facts. Given
a program, one would use JhK ∈ {true,null} to denote the
semantic value of atom h, where JhK = true iff h is a fact.

2.2. Neural Datalog

In our formalism, a fact has an embedding in a vector
space, so the semantic value of atom likes(eve,apples)
describes more than just whether eve likes apples. To in-
dicate this, let us rename and colorize the functors in rule 3:

4 rel(X,Y) :- opinion(X,U), opinion(Y,U).

Now Jopinion(eve,apples)K is a vector describing
eve’s complex opinion about apples (or null if she has no
opinion). Jrel(eve,adam)K is a vector describing eve and
adam’s relationship (or null if they have none).

With this extension, JhK ∈ RDh∪{null}, where the embed-
ding dimensionDh depends on the atom h. The declaration

5 :- embed(opinion,8).

says that if h has the form opinion(...) then Dh = 8.2

When an atom is proved via a rule, its embedding is af-
fected by the conditions of that rule, in a way that depends
on trainable parameters associated with that rule. For ex-
ample, according to rule 4, Jrel(eve,adam)K is a para-
metric function of the opinion vectors that eve and adam
have about various topics U. The influences from all their
shared topics are pooled together as detailed in §3.1 below.

1Appendix A.2 discusses an extension to negated conditions.
2In the absence of such a declaration, Dh = 0. Then JhK has

only two possible values, just as in Datalog; we do not color h.

https://github.com/HMEIatJHU/neural-datalog-through-time
https://github.com/HMEIatJHU/neural-datalog-through-time
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A model might say that each person has an opinion about
each food, which is a function of the embeddings of the per-
son and the food, using parameters associated with rule 6:

6 opinion(X,U) :- person(X), food(U).

If the foods are simply declared as basic facts, as follows,
then each food’s embedding is independently specified by
the parameters associated with the rule that declares it:

7 food(apples).
8 food(manna).

...

Given all the rules above, whenever person(X) and
person(Y) are facts, it follows that rel(X,Y) is a fact,
and Jrel(X,Y)K is defined by a multi-layer feed-forward
neural network whose topology is given by the proof DAG
for rel(X,Y). The network details will be given in §3.1.

Recursive Datalog rules can lead to arbitrarily deep net-
works that recursively build up a compositional embed-
ding, just as in sequence encoders (Elman, 1990), tree en-
coders (Socher et al., 2012; Tai et al., 2015), and DAG en-
coders (Goller & Kuchler, 1996; Le & Zuidema, 2015)—
all of which could be implemented in our formalism. E.g.:

9 cursed(cain).
10 cursed(Y) :- cursed(X), parent(X,Y).

In Datalog, this system simply states that all descendants
of cain are cursed. In neural Datalog, however, a child
has a specific curse: a vector Jcursed(Y)K that is com-
puted from the parent’s curse Jcursed(X)K in a way that
also depends on their relationship, as encoded by the vec-
tor Jparent(X,Y)K. Rule 10’s parameters model how the
curse evolves (and hopefully attenuates) as each genera-
tion is re-cursed. Notice that Jcursed(Y)K is essentially
computed by a recurrent neural network that encodes the
sequence of parent edges that connect cain to Y.3

We currently consider it to be a model specification error
if any atom h participates in its own proof, leading to a
circular definition of JhK. This would happen in rules 9–
10 only if parent were bizarrely defined to make some
cursed person their own ancestor. Appendix A.1 discusses
extensions that would define JhK even in these cyclic cases.

2.3. Datalog Through Time

For temporal modeling, we use atoms such as helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y)
as the structured names for events. We underline their func-
tors. As usual, we colorize them if they have vector-space
embeddings (see footnote 2), but as orange rather than blue.

We extend Datalog with update rules so that whenever a
helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y) event occurs under appropriate conditions, it

3Assuming that this path is unique. More generally, Y might
descend from cain by multiple paths. The computation actually
encodes the DAG of all paths, by pooling over all of Y’s cursed
parents at each step, just as rule 4 pooled over multiple topics.

can add to the database by proving new atoms:
11 grateful(Y,X) <- helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y), person(Y).

An event can also cancel out such additions, which may
make atoms false again.4 The ! symbol means “not”:
12 !grateful(Y,X) <- harmharmharmharmharmharmharmharmharmharmharmharmharmharmharmharmharm(X,Y).

The general form of these update rules is
head <- event, condit1, . . ., conditN. (2a)

!head <- event, condit1, . . ., conditN. (2b)
An event occurring at time s affects the set of facts at times
t > s, both directly through <- rules, and also indirectly,
since the facts added or removed by <- rules may affect the
set of additional facts that can be derived by :- rules at time
t. Our approach can be used for either discrete time (s, t ∈
N) or continuous time (s, t ∈ R≥0), where the latter sup-
ports irregularly spaced events (e.g., Mei & Eisner, 2017).

2.4. Neural Datalog Through Time

In §2.2, we derived each fact’s embedding from its proof
DAG, representing its set of Datalog proofs. For Datalog
through time, we must also consider how to embed facts
that were proved by an earlier update. Furthermore, once
an atom is proved, an update rule can prove it again. This
will update its embedding, in keeping with our principle
that a fact’s embedding is influenced by all of its proofs.

As an example, when X helps Y and grateful(Y,X)
first becomes true via rule 11, the new embedding
Jgrateful(Y,X)K is computed—using parameters asso-
ciated with rule 11—from the embeddings of helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y)
and person(Y). Those embeddings model the nature of
the help and the state of person Y. (This was the main rea-
son for rule 11 to include person(Y) as a condition.) Each
time X helps Y again, Jgrateful(Y,X)K is further updated
by rule 11, so this gratitude vector records the history of
help. The updates are LSTM-like (see §3.3 for details).

In general, an atom’s semantics can now vary over time
and so should be denoted as JhK(t): the state of atom
h at time t, which is part of the overall database state.
A :- rule as in equation (1) says that JheadK(t) depends
parametrically on {JconditiK(t) : 1 ≤ i ≤ N}. A
<- rule as in equation (2a) says that if event occurred at
time s < t and no events updating head occurred on the
time interval (s, t), then JheadK(t) depends parametrically
on its previous value5 JheadK(s) along with JeventK(s),
{JconditiK(s) : 1 ≤ i ≤ N}, and the elapsed time t − s.
We will detail the parametric formulas in §3.3.

Thus, JheadK(t) depends via :- rules on head’s prove-
nance in the database at time t, and depends via <- rules

4The atom will remain true if it remains provable by a :- rule,
or is proved by another <- rule at the same time.

5More precisely, it depends on the LSTM cells that contributed
to that value, as we will see in §3.3.



Neural Datalog Through Time

on its experience of events at strictly earlier times.6 This
yields a neural architecture similar to a stacked LSTM: the
:- rules make the neural network deep at a single time step,
while the <- rules make it temporally recurrent across time
steps. The network’s irregular topology is defined by the :-
and <- rules plus the events that have occurred.

2.5. Probabilistic Modeling of Event Sequences

Because events can occur, atoms that represent event types
are special. They can be declared as follows:
13 :- event(helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp, 8).

Because the declaration is event rather than embed, at
times when helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y) is a fact, it will have a positive
probability along with its embedding Jhelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y)K ∈ R8.
This is what the underlined functor really indicates.

At times s when helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y) is not a fact, the semantic
value Jhelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y)K(s) will be null, and it will have nei-
ther an embedding nor a probability. At these times, it is
simply not a possible event; its probability is effectively 0.

Thus, the model must include rules that establish the set of
possible events as facts. For example, the rule

14 helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y) :- rel(X,Y).

says if X and Y have a relationship, then helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y) is true,
meaning that events of the type helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y) have positive
probability (i.e., X can help Y). The embedding and proba-
bility are computed deterministically from Jrel(X,Y)K us-
ing parameters associated with rule 14, as detailed in §3.2.

Now a neural-Datalog-through-time program specifies a
probabilistic model over event sequences. Each stochastic
event can update some database facts or their embeddings,
as well as the probability distribution over possible events.
Notice that in our approach (recall §1), the draws from the
distribution over possible events are stochastic, but the re-
sulting updates to that distribution are deterministic—just
as in a recurrent neural network language model (Mikolov
et al., 2010; Sundermeyer et al., 2012).

Our approach also allows the possibility of exogenous
events that are not generated by the model, but are given
externally. Our probabilistic model is then conditioned on
these exogenous events. The model itself might have prob-
ability 0 of generating these event types at those times. In-
deed, if an event type is to occur only exogenously, then the
model should not predict any probability for it, so it should
not be declared using event. We use a dashed underline
for undeclared events since they have no probability.

For example, we might wish to use rules of the form head
<- earthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquake(C),. . . to model how an earthquake in
city C tends to affect subsequent events, even if we do not

6See §3.3 for the precise interaction of :- and <- rules.

care to model the probabilities of earthquakes. The embed-
dings of possible earthquake events can still be determined
by parametric rules, e.g., earthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquake(C) :- city(C), if
we request them by declaring embed(earthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquakeearthquake,5).

2.6. Continuing the Example

In our example, the following rules are also plausible. They
say that when X helps Y, this event updates the states of
the helper X and the helpee Y and also the state of their
relationship:
15 person(X) <- helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y).
16 person(Y) <- helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y)
17 rel(X,Y) <- helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y).

To enrich the model further, we could add (e.g.) rel(X,Y)
as a condition to these rules. Then the update when X helps
Y depends quantitatively on the state of their relationship.

There may be many other kinds of events observed in
a human activity dataset, such as sleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleep(X), eateateateateateateateateateateateateateateateateat(X),
emailemailemailemailemailemailemailemailemailemailemailemailemailemailemailemailemail(X,Y), inviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinviteinvite(X,Y), hirehirehirehirehirehirehirehirehirehirehirehirehirehirehirehirehire(X,Y), etc. These can
be treated similarly to helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y).

Our modeling architecture is intended to limit dependen-
cies to those that are explicitly specified, just as in graphi-
cal models. However, the resulting independence assump-
tions may be too strong. To allow unanticipated influences
back into the model, it can be useful to include a low-
dimensional global state, which is updated by all events:
18 world <- helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y).

...

world records a “public history” in its state, and it can be
a condition for any rule. E.g., we can replace rule 14 with
19 helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y) :- rel(X,Y), world.

so that eve’s probability of helping adam might be affected
by the history of other individuals’ interactions.

Eventually eve and adam may die, which means that they
are no longer available to help or be helped:
20 diediediediediediediediediediediediediediediediedie(X) :- person(X).

If we want person(eve) to then become false, the model
cannot place that atom in the database with a :- rule like
21 person(eve).

which would ensure that person(eve) can always be
proved. Instead, we use a <- rule that initially adds
person(eve) to the database via a special event, initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit,
that always occurs exogenously at time t = 0:
22 person(eve) <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit.

With this treatment, the following rule can remove
person(eve) again when she dies:
23 !person(X) <- diediediediediediediediediediediediediediediediedie(X).

The reader may enjoy extending this model to handle pos-
sessions, movement, tribal membership/organization, etc.
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2.7. Finiteness

Under our formalism, any given model allows only a finite
set of possible events. This is because a Datalog program’s
facts are constructed by using functors mentioned in the
program, with arguments mentioned in the program,7 and
nesting is disallowed. Thus, the set of facts is finite (though
perhaps much larger than the length of the program).

It is this property that will ensure in §3.2 that our prob-
ability model—which sums over all possible events—is
well-defined. Yet this is also a limitation. In some
domains, a model should not really place any a priori
bound on the number of event types, since an infinite
sequence may contain infinitely many distinct types—the
number of types represented in the length-n prefix grows
unboundedly with n. Even our running example should
really support the addition of new entities: the event
procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate(eve,adam) should result in a fact such as
personpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonperson(cain), where cain is a newly allocated entity.
Similarly, new species are allocated in the course of
drawing a sequence from Fisher’s (1943) species-sampling
model or from a Chinese restaurant process; new words
are allocated as a document is drawn from an infinite-
vocabulary language model; and new real numbers are
constantly encountered in a sequence of sensor readings.
In these domains, no model can prespecify all the entities
that can appear in a dataset. Appendix A.3 discusses
potential extensions to handle these cases.

