
How Good is the Bayes Posterior in Deep Neural Networks Really?

Florian Wenzel * 1 Kevin Roth * + 2 Bastiaan S. Veeling * + 3 1 Jakub Świątkowski 4 + Linh Tran 5 +
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Abstract
During the past five years the Bayesian deep learn-
ing community has developed increasingly accu-
rate and efficient approximate inference proce-
dures that allow for Bayesian inference in deep
neural networks. However, despite this algo-
rithmic progress and the promise of improved
uncertainty quantification and sample efficiency
there are—as of early 2020—no publicized de-
ployments of Bayesian neural networks in indus-
trial practice. In this work we cast doubt on
the current understanding of Bayes posteriors in
popular deep neural networks: we demonstrate
through careful MCMC sampling that the pos-
terior predictive induced by the Bayes posterior
yields systematically worse predictions compared
to simpler methods including point estimates ob-
tained from SGD. Furthermore, we demonstrate
that predictive performance is improved signifi-
cantly through the use of a “cold posterior” that
overcounts evidence. Such cold posteriors sharply
deviate from the Bayesian paradigm but are com-
monly used as heuristic in Bayesian deep learn-
ing papers. We put forward several hypotheses
that could explain cold posteriors and evaluate
the hypotheses through experiments. Our work
questions the goal of accurate posterior approx-
imations in Bayesian deep learning: If the true
Bayes posterior is poor, what is the use of more
accurate approximations? Instead, we argue that
it is timely to focus on understanding the origin
of the improved performance of cold posteriors.
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Figure 1. The “cold posterior” effect: for a ResNet-20 on CIFAR-
10 we can improve the generalization performance significantly by
cooling the posterior with a temperature T � 1, deviating from
the Bayes posterior p(θ|D) ∝ exp(−U(θ)/T ) at T = 1.

1. Introduction
In supervised deep learning we use a training dataset
D = {(xi, yi)}i=1,...,n and a probabilistic model p(y|x,θ)
to minimize the regularized cross-entropy objective,

L(θ) := − 1

n

n∑
i=1

log p(yi|xi,θ) + Ω(θ), (1)

where Ω(θ) is a regularizer over model parameters. We
approximately optimize (1) using variants of stochastic gra-
dient descent (SGD), (Sutskever et al., 2013). Beside being
efficient, the SGD minibatch noise also has generalization
benefits (Masters & Luschi, 2018; Mandt et al., 2017).

1.1. Bayesian Deep Learning

In Bayesian deep learning we do not optimize for a single
likely model but instead want to discover all likely models.
To this end we approximate the posterior distribution over
model parameters, p(θ|D) ∝ exp(−U(θ)/T ), where U(θ)
is the posterior energy function,

U(θ) := −
n∑
i=1

log p(yi|xi,θ)− log p(θ), (2)

and T is a temperature. Here p(θ) is a proper prior density
function, for example a Gaussian density. If we scale U(θ)
by 1/n and set Ω(θ) = − 1

n log p(θ) we recover L(θ) in (1).
Therefore exp(−U(θ)) simply gives high probability to
models which have low loss L(θ). Given p(θ|D) we predict
on a new instance x by averaging over all likely models,

p(y|x,D) =

∫
p(y|x,θ) p(θ|D) dθ, (3)

https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
https://github.com/google-research/google-research/tree/master/cold_posterior_bnn
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where (3) is also known as posterior predictive or Bayes
ensemble. Solving the integral (3) exactly is not possi-
ble. Instead, we approximate the integral using a sample
approximation, p(y|x,D) ≈ 1

S

∑S
s=1 p(y|x,θ(s)), where

θ(s), s = 1, . . . , S, is approximately sampled from p(θ|D).

The remainder of this paper studies a surprising effect shown
in Figure 1, the “Cold Posteriors” effect: for deep neural
networks the Bayes posterior (at temperature T = 1) works
poorly but by cooling the posterior using a temperature T <
1 we can significantly improve the prediction performance.

Cold Posteriors: among all temperized posteriors the
best posterior predictive performance on holdout data
is achieved at temperature T < 1.

1.2. Why Should Bayes (T = 1) be Better?

Why would we expect that predictions made by the ensemble
model (3) could improve over predictions made at a single
well-chosen parameter? There are three reasons: 1. The-
ory: for several models where the predictive performance
can be analyzed it is known that the posterior predictive (3)
can dominate common point-wise estimators based on the
likelihood, (Komaki, 1996), even in the case of misspecifi-
cation, (Fushiki et al., 2005; Ramamoorthi et al., 2015); 2.
Classical empirical evidence: for classical statistical mod-
els, averaged predictions (3) have been observed to be more
robust in practice, (Geisser, 1993); and 3. Model averaging:
recent deep learning models based on deterministic model
averages, (Lakshminarayanan et al., 2017; Ovadia et al.,
2019), have shown good predictive performance.

