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Abstract 

Variational Bayesian Inference is a popular 
methodology for approximating posterior distri-
butions over Bayesian neural network weights. 
Recent work developing this class of methods 
has explored ever richer parameterizations of the 
approximate posterior in the hope of improving 
performance. In contrast, here we share a cu-
rious experimental finding that suggests instead 
restricting the variational distribution to a more 
compact parameterization. For a variety of deep 
Bayesian neural networks trained using Gaussian 
mean-field variational inference, we find that the 
posterior standard deviations consistently exhibit 
strong low-rank structure after convergence. This 
means that by decomposing these variational pa-
rameters into a low-rank factorization, we can 
make our variational approximation more com-
pact without decreasing the models’ performance. 
Furthermore, we find that such factorized param-
eterizations improve the signal-to-noise ratio of 
stochastic gradient estimates of the variational 
lower bound, resulting in faster convergence. 

1. Introduction 
Bayesian neural networks (MacKay, 1992; Neal, 1993) are a 
popular class of deep learning models. The most widespread 
approach for training these models relies on variational in-
ference (Peterson, 1987; Hinton & Van Camp, 1993), a 
training paradigm that approximates a Bayesian posterior 
with a simpler class of distributions by solving an optimiza-
tion problem. The common wisdom is that more expressive 
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distributions lead to better posterior approximations and 
ultimately to better model performance. This paper puts 
this into question and instead finds that for Bayesian neural 
networks, more restrictive classes of distributions, based 
on low-rank factorizations, can outperform the common 
mean-field family. 

Bayesian Neural Networks explicitly represent their 
parameter-uncertainty by forming a posterior distribution 
over model parameters, instead of relying on a single point 
estimate for making predictions, as is done in traditional 
deep learning. For neural network weights w, features x 
and labels y, the posterior distribution p(w|x, y) is com-
puted using Bayes’ rule, which multiplies the prior distribu-
tion p(w) and data likelihood p(y|w, x) and renormalizes. 
When predicting with Bayesian neural networks, we form 
an average over model predictions where each prediction is 
generated using a set of parameters that is randomly sam-
pled from the posterior distribution. This can be viewed as 
a type of ensembling, of which various types have proven 
highly effective in deep learning (see e.g. Goodfellow et al., 
2016, sec 7.11). 

Besides offering improved predictive performance over sin-
gle models, Bayesian ensembles are also more robust be-
cause ensemble members will tend to make different predic-
tions on hard examples (Raftery et al., 2005). In addition, 
the diversity of the ensemble represents predictive uncer-
tainty and can be used for out-of-domain detection or other 
risk-sensitive applications (Ovadia et al., 2019). 

Variational inference is a popular class of methods for ap-
proximating the posterior distribution p(w|x, y), since the 
exact Bayes’ rule is often intractable to compute for models 
of practical interest. This class of methods specifies a distri-
bution qθ(w) of given parametric or functional form as the 
posterior approximation, and optimizes the approximation 
by solving an optimization problem. In particular, we mini-
mize the Kullback-Leibler (KL) divergence DKL between 
the variational distribution qθ(w) and the true posterior dis-
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Figure 1. Approximate summarization of different variational in-
ference methods for Bayesian deep learning. Our approach com-
plements existing approaches by combining the mean-field as-
sumption with a dramatic reduction in the number of parameters 
by weight sharing. 

tribution p(w|x, y), which is given by � � 
qθ(w)

DKL[qθ(w)||p(w|x, y)] = Eq log 
p(w|x, y)� � (1) 

qθ(w) 
= Eq log . 

p(w)p(y|w, x)/p(y|x) 

Here, we do not know the normalizing constant of the exact 
posterior p(y|x), but since this term does not depend on 
w, we may ignore it for the purpose of optimizing our 
approximation q. We are then left with what is called the 
negative Evidence Lower Bound (negative ELBO): 

Lq = DKL[qθ(w)||p(w)] − Eq[log p(y|w, x)]. (2) 

In practice, the expectation of the log-likelihood p(y|w, x) 
with respect to q is usually not analytically tractable and 
instead is estimated using Monte Carlo sampling: 

SX1 (s)Eq[log p(y|w, x)] ≈ log p(y|w , x),
S (3)s=1 

w(s) ∼ qθ(w), 

where the ELBO is optimized by differentiating this stochas-
tic approximation with respect to the variational parameters 
θ (Salimans et al., 2013; Kingma & Welling, 2013). 