3. Formulas Associated With Rules
3.1. Neural Datalog

Recall from §2.1 that if h is a fact, it is provable by at least
one :- rule in at least one way. For neural Datalog (§2.2),
we then choose to define the embedding JhK 6= null as

JhK def
= tanh

(∑
r

[h]:-r
)
∈ (−1, 1)Dh (3)

where [h]:-r represents the contribution of the
rth rule of the Datalog program. For example,
Jopinion(eve,apples)K receives non-zero contri-
butions from both rule 2 and rule 6.8 For a given Y,
Jcursed(Y)K may receive a non-zero contribution from
rule 9, rule 10, or neither, according to whether Y is cain
himself, a descendant of cain, or neither.

The contribution [h]:-r has been pooled over all the ways (if
any) that the rth rule proves h. For example, for any entity

7A rule such as likes(adam,Y) :- likes(adam,eve)
might be able to prove that adam likes everyone, including in-
finitely many unmentioned entities. To preserve finiteness, such
rules are illegal in Datalog. A Datalog rule must be range-
restricted: any variable in the head must also appear in the body.

8Recall that we renamed likes in rule 2 to opinion.

Y, [cursed(Y)]:-10 needs to compute the aggregate effect of
the curses that Y inherits through all of Y’s cursed parents X
in rule 10. Similarly, [rel(X,Y)]:-4 computes the aggregate
effect on the relationship from all of X and Y’s shared
interests U in rule 4. Recall from §2.1 that a rule with vari-
ables represents a collection of ground rules obtained by
instantiating those variables. We define its contribution by

[h]:-r
def
=
⊕βr

g1,...,gN

Wr [1; Jg1K; . . . ; JgN K]︸ ︷︷ ︸
concatenation of column vectors

∈ RDh (4)

where for the summation, we allow h :- g1, . . ., gN
to range over all instantiations of the rth rule such that
the head equals h and g1, . . . , gN are all facts. There are
only finitely many such instantiations (see §2.7). Wr is a
conformable parameter matrix associated with the rth rule.
(Appendix B offers extensions that allow more control
over how parameters are shared among and within rules.)

The pooling operator
⊕β that we used above is defined to

aggregate a set of vectors {x1, . . . ,xM}:⊕β

m
xm

def
= v−1(

∑
m

v(xm)) (5)

Remarks: For any definition of function v with inverse v−1,⊕β has a unique identity element, v−1(0), which is also the
result of pooling no vectors (M=0). Pooling a single vec-
tor (M=1) returns that vector—so when rule r proves h in
only one way, the contribution of the JgiK to JhK does not
have to involve an “extra” nonlinear pooling step in equa-
tion (4), but only the nonlinear tanh in equation (3).

Given β 6= 0, we take v to be the differentiable function

v(x)
def
= sign(x) |x|β (6a)

v−1(y) = sign(y) |y|1/β (6b)

where all operations are applied elementwise. Now the re-
sult of aggregating no vectors is 0, so rules that achieve no
proofs of h contribute nothing to equation (3). If β = 1,
then v = identity and

⊕β is just summation. As β →
∞,

⊕β emphasizes more extreme values, approaching a
signed variant of max-pooling that chooses (elementwise)
the argument with the largest absolute value. As a general-
ization, one could replace the scalar β with a vector β, so
that different dimensions are pooled differently. Pooling is
scale-invariant:

⊕β
m αxm = α

⊕β
m xm for α ∈ R.

For each rule r, we learn a scalar βr,9 and use
⊕βr in (4).

3.2. Probabilities and Intensities

When a fact h has been declared by event to represent an
event type, we need it to have not only an embedding but

9It can be parameterized as β = exp b > 0 (ensuring that
aggregating positive numbers exceeds their max), or as β = 1 +
b2 ≥ 1 (ensuring that the aggregate of positive numbers also does
not exceed their sum). Our present experiments do the latter.
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also a positive probability. We extend our setup by append-
ing an extra row to the matrix Wr in (4), leading to an extra
element in the column vectors [h]:-r . We then pass only the
first Dh elements of

∑
r[h]:-r through tanh, obtaining the

same JhK as equation (3) gave before. We pass the one re-
maining element through an exp function to obtain λh > 0.

Recall that for neural Datalog through time (§2.4), all these
quantities, including λh, vary with the time t. To model a
discrete-time event sequence, define the probability of an
event of type h at time step t to be proportional to λe(t),
normalizing over all event types that are possible then. This
imitates the softmax distributions in other neural sequence
models (Mikolov et al., 2010; Sundermeyer et al., 2012).

When time is continuous, as in our experiments (§6), we
need instantaneous probabilities. We take λh(t) to be the
(Poisson) intensity of h at time t: that is, it models the
limit as dt → 0+ of the expected rate of h on the interval
[t, t + dt) (i.e., the expected number of occurrences of h
divided by dt). This follows the setup of the neural Hawkes
process (Mei & Eisner, 2017). Also following that paper,
we replace exp(x) > 0 in the above definition of λh with
the function softplusτ (x) = τ log(1+exp(x/τ)) > 0. We
learn a separate temporal scale parameter τ for each functor
and use the one associated with the functor of h.

In both discrete and continuous time, the exact model like-
lihood (§4) will involve a summation (at each time t) over
the finite set of event types (§2.7) that are possible at time t.

Appendix A.5 offers an extension to simultaneous events.

3.3. Updates Through Time

We now add an LSTM-like component so that each atom
will track the sequence of events that it has “seen”—that
is, the sequence of events that updated it via <- rules (§2.3).
Recall that an LSTM is constructed from memory cells that
can be increased or decreased as successive inputs arrive.

Every atom h has a cell block h ∈ RDh ∪ {null}. When
h 6= null, we augment h’s embedding formula (3) to10

JhK def
= tanh

(
h +

∑
r

[h]:-r
)
∈ (−1, 1)Dh (7)

Properly speaking, JhK, h , and [h]:-r are all functions of t.

At times when h = null, we like to say that h is docked.
Every atom h is docked initially (at t = 0), but may be
launched through an update of type (2a), which ensures
that h 6= null and thus JhK 6= null by (7). h is subse-
quently adrift (and remains a fact) until it is docked again
through an update of type (2b), which sets h = null.

10Recall from §3.2 that if h is an event, we extend JhK with an
extra dimension to carry the probability. For equation (7) to work,
we must likewise extend h with an extra cell (when h 6= null).

How is h updated by an event (or events11) occurring at
time s? Suppose the rth rule is an update rule of type (2a).
Consider its instantiations h <- e, g1,. . .,gN (if any)
with head h, such that e occurred at time s and g1, . . . , gN
are all facts at time s. For the mth instantiation, define

[h]<-rm
def
= Wr [1; JeK; Jg1K; . . . ; JgN K]︸ ︷︷ ︸

concatenation of column vectors

(8)

where all embeddings are evaluated at time s, and Wr is
again a conformable matrix associated with the rth rule.
We now explain how to convert [h]<-rm to an update vector
[h]∆rm, and how all update vectors combine to modify h .

Discrete-time setting. Here we treat the update vectors
[h]∆rm as increments to h . To update h from time s to
time t = s+ 1, we pool these increments within and across
rules (much as in (3)–(4)) and increment by the result:

h +=
∑
r

⊕βr

m
[h]∆rm (9)

We skip the update (9) if h has no update vectors. If we
apply (9), we first set h to 0 if it is null at time s, or has
just been set to null at time s by a (2b) rule (docking).

How is [h]∆rm obtained? In an ordinary LSTM (Hochreiter
& Schmidhuber, 1997), a cell block h is updated by

h new = f · h old + i · (2z− 1) (10)

corresponding to an increment

h += (f − 1) · h + i · (2z− 1) (11)

where the forget gates f , input gates i, and inputs z are all
in (0, 1)Dh . Thus, we define [h]∆rm as the right side of (11)
when (f ; i; z)

def
= σ([h]<-rm), with [h]<-rm ∈ R3Dh from (8).

A small difference from a standard LSTM is that our up-
dated cell values h are transformed into equally many out-
put values JhK via equation (7), instead of through tanh and
output gates. A more important difference is that in a stan-
dard LSTM, the model’s state is a single large cell block.
The state update when new input arrives depends on the en-
tire current state. Our innovation is that the update to h
(a portion of the model state) depends on only a relevant
portion of the current state, namely [JeK; Jg1K; . . . ; JgN K].
If there are many choices of this portion, (9) pools their
effects across instantiations and sums them across rules.

Continuous-time setting. Here we use the continuous-
time LSTM as defined by Mei & Eisner (2017), in which
cells drift between updates to record the passage of time.
Each cell drifts according to some parametric function. We
will update a cell’s parameters just at times when a relevant
event happens. A fact’s embedding JhK(t) at time t is still

11If exogeneous events are used (§2.4), then the instantiations
in (8) could include multiple events e that occurred at time s.
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given by (7), but h (t) in that equation is given by h ’s
parametric functions as most recently updated (at some ear-
lier time s < t). Appendix C reviews the simple family of
parametric functions used in the continuous-time LSTM,
and specifies how we update the parameters using a collec-
tion of update vectors [h]∆rm obtained from the [h]<-rm.

Remark. It is common for event atoms e to have De = 0.
Then they still have time-varying probabilities (§3.2)—
often via :- rules whose conditions have time-varying
embeddings—but have no embeddings. Even so, different
events will result in different updates. This is thanks to Dat-
alog’s pattern matching: the event’s atom e controls which
update rules head <- event, condits... it triggers,
and with what head and condition atoms (since variables in
event are reused elsewhere in the rule). The update to the
head atom then depends on the parameters of the selected
rules and the current embeddings of their condition atoms.

4. Training and Inference
Suppose we observe that the events on time interval [0, T ]
are e1, . . . , eI at respective times t1 < · · · < tI . In the
continuous-time setting, the log-likelihood of the parame-
ters is

`
def
=

I∑
i=1

log λei
(ti)−

∫ T

t=0

λ(t) dt (12)

where λ(t)
def
=
∑

e∈E(t) λe(t) and E(t) is the set of event
types that are possible at time t. We can estimate the pa-
rameters by locally maximizing ` using any stochastic gra-
dient method. Details are given in Appendix D, including
Monte Carlo approximations to the integral. In the discrete-
time setting,12 the integral is replaced by

∑T
t=1 log λ(t).

Given the learned parameters, we may wish to make a min-
imum Bayes risk prediction about the next event given the
past history. A recipe can be found in Appendix E.

5. Related Work
Past work (Sato, 1995; Poole, 2010; Richardson & Domin-
gos, 2006; Raedt et al., 2007; Bárány et al., 2017) has used
logic programs to help define probabilistic relational mod-
els (Getoor & Taskar, 2007). These models do not make
use of vector-space embeddings or neural networks. Nor do
they usually have a temporal component. However, some
other (directed) graphical model formalisms do allow the
model architecture to be affected by data generated at ear-
lier steps (Minka & Winn, 2008; van de Meent et al., 2018).