Note that a large body of work in the area of Bayesian deep
learning in the last five years is motivated by the assertion
that predicting using (3) is desirable. We will confront
this assertion through a simple experiment to show that
our understanding of the Bayes posterior in deep models is
limited. Our work makes the following contributions:

• We demonstrate for two models and tasks (ResNet-
20 on CIFAR-10 and CNN-LSTM on IMDB) that the
Bayes posterior predictive has poor performance com-
pared to SGD-trained models.

• We put forth and systematically examine hypotheses
that could explain the observed behaviour.

• We introduce two new diagnostic tools for assess-
ing the approximation quality of stochastic gradient
Markov chain Monte Carlo methods (SG-MCMC) and
demonstrate that the posterior is accurately simulated
by existing SG-MCMC methods.

2. Cold Posteriors Perform Better
We now examine the quality of the posterior predictive for
two simple deep neural networks. We will describe details
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Figure 2. Predictive performance on the CIFAR-10 test set for a
cooled ResNet-20 Bayes posterior. The SGD baseline is separately
tuned for the same model (Appendix A.2).
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Figure 3. Predictive performance on the IMDB sentiment task test
set for a tempered CNN-LSTM Bayes posterior. Error bars are ±
one standard error over three runs. See Appendix A.4.

of the models, priors, and approximate inference methods
in Section 3 and Appendix A.1 to A.3. In particular, we
will study the accuracy of our approximate inference and
the influence of the prior in great detail in Section 4 and
Section 5.2, respectively. Here we show that temperized
Bayes ensembles obtained via low temperatures T < 1
outperform the true Bayes posterior at temperature T = 1.

2.1. Deep Learning Models: ResNet-20 and LSTM

ResNet-20 on CIFAR-10. Figure 1 and 2 show the test
accuracy and test cross-entropy of a Bayes prediction (3) for
a ResNet-20 on the CIFAR-10 classification task.1 We can
clearly see that both accuracy and cross-entropy are signifi-
cantly improved for a temperature T < 1/10 and that this
trend is consistent. Also, surprisingly this trend holds all the
way to small T = 10−4: the test performance obtained from
an ensemble of models at temperature T = 10−4 is superior
to the one obtained from T = 1 and better than the perfor-
mance of a single model trained with SGD. In Appendix G
we show that the uncertainty metrics Brier score (Brier,
1950) and expected calibration error (ECE) (Naeini et al.,
2015) are also improved by cold posteriors.

1A similar plot is Figure 3 in (Baldock & Marzari, 2019) and
another is in the appendix of (Zhang et al., 2020).
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CNN-LSTM on IMDB text classification. Figure 3 shows
the test accuracy and test cross-entropy of the tempered pre-
diction (3) for a CNN-LSTM model on the IMDB sentiment
classification task. The optimal predictive performance is
again achieved for a tempered posterior with a temperature
range of approximately 0.01 < T < 0.2.

2.2. Why is a Temperature of T < 1 a Problem?

There are two reasons why cold posteriors are problematic.
First, T < 1 corresponds to artificially sharpening the pos-
terior, which can be interpreted as overcounting the data by
a factor of 1/T and a rescaling2 of the prior as p(θ)

1
T . This

is equivalent to a Bayes posterior obtained from a dataset
consisting of 1/T replications of the original data, giving
too strong evidence to individual models. For T = 0, all
posterior probability mass is concentrated on the set of max-
imum a posteriori (MAP) point estimates. Second, T = 1
corresponds to the true Bayes posterior and performance
gains for T < 1 point to a deeper and potentially resolvable
problem with the prior, likelihood, or inference procedure.

2.3. Confirmation from the Literature

Should the strong performance of tempering the posterior
with T � 1 surprise us? It certainly is an observation that
needs to be explained, but it is not new: if we comb the
literature of Bayesian inference in deep neural networks we
find broader evidence for this phenomenon.

Related work that uses T < 1 posteriors in SG-MCMC.
The following table lists work that uses SG-MCMC on deep
neural networks and tempers the posterior.3

Reference Temperature T

(Li et al., 2016) 1/
√
n

(Leimkuhler et al., 2019) T < 10−3

(Heek & Kalchbrenner, 2020) T = 1/5

(Zhang et al., 2020) T = 1/
√

50000

Related work that uses T < 1 posteriors in Variational
Bayes. In the variational Bayes approach to Bayesian neu-
ral networks, (Blundell et al., 2015; Hinton & Van Camp,
1993; MacKay et al., 1995; Barber & Bishop, 1998) we op-
timize the parameters τ of a variational distribution q(θ|τ)

2E.g., using a Normal prior with temperature T results in a
Normal distribution with scaled variance by a factor of T .