In Gaussian Mean Field Variational Inference (GMFVI) 
(Blei et al., 2017; Blundell et al., 2015), we choose the 
variational approximation to be a fully factorized Gaussian 
distribution q = N (µ , Σq) with wlij ∼ N (µlij , σ

2 ),q lij 
where l is a layer number, and i and j are the row and 
column indices in the layer’s weight matrix. While Gaus-
sian Mean-Field posteriors are considered to be one of the 
simplest types of variational approximations, with some 
known limitations (Giordano et al., 2018), they scale to com-
paratively large models and generally provide competitive 

performance (Ovadia et al., 2019). Additionally, Farquhar 
et al. (2020b) have found that the Mean-Field becomes a 
less restrictive assumption as the depth of the network in-
creases. However, when compared to deterministic neural 
networks, GMFVI doubles the number of parameters and is 
often harder to train due to the increased noise in stochastic 
gradient estimates. Furthermore, despite the theoretical ad-
vantages of GMFVI over the deterministic neural networks, 
GMFVI suffers from over-regularization for larger networks, 
which leads to underfitting and often worse predictive per-
formance in such settings (Wenzel et al., 2020). 

Beyond mean-field variational inference, recent work on 
approximate Bayesian inference has explored ever richer 
parameterizations of the approximate posterior in the hope 
of improving the performance of Bayesian neural networks 
(see Figure 1). In contrast, here we study a simpler, more 
compactly parameterized variational approximation. Our 
motivation for studying this setting is to better understand 
the behaviour of GMFVI with the goal to address the issues 
with its practical applicability. Consequently, we show that 
the compact approximations can also work well for a variety 
of models. In particular we find that: 

• Converged posterior standard deviations under GMFVI 
consistently display strong low-rank structure. This 
means that by decomposing these variational param-
eters into a low-rank factorization, we can make our 
variational approximation more compact without de-
creasing our model’s performance. 

• Factorized parameterizations of posterior standard de-
viations improve the signal-to-noise ratio of stochastic 
gradient estimates, and thus not only reduce the num-
ber of parameters compared to standard GMFVI, but 
also can lead to faster convergence. 

2. Mean Field Posterior Standard Deviations 
Naturally Have Low-Rank Structure 

In this section we show that the converged posterior stan-
dard deviations of Bayesian neural networks trained using 
standard GMFVI consistently display strong low-rank struc-
ture. We also show that it is possible to compress the learned 
posterior standard deviation matrix using a low-rank approx-
imation without decreasing the network’s performance. We 
first briefly introduce the mathematical notation for our GM-
FVI setting and the low-rank approximation that we explore. 
We then provide experimental results that support the two 
main claims of this section. 

To avoid any confusion among the readers, we would like 
to clarify that we use the terminology “low-rank” in a par-
ticular context. While variational inference typically makes 
use of low-rank decompositions to compactly represent the 
dense covariance of a Gaussian variational distribution (see 
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numerous references in Section 4), we investigate instead 
underlying low-rank structures within the already diago-
nal covariance of a Gaussian fully-factorized variational 
distribution. Figure 2 aims to make this even more clear 
by illustrating the relationship between the Gaussian fully-
factorized variational distribution and its “low-rank” pa-
rameterization explored in this paper. We will make this 
explanation more formal in the next section. 

2.1. Methodology 

To introduce the notation, we consider layers that consist of 
a linear transformation followed by a non-linearity f , 

al = hlWl + bl, hl+1 = f(al), (4) 

where Wl ∈ Rm×n , hl ∈ R1×m and bl, al, hl+1 ∈ R1×n . 
To simplify the notation in the following, we drop the sub-
script l such that W = Wl, µq = µql, Σq = Σql and we 
focus on the kernel matrix W for a single layer. 

In GMFVI, we model the variational posterior as 
m nYY 

q(W) = N (µq , Σq) = q(wij ), 
(5)i=1 j=1 

with q(wij ) = N (µij , σij 
2 ), 

where µ ∈ Rmn×1 is the posterior mean vector, Σq ∈q 

Rmn×mn is the diagonal posterior covariance matrix. The + 
weights are then usually sampled using a reparameterization 
trick (Kingma & Welling, 2013), i.e, for the s-th sample, we 
have 

(s)
w = µij + σij �

(s), � ∼ N (0, 1). (6)ij 

In practice, we often represent the posterior standard devi-
ation parameters σij in the form of a matrix A ∈ Rm×n .+ 
Note that we have the relationship Σq = diag(vec(A2)) 
where the elementwise-squared A is vectorized by stack-
ing its columns, and then expanded as a diagonal matrix 
into Rmn×mn .+ 