Our “neural Datalog through time” framework uses a de-
ductive database augmented with update rules to define and
dynamically reconfigure the architecture of a neural gener-
ative model. Conditional neural net structure has been used

12Here each time t has exactly one event (possibly just a nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone
event), as the event probabilities sum to 1. So I = T and ti = i.

for natural language—e.g., conditioning a neural architec-
ture on a given syntax tree or string (Andreas et al., 2016;
Lin et al., 2019). Also relevant are neural architectures
that use external read-write memory to achieve coherent
sequential generation, i.e., their decisions are conditioned
on a possibly symbolic record of data generated from the
model at earlier steps (Graves et al., 2014, 2016; Weston
et al., 2015; Sukhbaatar et al., 2015; Kumar et al., 2016;
Kiddon et al., 2016; Dyer et al., 2016; Lample et al., 2019;
Xiao et al., 2019). We generalize some such approaches by
providing a logic-based specification language.

Many papers have presented domain-specific sequential
neural architectures (Natarajan et al., 2008; Van der Hei-
jden et al., 2014; Shelton & Ciardo, 2014; Meek, 2014;
Bhattacharjya et al., 2018; Wang et al., 2019). The mod-
els closest to ours are Know-Evolve (Trivedi et al., 2017)
and DyRep (Trivedi et al., 2019), which exploit explicit
domain knowledge about how structured events depend on
and modify the neural states of their participants. DyRep
also conditions event probabilities on a temporal graph en-
coding binary relations among a fixed set of entities. In
§6, we will demonstrate that fairly simple programs in our
framework can substantially outperform these strong com-
petitors by leveraging even richer types of knowledge, e.g.:
¬ Complex n-ary relations among entities that are con-
structed by join, disjunction, and recursion (§2.1) and have
derived embeddings (§2.2).  Updates to the set of possi-
ble events (§2.5). ® Embeddings of entities and relations
that reflect selected past events (§2.4 and §2.6).

6. Experiments
In several continuous-time domains, we exhibit informed
models specified using neural Datalog through time
(NDTT). We evaluate these models on their held-out log-
likelihood, and on their success at predicting the time and
type of the next event. We compare with the unrestricted
neural Hawkes process (NHP) and with Know-Evolve (KE)
and DyRep. Experimental details are given in Appendix F.

We implemented our NDTT framework using PyTorch
(Paszke et al., 2017) and pyDatalog (Carbonell et al., 2016).
We then used it to implement our individual models—and
to reimplement all three baselines, after discussion with
their authors, to ensure a controlled comparison. Our code
and datasets are available at the URL given in §2.

6.1. Synthetic Superposition Domain

The activities of strangers rarely influence each other, even
if they are all observed within a single sequence. We syn-
thesized a domain where each sequence is a superposition
of data drawn from M different processes that do not inter-
act with one another at all. Each process generates events
of N types, so there are MN total event types eeeeeeeeeeeeeeeee(M,N).
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Figure 1. Learning curves of structured model and NHP on
sequences drawn from the structured model. The former is signif-
icantly better at each training size (p < 0.01, paired perm. test).

1 is process(1).
...

2 is process(M).

3 is type(1).
...

4 is type(N).

The baseline model is a neural Hawkes process (NHP). It
assigns to each event type a separate embedding13

5 :- embed(is event, 8).
6 is event(1,1) :- is process(1), is type(1).
7 is event(1,2) :- is process(1), is type(2).

...

This unrestricted model allows all event types to influence
one another by depending on and affecting a world state:

8 :- event(eeeeeeeeeeeeeeeee, 0).
9 :- embed(world, 8).

10 eeeeeeeeeeeeeeeee(M,N) :- world, is process(M), is type(N).
11 world <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit.
12 world <- eeeeeeeeeeeeeeeee(M,N), is event(M,N), world.

Note that eeeeeeeeeeeeeeeee(M,N) in rule 12 has no embedding, since any
such embedding would vary along with the probability. As
explained in §3.3, rule 12 instead uses eeeeeeeeeeeeeeeee(M,N) to draw in
the embedding of is event(M,N), which does not depend
on world so is static, as called for by the standard NHP.

To obtain a structured NHP that recognizes that events
from different processes cannot influence each other, we
replace world with multiple local states: each eeeeeeeeeeeeeeeee(M,N)
only interacts with local(M). Replace rules 9–12 with
13 :- embed(local, 8).
14 eeeeeeeeeeeeeeeee(M,N) :- local(M), is type(N).
15 local(M) <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is process(M).
16 local(M) <- eeeeeeeeeeeeeeeee(M,N), is event(M,N), local(M).

For various small N and M values (see Appendix F.2), we
randomly set the parameters of the structured NHP model
and draw training and test sequences from this distribution.
We then generated learning curves by training the correclty
structured model versus the standard NHP on increasingly
long prefixes of the training set, and evaluating them on
held-out data. Figure 1 shows that although NHP gradually
improves its performance as more training sequences be-
come available, the structured model unsurprisingly learns
faster, e.g., only 1/16 as much training data to achieve a

13The list of facts like rules 6 and 7 can be replaced by a single
rule if we use “parameter names” as explained in Appendix B.

higher likelihood. In short, it helps to use domain knowl-
edge of which events come from which processes.

6.2. Real-World Domains: IPTV and RoboCup

IPTV Domain (Xu et al., 2018). This dataset contains
records of 1000 users watching 49 TV programs over
the first 11 months of 2012. Each event has the form
watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P). Given each prefix of the test event sequence,
we attempted to predict the next test event’s time t, and to
predict its program P given its actual time t and user U.

We exploit two types of structural knowledge in this do-
main. First, each program P has (exactly) 5 out of 22 genre
tags such as action, comedy, romance, etc. We encode
these as known static facts has tag(P,T). We allow each
tag’s embedding Jtag(T)K to not only influence the em-
bedding of its programs (rule 1) but also track which users
have recently watched programs with that tag (rule 2):

1 profile(P) :- has tag(P,T), tag(T).
2 tag(T) <- watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P), has tag(P,T), user(U), ...

As a result, a program’s profile embedding Jprofile(P)K
changes over time as its tags shift in meaning.

Second, we have a dynamic hard constraint that a program
is not available to watch until released:

3 watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P) :- released(P), user(U), profile(P),
...

4 released(P) <- releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease(P).

where releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease is an exogenous event with no embedding.
More details can be found in Appendix F.3, including full
NDTT programs that specify the architectures used by the
KE and DyRep papers and by our model.

RoboCup Domain (Chen & Mooney, 2008). This dataset
logs actions of robot soccer players such as kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P) and
passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q) during RoboCup Finals 2001–2004. We made
minimum Bayes risk predictions on event time given his-
tory, and also of the player P for each event given its time
and action type.

Database facts change frequently in this domain. The ball
is transferred between players at a high rate:

1 !has ball(P) <- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q). % ball passed from P
2 has ball(Q) <- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q). % ball passed to Q

which leads to highly dynamic constraints on the possible
events (since only the ball possessor can kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick or passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass):

3 passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q) :- has ball(P), teammate(P,Q), ....

This example also illustrates how relations between players
affect events: the ball can only be passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspassed to a teammate.
Similarly, only an opponent may stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal the ball:

4 stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P) :- has ball(P), opponent(P,Q), ....

We allow each event to update the states of involved play-
ers as both KE and DyRep do. We further allow the event
observers such as the entire team to be affected as well:
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Figure 2. Evaluation results with
95% bootstrap confidence inter-
vals on the real-world datasets
of our Datalog program vs. the
neural Hawkes process (NHP),
KnowEvolve (KE) and DyRep.
The RMSE is the root of mean
squared error for predicted time.
Error rate % denotes the frac-
tion of incorrect predictions of
the watched TV program (in
IPTV) or the specific player (in
RoboCup), given the event time.
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RoboCup domain. “DyRep++”
has the same <- rules as our
structured model and “Ours−”
doesn’t have team states.

5 team(T) <- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q), in team(P,T), ....

so all players can be aware of this event by consulting their
team states. More details can be found in Appendix F.4,
including our full Datalog programs. The hard logical con-
straints on possible events are not found in past models.

Results and Analysis. After training, we used minimum
Bayes risk (§4) to predict events in test data (details in Ap-
pendix E). Figure 2 shows that our NDTT model enjoys
consistently lower error than strong competitors, across
datasets and prediction tasks.

NHP performs poorly in general since it doesn’t con-
sider any knowledge. KE handles relational infor-
mation, but doesn’t accommodate dynamic facts such
as released(game of thrones) and has ball(red8)
that reconfigure model architectures on the fly.

In the IPTV domain, DyRep handles dynamic facts (e.g.,
newly released programs) and thus substantially outper-
forms KE. Our NDTT model’s moderate further improve-
ment results from its richer :- and <- rules related to tags.

In the RoboCup domain, our reimplementation of DyRep
allows deletion of facts (player losing ball possession),
whereas the original DyRep only allowed addition of facts.
Even with this improvement, it performs much worse than
our full NDTT model. To understand why, we carried out
further ablation studies, finding that NDTT benefits from
its hybridization of logic and neural networks.

Ablation Study I: Taking Away Logic. In the RoboCup
domain, we investigated how the model performance de-
grades if we remove each kind of rule from the NDTT
model. We obtained “NDTT-” by dropping the team
states, and “DyRep++” by not tracking the ball possessor.
The latter is still an enhancement to DyRep because it adds

useful <- rules: the first “+” stands for the <- rules in which
some conditions are not neighbors of the head, and the sec-
ond “+” stands for the <- rules that update event observers.

As Figure 3 shows, both ablated models outperform DyRep
but underperform our full NDTT model. DyRep++ is inter-
estingly close to NDTT on the participant prediction, im-
plying that its neural states learn to track who possesses the
ball—though such knowledge is not tracked in the logical
database—thanks to rich <- rules that see past events.

Ablation Study II: Taking Away Neural Networks. We
also investigated how the performance of our structured
model would change if we reduce the dimension of all em-
beddings to zero. The model still knows logically which
events are possible, but events of the same type are now
more interchangeable. The performance turns out to de-
grade greatly, indicating that the neural networks had been
learning representations that are actually helpful for predic-
tion. See Appendix F.6 for discussion and experiments.

7. Conclusion
We showed how to specify a neural-symbolic probabilis-
tic model simply by writing down the rules of a deductive
database. “Neural Datalog” makes it simple to define a
large set of structured objects (“facts”) and equip them with
embeddings and probabilities, using pattern-matching rules
to explicitly specify which objects depend on one another.

To handle temporal data, we proposed an extended notation
to support temporal deductive databases. “Neural Datalog
through time” allows the facts, embeddings, and probabil-
ities to change over time, both by gradual drift and in re-
sponse to discrete events. We demonstrated the effective-
ness of our framework by generatively modeling irregularly
spaced event sequences in real-world domains.
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Appendices
A. Extensions to the Formalism
In this appendix, we consider possible extensions to our
formalism. These illuminate interesting issues, and the ex-
tensions are compatible with our overall approach to mod-
eling. Some of these extensions are already supported in
our implementation, and more of them may be supported
in future versions.

A.1. Cyclicity

Our embedding definitions in §2.2 and §3.1 assumed that
the proof graph was acyclic. However, it is possible in gen-
eral Datalog programs for a fact to participate in some of
its own proofs.

For example, the following classical Datalog program finds
the nodes in a directed graph that are reachable from the
node start:

1 reachable(start).
2 reachable(V) :- reachable(U), edge(U,V).

In neural Datalog, the embedding of each fact of the form
reachable(V) depends on all paths from start to V.
However, if V appears on a cycle in the directed graph de-
fined by the edge facts, then there will be infinitely many
such paths, and our definition of Jreachable(V)K would
then be circular.

Restricting to acyclic proofs. One could define embed-
dings and probabilities in a cyclic proof graph by consider-
ing only the acyclic proofs of each atom h. This is expen-
sive in the worst case, because it can exponentially increase
the number of embeddings and probabilities that need to
be computed. Specifically, if S is a (finite) set of atoms,
let Jh/SK denote the embedding constructed from acyclic
proofs of h that do not use any of the atoms in the finite set
S. We define Jh/SK to be null if h ∈ S, and otherwise to
be defined similarly to JhK but where equations (4) and (8)
are modified to replace each JgiK with Jgi/(S ∪ {h})K.14

As usual, these formulas skip pooling over instantiations
where any J·K values in the body are null. In particular, this
scheme defines the acyclic embedding Jh/∅K; the recur-
sive definition terminates because S grows at each recur-
sive step but its size is bounded above (§2.7). The proba-

14For increased efficiency, one can simplify S ∪ {h} here to
eliminate atoms that can be shown by static analysis or depth-first
search not to appear in any proof of gi. This allows more reuse of
previously computed J·K terms and can sometimes prevent expo-
nential blowup. In particular, if it can be shown that all proofs of
h are acyclic, then Jh/SK can always be simplified to Jh/∅K and
the computation of Jh/∅K is isomorphic to the ordinary computa-
tion of JhK; the algorithm then reduces to the ordinary algorithm
from the main paper.

bility of an event e is derived from λe/∅, which is computed
in the usual way (§3.2) as an extra dimension of the acyclic
embedding Je/∅K.

Forward propagation. This is a more practical approach,
used by Hamilton et al. (2017a) to embed the vertices of a
graph. This method recomputes all embeddings in parallel,
and repeats this for some number of iterations. In our case,
for a given time t, each JhK is initialized to 0, and at each
iteration it is recomputed via the formulas of §3.1 and §3.3,
using the JgiK values from the previous iteration (also at
time t) and the cell block h (determined by events at times
s < t).

We suggest the following variant that takes the graph struc-
ture into account. At time t, construct the (finite) Data-
log proof graph, whose nodes are the facts at time t. Visit
its strongly connected components in topologically sorted
order. Within each strongly connected component C, ini-
tialize the embeddings to 0 and then recompute them in
parallel for |C| iterations. If the graph is acyclic, so that
each component C consists of a single vertex, then the al-
gorithm reduces to an efficient and exact implementation
of §3.1 and §3.3. In the general case, visiting the com-
ponents in topologically sorted order means that we wait to
work on componentC until its strictly upstream nodes have
“converged,” so that the limited iterations onC make use of
the best available embeddings of the upstream nodes. By
choosing |C| iterations for component C, we ensure that
all nodes in C have a chance to communicate: information
has the opportunity to flow end-to-end through all cyclic
or acyclic paths of length < |C|, and this is enough to in-
clude all acyclic paths within C. Note that the embeddings
computed by this algorithm (or by the simpler method of
Hamilton et al. (2017a)) are well-defined: they depend only
on the graph structure, not on any arbitrary ordering of the
computations.

A.2. Negation in Conditions

A simple extension to our formalism would allow negation
in the body of a rule (i.e., the part of the rule to the right
of :- or <-). In rules of the form (1) or (2), each of the
conditions conditi could optionally be preceded by the
negation symbol !. In general, a rule only applies when the
ordinary conditions are true and the negated conditions are
false. The concatenation of column vectors in equations (4)
and (8) omits JgiK if conditi is negated, since then gi is
not a fact and does not have a vector (rather, JgiK = null).

Many dialects of Datalog permit programs with negation.
If we allow cycles (Appendix A.1), we would impose the
usual restriction that negation may not appear on cycles,
i.e., programs may use only stratified negation. This re-
striction ensures that the set of facts is well-defined, by ex-
cluding rules like paradox :- !paradox.
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Example. Extending our example of §2, we might say that
a person can eventually grow up into an adult and acquire
a gender. Whether person X grows up into (say) a woman,
and the time at which this happens, depends on the proba-
bility or intensity (§3.2) of the growupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowup(X,female) event.
We use negation to say that a growupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowup event can happen
only once to a person—after that, all growupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowup events for
that person become false atoms (have probability 0).
24 adult(X,G) <- growupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowup(X,G).
25 adult(X) :- adult(X,G).
26 growupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowupgrowup(X,G) :- person(X), gender(G), !adult(X).
27 gender(female).
28 gender(male).
29 gender(nonbinary).

...

As a result, an adult has exactly one gender, chosen
stochastically. Female and male adults who know each
other can procreate:
30 procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate(X,Y) :- rel(X,Y),

adult(X,female), adult(Y,male).

A.3. Infinite Domains

§2.7 explained that under our current formalism, any given
model only allows a finite set of atoms. Thus, it is not
possible for new persons to be born.

One way to accommodate that might be to relax Datalog’s
restriction on nesting.15 This allows us to build up an infi-
nite set of atoms from a finite set of initial entities:
31 birth(X,Y,child(X,Y)) <- procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate(X,Y).

Thus, each new person would be named by a tree
giving their ancestry, e.g., child(eve,adam) or
child(awan,child(eve,adam)). But while this
method may be useful in other settings, it unfortunately
does not allow eve and adam to have multiple children.

Instead, we suggest a different extension, which allows
events to create new anonymous entities (rather than nested
terms):

32 birth(X,Y,*) <- procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate(X,Y).

The special symbol * denotes a new entity that is created
during the update, in this case representing the child be-
ing born. Thus, the event procreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate(eve,adam) will
launch the fact birth(eve,adam,cain), where cain is
some internal name that the system assigns to the new
entity. In the usual way when launching a fact, the cell

15To be safe, we should allow only the <- rules (which are novel
in our formalism) to derive new facts with greater nesting depth
than the facts that appear in the body of the rule. This means
that the nesting depth of the database may increase over time, by
a finite amount each time an event happens. If we allowed that
in traditional :- rules, for example peano(s(X)) :- peano(X),
then we could get an infinite set of facts at an single time. This
means that computation at that time may not terminate, and our⊕β operators may have to aggregate over infinite sets (see §2.7).

block birth(eve,adam,cain) is updated from an ini-
tial value of 0 by equation (10) in a way that depends on
Jprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate(eve,adam)K.

From the new fact birth(eve,adam,cain), additional
rules derive further facts, stating that cain is a person and
has two parents:16

33 person(Z) :- birthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirth(X,Y,Z).
34 parent(X,Z) :- birthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirth(X,Y,Z).
35 parent(Y,Z) :- birthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirth(X,Y,Z).

Notice that the embedding Jperson(cain)K initially de-
pends on the state of his parents and their relationship at
the time of his procreation. This is because it depends
on Jbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirthbirth(eve,adam,cain)K which depends through its
cell block on Jprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreateprocreate(eve,adam)K, as noted above.
Jperson(cain)K may be further updated over time by
events such as helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(eve,cain), which affect its cell
block.

As another example, here is a description of a sequence of
orders in a restaurant:

1 :- embed(dishdishdishdishdishdishdishdishdishdishdishdishdishdishdishdishdish, 5).
2 :- event(orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder, 0).
3 orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder(X) :- dish(X).
4 orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder(*).
5 dish(X) <- orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder(X).

This program says that the possible orders consist of any
existing dish or a new dish. When used in the discrete-
time setting, this model is similar to the Chinese restaurant
process (CRP) (Aldous et al., 1985). Just as in the CRP,

• The relative probability of ordering a new dish at time
s ∈ N is a (learned) constant (because rule 4 has no
conditions).

• The relative probability of each possible orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder(X)
event, where X is an existing dish, depends on the em-
bedding of dish(X) (rule 3). That embedding reflects
only the number of times X has been ordered previ-
ously (rule 5), though its (learned) dependence on that
number does not have to be linear as in the CRP.

Interestingly, in the continous-time case—or if we added
a rule dish(X) <- tickticktickticktickticktickticktickticktickticktickticktickticktick that causes an update at every
discrete time step (see Appendix A.4 below)—the relative
probability of the orderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorderorder(X) event would also be affected
by the time intervals between previous orders of X. It is
also easy to modify this program to get variant processes

16Somewhat awkwardly, under our design, rule 23 is not
enough to remove person(cain) from the database, since that
fact was established by a :- rule. We actually have to write a
rule canceling cain’s birth: !birth(X,Y,Z) <- diediediediediediediediediediediediediediediediedie(Z). No-
tice that this rule will remove not only person(cain) but also
parent(eve,cain) and parent(adam,cain). Even then, the
entity cain may still be referenced in the database as a parent
of his own children, until they die as well.
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in which the relative probability of X is also affected by
previous orders of dishes Y 6= X (cf. Blei & Lafferty, 2006)
or by the exogenous events at the present time and at times
when X was ordered previously (cf. Blei & Frazier, 2010).

Appendix A.5 below discusses how an event may trigger an
unbounded number of dependent events that provide details
about it. This could be used in conjunction with the * fea-
ture to create a whole tree of atoms about new anonymous
entities.

A.4. Uses of Exogenous Events

The extension to allow exogeneous events was already dis-
cussed in the main paper (§2.4). Here we mention two spe-
cific uses in the discrete-time case.

It is useful in the discrete-time case to provide an exoge-
nous tickticktickticktickticktickticktickticktickticktickticktickticktick event at every s ∈ N. (Note that this results in
a second event at every time step; see footnote 11.) Any
cell blocks that are updated by the exogenous tickticktickticktickticktickticktickticktickticktickticktickticktick events
will be updated even at time steps s between the modeled
events that affect those cell blocks. For example, one can
write a rule such as person(X) <- tickticktickticktickticktickticktickticktickticktickticktickticktick, person(X),
world. so that persons continue to evolve even when noth-
ing is happening to them. This is similar to the way that in
the continous-time case, cell blocks with δ 6= 0 will drift
via equation (9) during the intervals between the modeled
events that affect those cell blocks.17

Another good use of exogenous events in discrete time is
to build a conditional probability model such as a word se-
quence tagger. At every time step s, a word occurs as an
exogenous event, at the same time that the model generates
an tag event that supplies a tag for the word at the previ-
ous time step. These two events at time s together update
the state of the model to determine the distribution over the
next tag at time t = s + 1. Notice that the influences of
the word and the tag on the update vector in equation (10)
are summed. This architecture is similar to a left-to-right
LSTM tagger (cf. Ling et al., 2015; Tran et al., 2016).

A.5. Modeling Multiple Simultaneous Events

§3.2 explained how to model a discrete-time event se-
quence:

To model a discrete-time event sequence, define
the probability of an event of type h at time step
t to be proportional to λe(t), normalizing over all
event types that are possible then.

17In fact, tick events can also be used in the continuous case,
if desired (Mei & Eisner, 2017). Then the drifting cells not only
drift, but also undergo periodic learned updates that may depend
on other facts (as specified by the tickticktickticktickticktickticktickticktickticktickticktickticktick update rules).

In such a sequence, exactly one event is generated at each
time t. To change this to “at most one event,” an additional
event type nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone can be used to encode “nothing occurred.”

The continuous-time setting is similar: almost surely, there
are no times t with multiple events. Recall from §3.2 that
in this setting, the expected number of occurrences of e on
the interval [t, t + dt), divided by dt, approaches λe(t) as
dt → 0+. Thus, given a time t at which one event occurs,
the expected total number of other events on [t, t+ dt) ap-
proaches 0 as dt→ 0+.

However, there exist datasets in which multiple events do
occur at time t—even multiple copies of the same event.
By extending our formalism with a notion of dependent
events, we can model such datasets generatively. The idea
is that an event e at time t can stochastically generate de-
pendent events that also occur at time t.

(When multiple events occur at time t, our model already
specifies how to handle the <- rule updates that result from
these events. Specifcially, multiple events that simultane-
ously update the same head are pooled within and across
rules by equation (9).)

To model the events that depend on e, we introduce the no-
tion of an event group, which represents a group of com-
peting events at a particular instant. Groups do not persist
over time; they appear momentarily in response to partic-
ular events. If event e at time t triggers group g and g is
non-empty, then exactly one event e ′ in g will stochasti-
cally occur at time t as well.

Under some programs, it will be possible for multiple
copies—that is, tokens—of the same event type to occur
at the same time. For precision, we use e below for a par-
ticular event token at a particular time, using ē to denote
the Datalog atom that names its event type. Similarly, we
use g for a particular token of a triggered group, using ḡ to
denote the Datalog atom that names the type of group. We
write JeK and JgK for the token embeddings: this allows
different tokens of the same type to have different embed-
dings at time t, depending on how they arose.

We allow new program lines of the following forms:18

:- eventgroup(functor, dimension). (13a)
group <<- event, condit1, . . ., conditN. (13b)
event <= group, condit1, . . ., conditN. (13c)

eventgroup declarations of the form (13a) are used to
declare that atoms with a particular functor refer to event
groups, similar to event declarations. We will display such
functors with a double underline.

18Mnemonically, note that the “doubled” side of the symbol <<-
or <= is next to the group, since the group usually contains multi-
ple events. This is also why group names are double-underlined.
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Rules of the form (13b) are used to trigger a group of pos-
sible dependent events. If e is an event token at time t, then
it triggers a token g of group type ḡ at time t, for each ḡ
and each rule r having at least one instantiation of the form
ḡ <<- ē, c1, . . ., cN for which the ci are all facts at
time t. The embedding of this token pools over all such
instantiations:

JgK def
=
⊕βr

c1,...,cN

Wr [1; JeK; Jc1K; . . . ; JcN K]︸ ︷︷ ︸
concatenation of column vectors

∈ RDg (14)

where all embeddings are evaluated at time t.

Rules of the form (13c) are used to specify the possible
events in a group. Very similarly to the above, if the group
g is triggered at time t, then it contains a token e ′ of event
type ē ′, for each ē ′ and each rule r having at least one in-
stantiation of the form ē ′ <= ḡ, c1, . . ., cN for which
the ci are all facts at time t. The embedding of this copy
pools over all such instantiations:

Je ′K def
=
⊕βr

c1,...,cN

Wr [1; JgK; Jc1K; . . . ; JcN K]︸ ︷︷ ︸
concatenation of column vectors

∈ RDg (15)

where all embeddings are evaluated at time t.

Since each e ′ in group g is an event, we compute not
only an embedding Je ′K but also an unnormalized proba-
bility λe′ , computed just as in §3.2 (using exp rather than
softplus). Exactly one of the finitely many event tokens in
g will occur at time t, with event type e ′ being chosen from
g with probability proportional to λe′ .

Training. In fully supervised training of this model, the
dependencies are fully observed. For each dependent event
token e ′ that occurs at time t, the training set specifies what
it depends on—that it is a dependent event, which group g
it was chosen from, and which rule r established that e ′

was an element of g. Furthermore, the training set must
specify for g which event e triggered it and via which rule
r. However, if these dependencies are not fully observed,
then it is still possible to take the training objective to be
the incomplete-data likelihood, which involves computing
the total probability of the bag of events at each time t by
summing over all possible choices of the dependencies.

Marked events. To see the applicability of our formal-
ism, consider a marked point process (such as the marked
Hawkes process). This is a traditional type of event se-
quence model in which each event occurrence also gener-
ates a stochastic mark from some distribution. The mark
contains details about the event. For example, each occur-
rence of eat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat meal(eve) might generate a mark that spec-
ifies the food eaten and the location of the meal.

Why are marked point processes used in practice?
An alternative would be to refine the atoms that de-
scribe events so that they contain the additional de-
tails. This leads to fine-grained event types such as

eat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat meal(eve,apple,tree of knowledge). However,
that approach means that computing λ(t)

def
=
∑

e∈E(t) λe(t)
during training (§4) or sampling (Appendix F.2) involves
summing over a large set of fine-grained events, which is
computationally expensive. Using marks makes it possible
to generate a coarse-grained event first, modeling its proba-
bility without yet considering the different ways to refine it.
The event’s details are considered only once the event has
been chosen. This is simply the usual argument for locally
normalized generative models.

Our formalism can treat an event’s mark as a dependent
event, using the neural architecture above to model the
mark probability p(e ′ | e) as proportional to λe′ . The set
of possible marks for an event is defined by rules of the
form (13) and may vary by event type and vary by time.

Multiply marked events. Our approach also makes it
easy for an event to independently generate multiple marks,
which describe different attributes of an event. For exam-
ple, each meal at time t may select a dependent location,

1 :- eventgroup(restaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurants, 5).
2 :- event(eat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat at, 0).
3 restaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurants <<- eat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat meal(X).
4 eat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat at(Y) <= restaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurants, is restaurant(Y).
5 eat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat at(home) <= restaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurants.

which associates some dependent restaurant Y (or home)
with the meal.19 At the same time, the meal may select a
set of foods to eat, where each food U20 is in competition
with nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone21 to indicate that it may or may not be chosen:

6 :- eventgroup(optdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdish, 7).
7 :- event(eat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat dish, 0).
8 :- event(nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone, 0).
9 optdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdish(U) <<- eat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat mealeat meal(X),

food(U), opinion(X,U).
10 eat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat disheat dish(U) <= optdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdish(U).
11 nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone <= optdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdishoptdish(U) : 0.

Recursive marks. Dependent events can recursively trig-
ger dependent events of their own, leading to a tree of
event tokens at time t. This makes it possible to model
the top-down generation of tree-structured metadata, such
as a syntactically well-formed sentence that describes the
event (Zhang et al., 2016). Observing such sentences in
training data would then provide evidence of the underly-
ing embeddings of the events. For example, to generate

19Notice that the choice of event eat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat ateat at(Y) depends on the
person X who is eating the meal, through the embedding of this
token of JrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsrestaurantsK, which depends on Jeat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)eat meal(X)K.

20Notice that the unnormalized probability of including U in X’s
meal depends on X’s opinion of U.

21The annotation : 0 in the last line (explained in Appendix B
below) is included as a matter of good practice. In keeping with
the usual practice in binary logistic regression, it simplifies the
computation of the normalized probabilities, without loss of gen-
erality, by ensuring that the unnormalized probability of nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone is
constant rather than depending on U.
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derivation trees from a context-free grammar, encode each
nonterminal symbol as an event group, whose events are
the production rules that can expand that nonterminal. In
general, the probability of a production rule depends on the
sequence of production rules at its ancestors, as determined
by a recurrent neural net.

A special case of a tree is a sequence: in the meal exam-
ple, each dish could be made to generate the next dish until
the sequence terminates by generating nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone. The resulting
architecture precisely mimics the architecture of an RNN
language model (Mikolov et al., 2010).

Multiple agents. A final application of our model is in a
discrete-time setting where there are multiple agents, which
naturally leads to multiple simultaneous events. For exam-
ple, at each time step t, every person stochastically chooses
an action to perform (possibly nonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenonenone). This can be accom-
plished by allowing the tickticktickticktickticktickticktickticktickticktickticktickticktick event (Appendix A.4) to trig-
ger one group for each person:

1 :- eventgroup(actionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactions, 7).
2 actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X)actions(X) <<- tickticktickticktickticktickticktickticktickticktickticktickticktick, personpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonpersonperson(X).
3 helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y) <= actionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactionsactions(X), rel(X,Y).

...

This is a group-wise version of rule 14 in the main paper.

A similar structure can be used to produce a “node classifi-
cation” model in which each node in a graph stochastically
generates a label at each time step, based on the node’s cur-
rent embedding (Hamilton et al., 2017b; Xu et al., 2020).
The graph structure may change over time thanks to exoge-
neous or endogenous events.

Example. For concreteness, below is a fully generative
model of a dynamic colored directed graph, using several
of the extensions described in this appendix. The model can
be used in either a discrete-time or continuous-time setting.

The graph’s nodes and edges have embeddings, as do the
legal colors for nodes:

1 :- embed(node, 8).
2 :- embed(edge, 4).
3 :- embed(color, 3).

In this version, edges are stochastically added and removed
over time, one at a time. Any two unconnected nodes de-
termine through their embeddings the probability of adding
an edge between them, as well as the initial embedding of
this edge. The edge’s embedding may drift over time,22 and
at any time determines the edge’s probability of deletion.

4 :- event(add edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edge, 8).
5 :- event(del edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edge, 0).
6 add edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edge(U,V) :- node(U), node(V), !edge(U,V).
7 del edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edge(U,V) :- edge(U,V).

22In the continuous-time setting, the drift is learned. In the
discrete-time setting, we must explicitly specify drift as explained
in Appendix A.4, via a rule such as edge(U,V) <- tickticktickticktickticktickticktickticktickticktickticktickticktick.

8 edge(U,V) <- add edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edge(U,V).
9 !edge(U,V) <- del edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edgedel edge(U,V).

Adding edge(U,V) to the graph causes two dependent
events that simultaneously and stochastically relabel both
U and V with new colors. This requires triggering two event
groups (unless U=V). A node’s new color depends stochas-
tically on the embeddings of the node and its children, as
well as the embedding of the color:
10 :- eventgroup(labelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabels, 8).
11 :- event(labellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabel, 8).
12 labelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabels(U) <<- add edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edge(U,V).
13 labelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabels(V) <<- add edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edgeadd edge(U,V).
14 labellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabel(X,C) <= labelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabelslabels(X), color(C), node(X),

edge(X,Y), node(Y).

Finally, here is how a relabeling event does its work.
The has color atoms that are updated here are simply
facts that record the current coloring, with no embedding.
However, the rules below ensure that a node’s embedding
records its history of colors (and that it has only one color
at a time):
15 !has color(U,D) <- labellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabel(U,C), color(D).
16 has color(U,C) <- labellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabellabel(U,C).
17 node(U) <- has color(U,C), color(C).

The initial graph at time t = 0 can be written down by
enumeration:
18 color(red).
19 color(green).
20 color(blue).
21 has color(0,red).
22 has color(1,blue)
23 has color(2,red).
24 node(U) :- has color(U,C).
25 edge(0,1) <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit.

Inheritance. As a convenience, we allow an event group to
be used anywhere that an event can be used—at the start of
the body of a rule of type (2a), (2b), or (13b). Such a rule
applies at times when the group is triggered (just as a rule
that mentions an event, instead of a group, would apply at
times when that event occurred).

This provides a kind of inheritance mechanism for events:
36 :- eventgroup(actactactactactactactactactactactactactactactactact, 5).
37 actactactactactactactactactactactactactactactactact(X) <<- sleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleep(X).
38 actactactactactactactactactactactactactactactactact(X) <<- helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(X,Y), person(Y).

...
39 person(Y) <- actactactactactactactactactactactactactactactactact(X), parent(X,Y), person(Y).
40 animal(Y) <- actactactactactactactactactactactactactactactactact(X), own(X,Y), animal(Y).

This means that whenever X takes any action—sleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleep,
helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp, etc.—rules 39–40 will update the embeddings of X’s
children and pets.

Adopting the terminology of object-oriented programming,
actactactactactactactactactactactactactactactactact(eve) functions as a class of events (i.e., event type),
whose subclasses include helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(eve,adam) and many oth-
ers. In this view, each particular instance (i.e., event token)
of the class helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(eve,adam) has a method that returns its
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embedding in RDhelp . But rules 39–40 instead view this as
an instance of the superclass actactactactactactactactactactactactactactactactact(eve), and hence call a
method of that superclass to query it for its embedding in
RDact = R5, which it computes from its previous embed-
ding via equation (14).

In the above example, the event group is actually empty, as
there are no rules of type (13c) that populate it with depen-
dent events. Thus, no dependent events occur as a result of
the group being triggered. The empty event group is simply
used as a class.

B. Parameter Sharing Details
Throughout §3, the parameters W and β are indexed by
the rule number r. (They appear in equations (4) and (8).)
Thus, the number of parameters grows with the number of
rules in our formalism. However, we also allow further
flexibility to name these parameters with atoms, so that
they can be shared among and within rules.

This is achieved by explicitly naming the parameters to be
used by a rule:

head : beta :-

: bias vector
condit1 : matrix1,

...

conditN : matrixN.
Now βr in equation (4) is replaced by a scalar parame-
ter named by the atom beta. Similarly, the affine trans-
formation matrix Wr in equation (4) is replaced by a
parameter matrix that is constructed by horizontally con-
catenating the vector and matrices named by the atoms
bias vector, matrix1, . . . , matrixN respectively. For
example, matrixi will have Dhead rows and Dconditi

columns, and will in effect be multiplied by the embedding
of the atom that instiatiates conditi.

These parameter annotations with the : symbol are op-
tional (and were not used in the main paper). If any
of them is not specified, it is set automatically to be
rule- and position-specific: in the rth rule, beta de-
faults to params(r,beta), bias vector defaults to
params(r,bias), and matrixi defaults to params(r,i).

As shorthand, we also allow the form
head : beta :-

condit1, conditN :: full matrix.
where full matrix directly names the concatenation of
matrices that replaces Wr.

The parameter-naming mechanism lets us share parameters
across rules by reusing their names. For example, blessings
and curses might be inherited using the same parameters:

41 cursed(Y) :- cursed(X), parent(X,Y) :: inherit.
42 blessed(Y) :- blessed(X), parent(X,Y) :: inherit.

Conversely, to do less sharing of parameters, the parame-
ter names may mention variables that appear in the head
or body of the rule. In this case, different instantiations of
the rule may invoke different parameters. (beta is only al-
lowed to contain variables that appear in the head, because
each way of instantiating the head needs a single β to ag-
gregate over all the compatible instantations of its body.)

For example, we can modify rules 41 and 42 into
43 cursed(Y) : descendant(Y) :-

cursed(X), parent(X,Y) :: inherit(X,Y).
44 blessed(Y) : descendant(Y) :-

blessed(X), parent(X,Y) :: inherit(X,Y).

Now each X, Y pair has its own W matrix (shared by curses
and blessings), and similarly, each Y has its own β scalar.
This example has too many parameters to be practical, but
serves to illustrate the point.

If X or Y is an entity created by the * mechanism (Ap-
pendix A.3), then the name will be constructed using a lit-
eral *, so that all newly created entities use the same pa-
rameters. This ensures that the number of parameters is
finite even if the number of entities is unbounded. As a
result, parameters can be trained by maximum likelihood
and reused every time a sequence is sampled, even though
different sequences may have different numbers of entities.
Although novel entities share parameters, facts that differ
only in their novel entities may nonetheless come to have
different embeddings if they are created or updated in dif-
ferent circumstances.

The special parameter name 0 says to use a zero matrix:
45 cursed(Y) : descendant :-

: inherit,
cursed(X) : inherit,
parent(X,Y) : 0.

Here the condition parent(X,Y) must still be non-null for
the rule to apply, but we ignore its embedding.

The same mechanism can be used to name the parameters
of <- rules. In this case, event at the start of the body can
also be annotated, as event : matrix0. The horizontal
concatenation of named matrices now includes the matrix
named by matrix0, and is used to replace Wr in equa-
tion (8).

For a <- rule, it might sometimes be desirable to allow finer-
grained control over how the rule affects the drift of a cell
block over time (see equation (17) in Appendix C below).
For example, forcing f = 1 and i = 0 in equation (18)
ensures via equation (19) that when the rule updates h, it
will not introduce a discontinuity in the h (t) function,
although it might change the function’s asymptotic value
and decay rate. (This might be useful for the tickticktickticktickticktickticktickticktickticktickticktickticktick rules
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mentioned in footnote 17, for example.) Similarly, forc-
ing f̄ = 1 and ī = 0 in equation (18) ensures via equa-
tion (20) that the rule does not change the asymptotic value
of the h (t) function. These effects can be accomplished
by declaring that certain values are ±∞ in the first column
of Wr in equation (8) (as this column holds bias terms).
We have not yet designed a syntax for such declarations.

We can also name the softplus scale parameter τ in §3.2.
For example, we can rewrite line 13 of §2.4 as
46 :- event(helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp, 8) : intervene.

and allow harmharmharmharmharmharmharmharmharmharmharmharmharmharmharmharmharm to share τ with helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp:
47 :- event(harmharmharmharmharmharmharmharmharmharmharmharmharmharmharmharmharm, 8) : intervene.

C. Updating Drift Functions in the
Continuous-Time LSTM

Here we give the details regarding continuous-time
LSTMs, which were omitted from §3.3 owing to space lim-
itations. We follow the design of Mei & Eisner (2017), in
which each cell changes endogenously between updates, or
“drifts,” according to an exponential decay curve:

c(t)
def
= c̄+ (c− c̄) exp(−δ(t− s)) where t > s (16)

This curve is parameterized by (s, c, c̄, δ), where

• s is a starting time—specifically, the time when the
parameters were last updated

• c is the starting cell value, i.e., c(s) = c

• c̄ is the asymptotic cell value, i.e., limt→∞ c(t) = c̄

• δ > 0 is the rate of decay toward the asymptote; notice
that the derivative c′(t) = δ · (c̄− c)

We need to define the trajectory through RDh of the cell
block h associated with fact h. That is, we need to be
able to compute h (t) ∈ RDh for any t. Since h is not a
single cell but rather a block of Dh cells, it actually needs
to store not 4 parameters but rather 1 + 3Dh parameters.
Specifically, it stores s ∈ R, which is the time that the
block’s parameters were last updated: this is shared by all
cells in the block. It also stores vectors that we refer to as
h c

, h c̄
, h δ ∈ RDh . Now analogously to equation (16),

we define the trajectory of the cell block elementwise:

h (t)
def
= h c̄

+ ( h c − h c̄
) exp(− h δ · (t− s)),

(17)

for all t > s (up to and including the time of the next event
that results in updating the block’s parameters).

We now describe exactly how the block’s parameters are
updated when an event occurs at time s. Recall that for the
discrete-time case, for each (r,m), we obtained [h]<-rm ∈

R3Dh by evaluating (8) at time s, and set (f ; i; z) =
σ([h]<-rm). In the continuous-time case, we evaluate (8) at
time s to obtain [h]<-rm ∈ R7Dh (so Wr needs to have more
rows), and accordingly obtain 7 vectors in (0, 1)Dh ,

(f ; i; z; f̄ ; ī; z̄; d)
def
= σ([h]<-rm) (18)

which we use similarly to equation (11) to define update
vectors for the current cell values (time s) and the asymp-
totic cell values (time∞), respectively

[h]∆c
rm

def
= (f − 1) · h (s) + i · (2z− 1) (19)

[h]∆c̄
rm

def
= (f̄ − 1) · h c̄

+ ī · (2z̄− 1) (20)

as well as a vector of proposed decay rates:23

[h]δrm
def
= softplus1(σ−1(d)) ∈ RDh

>0 (21)

We then pool the update vectors from different (r,m) and
apply this pooled update, much as we did for the discrete-
time cell values in equations (9)–(11):

h c def
= h (s) +

∑
r

⊕βr

m
[h]∆c

rm (22)

h c̄ def
= h c̄

+
∑
r

⊕βr

m
[h]∆c̄

rm (23)

The special cases mentioned just below the update (9) are
also followed for the updates (22)–(23).

The final task is to pool the decay rates to obtain h δ . It
is less obvious how to do this in a natural way. Our ba-
sic idea is that for the ith cell, we should obtain the decay
rate δi by a weighted harmonic mean of the decay rates
([h]δrm)i that were proposed by different (r,m) pairs. A
given (r,m) pair should get a high weight in this harmonic
mean to the extent that it contributed large updates ([h]

∆c
rm)i

or ([h]∆c̄
rm)i.

Why harmonic mean? Observe that the exponential decay
curve (16) has a half-life of ln 2

δ . In other words, at any mo-
ment t, it will take time ln 2

δ for the curve to travel halfway
from its current value c(t) to c̄. (This amount of time is
independent of t.) Thus, saying that the decay rate is a
weighted harmonic mean of proposed decay rates is equiv-
alent to saying that the half-life is a weighted arithmetic
mean of proposed half-lives,24 which seems like a reason-
able pooling principle.

23Equation (21) simply replaces the σ that produced d with
softplus1 (defined in §3.2), since there is no reason to force decay
rates into (0, 1).

24It is also equivalent to saying that the (2/3)-life is a weighted
arithmetic mean of proposed (2/3)-lives, since equation (16) has
a (2/3)-life of ln 3

δ
. In other words, there is nothing special about

the fraction 1/2. Any choice of fraction would motivate using the
harmonic mean.
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Thus, operating in parallel over all cells i by performing
the following vector operations elementwise, we choose

h δ def
=

(∑
r

∑
m wrm · ([h]δrm)−1∑

r

∑
m wrm

)−1

(24)

We define the vector of unnormalized non-negative weights
wrm from the updated h c and h c̄ values by

wrm
def
=

(⊕βr

m′

∣∣∣[h]
∆c
rm′

∣∣∣) ·
∣∣∣[h]

∆c
rm

∣∣∣βr

∑
m′

∣∣∣[h]
∆c
rm′

∣∣∣βr

+

(⊕βr

m′

∣∣[h]∆c̄
rm′

∣∣) · ∣∣[h]∆c̄
rm

∣∣βr∑
m′

∣∣[h]∆c̄
rm′

∣∣βr

+
∣∣∣ h c̄ − h c

∣∣∣ (25)

The following remarks should be read elementwise, i.e.,
consider a particular cell i, and read each vector x as refer-
ring to the scalar (x)i.

The weights defined in equation (25) are valid weights to
use for the weighted harmonic mean (24):

• wrm ≥ 0, because of the use of absolute value.

• wrm > 0 strictly unless h c̄
= h c. Thus, the decay

rate h δ as defined by equation (24) can only be un-
defined (that is, 0

0 ) if h c̄
= h c, in which case that

decay rate is irrelevant anyway.

The way to understand the first line of equation (25) is as
a heuristic assessment of how much the cell’s curve (16)
was affected by (r,m) via [h]

∆c
rm’s effect on h c. First

of all,
⊕βr

m′

∣∣∣[h]
∆c
rm′

∣∣∣ is the pooled magnitude of all of the

rth rule’s attempts to affect h c. Using the absolute value
ensures that even if large-magnitude attempts of opposing
sign canceled each other out in equation (22), they are still
counted here as large attempts, and thus give the rth rule a
stronger total voice in determining the decay rate h δ . This
pooled magnitude for the rth rule is then partitioned among
the attempts (r,m). In particular, the fraction in the first
line denotes the portion of the rth rule’s pooled effect on
h c that should be heuristically attributed to (r,m) specif-

ically, given the way that equation (22) pooled over all m
(recall that this invokes equation (6a)).

Thus, the first line of equation (25) considers the effect of
(r,m) on c. The second line adds its effect on c̄. The third
line effectively acts as smoothing so that we do not pay un-
due attention to the size ratio among different updates if
these updates are tiny. In particular, if all of the updates
[h]

∆c
rm and [h]∆c̄

rm are small compared to the total height

of the curve, namely
∣∣∣ h c̄ − h c

∣∣∣, then the third line will
dominate the definition of the weights wrm, making them
close to uniform. The third line is also what prevents inap-
propriate division by 0 (see the second bullet point above).

D. Likelihood Computation Details
In this section we discuss the log-likelihood formulas in §4.

For the discrete-time setting, the formula simply follows
from the fact that the log-probability of event e at time t
was defined to be log (λe(t)/λ(t)).

The log-likelihood formula (12) for the continuous-time
case has been derived and discussed in previous work
(Hawkes, 1971; Liniger, 2009; Mei & Eisner, 2017). In-
tuitively, during parameter training, each log λei

(ti) is
increased to explain why ei happened at time ti while∫ T
t=0

λ(t)dt is decreased to explain why no event of any
possible type e ∈ E(t) ever happened at other times. Note
that there is no log under the integral in equation (12), in
contrast to the discrete-time setting.

As discussed in §4, the integral term in equation (12) is
computed using the Monte Carlo approximation detailed
by Algorithm 1 of Mei & Eisner (2017), which samples
times t.

However, at each sampled time t, that method still requires
a summation over all events to obtain λ(t). This summation
can be expensive when there are many event types. Thus,
we estimate the sum using a simple downsampling trick,
as follows. At any time t that is sampled to compute the
integral, let E(t) be the set of possible event types under
the database at time t. We construct a bag E ′(t) by uni-
formly sampling event types from E(t) with replacement,
and estimate

λ(t) ≈ |E|
|E ′|

∑
e∈E′

λe(t)

This estimator is unbiased yet remains much less expen-
sive to compute especially when |E ′| � |E|. In our exper-
iments, we took |E ′| = 10 and still found empirically that
the variance of the log-likelihood estimate (computed by
running multiple times) was rather small.

Another computational expense stems from the fact that we
have to make Datalog queries after every event to figure out
the proof DAG of each provable Datalog atom. Queries can
be slow, so rather than repeatedly making a given query,
we just memoize the result the first time and look it up
when it is needed again (Swift & Warren, 2012). How-
ever, as events are allowed to change the database, results
of some queries may also change, and thus the memos
for those queries become incorrect (stale). To avoid er-
rors, we currently flush the memo table every time the
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database is changed. This obviously reduces the usefulness
of the memos. An implementation improvement for future
work is to use more flexible strategies that create memos
and update them incrementally through change propaga-
tion (Acar & Ley-Wild, 2008; Hammer, 2012; Filardo &
Eisner, 2012).

E. How to Predict Events
Figures 2 and 4 include a task-based evaluation where we
try to predict the time and type of the next event. More pre-
cisely, for each event in each held-out sequence, we attempt
to predict its time given only the preceding events, as well
as its type given both its true time and the preceding events.

These figures evaluate the time prediction with average
L2 loss (yielding a root-mean-squared error, or RMSE)
and evaluate the argument prediction with average 0-1 loss
(yielding an error rate).

To carry out the predictions, we follow Mei & Eisner
(2017) and use the minimum Bayes risk (MBR) principle
to predict the time and type with lowest expected loss. To
predict the ith event:

• Its time ti has density pi(t) =

λ(t) exp(−
∫ t
ti−1

λ(t′)dt′). We choose
∫∞
ti−1

tpi(t)dt

as the time prediction because it has the lowest
expected L2 loss. The integral can be estimated using
i.i.d. samples of ti drawn from pi(t) as detailed in
Mei & Eisner (2017) and Mei et al. (2019).

• Since we are given the next event time ti when pre-
dicting the type ei,25 the most likely type is simply
arg maxe∈E(ti) λe(ti).

Notice that our approach will never predict an im-
possible event type. For example, helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(eve,adam)
won’t be in E(ti) and thus will have zero probability if
Jrel(eve,adam)K(ti) = null (maybe because eve stops
having opinions on anything that adam does anymore).

In some circumstances, one might also like to predict the
most likely type out of a restricted set E ′(ti) ( E(ti). This
allows one to answer questions like “If we know that some
event helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(eve,Y) happened at time ti, then which per-
son Y did eve helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp, given all past events?” The answer
will simply be arg maxe∈E′(ti) λe(ti).

As another extension, Mei et al. (2019) show how to predict
missing events in a neural Hawkes process conditioned on
partial observations of both past and future events. They
used a particle smoothing technique that had previously
been used for discrete-time neural sequence models (Lin

25Mei & Eisner (2017) also give the MBR prediction rule for
predicting ei without knowledge of its time ti.

& Eisner, 2018). This technique could also be extended to
neural Datalog through time (NDTT):

• In particle filtering, each particle specifies a hypoth-
esized complete history of past events (both observed
and missing). In our setting, this provides enough in-
formation to determine the set of possible events E(t)
at time t, along with their embeddings and intensities.

• Neural particle smoothing is an extension where the
guess of the next event is also conditioned on the
sequence of future events (observed only), using a
learned neural encoding of that sequence. In our set-
ting, it is not clear what embeddings to use for the
future events, as we do not in general have static
embeddings for our event types, and their dynamic
embeddings cannot yet be computed at time t. We
would want to learn a compositional encoding of fu-
ture events that at least respects their structured de-
scriptions (e.g., helphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelphelp(eve,adam)), and possibly also
draws on the NDTT program and its parameters in
some way. We leave this design to future work.

F. Experimental Details
F.1. Dataset Statistics

Table 1 shows statistics about each dataset that we use in
this paper.

F.2. Synthetic Dataset Details

We synthesized data by sampling event sequences from the
structured NHP specified by our Datalog program in §6.1.
We chose N = 4 and M = 4, 8, 16 and thus end up with
three different datasets.

For each M , we set the sequence length I = 21 and
then used the thinning algorithm (Mei & Eisner, 2017; Mei
et al., 2019) to sample the first I events over [0,∞). We set
T = tI , i.e., the time of the last generated event. We gen-
erated 2000, 100 and 100 sequences for each training, dev
and test set respectively. We showed the learning curves for
M = 8 and 16 in Figure 1 and left out the plot for M = 4
because it is boringly similar.

For the unstructured NHP baseline, the program given in
§6.1 is not quite accurate. To exactly match the architecture
of Mei & Eisner (2017), we have to use the notation of
Appendix B to ensure that each of the MN event types has
its own parameters:

1 is process(1).
...

2 is process(M).

3 is type(1).
...

4 is type(N).
5 :- embed(world, 8).
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DATASET |K| # OF EVENT TOKENS # OF SEQUENCES

TRAIN DEV TEST TRAIN DEV TEST

SYNTHETIC M = 4 16 42000 2100 2100 2000 100 100
SYNTHETIC M = 8 32 42000 2100 2100 2000 100 100
SYNTHETIC M = 16 64 42000 2100 2100 2000 100 100
IPTV 49000 27355 4409 4838 1 1 1
ROBOCUP 528 2195 817 780 2 1 1

Table 1. Statistics of each dataset.

6 :- embed(is event, 8).
7 :- event(eeeeeeeeeeeeeeeee, 0).
8 is event(M,N)

:- is process(M), is type(N)
:: emb(M,N).

9 eeeeeeeeeeeeeeeee(M,N)
:- world, is process(M), is type(N)
:: dep(M,N).

10 world <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit.
11 world <- eeeeeeeeeeeeeeeee(M,N), is event(M,N), world.

F.3. IPTV Dataset Details

We used the events of days 1–200, days 201–220, and days
221–240 as training, dev and test data respectively, and
saved the rest for future experiments. For dev and test, we
evaluate the model’s predictive power on the held-out dev
and test events respectively. However, when predicting an
event, the model is still allowed to condition on the full his-
tory of that event (starting from day 1). This is needed to
determine the facts in the database, their embeddings, and
the event intensities.

The time unit in this domain is 1 minute and thus in the
graph for time prediction, an error of 1.5 (for example)
means an error of 1.5 minutes.

Each event type has the form watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P) meaning that
user U watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatches TV program P. The relational facts and
rules about users and programs are specified as follows:

1 is user(u1).
...

2 is user(u1000).
3 is tag(adventure).

...
4 is tag(war).
5 is program(p1).
6 has tag(p1,comedy).

...

...
7 is program(p49).
8 has tag(p49,romance).

...

In principle, the atoms are allowed to have different dimen-

sions. But we make all of them to be the same in our exper-
iments so as not to have too many hyperparameters to tune:
see Appendix F.5 for tuning details. Supposing that the di-
mension is 8, our Datalog program declares it as follows:

9 :- embed(user, 8).
10 :- embed(availprog, 8).
11 :- embed(profile, 8).
12 :- embed(released, 0).
13 :- embed(watchhistory, 8).
14 :- embed(tag, 8).
15 :- event(watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch, 8).

where watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch has an extra dimension for its intensity.

Here are the :- rules:
16 user(U) :- is user(U).
17 availprog(P)

:- profile(P), released(P),
watchhistory(P).

18 profile(P) :- tag(T), has tag(P,T).
19 profile(P) :- is program(P).
20 releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease(P) :- is program(P).
21 watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P) :- user(U), availprog(P).

and <- rules:
22 user(U) <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is user(U).
23 tag(T) <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is tag(T).
24 released(P) <- releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease(P).
25 watchhistory(P) <- releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease(P).
26 user(U) <- watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P), user(U), availprog(P).
27 watchhistory(P)

<- watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P), user(U), availprog(P).
28 tag(T)

<- watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P), user(U), availprog(P),
tag(T), has tag(P,T).

We also implement the architectures of Know-Evolve and
DyRep as Datalog programs. The relational facts and rules
(lines are the same for all three models. The Know-Evolve
program continues as follows:
29 :- embed(user, 8).
30 :- embed(availprog, 8).
31 :- embed(watch emb, 8).
32 :- event(watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch, 0).

Here are the :- rules:
33 watch emb(U,P) :- is user(U), is program(P).
34 watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P) :- user(U), availprog(P).
35 proj local(U,P)

:- user(U), is program(P) :: proj.
36 proj local(U,P)
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:- availprog(P), is user(U) :: proj.
37 proj obj(U,P)

:- user(U), is program(P) :: proj.
38 proj obj(U,P)

:- availprog(P), is user(U) :: proj.

Note that the static embedding is independent of U or P
because the parameter name doesn’t consider U or P and
functors is user and is program have dimension 0.

Here are the <- rules:
39 user(U) <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is user(U).
40 availprog(P) <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is program(P).
41 user(U)

<- watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P), watch emb(U,P),
proj local(U,P).

42 availprog(P)
<- watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P), watch emb(U,P),
proj obj(U,P).

Note that Know-Evolve doesn’t consider the release of new
TV programs but only behaves as if all the TV programs
are available to watch at any time. So it doesn’t impose any
temporal hard constraints on the intensities.

The DyRep program also makes the intensity of each event
depend on its participants, so the :- rules about intensi-
ties are the same as in Know-Evolve. The standard DyRep
model doesn’t have embeddings for event types but our
reimplementation followed their appendices to assign a
static embedding to each event type. The way these static
embeddings are computed is defined to be the same as in
Know-Evolve. However, for the <- rules, DyRep considers
the neighbors of participants while updating them. In this
domain, we consider the tags of a program P as its neigh-
bors. This design is meaningful because it offers a way for
DyRep to consider the tags of each program P when up-
dating P. The declarations, :- rules, and <- rules of DyRep
are as follows:

43 :- embed(user, 8).
44 :- embed(availprog, 8).
45 :- embed(tag, 8).
46 :- embed(watch emb, 8).
47 :- event(watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch, 0).
48 watch emb(U,P) :- is user(U), is program(P).
49 watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P) :- user(U), availprog(P).
50 user(U) <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is user(U).
51 tag(T) <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is tag(T).
52 availprog(P) <- releasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleasereleaserelease(P).
53 user(U) <- watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P), watch emb(U,P), user(U).
54 availprog(P)

<- watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P), watch emb(U,P),
availprog(P).

55 availprog(P)
<- watchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatchwatch(U,P), tag(T), has tag(P,T).

Note that DyRep handles the addition of facts—i.e., new
TV programs being released—thus can have dynamic hard
logic constraints on intensities as our structured model
does.

F.4. RoboCup Dataset Details

We use Final 2001 and 2002, Final 2003 and Final 2004
as training, dev and test data respectively. The time unit
in this domain is 1 second, and thus in the graph for time
prediction, an error of 1.5 (for example) means an error of
1.5 seconds.

Each event type has one of the forms:

• kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P) means that player P kicks the ball off
which usually happens at the beginning of the game,
after a pause or after someone scores;

• kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P) means that player P kicks the ball and still
keeps its possession;

• goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P) means that player P scores;
• passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q) means that P passes ball to teammate Q;
• stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P) means that the ball is turned over from P

by opponent Q.

The relational facts and rules about players and teams are
specified as follows:

1 is team(a). % team a
2 is team(b). % team b
3 is player(a1).
4 in team(a1,a). % player a1 is in team a

...
5 is player(b11).
6 in team(b11,b). % player b11 is in team b
7 not eq(a,b).
8 not eq(b,a). % teams are different
9 not eq(a1,a2). % a1 and a2 are different

...
10 not eq(b11,b10).
11 teammate(P,Q) :- in team(P,T), in team(Q,T),

is team(T), not eq(P,Q).
12 opponent(P,Q) :- in team(P,T), in team(Q,S),

is team(T), is team(S), not eq(T,S).

In principle, the functors are allowed to have different di-
mensions. But we make all of them to be the same in our
experiments so as not to have too many hyperparameters to
tune: see Appendix F.5 for details. Suppose that the dimen-
sion is 8, our Datalog program declares it as follows:
13 :- embed(player, 8).
14 :- embed(team, 8).
15 :- event(kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff, 8).
16 :- event(kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick, 8).
17 :- event(goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal, 8).
18 :- event(passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass, 8).
19 :- event(stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal, 8).

Here are the :- rules:
20 kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P)

:- player(P), team(T), team(S),
in team(P,T), not eq(T,S), has ball(T).
% team T has ball

21 kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P)
:- player(P), team(T), team(S),
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in team(P,T), not eq(T,S), has ball(P).
% player P has ball

22 goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P)
:- player(P), team(T), team(S),
in team(P,T), not eq(T,S), has ball(P).
% player P has ball

23 passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q)
:- player(P), player(Q), team(T), team(S),
has ball(P), teammate(P,Q), in team(P,T),
not eq(T,S). % player P has ball

24 stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P)
:- player(P), player(Q), team(T), team(S),
has ball(P), opponent(P,Q), in team(P,T),
in team(Q,S). % player P has ball

Note that any P in team T can kick the ball off when team T
possesses the ball; that is, many events kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P) are all
possible. Once a specific player P takes possession of the
ball (by kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff, receiving a passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass, or stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealing the ball),
it is only P who can kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick, goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal, passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass or be the target of
who stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteals the ball. How the possession gets transferred
between players and teams is specified as follows:
25 has ball(a)

<- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit. % team a has ball at beginning
26 !has ball(T) <- kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P), in team(P,T).
27 !has ball(P) <- goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P).
28 has ball(S)

<- goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P), in team(P,T), not eq(T,S).
29 !has ball(P) <- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q).
30 has ball(Q) <- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q).
31 !has ball(P) <- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P).
32 has ball(Q) <- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P).

Each event updates not only who does it but also who ob-
serves it according to the <- rules below:

33 player(P)
<- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is player(P).

34 team(T)
<- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is team(T).

35 player(P)
<- kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P), player(P), team(T),
team(S), in team(P,T), not eq(T,S)
:: individual.

36 team(T)
<- kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P), player(P), team(T),
team(S), in team(P,T), not eq(T,S)
:: team local.

37 team(S)
<- kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P), player(P), team(T),
team(S), in team(P,T), not eq(T,S)
:: team obj.

38 player(P)
<- kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P), player(P), team(T), team(S),
in team(P,T), not eq(T,S)
:: individual.

39 team(T)
<- kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P), player(P), team(T), team(S),
in team(P,T), not eq(T,S)
:: team local.

40 team(S)
<- kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P), player(P), team(T), team(S),
in team(P,T), not eq(T,S)
:: team obj.

41 player(P)
<- goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P), player(P), team(T), team(S),
in team(P,T), not eq(T,S)
:: individual.

42 team(T)
<- goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P), player(P), team(T), team(S),
in team(P,T), not eq(T,S)
:: team local.

43 team(S)
<- goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P), player(P), team(T), team(S),
in team(P,T), not eq(T,S)
:: team obj.

44 player(P)
<- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q), player(P), player(Q),
team(T), team(S), in team(P,T), not eq(T,S)
:: individual local.

45 player(Q)
<- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q), player(P), player(Q),
team(T), team(S), in team(P,T), not eq(T,S)
:: individual obj.

46 team(T)
<- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q), player(P), player(Q),
team(T), team(S), in team(P,T), not eq(T,S)
:: team local inter.

47 team(S)
<- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q), player(P), player(Q),
team(T), team(S), in team(P,T), not eq(T,S)
:: team obj inter.

48 player(Q)
<- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P), player(P), player(Q),
team(T), team(S), in team(P,T), not eq(T,S)
:: individual local.

49 player(P)
<- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P), player(P), player(Q),
team(T), team(S), in team(P,T), not eq(T,S)
:: individual obj.

50 team(S)
<- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P), player(P), player(Q),
team(T), team(S), in team(P,T), not eq(T,S)
:: team local inter.

51 team(T)
<- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P), player(P), player(Q),
team(T), team(S), in team(P,T), not eq(T,S)
:: team obj inter.

We also implement the architectures of Know-Evolve and
DyRep as Datalog programs. The relational facts and rules
are the same for all three models. The Know-Evolve pro-
gram continues as follows:
52 :- embed(player, 8).
53 :- embed(kickoff emb, 8).
54 :- embed(kick emb, 8).
55 :- embed(goal emg, 8).
56 :- embed(pass emb, 8).
57 :- embed(steal emb, 8).
58 :- event(kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff, 0).
59 :- event(kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick, 0).
60 :- event(goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal, 0).
61 :- event(passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass, 0).
62 :- event(stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal, 0).

Here are the :- rules:
63 kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P) :- player(P).
64 kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P) :- player(P).
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Figure 4. Ablation study of taking away neural networks from our Datalog programs in the real-world domains. The format of the
graphs is the same as in Figure 2. The results imply that neural networks have been learning useful representations that are not explicitly
specified in the Datalog programs.

65 goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P) :- player(P).
66 passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q)

:- player(P), player(Q), teammate(P,Q).
67 stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P)

:- player(P), player(Q), opponent(P,Q).
68 kickoff emb(P) :- is player(P).
69 kick emb(P) :- is player(P).
70 goal emb(P) :- is player(P).
71 pass emb(P,Q) :- teammate(P,Q).
72 steal emb(Q,P) :- opponent(P,Q).
73 proj local(P,Q)

:- player(P), is player(Q) :: proj.
74 proj local(P,Q)

:- player(Q), is player(P) :: proj.
75 proj obj(P,Q)

:- player(P), is player(Q) :: proj.
76 proj obj(P,Q)

:- player(Q), is player(P) :: proj.

Note that each static event embedding such as
pass emb(P,Q) has its embedding independent of P
or Q because the parameter names of each rule don’t
consider P or Q and functors is player, teammate and
opponent have dimension 0.

Here are the <- rules:
77 player(P)

<- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is player(P).
78 player(P)

<- kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P), kickoff emb(P), player(P)
:: individual.

79 player(P)
<- kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P), kick emb(P), player(P)
:: individual.

80 player(P)
<- goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P), goal emb(P), player(P)
:: individual.

81 player(P)

<- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q), pass emb(P,Q),
proj local(P,Q)
:: individual local.

82 player(Q)
<- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q), pass emb(P,Q), proj obj(P,Q)
:: individual obj.

83 player(Q)
<- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P), steal emb(Q,P),
proj obj(P,Q)
:: individual local.

84 player(P)
<- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P), steal emb(Q,P),
proj local(P,Q)
:: individual obj.

The DyRep program also makes the intensity of each event
depend on its participants, so the :- rules about intensi-
ties are the same as in Know-Evolve. As in Appendix F.3,
the standard DyRep model doesn’t have embeddings for
event types but our reimplementation followed their appen-
dices to assign a static embedding to each event type. The
way these static embeddings are computed is defined to be
the same as in Know-Evolve. However, for the <- rules,
DyRep considers the neighbors of participants while up-
dating them. Although it is not obvious how neighbors are
defined in this domain, we consider the ball as a player P’s
neighbor if P possesses the ball. This design is meaningful
because it offers a way for DyRep to consider the dynamics
of who possesses the ball at different times. The dimension
declaration, :- rules and <- rules of DyRep are as follows:
85 :- embed(player, 8).
86 :- embed(ball, 8).
87 :- embed(kickoff emb, 8).
88 :- embed(kick emb, 8).
89 :- embed(goal emg, 8).
90 :- embed(pass emb, 8).
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91 :- embed(steal emb, 8).
92 :- event(kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff, 0).
93 :- event(kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick, 0).
94 :- event(goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal, 0).
95 :- event(passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass, 0).
96 :- event(stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal, 0).
97 kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P) :- player(P).
98 kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P) :- player(P).
99 goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P) :- player(P).

100 passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q) :- player(P), player(Q),
teammate(P,Q).

101 stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P) :- player(P), player(Q),
opponent(P,Q).

102 kickoff emb(P) :- is player(P).
103 kick emb(P) :- is player(P).
104 goal emb(P) :- is player(P).
105 pass emb(P,Q) :- teammate(P,Q).
106 steal emb(Q,P) :- opponent(P,Q).
107 player(P) <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit, is player(P).
108 ball <- initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit.
109 player(P)

<- kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P), kickoff emb(P), player(P)
:: individual.

110 player(P)
<- kickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoffkickoff(P), ball :: ball.

111 player(P)
<- kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P), kick emb(P), player(P)
:: individual.

112 player(P)
<- kickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkickkick(P), ball :: ball.

113 player(P)
<- goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P), goal emb(P), player(P)
:: individual.

114 player(P)
<- goalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoalgoal(P), ball :: ball.

115 player(P)
<- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q), pass emb(P,Q), player(P)
:: individual.

116 player(P)
<- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q), ball :: ball.

117 player(Q)
<- passpasspasspasspasspasspasspasspasspasspasspasspasspasspasspasspass(P,Q), pass emb(P,Q), player(Q)
:: individual.

118 player(P)
<- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P), steal emb(Q,P), player(P)
:: individual.

119 player(P)
<- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P), ball :: ball.

120 player(Q)
<- stealstealstealstealstealstealstealstealstealstealstealstealstealstealstealstealsteal(Q,P), steal emb(Q,P), player(Q)
:: individual.

F.5. Training Details

We had to choose the dimension D that is specified in the
embed and event declarations of the programs in Appen-
dices F.3 and F.4. For simplicity, all declarations within
a program used the same dimension D, so we only had a
single hyperparameter to tune. We tuned this separately
for each domain, for each competing architecture, and each
training size (e.g., each point in Figure 1 and each bar in
Figures 2 and 3), always choosing the D that achieved the
best performance on the dev set. Our search space was {4,

8, 16, 32, 64, 128}. In practice, the optimal D was usually
32 or 64.

To train the parameters for a givenD, we used the Adam al-
gorithm (Kingma & Ba, 2015) with its default settings and
set the minibatch size to 1. We performed early stopping
based on log-likelihood on the held-out dev set.

F.6. Ablation Study II Details

In the final experiment of §6.2, each event type still has
an extra dimension for its intensity (see §3.2). The set
of possible events at any time is unchanged. However,
the intensity of each possible event now depends only on
which rules proved or updated that possible event (through
the bias terms of those rules); it no longer depends on the
embeddings of the atoms on the right-hand-sides of those
rules. Two events may nonetheless have different intensi-
ties if they were proved by different :- rules, or proved or
updated by different sequences of <- rules (where the dif-
ference may be in the identity of the <- rules or in their
timing).

Our experimental results in Figure 4 show that the neural
networks have really been learning representations that are
actually helpful for prediction.