3For (Li et al., 2016) the tempering with T = 1/
√
n arises due

to an implementation mistake. For (Heek & Kalchbrenner, 2020)
we communicated with the authors, and tempering arises due to
overcounting data by a factor of 5, approximately justified by
data augmentation, corresponding to T = 1/5. For (Zhang et al.,
2020) the original implementation contains inadvertent tempering,
however, the authors added a study of tempering in a revision.

by maximizing the evidence lower bound (ELBO),

Eθ∼q(θ|τ)

[
n∑
i=1

log p(yi|xi,θ)

]
−λDKL(q(θ|τ)‖p(θ)).(4)

For λ = 1 this directly minimizes DKL(q(θ|τ) ‖ p(θ|D))
and thus for sufficiently rich variational families will closely
approximate the true Bayes posterior p(θ|D). However,
in practice researchers discovered that using values λ < 1
provides better predictive performance, with common values
shown in the following table.4

Reference KL term weight λ in (4)

(Zhang et al., 2018) λ ∈ {1/2, 1/10}
(Bae et al., 2018) tuning of λ, unspecified
(Osawa et al., 2019) λ ∈ {1/5, 1/10}
(Ashukha et al., 2020) λ from 10−5 to 10−3

In Appendix E we show that the KL-weighted ELBO (4)
arises from tempering the likelihood part of the posterior.

From the above list we can see that the cold posterior
problem has left a trail in the literature, and in fact we
are not aware of any published work demonstrating well-
performing Bayesian deep learning at temperature T = 1.
We now give details on how we perform accurate Bayesian
posterior inference in deep learning models.

3. Bayesian Deep Learning in Practice
In this section we describe how we achieve efficient and
accurate simulation of Bayesian neural network posteriors.
This section does not contain any major novel contribution
but instead combines existing work.

3.1. Posterior Simulation using Langevin Dynamics

To generate approximate parameter samples θ ∼ p(θ | D)
we consider Langevin dynamics over parameters θ ∈ Rd
and momenta m ∈ Rd, defined by the Langevin stochastic
differential equation (SDE),

dθ = M−1 m dt, (5)

dm = −∇θU(θ) dt− γm dt+
√

2γT M1/2 dW. (6)

Here U(θ) is the posterior energy defined in (2), and T > 0
is the temperature. We use W to denote a standard multi-
variate Wiener process, which we can loosely understand as
a generalized Gaussian distribution (Särkkä & Solin, 2019;
Leimkuhler & Matthews, 2016). The mass matrix M is a
preconditioner, and if we use no preconditioner then M = I ,
such that all M-related terms vanish from the equations. The

4For (Osawa et al., 2019) scaling with λ arises due to their use
of a “data augmentation factor” ρ ∈ {5, 10}.
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friction parameter γ > 0 controls both the strength of cou-
pling between the moments m and parameters θ as well as
the amount of injected noise (Langevin, 1908; Leimkuhler
& Matthews, 2016). For any friction γ > 0 the SDE (5–6)
has the same limiting distribution, but the choice of friction
does affect the speed of convergence to this distribution.
Simulating the continuous Langevin SDE (5–6) produces a
trajectory distributed according to exp(−U(θ)/T ) and the
Bayes posterior is recovered for T = 1.

3.2. Stochastic Gradient MCMC (SG-MCMC)

Bayesian inference now corresponds to simulating the above
SDE (5–6) and this requires numerical discretization. For
efficiency stochastic gradient Markov chain Monte Carlo
(SG-MCMC) methods further approximate ∇θU(θ) with
a minibatch gradient (Welling & Teh, 2011; Chen et al.,
2014). For a minibatch B ⊂ {1, 2, . . . , n} we first compute
the minibatch average gradient G̃(θ),

∇θG̃(θ) := − 1

|B|
∑
i∈B
∇θ log p(yi|xi,θ)− 1

n
∇θ log p(θ),

(7)
and approximate ∇θU(θ) with the unbiased estimate
∇θŨ(θ) = n∇θG̃(θ). Here |B| is the minibatch size and
n is the training set size; in particular, note that the log prior
scales with 1/n regardless of the batch size.

The SDE (5–6) is defined in continuous time (dt), and in
order to solve the dynamics numerically we have to dis-
cretize the time domain (Särkkä & Solin, 2019). In this
work we use a simple first-order symplectic Euler discretiza-
tion, (Leimkuhler & Matthews, 2016), as first proposed
for (5–6) by (Chen et al., 2014). Recent work has used
more sophisticated discretizations, (Chen et al., 2015; Shang
et al., 2015; Heber et al., 2019; Heek & Kalchbrenner, 2020).
Applying the symplectic Euler scheme to (5–6) gives the
discrete time update equations,

m(t) = (1− hγ)m(t−1) − hn∇θG̃(θ(t−1)) (8)

+
√

2γhT M1/2 R(t), (9)

θ(t) = θ(t−1) + hM−1m(t), (10)

where R(t) ∼ Nd(0, Id) is a standard Normal vector.