In the sequel, we start by empirically studying the properties 
of the spectrum of matrices A post-training (after conver-
gence), while using standard Gaussian mean-field varia-
tional distributions. Interestingly, we observe that those ma-
trices naturally exhibit a low-rank structure (see Section 2.3 
for the corresponding experiments), i.e, 

A ≈ UVT (7) 

for some U ∈ Rm×k , V ∈ Rn×k and k a small value (e.g., 
2 or 3). This observation motivates the introduction of the 
following variational family, which we name k-tied Normal: 

k-tied -N (W; µ , U, V) = q� � � ��� (8)
N µ , diag vec (UVT )2 ,q 

where the squaring of the matrix UVT is applied elemen-
twise. Due to the tied parameterization of the diagonal 
covariance matrix, we emphasize that this variational family 
is smaller—i.e., included in—the standard Gaussian mean-
field variational distribution family. 

As formally discussed in Appendix A, the matrix variate 
Gaussian distribution (Gupta & Nagar, 2018), referred to as 
MN and already used for variational inference by Louizos 
& Welling (2016) and Sun et al. (2017), is related to our 
k-tied Normal distribution with k = 1 when MN uses 
diagonal row and column covariances. Interestingly, we 
prove that for k ≥ 2, our k-tied Normal distribution cannot 
be represented by any MN distribution. This illustrates 
the main difference of our approach from the most closely 
related previous work of Louizos & Welling (2016). 

Notice that our diagonal covariance Σq repeatedly reuses 
the same elements of U and V, which results in parameter 
sharing across different weights. The total number of the 
standard deviation parameters in our method is k(m + n) 
from U and V, compared to mn from A in the standard 
GMFVI parameterization. Given that in our experiments 
the k is very low (e.g. k = 2) this reduces the number of 
parameters from quadratic to linear in the dimensions of 
the layer, see Table 1. More importantly, such parameter 
sharing across the weights leads to higher signal-to-noise 
ratio during training and thus in some cases faster conver-
gence. We demonstrate this phenomena in the next section. 
In the rest of this section, we show that the standard GMFVI 
methods already learn a low-rank structure in the posterior 
standard deviation matrix A. Furthermore, we provide ev-
idence that replacing A with its low-rank approximation 
does not degrade the predictive performance and the quality 
of uncertainty estimates. 

2.2. Experimental setting 

Before describing the experimental results, we briefly ex-
plain the key properties of the experimental setting. We 
analyze three types of GMFVI Bayesian neural network 
models: 

• Multilayer Perceptron (MLP): a network of 3 dense 

Table 1. Number of variational parameters for a variational family 
for a matrix W ∈ Rm×n . MN (diagonal) is from Louizos & 
Welling (2016). 

mn (mn+1)multivariate Normal mn + 2 

Variational family Parameters (total) 

diagonal Normal mn + mn 
m(m+1) n(n+1)MN mn + +2 2 

MN (diagonal) mn + m + n 
k-tied Normal (ours) mn + k(m + n) 
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Figure 2. Illustration of the relationship between the standard Gaussian Mean-Field posterior and its “low-rank” parameterization, which 
we call the k-tied Normal posterior. The illustration shows the posterior parameterization for a network with L layers, where x and 
y are the network inputs and outputs respectively, and µ q , Σq1 , µ 

1 q and ΣqL are the variational parameters for the layers 1 and L
L 

respectively. The k-tied Normal distribution parameterizes the already diagonal per layer posterior covariance matrices Σq1..L using the z z z ��� 
even more compact U 1..L and V 1..L matrices from N µq , diag vec (UVT )2 . 

layers and ReLu activations that we train on the MNIST 
dataset (LeCun & Cortes, 2010). We use the last 10,000 
examples of the training set as a validation set. 

• Convolutional Neural Network (CNN): a LeNet ar-
chitecture (LeCun et al., 1998) with 2 convolutional 
layers and 2 dense layers that we train on the CIFAR-
100 dataset (Krizhevsky et al., 2009b). We use the last 
10,000 examples of the training set as a validation set. 

• Long Short-Term Memory (LSTM): a model that con-
sists of an embedding and an LSTM cell (Hochreiter & 
Schmidhuber, 1997), followed by a single unit dense 
layer. We train it on the IMDB dataset (Maas et al., 
2011), in which we use the last 5,000 examples of the 
training set as a validation set. 

• Residual Convolutional Neural Network (ResNet): a 
ResNet-181 architecture (He et al., 2016) trained on 
all 50,000 training examples of the CIFAR-10 dataset 
(Krizhevsky et al., 2009a). 

In each of the four models, we use the standard mean-field 
Normal variational posterior and a Normal prior, for whic
we set a single scalar standard deviation hyper-paramete
shared by all layers. Appendix B contains an ablation stud
result with an alternative prior. We optimize the variationa
posterior parameters using the Adam optimizer (Kingm
& Ba, 2014). For a more comprehensive explanation o
the experimental setup please refer to Appendix D. Finall
we highlight that our experiments focus primarily on th
comparison across a broad range of model types rather tha
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competing with the state-of-the-art results over the specifi-

1See: https://github.com/tensorflow/ 
probability/blob/master/tensorflow_ 
probability/examples/cifar10_bnn.py. 

cally used datasets. Nevertheless, we also show that our re-
sults extend to larger models with competitive performance 
such as the ResNet-18 model. Note that scaling GMFVI 
to such larger model sizes is still a challenging research 
problem (Osawa et al., 2019). 

2.3. Main experimental observation 

Our main experimental observation is that the standard GM-
FVI learns posterior standard deviation matrices that have 
a low-rank structure across different model types (MLP, 
CNN, LSTM), model sizes (LeNet, ResNet-18) and layer 
types (dense, convolutional). To show this, we investigate 
the results of the SVD decomposition of posterior standard 
deviation matrices A in the four described models types. 
We analyze the models post-training, where the models are 
already trained until ELBO convergence using the standard 
GMFVI approach. While for the first three models (MLP, 
CNN and LSTM), we evaluate the low-rank structure only 
in the dense layers, for the ResNet model we consider the 
low-rank structure in the convolutional layers as well. 

Figure 3 shows the fraction of variance explained per each 
singular value k from the SVD decomposition of matrices 
A in the dense layers of the first three models. The fraction 
of variance explained per singular value k is calculated as P 
γ2/ i0 γi 

2 
0 , where γ are the singular values. We observe k 

that, unlike posterior means, the posterior standard devia-
tions have most of their variance explained by the first few 
singular values. In particular, a rank-1 approximation of 
A explains most of its variance, while a rank-2 approxima-
tion can encompass nearly all of the remaining variance. 
Figure 4 further supports this claim visually by comparing 

https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/cifar10_bnn.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/cifar10_bnn.py
https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/cifar10_bnn.py
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the heat maps of the matrix A and its rank-1 and rank-2 
approximations. In particular, we observe that the rank-2 
approximation heat map looks visually very similar to A, 
while this is not the case for the rank-1 approximation. Im-
portantly, Figure 5 illustrates that the same low-rank struc-
ture is also present in both the dense and the convolutional 
layers of the larger ResNet-18 model. In the analysis of the 
above experiments, we use the shorthand SEM to refer to 
the standard error of the mean. 

2.4. Low-rank approximation of mean field posterior 
standard deviations 

Motivated by the above observations, we show that it is 
possible to replace the reshaped diagonal posterior standard 
deviation matrices A with their low-rank approximations 
without decreasing predictive performance and the quality of 
uncertainty estimates. Table 2 shows the performance com-
parison of the MLP, CNN and LSTM models with different 
ranks of the approximations. Figure 5 contains analogous 
results for the ResNet-18 model. The results show that the 
post-training approximations of the mean field posterior 
covariance with ranks higher than one achieve predictive 
performance close to that of the mean field posterior with 
no approximations for all the analyzed model types, model 
sizes and layer types. Furthermore, Table 3 shows that, for 
the ResNet-18 model, the approximations with ranks higher 
than one also do not decrease the quality of the uncertainty 
estimates compared to the mean field posterior with no ap-
proximations2. These observations could be used as a form 
of post-training network compression. Moreover, they give 
rise to further interesting exploration directions such as for-
mulating posteriors that exploit such a low-rank structure. 
In the next section we explore this particular direction while 
focusing on the first three model types (MLP, CNN, LSTM). 

3. The k-tied Normal Distribution: Exploiting 
Low-Rank Parameter-Structure in Mean 
Field Posteriors 

In the previous section we have shown that it is possible 
to replace a reshaped diagonal matrix of posterior standard 
deviations, which is already trained using GMFVI, with its 
low-rank approximation without decreasing the predictive 
performance. In this section, we show that it is also possible 
to exploit this observation during training time. We achieve 
this by exploiting our novel variational family, the k-tied 
Normal distribution (see Section 2.1). 

We show that using this distribution in the context of GM-

2We compute the Brier Score and the ECE using the im-
plementations from the TensorFlow Probability (Dillon et al., 
2017) Stats module: https://www.tensorflow.org/ 
probability/api_docs/python/tfp/stats. 

FVI in Bayesian neural networks allows to reduce the num-
ber of network parameters, increase the signal-to-noise ratio 
of the stochastic gradient estimates and speed up model 
onvergence, while maintaining the predictive performance 
f the standard parameterization of the GMFVI. We start by 
calling the definition of the k-tied Normal distribution: � � � ��� 
-tied -N (W;   µ q, U, V) = N µ T 2

q , diag vec (UV )

here the variational parameters are comprised of 
µq  , U, V}.

.1. Experimental setting 

c
o
re

k

w
{

3

We now introduce the experimental setting in which we 
evaluate the GMFVI variational posterior parameterized by 
the k-tied Normal distribution. We assess the impact of 
the described posterior in terms of predictive performance 
and reduction in the number of parameters for the same 
first three model types (MLP, CNN, LSTM) and respective 
datasets (MNIST, CIFAR-100, IMDB) as we used in the 
previous section. Additionally, we also analyze the impact 
of k-tied Normal posterior on the signal-to-noise ratio of 
stochastic gradient estimates of the variational lower bound 
for the CNN model as a representative example. Overall, 
the experimental setup is very similar to the one introduced 
in the previous section. Therefore, we highlight only the 
key differences here. 

We apply the k-tied Normal variational posterior distribu-
tion to the same layers which we analyzed in the previous 
section. Namely, we use the k-tied Normal variational pos-
terior for all the three layers of the MLP model, the two 
dense layers of the CNN model and the LSTM cell’s kernel 
and recurrent kernel. We initialize the parameters uik from 
U and vjk from V of the k-tied Normal distribution so that 
after the outer-product operation the respective standard 
deviations σij have the same mean values as we obtain in 
the standard GMFVI posterior parameterization. In the ex-
periments for this section, we use KL annealing (Sønderby 
et al., 2016), where we linearly scale-up the contribution of 
the DKL[qθ(w)||p(w)] term in Equation 2 from zero to its 
full contribution over the course of training. Appendix C 
describes the impact of KL annealing on the modelled uncer-
tainty. Furthermore, additional details on the experimental 
setup are available in Appendix D. 

3.2. Experimental results 

We first investigate the predictive performance of the GM-
FVI Bayesian neural network models trained using the k-
tied Normal posterior distribution, with different levels of 
tying k. We compare these results to those obtained from the 
same models, but trained using the standard parameteriza-
tion of the GMFVI. Figure 6 (left) shows that for k ≥ 2 the 
k-tied Normal posterior is able to achieve the performance 

https://www.tensorflow.org/probability/api_docs/python/tfp/stats
https://www.tensorflow.org/probability/api_docs/python/tfp/stats


The k-tied Normal Mean Field Posterior 

Figure 3. Fraction of variance explained per each singular value from SVD of matrices of posterior means and posterior standard deviations 
post-training in different dense layers of three model types trained using standard GMFVI: MLP (left), CNN (center), LSTM (right). 
Unlike posterior means, posterior standard deviations clearly display strong low-rank structure, with most of the variance contained in the 
top few singular values. 

Figure 4. Post-training heat maps of the reshaped diagonal posterior standard deviation matrix for the first dense layer of a LeNet CNN 
trained using GMFVI on the CIFAR-100 dataset. Unlike the rank-1 approximation, the rank-2 approximation already looks visually very 
similar to the matrix with no approximation. This is consistent with the quantitative results from Figure 3, where the first two singular 
values explain most of the variance in the reshaped diagonal posterior standard deviation matrix. 

competitive with the standard GMFVI posterior parameteri-
zation, while reducing the total number of model parameters. 
The benefits of using the k-tied Normal posterior are the 
most visible for models where the layers with the k-tied 
Normal posterior constitute a significant portion of the total 
number of the model parameters (e.g. the MLP model). 

We further investigate the impact of the k-tied Normal pos-
terior on the signal-to-noise ratio (SNR)3 of stochastic gra-
dient estimates of the variational lower bound (ELBO). In 
particular, we focus on the gradient SNR of the GMFVI 
posterior standard deviation parameters for which we per-
form the tying. These parameters are either uik and vjk 

for the k-tied Normal posterior or σij for the standard GM-
FVI parameterization, all optimized in their log forms for 
numerical stability. Figure 6 (top right) shows that the uik 

and vjk parameters used in the k-tied Normal posterior are 

3SNR for each gradient value is calculated as E[gb 
2]/Var[gb], 

where gb is the gradient value for a single parameter. The expecta-
tion E and variance V ar of the gradient values gb are calculated 
over a window of last 10 batches. 

trained with significantly higher gradient SNR than the σij 

parameters used in the standard GMFVI parameterization. 
Consequently, Figure 6 (bottom right) shows that the in-
creased SNR from the k-tied Normal distribution translates 
into faster convergence for the MLP model, which uses the 
k-tied Normal distribution in all of its layers. 

Note that the k-tied Normal posterior does not increase the 
training step time compared to the standard parameterization 
of the GMFVI, see Table 4 for the support of this claim4. 
Therefore, the k-tied Normal posterior speeds up model 
convergence also in terms of wall-clock time. 

Figure 7 shows the convergence plots of validation negative 
ELBO for all the three model types. We observe that the im-

4Code to compare the training step times of the k-
tied Normal and the standard GMFVI is available under: 
https://colab.research.google.com/drive/ 
14pqe_VG5s49xlcXB-Jf8S9GoTFyjv4OF. The code 
uses the network architecture from: https://github. 
com/tensorflow/docs/blob/master/site/en/ 
tutorials/keras/classification.ipynb. 

https://colab.research.google.com/drive/14pqe_VG5s49xlcXB-Jf8S9GoTFyjv4OF
https://colab.research.google.com/drive/14pqe_VG5s49xlcXB-Jf8S9GoTFyjv4OF
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb
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Method -ELBO ↓ NLL ↓ Accuracy ↑ 
Mean-field 0.431±0.0057 0.100±0.0034 97.6±0.15 

1-tied 
2-tied 
3-tied 

3.41±0.019 

0.456±0.0059 

0.450±0.0059 

0.677±0.0040 

0.107±0.0033 

0.106±0.0033 

93.6±0.25 

97.6±0.15 

97.6±0.15 

MNIST, MLP CIFAR100, CNN IMDB, LSTM 
-ELBO ↓ NLL ↓ Accuracy ↑ -ELBO ↓ NLL ↓ Accuracy ↑ 
3.83±0.020 2.23±0.017 42.1±0.49 0.536±0.0058 0.493±0.0057 80.1±0.25 

4.33±0.021 2.30±0.016 41.7±0.49 

3.88±0.020 2.24±0.017 42.2±0.49 

3.86±0.020 2.24±0.017 42.1±0.49 

0.687±0.0058 

0.621±0.0058 

0.595±0.0058 

0.491±0.0056 80.0±0.25 

0.494±0.0057 80.1±0.25 

0.493±0.0056 80.1±0.25 

Table 2. Impact of post-training low-rank approximation of the GMFVI-trained posterior standard deviation matrix on model’s ELBO and 
predictive performance, for three types of models. We report mean and SEM of each metric across 100 weights samples. The low-rank 
approximations with ranks higher than one achieve predictive performance close to that of mean-field without the approximations. 

Method -ELBO ↓ NLL ↓ Accuracy ↑ 
Mean-field 122.61±0.012 0.495±0.0080 83.5±0.37 

1-tied 122.57±0.012 0.658±0.0069 81.7±0.39 

2-tied 122.77±0.012 0.503±0.0080 83.2±0.37 

3-tied 122.67±0.012 0.501±0.0079 83.2±0.37 

Figure 5. Unlike posterior means, the posterior standard deviations 
of both dense and convolutional layers in the ResNet-18 model 
trained using standard GMFVI display strong low-rank structure 
post-training and can be approximated without loss in predictive 
metrics. Top: Fraction of variance explained per each singular 
value of the matrices of converged posterior means and standard 
deviations. Bottom: Impact of post-training low-rank approxima-
tion of the posterior standard deviation matrices on the model’s 
performance. We report mean and SEM of each metric across 100 
weights samples. 

pact of the k-tied Normal posterior on convergence depends 
on the model type. As shown in Figure 6 (bottom right), 
the impact on the MLP model is strong and consistent with 
the k-tied Normal posterior increasing convergence speed 
compared to the standard GMFVI parameterization. For the 
LSTM model we also observe a similar speed-up. However, 
for the CNN model the impact of the k-Normal posterior on 
the ELBO convergence is much smaller. We hypothesize 
that this is due to the fact that we use the k-tied Normal 
posterior for all the layers trained using GMFVI in the MLP 
and the LSTM models, while in the CNN model we use 
the k-tied Normal posterior only for some of the GMFVI 
trained layers. More precisely, in the CNN model we use the 
k-tied Normal posterior only for the two dense layers, while 
the two convolutional layers are trained using the standard 
parameterization of the GMFVI. 

Method Brier Score ↓ NLL ↓ ECE ↓ 
Mean-field -0.761±0.0039 0.495±0.0080 0.0477 
1-tied -0.695 ±0.0034 0.658±0.0069 0.1642 
2-tied -0.758±0.0038 0.503±0.0080 0.0540 
3-tied -0.758±0.0038 0.501±0.0079 0.0541 

Table 3. Quality of predictive uncertainty estimates for the ResNet-
18 model on the CIFAR10 dataset without and with post-training 
low-rank approximations of the GMFVI posterior standard devia-
tion matrices in all the layers of the model. The approximations 
with ranks k ≥ 2 match the quality of the predictive uncertainty es-
timates from the mean-field posteriors without the approximations. 
The quality of the predictive uncertainty estimates is measured by 
the negative log-likelihood (NLL), the Brier Score and the ECE 
(with 15 bins). For the NLL and the Brier Score metrics we report 
mean and SEM across 100 weights samples. 

Training method Train step time [ms] ↓ 
Point estimate 2.00±0.0064 

Standard GMFVI 7.17±0.014 

2-tied Normal GMFVI 6.14±0.018 

Table 4. Training step evaluation times for a simple model archi-
tecture with two dense layers for different training methods. We 
report mean and SEM of evaluation times across a single train-
ing run in the Google Colab environment linked in the footnote. 
The k-tied Normal posterior with k = 2 does not increase the 
train step evaluation times compared to the standard parameter-
ization of the GMFVI posterior. We expect this to hold more 
generally because the biggest additional operation per step when 
using the k-tied Normal posterior is the UVT multiplication to 
materialize the matrix of posterior standard deviations A, where 
U ∈ Rm×k , V ∈ Rn×k and k is a small value (e.g., 2 or 3). The 
time complexity of this operations is O(kmn), which is usually 
negligible compared to the time complexity of data-weight matrix 
multiplication O(bmn), where b is the batch size. 

https://83.2�0.37
https://83.2�0.37
https://81.7�0.39
https://83.5�0.37
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Model & Dataset Method -ELBO ↓ NLL ↓ Accuracy ↑ #Par. [k] ↓ 
MNIST, MLP Mean-field 0.501±0.0061 0.133±0.0040 96.8±0.18 957 
MNIST, MLP 1-tied 0.539±0.0063 0.155±0.0043 96.1±0.19 482 
MNIST, MLP 2-tied 0.520±0.0063 0.129±0.0039 96.8±0.18 484 
MNIST, MLP 3-tied 0.497±0.0060 0.120±0.0038 96.9±0.18 486 
CIFAR100, CNN Mean-field 3.72±0.018 2.16±0.016 43.9±0.50 4,405 
CIFAR100, CNN 1-tied 3.65±0.017 2.12±0.015 45.5±0.50 2,262 
CIFAR100, CNN 2-tied 3.76±0.019 2.15±0.016 44.3±0.50 2,268 
CIFAR100, CNN 3-tied 3.73±0.018 2.13±0.016 44.3±0.50 2,273 
IMDB, LSTM Mean-field 0.538±0.0054 0.478±0.0052 79.5±0.26 2,823 
IMDB, LSTM 1-tied 0.592±0.0041 0.512±0.0040 77.6±0.26 2,693 
IMDB, LSTM 2-tied 0.560±0.0042 0.484±0.0041 78.2±0.26 2,694 
IMDB, LSTM 3-tied 0.550±0.0051 0.491±0.0050 78.8±0.26 2,695 

Method 1000 5000 9000 
Mean-field 4.13±0.027 4.45±0.091 3.21±0.035 

1-tied 
2-tied 

5840±190 158±3.8 5.3±0.20 

7500±240 140±11 4.3±0.26 

±270 ±1.7 ±0.20 

MNIST, MLP Dense 2, SNR at step 

3-tied 7000 117 4.1

Method MNIST, MLP, -ELBO at step 
1000 5000 9000 

Mean-field 42.16±0.070 26.52±0.016 15.39±0.016 

1-tied 
2-tied 
3-tied 

43.11±0.039 14.85±0.017 2.06±0.027 

42.74±0.090 13.97±0.023 1.82±0.017 

42.63±0.068 13.61±0.020 1.80±0.031 

Figure 6. Left: impact of the k-tied Normal posterior on test ELBO, test predictive performance and number of model parameters. We 
report the test metrics on the test splits of the respective datasets as a mean and SEM across 100 weights samples after training each of the 
models for ≈300 epochs. The k-tied Normal distribution with rank k ≥ 2 allows to train models with smaller number of parameters 
without decreasing the predictive performance. Top right: mean gradient SNR in the log posterior standard deviation parameters of 
the Dense 2 layer of the MNIST MLP model at increasing training steps for different ranks of tying k. The k-tied Normal distribution 
significantly increases the SNR for these parameters. We observe a similar increase in the SNR from tying in all the layers that use the 
k-tied Normal posterior. Bottom right: negative ELBO on the MNIST validation dataset at increasing training steps for different ranks of 
tying k. The higher SNR from the k-tied Normal posterior translates into the increased convergence speed for the MLP model. We report 
mean and SEM across 3 training runs with different random seeds in both the top right and the bottom right table. 
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Figure 7. Convergence of negative ELBO (lower is better) for the three model types on their respective validation datasets when training 
with mean-field and k-tied variational posteriors. The k-tied Normal posteriors result in faster initial convergence for the MLP and LSTM 
models. For the CNN models the speed-up is not as significant when using the k-tied Normal posterior only for the two dense layers of 
the LeNet architecture. 

4. Related Work 
The application of variational inference to neural net-
works dates back at least to Peterson (1987) and Hinton 
& Van Camp (1993). Many developments5 have followed 
those seminal research efforts, in particular regarding (1) the 
expressiveness of the variational posterior distribution and 
(2) the way the variational parameters themselves can be 
structured to lead to compact, easier-to-learn and scalable 
formulations. We organize the discussion of this section 
around those two aspects, with a specific focus on the Gaus-
sian case. 

Full Gaussian posterior. Because of their substantial 
memory and computational cost, Gaussian variational distri-
butions with full covariance matrices have been primarily 

5We refer the interested readers to Zhang et al. (2018) for a 
recent review of variational inference. 

applied to (generalized) linear models and shallow neural 
networks (Jaakkola & Jordan, 1997; Barber & Bishop, 1998; 
Marlin et al., 2011; Titsias & Lázaro-Gredilla, 2014; Miller 
et al., 2017; Ong et al., 2018). 

To represent the dense covariance matrix efficiently in terms 
of variational parameters, several schemes have been pro-
posed, including the sum of low-rank plus diagonal matri-
ces (Barber & Bishop, 1998; Seeger, 2000; Miller et al., 
2017; Zhang et al., 2017; Ong et al., 2018), the Cholesky 
decomposition (Challis & Barber, 2011) or by operating 
instead on the precision matrix (Tan & Nott, 2018; Mishkin 
et al., 2018). 

Gaussian posterior with block-structured covariances. 
In the context of Bayesian neural networks, the layers rep-
resent a natural structure to be exploited by the covariance 
matrix. When assuming independence across layers, the 
resulting covariance matrix exhibits a block-diagonal struc-
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ture that has been shown to be a well-performing simplifi-
cation of the dense setting (Sun et al., 2017; Zhang et al., 
2017), with both memory and computational benefits. 

Within each layer, the corresponding diagonal block of the 
covariance matrix can be represented by a Kronecker prod-
uct of two smaller matrices (Louizos & Welling, 2016; Sun 
et al., 2017), possibly with a parameterization based on ro-
tation matrices (Sun et al., 2017). Finally, using similar 
techniques, Zhang et al. (2017) proposed to use a block 
tridiagonal structure that better approximates the behavior 
of a dense covariance. 

Fully factorized mean-field Gaussian posterior. A fully 
factorized Gaussian variational distribution constitutes the 
simplest option for variational inference. The resulting 
covariance matrix is diagonal and all underlying parame-
ters are assumed to be independent. While the mean-field 
assumption is known to have some limitations—e.g., under-
estimated variance of the posterior distribution (Turner & 
Sahani, 2011) and robustness issues (Giordano et al., 2018)— 
it leads to scalable formulations, with already competitive 
performance, as for instance illustrated by the recent uncer-
tainty quantification benchmark of Ovadia et al. (2019). 

Because of its simplicity and scalability, the fully-factorized 
Gaussian variational distribution has been widely used for 
Bayesian neural networks (Graves, 2011; Ranganath et al., 
2014; Blundell et al., 2015; Hernández-Lobato & