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Abstract
We consider the study of a classification model
whose properties are impossible to estimate us-
ing a validation set, either due to the absence of
such a set or because access to the classifier, even
as a black-box, is impossible. Instead, only ag-
gregate statistics on the rate of positive predic-
tions in each of several sub-populations are avail-
able, as well as the true rates of positive labels
in each of these sub-populations. We show that
these aggregate statistics can be used to lower-
bound the discrepancy of a classifier, which is
a measure that balances inaccuracy and unfair-
ness. To this end, we define a new measure of
unfairness, equal to the fraction of the population
on which the classifier behaves differently, com-
pared to its global, ideally fair behavior, as de-
fined by the measure of equalized odds. We pro-
pose an efficient and practical procedure for find-
ing the best possible lower bound on the discrep-
ancy of the classifier, given the aggregate statis-
tics, and demonstrate in experiments the empir-
ical tightness of this lower bound, as well as its
possible uses on various types of problems, rang-
ing from estimating the quality of voting polls to
measuring the effectiveness of patient identifica-
tion from internet search queries. The code and
data are available at https://github.com/
sivansabato/bfa.

1. Introduction
Suppose that a health insurance company uses some unpub-
lished method to decide whether a person should be clas-
sified as “at risk” for diabetes, for instance so as to offer
diabetes screening. Two desirable properties of such a clas-
sifier are accuracy and fairness. For this example, consider
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fairness with respect to the state of residence (assuming a
US-based population). Accuracy and fairness are easy to
estimate using a validation set; However, the only details
which are publicly available from the insurance company
are aggregate statistics on the number of people identified
as “at risk” in each state. In addition, the true proportions
of diabetes in each state are known. Based only on these
two types of aggregate statistics—the true positive rate in
each state, and the predicted positive rate in each state—
what can be inferred regarding the fairness and/or accuracy
of the classifier? Moreover, suppose that the company pub-
lishes some additional information about the accuracy of
the classifier, or about its fairness with respect to the state
of residence. Can this information be used to make any
inferences about the other property?

Note that in the scenario above we used “state-of-
residence” as an example of an attribute that partitions the
population; The same questions can be asked with respect
to any other attribute for which fairness is desired, such as
race, age, religion or gender (see, e.g., Chen et al., 2019).
The case of multi-valued attributes is more intricate, and is
the main focus of this work.

A similar question arises when a classifier is designed or
learned with little or no labeled training data, or when the
available training data is not representative of the target dis-
tribution. Various methodologies allow constructing a clas-
sifier in these cases, such as unsupervised learning, transfer
learning, and hand-crafting rules based on domain exper-
tise. The challenge is to then estimate the quality of the
classifier without a validation set. Here too, we are inter-
ested in both the accuracy of the classifier and its fairness
with respect to an attribute of interest.

In this work, we show that the aggregate statistics described
above can be used to lower-bound the discrepancy of a clas-
sifier, a measure that balances inaccuracy and unfairness.
Following Hardt et al. (2016), we say that a binary classifier
is perfectly fair if it satisfies the property of equalized odds
(also termed disparate mistreatment; see, e.g., Zafar et al.,
2017a). This property requires that the false positive rate
(FPR) and the false negative rate (FNR), conditioned on the
value of the attribute, be the same for all values. It is well
known that fairness and accuracy in classification do not
always co-exist: in some cases, a more accurate classifier

https://github.com/sivansabato/bfa
https://github.com/sivansabato/bfa


Bounding the Fairness and Accuracy of Classifiers from Population Statistics

implies that it must be less fair, and vice versa (Pleiss et al.,
2017; Kleinberg et al., 2017; Menon & Williamson, 2018;
Goel et al., 2018). In this work, we provide a method for
quantifying this trade-off for a particular classifier, based
only on its aggregate statistics. We define a measure of
unfairness, which is equal to the fraction of the popu-
lation on which the classifier behaves differently compared
to its baseline, ideally fair, behavior. Considering the possi-
ble trade-offs of fairness and accuracy given the aggregate
statistics, questions that can be addressed include:

• Is it possible that the classifier is fair? If not, how
unfair must it be in the best possible scenario?

• Suppose that the classifier is known to be nearly fair.
How accurate can it be?

• Suppose that the classifier is known to be quite accu-
rate. How fair can it be?

• Suppose that there is a penalty for each person who
gets a wrong prediction, and for each person who is
treated unfairly; what is the smallest possible overall
cost of this classifier?

Each of the questions above is equivalent to asking for a
lower bound on

discrepancyβ := (1)
β · unfairness + (1− β) · error,

For some β ∈ [0, 1], or for a β that optimizes a constraint.
For instance, if it is known that unfairness ≤ U for
some known U , one can lower-bound discrepancyβ
for the smallest β such that the minimizing solution sat-
isfies unfairness ≤ U , to find the minimal value of
error under this constraint. We derive an efficient and
practical procedure that finds an optimal lower bound on
discrepancyβ given the aggregate statistics. This pro-
cedure can help answer each of the questions above. In ad-
dition, we report experiments, which demonstrate the tight-
ness of the lower bound and possible uses of the procedure.

Paper structure. After discussing related work, we for-
mally define the setting and notations in Section 2. In Sec-
tion 3, we define our measure of unfairness, and show
how it can be efficiently calculated from known FPRs and
FNRs. The main algorithmic contribution is provided in
Section 4, where a practical and efficient procedure for
finding an optimal lower bound for discrepancyβ is de-
rived. Experiments are reported in Section 5. We close with
a discussion in Section 6.

Related work

Fairness in classification has been a highly studied topic
of research in recent years, due to its importance in le-

gal, financial, and medical decisions (Barocas et al., 2017).
This importance has grown in parallel with the wide ap-
plication of automated (and frequently, opaque) models in
multiple areas affecting people. Various notions of fair-
ness have been proposed (see, e.g., Dwork et al., 2012;
Grgic-Hlaca et al., 2016; Kusner et al., 2017; Berk et al.,
2018; Verma & Rubin, 2018). In this work, we focus on
the notion of equalized odds (Hardt et al., 2016), which re-
quires equal FPRs and FNRs in each sub-population, where
a sub-population is the set of individuals who share the
same value of the attribute of interest. Many works propose
methods for learning fair classifiers under the equalized-
odds definition (see, e.g., Feldman et al., 2015; Hardt et al.,
2016; Goh et al., 2016; Zafar et al., 2017b;a; Woodworth
et al., 2017; Wu et al., 2019). Learning methods that guar-
antee or approximate other definitions of fairness, such
as equal opportunity and demographic fairness, have also
been widely studied in recent years (e.g., Dwork et al.,
2012; Zemel et al., 2013; Calmon et al., 2017b; Donini
et al., 2018; Goel et al., 2018; Johndrow & Lum, 2019).

Auditing a classifier for fairness is a crucial task in the
pipeline of learning fair classifiers (Bellamy et al., 2019).
Given access to the classifier and its individual predic-
tions, Black et al. (2019) propose a method for fine-grained
scrutiny of a classifier beyond group fairness. McDuff et al.
(2019) propose a simulation-based approach for interrogat-
ing the classifier. Kusner et al. (2017) define the property of
“counterfactual fairness”, which can be tested given access
to the classifier or to individual classified examples.

Learning classifiers based on both individual covariates and
population statistics has been studied under the title “eco-
logical inference”. Jackson et al. (2006; 2008) propose
methods for regression based on both individual-level and
aggregate-level statistics. Sun et al. (2017) infer voting pat-
terns using aggregate statistics. We are not aware of works
that attempt to estimate properties of existing classifiers
from aggregate statistics alone, and in particular in the con-
text of fairness.

Approaches for quantifying unfairness for individual-
fairness notions have been suggested by Heidari et al.
(2018); Speicher et al. (2018). For group fairness, previ-
ous works impose constraints for requiring that a classi-
fier is almost-fair (see, e.g. Donini et al., 2018; Calmon
et al., 2017a), but do not suggest an overall measure of
(un)fairness.

2. Setting and Notations
We consider a binary classification problem, in which each
individual in the population has a true label in Y = {0, 1}.
In addition, we assume an attribute of interest, such as race,
state of residence, or age, which assigns a value for each



Bounding the Fairness and Accuracy of Classifiers from Population Statistics

individual. We denote the (finite) set of possible values of
this attribute by G. For simplicity and concreteness, we
henceforth call the possible values of the attribute regions,
alluding to location-based attributes such as state of resi-
dence or country of origin. A sub-population is a subset
of the population which includes all the individuals in the
same region.

We wish to study some existing classification model map-
ping each individual from the population to a label, which
may or may not be equal to the true label of that individ-
ual. Denote by D the distribution in the population over
the triplets of true label, predicted label, and region. A ran-
dom triplet drawn according to D is denoted by (Y, Ŷ , G),
where Y ∈ Y is the true label, Ŷ ∈ Y is the predicted label,
and G ∈ G is the region of the individual. We assume that
D is unknown, and the only available information is in the
form of aggregate statistics by region. Denote the probabil-
ity of an event E by P[E], and the probability of the event
conditioned on the region by Pg[E] := P[E | G = g]. The
available information is the following:

• The true positive rate of each label y ∈ Y in each
sub-population g ∈ G, denoted by

πyg := P[Y = y | G = g] ≡ Pg[Y = y],

• The predicted positive rate of each label y ∈ Y in each
sub-population g ∈ G, denoted by

p̂yg := P[Ŷ = y | G = g] ≡ Pg[Ŷ = y].

• The relative weight of each sub-population:

wg := P[G = g].

Denote the available information by

Inputs := ({wg}g∈G , {(πyg , p̂yg)}g∈G,y∈Y).

Henceforth, we sometimes omit the subscripts g ∈ G, y ∈
Y from set notations. Note that by definition, π1

g = 1− π0
g

and p̂1
g = 1 − p̂0

g . We define the two complements as part
of the input for convenience.

Denote the overall FPR and FNR of the classifier by
α0

all, α
1
all respectively:

∀y ∈ Y, αyall := P[Ŷ 6= y | Y = y].

The FPR and the FNR of the classifier on each sub-
population g ∈ G is denoted by

αyg := Pg[Ŷ 6= y | Y = y].

The population error of the classifier is given by:

error := P[Ŷ 6= Y ] =
∑
g∈G

wg
∑
y∈Y

πygα
y
g . (2)

Note that if πyg = 0 then αyg is undefined, but is also not
required to calculate the value of the error.

Equalized odds, in our notation, states that for each y ∈ Y
and any g, g′ ∈ G, we have αyg = αyg′ . This implies that
for all y ∈ Y, g ∈ G, αyg = αyall. In many cases, however,
the classifier might not be completely fair. For instance the
classifier may have been constructed to approximate fair-
ness, e.g., using one of the methods in (Goh et al., 2016;
Zafar et al., 2017b). Nonetheless, being close to fairness
as much as possible is a desired property. In the next sec-
tion, we define a measure of unfairness, which quantifies
the amount of unfairness of a classifier with respect to the
equalized-odds fairness criterion.

3. Quantifying Unfairness
We propose a new measure of classifier unfairness, which
quantifies the fraction of the population on which the clas-
sifier behaves unfairly, that is, has a different conditional
distribution of predicted labels, as defined below. The un-
fairness of a classifier depends on its FPR and FNR in each
region, given by {αyg}. Let y ∈ Y , and recall that D is the
distribution of the triplet (Y, Ŷ , G). Denote the conditional
distribution of D given G = g by Dg .

For each y ∈ Y , we model the conditional distribution of
Ŷ | Y = y under Dg as a mixture of two conditional dis-
tributions: a baseline distribution, which is the same for all
regions g, and a local “nuisance” distribution, which can
be different for each g. Let ηyg ∈ [0, 1] be the weight of the
nuisance distribution for g, y, and define a random variable
N which is equal to 1 if Ŷ is drawn according to the nui-
sance distribution, and equal to 0 if it is drawn according to
the baseline distribution. Then ηyg = Pg[N = 1 | Y = y].

It is easy to see that if the classifier is fair, then for each
y ∈ Y , Dg has the same distribution conditioned on
Y = y for all g ∈ G. In this case, ηyg = 0 for all
g ∈ G, y ∈ Y . However, if the classifier is not com-
pletely fair, then {ηyg} cannot all be zero. We define the
measure of unfairness as the fraction of the popula-
tion that is treated differently from the baseline treatment.
This fraction is equal to

∑
y∈Y

∑
g∈G wgπ

y
gη
y
g . Since the

decomposition into a baseline distribution and a nuisance
distribution is unobserved, unfairness is defined as this
value under the best possible decomposition. This is the de-
composition which minimizes the value subject to the per-
region FPR and FNR of the classifier, which are given by
{αyg}g∈G,y∈Y . Denote the false positive rate of the base-
line distribution by α0 and the false negative rate by α1.
Formally: αy := P[Ŷ 6= y | Y = y,N = 0]. Then the
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Figure 1. Left: b 7→ η(a, b) for various values of a. Right: a 7→
η(a, b) for various values of b.

following relationship holds:

αyg = Pg[Ŷ 6= y | Y = y]

= Pg[Ŷ 6= y | Y = y,N = 0] · Pg[N = 0 | Y = y]

+ Pg[Ŷ 6= y | Y = y,N = 1] · Pg[N = 1 | Y = y]

= αy(1− ηyg ) + Pg[Ŷ 6= y | Y = y,N = 1] · ηyg .

Since Pg[Ŷ 6= y | Y = y,N = 1] ∈ [0, 1], we get

αy(1− ηyg ) ≤ αyg ≤ αy(1− ηyg ) + ηyg .

Thus, for αy ∈ (0, 1), we have the following lower bound:
ηyg ≥ max(1− αy

g

αy , 1−
1−αy

g

1−αy ). In addition, if αy = 0, then
ηyg ≥ αyg , and if αy = 1, then ηg ≥ 1 − αyg . Moreover, ηyg
satisfies these lower bounds with equality. This can be seen
by considering a deterministic nuisance distribution which
draws y if αyg < αy and 1 − y otherwise. Thus, given
αy and αyg , the minimal value of ηyg is η(αy, αyg), where
η : [0, 1]2 → [0, 1] is defined as follows (see Figure 1):

η(a, b) =


1− b/a b < a,

1− (1− b)/(1− a) b > a,

0 b = a.

To find the value of unfairness for the best possible de-
composition, we minimize over α0, α1, the FPR and FNR

that determine the baseline distribution:

unfairness({αyg})=
∑
y∈Y

min
αy∈
[0,1]2

∑
g∈G

wgπ
y
gη(αy, αyg). (3)

We now show that this function can be easily minimized
exactly. Define ψy(a) :=

∑
g∈G wgπ

y
gη(a, αyg). First, sup-

pose that for all g ∈ G, y ∈ Y , we have αyg ∈ (0, 1). For
any fixed b ∈ (0, 1), a 7→ η(a, b) is concave on the intervals
[0, b] and [b, 1]. Thus, ψy is concave on any closed interval
which is a subset of [0, αyg ] or of [αyg , 1] for all g ∈ G. In
each such interval, the minimizer of ψy is one of the end
points of the interval. Therefore, ψy is minimized at an
end point of a maximal interval which satisfies this prop-
erty, that is, at a point in A := {αyg}g,y ∪ {0, 1}. Now, if
for some g, y, αyg ∈ {0, 1}, then η(a, αyg) = 1a6=αy

g
. Thus,

this does not add other possible minimizers to A. Hence,

unfairness({αyg}) =
∑
y∈Y

min
αy∈A

∑
g∈G

wgπ
y
gη(αy, αyg).

We conclude that given {αyg}, the value of unfairness
can be calculated exactly, in time linear in |G|.

The error and the unfairness of a classifier, on a
distribution described by {wg} and {πyg}, are fully deter-
mined by the values of {αyg} for this classifier, as can be
seen in Eq. (2) and Eq. (3). However, in our setting, only
the aggregate positive rates of the classifier {p̂yg} are pro-
vided. These do not fully determine the values of αyg for all
y ∈ Y, g ∈ G. Nonetheless, some relationships can still be
established. First, note that by definition, if πyg = 1 then

αyg ≡ PgŶ 6= y | Y = y] = Pg[Ŷ 6= y] = 1− p̂yg . (4)

In addition, if πyg = 0 then αyg is undefined, but also has no
bearing on error or any other property of the classifier.
Thus, it suffices to solve for values of αyg for y ∈ Y and
g ∈ G+, where G+ := {G | ∀y ∈ Y, πyg 6= 1}. We as-
sume that G+ is non-empty, otherwise the problem is triv-
ial. Now, given Inputs, a simple linear relationship can
be observed between α0

g and α1
g for g ∈ G+. We have

p̂1
g ≡ Pg[Ŷ = 1]

= Pg[Ŷ = 1 ∧ Y = 1] + Pg[Ŷ = 1 ∧ Y = 0]

= Pg[Ŷ = 1 | Y = 1] · Pg[Y = 1]

+ Pg[Ŷ = 1 | Y = 0] · Pg[Y = 0]

= (1− α1
g)π

1
g + α0

gπ
0
g .

Denoting rg := 1 − p̂1
g/π

1
g and qg := π0

g/π
1
g ≡ 1/π1

g − 1,
we get that, for any classifier (whether fair or not),

∀g ∈ G+, α1
g = rg + qgα

0
g. (5)

rg and qg are well-defined for g ∈ G+. Thus, the unknown
variables are {α0

g}g∈G+ .
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4. Lower-bounding Classifier Discrepancy
from Population Statistics

Having defined the measure of unfairness, we now
develop a procedure for lower-bounding the value of
discβ := discrepancyβ , based only on the popula-
tion statistics given in Inputs ≡ ({wg}, {πyg}, {p̂yg}). To
illustrate the trade-off between unfairness and error
in discβ , Figure 2 shows the solutions for β = 0 and
β = 1, for a simple problem with two regions of equal
weight. In this example, Inputs does not preclude per-
fect fairness.

Suppose first that the classifier is known to be completely
fair with respect to the attribute G, according to the equal-
ized odds definition. For instance, a fairness-preserving
procedure (e.g., Hardt et al., 2016; Woodworth et al., 2017)
could have been used to generate it, or its fairness could
have been disclosed to the public. Then for all y ∈ Y, g ∈
G, we have αyg = αyall. Thus, to calculate error, it suf-
fices to find the values of α0

all, α
1
all under this constraint.

Eq. (5) and Eq. (4) define the following linear constraints:
∀g ∈ G+, α1

all = rg+qgα
0
all, and πyg = 1⇒ αyall = 1− p̂yg .

Thus, error can be lower-bounded by minimizing it over
α0

all, α
1
all ∈ [0, 1] subject to these linear constraints. The

pseudo-code for the procedure is given in Appendix A in
the supplementary material. Another simple case is when
β = 0. Then, discβ = error. This is trivial to lower-
bound, since the minimal error under Inputs is simply∑
g wg|π1

g − p̂1
g|.

We now proceed to the more challenging task: lower
bounding discβ for some β ∈ (0, 1] without assuming
fairness. Denote ᾱ := (α0, α1). From Eqs. (1), (2), (3):

discβ({αyg}) = β · min
ᾱ∈[0,1]2

∑
g∈G

wg
∑
y∈Y

πygη(αy, αyg)

+ (1− β) ·
∑
g∈G

wg
∑
y∈Y

πygα
y
g . (6)

Denoting τ(a, b) := βη(a, b) + (1 − β)b and rearranging,
we get

discβ({αyg}) = min
ᾱ∈[0,1]2

∑
g∈G

wg
∑
y∈Y

πyg · τ(αy, αyg).

Since {αyg} are unknown, we cannot calculate
discβ({αyg}) exactly. Instead, we lower-bound this
expression under the constraints imposed by Inputs.

Recall that the free variables are {α0
g}g∈G+ . Since αyg ∈

[0, 1] for both y = 0 and y = 1, it follows from Eq. (5) that
the feasible domain of α0

g for g ∈ G+ is

domg := [max{−rg/qg, 0},min{(1− rg)/qg, 1}].

Input statistics:
weight true pos. predicted pos.

Left region 1/2 1/3 1/2

Right region 1/2 2/3 2/3

Solution for best accuracy (minimizing disc0):

unfairness = 1/12, error = 1/12.

Solution for best fairness (minimizing disc1):

unfairness = 0, error = 1/4.

Figure 2. Two extreme solutions for a simple 2-region problem

Therefore, given Inputs, we can define

Obj(ᾱ, {α0
g}g∈G+) := (7)∑

g∈G+

wg
∑
y

πygτ(αy, αyg) +
∑

g∈G\G+

y:πy
g=1

wgτ(αy, 1− p̂yg),

and conclude that for any {αyg} which are consistent with
Inputs,

discβ({αyg}) ≥ min
ᾱ∈[0,1]2

{α0
g∈domg}g∈G+

Obj(ᾱ, {α0
g}g∈G+) =: V ∗. (8)

Our main theorem shows that this high-dimensional opti-
mization problem can be reduced to a small number of one-
dimensional problems.
Theorem 4.1. For ᾱ ∈ [0, 1]2 and g ∈ G+, define the
functions

s1
g(ᾱ) ≡ s1

g := max{0,−rg/qg},
s2
g(ᾱ) ≡ s2

g := min{1, (1− rg)/qg},
s3
g(ᾱ) ≡ s3

g(α
0) := α0,

s4
g(ᾱ) ≡ s4

g(α
1) := (α1 − rg)/qg.

Define the set Sg(ᾱ) := {sig(ᾱ)}i∈[4] ∩ domg , and let

Obj2(ᾱ) := (9)∑
g∈G+

wg min
α0

g∈
Sg(ᾱ)

∑
y

πygτ(αy, αyg) +
∑

g∈G\G+

y:πy
g=1

wgτ(αy, 1− p̂yg),
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where {α1
g} are defined according to Eq. (5). Define

V0 := {0, 1} ∪ {−rg/qg, (1− rg)/qg}g∈G+ ∪ {p̂g}g:π0
g=1,

V1 := {0, 1} ∪ {rg, rg+ qg}g∈G+∪{1− p̂g}g:π1
g=1. (10)

Let V ∗ as defined in Eq. (8), and define the set

Sols := (V0× V1)∪ {(v, rg + qgv) | v ∈ domg, g ∈ G+}.

Then:
V ∗ = min

ᾱ∈Sols
Obj2(ᾱ).

The proof of Theorem 4.1 is provided in Appendix B in the
supplementary material. Its main stages are (1) showing
that given ᾱ, αyg are in a small set and (2) showing that
given α0, α1 is in a small set and vice versa.

Note that Obj2(ᾱ) is easy to calculate for a given ᾱ,
since it involves only minimizations on the small finite
sets Sg(ᾱ). Moreover, Theorem 4.1 shows that to find
V ∗, it suffices to minimize Obj2(ᾱ) over the set Sols,
which includes only O(|G|2) solution pairs and |G+| one-
dimensional solution sets. Thus, a practical procedure
for finding V ∗ can be derived based on Theorem 4.1.
For z ∈ G+, define Objz3(α0) := Obj2(α0, rz + qzα

0),
and let Vz = minα0∈domg

Objz3(α0). Then, we have
V ∗ = min{minᾱ∈V0×V1

Obj2(ᾱ),minz∈G+ Vz}. The
algorithm for finding V ∗ up to a given tolerance is
given in Alg. 1. Alg. 1 solves O(|G|) one-dimensional
minimization problems for Objz3, using the procedure
MinObj3(z, γ, β,Inputs), which returns a value of α0

that minimizes Objz3 up to a tolerance of γ. This procedure
can be implemented, for instance, by bounding the deriva-
tive of Objz3 and searching on a sufficiently fine grid with
respect to the requested tolerance. The time complexity of
Alg. 1 is linear in |G| times the complexity of MinObj3.

5. Experiments
We show two types of experiments: First, we test the tight-
ness of the lower bound we obtain for discβ , by com-
paring it with the true discβ for the classifier, as calcu-
lated using labeled data. Our results suggest that in a large
fraction of the cases, the lower bound is within a reason-
able factor of the true discrepancy. In the second set of
experiments, we demonstrate possible uses and outcomes
of the lower-bounding procedure. We study several clas-
sifiers for which we only have aggregate statistics, calcu-
late lower-bound Pareto curves of the trade-off between
unfairness and error for each classifier, and discuss how
these curves can help in decision making. In all the ex-
periments below, we considered classification of US-based
individuals, and the attribute of interest was the state of
residence (or work) of the individual. Matlab code for
Alg. 1, as well as experiment data and code, are available
at https://github.com/sivansabato/bfa.

Algorithm 1 Finding a lower bound for discrepancyβ
Input: Ins ≡ ({wg}g∈G , {(πyg , p̂yg)}g∈G,y∈Y), β ∈ [0, 1],

tolerance γ > 0
Output: A value V ∈ [V ∗, V ∗ + γ], where V ∗ (see

Eq. (8)) is the discβ lower-bound; The values of
unfairness and error that obtain V .

1: For g ∈ G+, rg ← 1− p̂1
g/π

1
g and qg ← 1/π1

g − 1.
2: Set V0, V1 as in Eq. (10).
3: for z ∈ G+ do
4: α0

z ← MinObj3(z, γ, β,Ins); Vz = Objz3(α0
z).

5: end for
6: Pairs← (V0 × V1) ∪ {(α0

z, rz + qzα
0
z) | z ∈ G+}.

7: α̂← argminᾱ∈Pairs Obj2(ᾱ); V ← Obj2(α̂).
8: ∀g∈G+, α̂0

g←argmin
α0

g∈Sg(α̂)

∑
y

πygτ(α̂y, αyg); α̂1
g←rz+ qzα̂

0
g .

9: ∀g ∈ G \ G+ and y s.t. πyg = 1, set α̂yg ← 1− p̂yg .
10: unfairness←

∑
g∈G wg

∑
y π

y
gτ(α̂y, α̂yg).

11: error←
∑
g∈G wg

∑
y π

y
g α̂

y
g .

12: Return V , unfairness, error.

5.1. Tightness of the Lower Bound on discrepancy

In the first experiment, we used the UC Census (1990) data
set (Dua & Graff, 2019) to generate hundreds of classi-
fiers, on which we could test the tightness of the lower
bound. The US Census data set has ≈ 2.5 Million records,
with 124 attributes for each record. We used for the ex-
periment the ≈ 1.1 Million records in which the “state of
work” attribute was present. We split this data into two
halves at random, using one half as a training set to gen-
erate classifiers, and the other half as a test set to calculate
the aggregate statistics of the classifier, as well as its true
unfairness and error. For each attribute in the data
set other than the state of work, and for each value v of the
attribute, we generated a classification problem in which
the examples are the records without this attribute and with-
out the “state of work” attribute, and the label of a record
was 1 if the attribute had value v. For attributes with more
than 10 values, we binned the values of the attribute to 10
bins, and the label was 1 if the attribute had value at least
v. If the resulting classification problem had more than
99% of the examples assigned to the same label, this clas-
sification problem was discarded. This process resulted in
410 classification problems. For each classification prob-
lem, we generated a classifier using linear regression with
standard a Matlab package.

We ran Alg. 1 on Inputs, as calculated for each of these
classifiers on the test set. The fraction of the population
in each state, {wg}, was also calculated based on the test
set. First, we used Alg. 1 to calculate a lower bound on
disc1 ≡ unfairness. We then calculated the ratio be-
tween the true unfairness (as calculated on the same

https://github.com/sivansabato/bfa
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Figure 3. US Census experiments. For each threshold, the frac-
tion of classifiers for which the ratio between the unfairness
lower bound returned by Alg. 1 and the true unfairness was
more than this threshold.
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Figure 4. US Census experiments. For 10 randomly selected
classifiers, the ratio between discβ lower bound and the true
discβ , as a function of β. 1 is optimal.

test set) and the lower bound. Figure 3 shows the frac-
tion of the classifiers which achieved a ratio above a given
threshold. The median ratio was 48%. All classifiers ob-
tained a ratio of at least 11%. Next, we used Alg. 1 with a
range of values of β, for 10 randomly selected classifiers.
Figure 4 plots the ratio between the true discβ and our
obtained lower bound for β ∈ [0, 1]. Here too, it can be
observed that most lower bounds are reasonably tight.

5.2. Pareto Curves for Classifiers with Unknown Rates

In the next set of experiments, we study several classifiers
for which we only have aggregate statistics, and produce
Pareto curves of the resulting lower-bounds, demonstrating
the (best possible) trade-off between unfairness and
error. The population fraction in each state, wg , was
obtained from official records (US Census Bureau, 2019).
We generated Pareto curves for the studied classifiers by
running Alg. 1 for β ∈ {0, 0.01, . . . , 0.99, 1}, and extract-
ing the pairs of (unfairness,error) that minimized
discβ for each of the values of β.

In the first experiment, we consider a classification prob-

lem of identifying people diagnosed with a certain type of
cancer from their search queries via the Bing search engine.
The end goal was to develop an anonymous patient cohort,
as discussed, e.g., in Soldaini & Yom-Tov (2017). We stud-
ied the 18 cancer types listed in CDC & NCI., 2019, in
which the true-positive rates (incidence rates) {π1

g} in each
state are reported. For each cancer type, we constructed
a classifier that predicted the label for US-based search-
engine users. The label was predicted positive if the user
mentioned the cancer in queries between January 1st and
June 30th, 2019. We do not have individual validation data
connecting users to their true diagnostic status. For each
classifier, we calculated the rate of predicted positives {p̂1

g}
in each US state, rescaling by the fraction of search-engine
users in that state.

For each classifier, we wish to discover a best-case
accuracy-fairness trade-off, so as to identify classifiers that
might be useful for a future, more detailed study. We note
that unfairness may ensue using this classification method,
for instance due to differences in health literacy between
states. Out of the 18 cancer types, we studied the 10 types
for which the ratio between the overall positive prediction
and true positive rate was within [ 1

2 , 2]. The Pareto curves
of these classifiers are reported in Figure 5. To allow easy
comparison between cancer types, the the values for each
classifier are normalized in the plot by the overall true-
positive rate of that cancer type. Thus, values close to 1
indicate a poor classifier. Recall that we do not have the
ground truth for these classifiers, thus we cannot compare
to it. However, since we proved that Alg. 1 gives a lower
bound, the true (unfairness, error) pair of each clas-
sifier is necessarily above its Pareto curve. We conclude
from the graph that the classifier for lung cancer is the most
promising for a future study, while many of the other clas-
sifiers necessarily perform poorly.

In the next experiment, we study pre-election polls, and
use them to provide discrepancy lower bounds on the clas-
sifiers they might represent. We obtained data from 10 pre-
election polls of the 2016 US Presidential elections (Five
Thirty Eight, 2016). The label was set to positive if the
individual voted for the Democratic candidate. Each poll
predicted a voting rate for the candidate in each state. The
true positive rate was obtained from the actual results of
the presidential elections in each state (Federal Elections
Commission, 2016). Treating each poll’s voting predic-
tion as the aggregate statistics of an unknown classifier, we
calculated the Pareto curves representing the best-possible
combinations of unfairness and error for these clas-
sifiers. The resulting Pareto curves, shown in Figure 6 by
date of poll publication, can be used to compare the clas-
sifiers that could be underlying these polls. For instance,
although some of the more accurate polls are also the latest
ones, this is not always the case. Moreover, some pairs of
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Figure 5. Pareto curves of (unfairness,error) for each clas-
sifier (cancer type). Values are normalized by the overall true-
positive rate of the relevant cancer type.
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Figure 6. Pareto curves for the classifiers induced by pre-election
polls from the 2016 US Presidential elections. The key indicates
the date in which the poll was published.

polls are incomparable, since they perform better in differ-
ent parts of the curve. For instance, the Nov-06(b) poll has
a lower error bound than the Nov-06(a) poll if its unfair-
ness is larger than approx. 2%, but it cannot have unfairness
smaller than 2%, while the other poll can, hinting perhaps
at a more biased polling methodology. This information
can be used to further analyze the polling and prediction
strategies employed in the various polls.

In the last experiment, we use the proposed method to ex-
plore variation in cancer mortality rates across US states.
Rates of cancer diagnosis and mortality in each US state,
for 10 cancer types, were taken from the data published in
CDC & NCI., 2019.1 The true-positive rates {π1

g} for each
cancer type were set to the fraction of people in each state
who died from the given cancer. We generated aggregate
statistics for a simulated classifier, which predicts mortal-
ity of a diagnosed individual in each state with a probability

1In cases where data from some states was missing, we re-
moved these states from the list of regions and renormalized the
weights of the other states.
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Figure 7. Pareto curves based on cancer diagnosis and mortality
rates in each state. Values are normalized by the overall true-
positive rate of the relevant cancer type.

equal to the overall mortality rate, which is the ratio be-
tween the overall mortality and the overall diagnosis rate.
Thus, our simulated classifier is based on the premise that
in each state, the mortality rate is the same. Any devia-
tion from this premise would result in a classifier which
cannot be fully accurate or fair. In this context, a high
unfairness value may be interpreted as a large fraction
of individuals who have a non-typical variation of the dis-
ease, while a high error may indicate a large fraction of
the population whose mortality differs from the expected
mortality, perhaps due to a difference in access to health
services. The Pareto curves of the classifiers are shown in
Figure 7; values for each cancer type are rescaled by the
rate of true positives of that cancer. It can be observed,
for instance, that in several of the cancer types, allowing a
small amount of unfairness, interpreted as modeling a
fraction of the population as having non-typical variations
of the disease, leads to a significantly smaller error, inter-
preted as a small difference in mortality rate between the
states, on the population with the typical variation of the
disease.

6. Discussion
In this work, we showed that useful bounds on fairness and
accuracy can be provided for classifiers based only on the
aggregate statistics on predicted positive rates and true pos-
itive rates. We defined a new unfairness measure to fa-
cilitate the study of classifiers that are not completely fair,
and provided an efficient and practical procedure which
provably lower-bounds a given trade-off between fairness
and accuracy. In future work, we plan to generalize the
methodology suggested here to other group-fairness defi-
nitions, and to more general supervised learning schemes
such as multiclass classification and regression. Our exper-
iments show how this procedure allows tackling problems
in social and health studies, as well as in classifier design.
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A natural question is whether meaningful upper bounds on
discrepancyβ can also be similarly obtained. However,
even if the classifier has zero error, upper bounding the er-
ror must take into account the possibility of no overlap be-
tween the positive predictions and the true positives, thus
it would be at least twice the positive rate. Therefore, ob-
taining a meaningful upper bound on the discrepancy is a
challenging open problem that may require additional mod-
eling assumptions.
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