In (8–10), the parameterization is in terms of step size h
and friction γ. These quantities are different from typi-
cal SGD parameters. In Appendix B we establish an ex-
act correspondence between the SGD learning rate ` and
momentum decay parameters β and SG-MCMC parame-
ters. For the symplectic Euler discretization of Langevin
dynamics, we derive this relationship as h :=

√
`/n, and

γ := (1− β)
√
n/`, where n is the total training set size.

3.3. Accurate SG-MCMC Simulation

In practice there remain two sources of error when following
the dynamics (8–10):

• Minibatch noise: ∇θŨ(θ) is an unbiased estimate of
∇θU(θ) but contains additional estimation variance.

• Discretization error: we incur error by following a
continuous-time path (5–6) using discrete steps (8–10).

We use two methods to reduce these errors: preconditioning
and cyclical time stepping.

Layerwise Preconditioning. Preconditioning through a
choice of matrix M is a common way to improve the behav-
ior of optimization methods. Li et al. (2016) and Ma et al.
(2015) proposed preconditioning for SG-MCMC methods,
and in the context of molecular dynamics the use of a matrix
M has a long tradition as well, (Leimkuhler & Matthews,
2016). Li’s proposal is an adaptive preconditioner inspired
by RMSprop, (Tieleman & Hinton, 2012). Unfortunately,
using the discretized Langevin dynamics with a precondi-
tioner M(θ) that depends on θ compromises the correctness
of the dynamics.5 We propose a simpler preconditioner that
limits the frequency of adaptating M: after a number of it-
erations we estimate a new preconditioner M using a small
number of batches, say 32, but without updating any model
parameters. This preconditioner then remains fixed for a
number of iterations, for example, the number of iterations it
takes to visit the training set once, i.e. one epoch. We found
this strategy to be highly effective at improving simulation
accuracy. For details, please see Appendix D.

Cyclical time stepping. The second method to improve
simulation accuracy is to decrease the discretization step
size h. Chen et al. (2015) studied the consequence of both
minibatch noise and discretization error on simulation ac-
curacy and showed that the overall simulation error goes
to zero for h ↘ 0. While lowering the step size h to a
small value would also make the method slow, recently
Zhang et al. (2020) propose to perform cycles of iterations
t = 1, 2, . . . with a high-to-low step size schedule h0 C(t)
described by an initial step size h0 and a function C(t) that
starts at C(1) = 1 and has C(L) = 0 for a cycle length of
L iterations. Such cycles retain fast simulation speed in the
beginning while accepting simulation error. Towards the
end of each cycle however, a small step size ensures an ac-
curate simulation. We use the cosine schedule from (Zhang
et al., 2020) for C(t), see Appendix A.

We integrate these two techniques together into a practical
SG-MCMC procedure, Algorithm 1. When no precondition-
ing and no cosine schedule is used (M = I and C(t) = 1
in all iterations) and T (t) = 0 this algorithm is equivalent

5Li et al. (2016) derives the required correction term, which
however is expensive to compute and omitted in practice.
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Algorithm 1: Symplectic Euler Langevin scheme.

1 Function SymEulerSGMCMC(G̃, θ(0), `, β,n,T)
Input: G̃ : Θ→ R mean energy function estimate;

θ(0) ∈ Rd initial parameter; ` > 0 learning
rate; β ∈ [0, 1) momentum decay; n total
training set size; T (t) ≥ 0 temperature
schedule

Output: Sequence θ(t), t = 1, 2, . . .

2 h0 ←
√
`/n // SDE time step

3 γ ← (1− β)
√
n/` // friction

4 Sample m(0) ∼ Nd(0, Id)
5 M← I // Initial M
6 for t = 1, 2, . . . do
7 if new epoch then
8 mc ←M−1/2 m(t−1)

9 M← EstimateM(G̃,θ(t−1))

10 m(t−1) ←M1/2 mc

11 h← C(t)h0 // Cyclic modulation

12 Sample R(t) ∼ Nd(0, Id) // noise

13 m(t) ← (1− hγ)m(t−1) − hn∇θG̃(θ(t−1)) +√
2γhT (t)M1/2 R(t)

14 θ(t) ← θ(t−1) + hM−1m(t)

15 if end of cycle then
16 yield θ(t) // Parameter sample

to Tensorflow’s SGD with momentum (Appendix C).

Coming back to the Cold Posteriors effect, what could ex-
plain the poor performance at temperature T = 1? With
our Bayesian hearts, there are only three possible areas to
examine: the inference, the prior, or the likelihood function.

4. Inference: Is it Accurate?
Both the Bayes posterior and the cooled posteriors are all in-
tractable. Moreover, it is plausible that the high-dimensional
posterior landscape of a deep network may lead to difficult-
to-simulate SDE dynamics (5–6). Our approximate SG-
MCMC inference method further has to deal with minibatch
noise and produces only a finite sample approximation to
the predictive integral (3). Taken together, could the Cold
Posteriors effect arise from a poor inference accuracy?

4.1. Hypothesis: Inaccurate SDE Simulation

Inaccurate SDE Simulation Hypothesis: the SDE (5–
6) is poorly simulated.

To gain confidence that our SG-MCMC method simulates
the posterior accurately, we introduce diagnostics that previ-
ously have not been used in the SG-MCMC context:

• Kinetic temperatures (Appendix I.1): we report per-
variable statistics derived from the moments m. For
these so called kinetic temperatures we know the exact
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Figure 4. HMC (left) agrees closely with SG-MCMC (right) for
synthetic data on multilayer perceptrons. A star indicates the
optimal temperature for each model: for the synthetic data sampled
from the prior there are no cold posteriors and both sampling
methods perform best at T = 1.

sampling distribution under Langevin dynamics and
compute their 99% confidence intervals.

• Configurational temperatures (Appendix I.2): we re-
port per-variable statistics derived from 〈θ,∇θU(θ)〉.
For these configurational temperatures we know the
expected value under Langevin dynamics.

We propose to use these diagnostics to assess simulation
accuracy of SG-MCMC methods. We introduce the diag-
nostics and our new results in detail in Appendix I.

Inference Diagnostics Experiment: In Appendix J we re-
port a detailed study of simulation accuracy for both models.
This study reports accurate simulation for both models when
both preconditioning and cyclic time stepping are used. We
can therefore with reasonably high confidence rule out a
poor simulation of the SDE. All remaining experiments in
this paper also pass the simulation accuracy diagnostics.

4.2. Hypothesis: Biased SG-MCMC

Biased SG-MCMC Hypothesis: Lack of ac-
cept/reject Metropolis-Hastings corrections in SG-
MCMC introduces bias.

In Markov chain Monte Carlo it is common to use an ad-
ditional accept-reject step that corrects for bias in the sam-
pling procedure. For MCMC applied to deep learning this
correction step is too expensive and therefore omitted in
SG-MCMC methods, which is valid for small time steps
only, (Chen et al., 2015). If accept-reject is computation-
ally feasible the resulting procedure is called Hamiltonian
Monte Carlo (HMC) (Neal et al., 2011; Betancourt & Giro-
lami, 2015; Duane et al., 1987; Hoffman & Gelman, 2014).
Because it provides unbiased simulation, we can consider
HMC the gold standard, (Neal, 1995). We now compare
gold standard HMC against SG-MCMC on a small example
where comparison is feasible. We provide details of our
HMC setup in Appendix O.

HMC Experiment: we construct a simple setup using a
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multilayer perceptron (MLP) where by construction T = 1
is optimal; such Bayes optimality must hold in expectation
if the data is generated by the prior and model that we
use for inference, (Berger, 1985). Thus, we can ensure
that if the cold posterior effect is observed it must be due
to a problem in our inference method. We perform all
inference without minibatching (|B| = n) and test MLPs of
varying number of one to three layers, ten hidden units each,
and using the ReLU activation. As HMC implementation
we use tfp.mcmc.HamiltonianMonteCarlo from
Tensorflow Probability (Dillon et al., 2017; Lao et al., 2020):
Details for our data and HMC are in Appendix N–O.

In Figure 4 the SG-MCMC results agree very well with the
HMC results with optimal predictions at T = 1, i.e. no
cold posteriors are present. For the cases tested we conclude
that SG-MCMC is almost as accurate as HMC and the lack
of accept-reject correction cannot explain cold posteriors.
Appendix O further shows that SG-MCMC and HMC are
in good agreement when inspecting the KL divergence of
their resulting predictive distributions.

4.3. Hypothesis: Stochastic Gradient Noise

Minibatch Noise Hypothesis: gradient noise from
minibatching causes inaccurate sampling at T = 1.

Gradient noise due to minibatching can be heavy-tailed and
non-Gaussian even for large batch sizes, (Simsekli et al.,
2019). Our SG-MCMC method is only justified if the effect
of noise will diminish for small time steps. We therefore
study the influence of batch size on predictive performance
through the following experiment.

Batchsize Experiment: we repeat the original ResNet-
20/CIFAR-10 experiment at different temperatures for batch
sizes in {32, 64, 128, 256} and study the variation of the
predictive performance as a function of batch size. Figure 5
and Figure 6 show that while there is a small variation be-
tween different batch sizes T < 1 remains optimal for all
batch sizes. Therefore minibatch noise alone cannot explain
the observed poor performance at T = 1.

For both ResNet and CNN-LSTM the best cross-entropy is
achieved by the smallest batch size of 32 and 16, respec-
tively. The smallest batch size has the largest gradient noise.
We can interpret this noise as an additional heat source that
increases the effective simulation temperature. However, the
noise distribution arising from minibatching is anisotropic,
(Zhu et al., 2019), and this could perhaps aid generalization.
We will not study this hypothesis further here.
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Figure 5. Batch size dependence of the ResNet-20/CIFAR-10 en-
semble performance, reporting mean and standard error (3 runs):
for all batch sizes the optimal predictions are obtained for T < 1.
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Figure 6. Batch size dependence of the CNN-LSTM/IMDB ensem-
ble performance, reporting mean and standard error (3 runs): for
all batch sizes, the optimal performance is achieved at T < 1.

4.4. Hypothesis: Bias-Variance Trade-off

Bias-variance Tradeoff Hypothesis: For T = 1 the
posterior is diverse and there is high variance between
model predictions. For T � 1 we sample nearby
modes and reduce prediction variance but increase bias;
the variance dominates the error and reducing variance
(T � 1) improves predictive performance.

If this hypothesis were true then simply collecting more
ensemble members, S → ∞, would reduce the variance
to arbitrary small values and thus fix the poor predictive
performance we observe at T = 1. Doing so would require
running our SG-MCMC schemes for longer—potentially for
much longer. We study this question in detail in Appendix F
and conclude by an asymptotic analysis that the amount of
variance cannot explain cold posteriors.

5. Why Could the Bayes Posterior be Poor?
With some confidence in our approximate inference proce-
dure what are the remaining possibilities that could explain
the cold posterior effect? The remaining two places to look
at are the likelihood function and the prior.

5.1. Problems in the Likelihood Function?

For Bayesian deep learning we use the same likelihood
function p(y|x,θ) as we use for SGD. Therefore, because
the same likelihood function works well for SGD it appears
an unlikely candidate to explain the cold posterior effect.
However, current deep learning models use a number of
techniques—such as data augmentation, dropout, and batch
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normalization—that are not formal likelihood functions.
This observations brings us to the following hypothesis.

Dirty Likelihood Hypothesis: Deep learning prac-
tices that violate the likelihood principle (batch normal-
ization, dropout, data augmentation) cause deviation
from the Bayes posterior.

In Appendix K we give a theory of “Jensen posteriors”
which describes the likelihood-like functions arising from
modern deep learning techniques. We report an experi-
ment (Appendix K.4) that—while slightly inconclusive—
demonstrates that cold posteriors remain when a clean like-
lihood is used in a suitably modified ResNet model; the
CNN-LSTM model already had a clean likelihood function.

5.2. Problems with the Prior p(θ)?

So far we have used a simple Normal prior, p(θ) = N (0, I),
as was done in prior work (Zhang et al., 2020; Heek &
Kalchbrenner, 2020; Ding et al., 2014; Li et al., 2016; Zhang
et al., 2018). But is this a good prior?

One could hope, that perhaps with an informed and struc-
tured model architecture, a simple prior could be sufficient
in placing prior beliefs on suitable functions, as argued
by Wilson (2019). While plausible, we are mildly cautious
because there are known examples where innocent looking
priors have turned out to be unintentionally highly informa-
tive.6 Therefore, with the cold posterior effect having a track
record in the literature, perhaps p(θ) = N (0, I) could have
similarly unintended effects of placing large prior mass on
undesirable functions. This leads us to the next hypothesis.

Bad Prior Hypothesis: The current priors used for
BNN parameters are inadequate, unintentionally infor-
mative, and their effect becomes stronger with increas-
ing model depths and capacity.

To study the quality of our prior, we study typical functions
obtained by sampling from the prior, as is good practice in
model criticism, (Gelman et al., 2013).

Prior Predictive Experiment: for our ResNet-20 model
we generate samples θ(i) ∼ p(θ) = N (0, I) and look at
the induced predictive distribution Ex∼p(x)[p(y|x,θ(i))] for
each parameter sample, using the real CIFAR-10 training
images. From Figure 7 we see that typical prior draws pro-
duce concentrated class distributions, indicating that the
N (0, I) distribution is a poor prior for the ResNet-20 likeli-
hood. From Figure 8 we can see that the average predictions
obtained from such concentrated functions remain close

6A shocking example in the Dirichlet-Multinomial model is
given by Nemenman et al. (2002). Importantly the unintended ef-
fect of the prior was not recognized when the model was originally
proposed by Wolpert & Wolf (1995).

to the uniform class distribution. Taken together, from a
subjective Bayesian view p(θ) = N (0, I) is a poor prior:
typical functions produced by this prior place a high prob-
ability the same few classes for all x. In Appendix L we
carry out another prior predictive study using He-scaling
priors, (He et al., 2015), which leads to similar results.

Prior Variance σ Scaling Experiment: in the previous ex-
periment we found that the standard Normal prior is poor.
Can the Normal prior p(θ) = N (0, σ) be fixed by using
a more appropriate variance σ? For our ResNet-20 model
we employ Normal priors of varying variances. Figure 12
shows that the cold posterior effect is present for all vari-
ances considered. Further investigations for known scaling
laws in deep networks is given in Appendix L. The cold
posterior effect cannot be resolved by using the right scaling
of the Normal prior.

Training Set Size n Scaling Experiment: the posterior en-
ergy U(θ) in (2) sums over all n data log-likelihoods but
adds log p(θ) only once. This means that the influence of
log p(θ) vanishes at a rate of 1/n and thus the prior will
exert its strongest influence for small n. We now study what
happens for small n by comparing the Bayes predictive un-
der a N (0, I) prior against performing SGD maximum a
posteriori (MAP) estimation on the same log-posterior.7

Figure 9 and Figure 10 show the predictive performance
for ResNet-20 on CIFAR-10 and CNN-LSTM on IMDB,
respectively. These results differ markedly between the two
models and datasets: for ResNet-20 / CIFAR-10 the Bayes
posterior at T = 1 degrades gracefully for small n, whereas
SGD suffers large losses in test cross-entropy for small n.
For CNN-LSTM / IMDB predictions from the Bayes poste-
rior at T = 1 deteriorate quickly in both test accuracy and
cross entropy. In all these runs SG-MCMC and SGD/MAP
work with the same U(θ) and the difference is between in-
tegration and optimization. The results are inconclusive but
somewhat implicate the prior in the cold posterior effect: as
n becomes small there is an increasing difference between
the cross-entropy achieved by the Bayes prediction and the
SGD estimate, for large n the SGD estimate performs better.

Capacity Experiment: we consider a MLP using aN (0, I)
prior and study the relation of the network capacity to the
cold posterior effect. We train MLPs of varying depth (num-
ber of layers) and width (number of units per layer) at dif-
ferent temperatures on CIFAR-10. Figure 11 shows that
for increasing capacity the cold posterior effect becomes
more prominent. This indicates a connection between model
capacity and strength of the cold posterior effect.

7For SGD we minimize U(θ)/n.



How Good is the Bayes Posterior in Deep Neural Networks Really?

1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

C
la

ss
 p

ro
ba

bi
lit

y Prior parameter sample 1

Train set class distribution

1 2 3 4 5 6 7 8 9 10
0.0

0.5

1.0

C
la

ss
 p

ro
ba

bi
lit

y Prior parameter sample 2

Train set class distribution

Figure 7. ResNet-20/CIFAR-10 typical prior predictive distributions for 10 classes under
aN (0, I) prior averaged over the entire training set, Ex∼p(x)[p(y|x,θ(i))]. Each plot is
for one sample θ(i) ∼ N (0, I) from the prior. Given a sample θ(i) the average training
data class distribution is highly concentrated around the same classes for all x.
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Figure 8. ResNet-20/CIFAR-10 prior predic-
tive Ex∼p(x)[Eθ∼p(θ)[p(y|x,θ)]] over 10
classes, estimated using S = 100 prior sam-
ples θ(i) and all training images.
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Figure 9. ResNet-20/CIFAR-10 predictive performance as a func-
tion of training set size n. The Bayes posterior (T = 1) degrades
gracefully as n decreases, whereas SGD/MAP performs worse.
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Figure 10. CNN-LSTM/IMDB predictive performance as a func-
tion of training set size n. The Bayes posterior (T = 1) suffers
more than the SGD performance, indicating a problematic prior.

5.3. Inductive Bias due to SGD?

Implicit Initialization Prior in SGD: The inductive
bias from initialization is strong and beneficial for SGD
but harmed by SG-MCMC sampling.

Optimizing neural networks via SGD with a suitable initial-
ization is known to have a beneficial inductive bias leading
to good local optima, (Masters & Luschi, 2018; Mandt et al.,
2017). Does SG-MCMC perform worse due to decreasing
the influence of that bias? We address this question by the
following experiment. We first run SGD until convergence,
then switch over to SG-MCMC sampling for 500 epochs (10
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Figure 11. MLP of different capacities (depth and width) on
CIFAR-10. Left: we fix the width to 128 and vary the depth.
Right: we fix the depth to 3 and vary the width. Increasing capac-
ity lowers the optimal temperature.
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Figure 12. ResNet-20/CIFAR-10 predictive performance as a func-
tion of temperature T for different priors p(θ) = N (0, σ). The
cold posterior effect is present for all choices of the prior vari-
ance σ. For all models the optimal temperature is significantly
smaller than one and for σ = 0.001 the performance is poor for
all temperatures. There is no “simple” fix of the prior.

cycles), and finally switch back to SGD again. Figure 13
shows that SGD initialized by the last model of the SG-
MCMC sampling dynamics recovers the same performance
as vanilla SGD. This indicates that the beneficial initializa-
tion bias for SGD is not destroyed by SG-MCMC. Details
can be found in Appendix H.

6. Alternative Explanations?
Are there other explanations we have not studied in this
work?
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Masegosa Posteriors. One exciting avenue of future ex-
ploration was provided to us after submitting this work: a
compelling analysis of the failure to predict well under the
Bayes posterior is given by Masegosa (2019). In his analy-
sis he first follows Germain et al. (2016) in identifying the
Bayes posterior as a solution of a loose PAC-Bayes gener-
alization bound on the predictive cross-entropy. He then
uses recent results demonstrating improved Jensen inequal-
ities, (Liao & Berg, 2019), to derive alternative posteriors.
These alternative posteriors are not Bayes posteriors and in
fact explicitly encourage diversity among ensemble mem-
ber predictions. Moreover, the alternative posteriors can be
shown to dominate the predictive performance achieved by
the Bayes posterior when the model is misspecified. We
believe that these new “Masegosa-posteriors”, while not ex-
plaining cold posteriors fully, may provide a more desirable
approximation target than the Bayes posterior. In addition,
the Masegosa-posterior is compatible with both variational
and SG-MCMC type algorithms.

Tempered observation model? In (Wilson & Izmailov,
2020, Section 8.3) it is claimed that cold posteriors in one
model correspond to untempered (T = 1) Bayes posteriors
in a modified model by a simple change of the likelihood
function. If this were the case, this would resolve the cold
posterior problem and in fact point to a systematic way how
to improve the Bayes posterior in many models. However,
the argument in (Wilson & Izmailov, 2020) is wrong, which
we demonstrate and discuss in detail in Appendix M.

7. Related Work on Tempered Posteriors
Statisticians have studied tempered or fractional posteriors
for T > 1. Motivated by the behavior of Bayesian infer-
ence in misspecified models (Grünwald et al., 2017; Jansen,
2013) develop the SafeBayes approach and Bhattacharya
et al. (2019) develops fractional posteriors with the goal of
slowing posterior concentration. The use of multiple tem-
peratures T > 1 is also common in Monte Carlo simulation
in the presence of rough energy landscapes, e.g. (Earl &
Deem, 2005; Sugita & Okamoto, 1999; Swendsen & Wang,
1986). However, the purpose of such tempering is to aid in
accurate sampling at a desired target temperature, but not in
changing the target distribution. (Mandt et al., 2016) studies
temperature as a latent variable in the context of variational
inference and shows that models often select temperatures
different from one.

8. Conclusion
Our work has raised the question of cold posteriors but we
did not fully resolve nor fix the cause for the cold posterior
phenomenon. Yet our experiments suggest the following.
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Figure 13. Do the SG-MCMC dynamics harm a beneficial initial-
ization bias used by SGD? We first train a ResNet-20 on CIFAR-10
via SGD, then switch over to SG-MCMC sampling and finally
switch back to SGD optimization. We report the single-model test
accuracy of SGD and the SG-MCMC chain as function of epochs.
SGD recovers from being initialized by the SG-MCMC state.

SG-MCMC is accurate enough: our experiments (Sec-
tion 4–5) and novel diagnostics (Appendix I) indicate that
current SG-MCMC methods are robust, scalable, and accu-
rate enough to provide good approximations to parameter
posteriors in deep nets.

Cold posteriors work: while we do not fully understand
cold posteriors, tempered SG-MCMC ensembles provide
a way to train ensemble models with improved predictions
compared to individual models. However, taking into ac-
count the added computation from evaluating ensembles,
there may be more practical methods, (Lakshminarayanan
et al., 2017; Wen et al., 2019; Ashukha et al., 2020).

More work on priors for deep nets is needed: the exper-
iments in Section 5.2 implicate the prior p(θ) in the cold
posterior effect, although the prior may not be the only cause.
Our investigations fail to produce a “simple” fix based on
scaling the prior variance appropriately. Future work on suit-
able priors for Bayesian neural networks is needed, building
on recent advances, (Sun et al., 2019; Pearce et al., 2019;
Flam-Shepherd et al., 2017; Hafner et al., 2018).
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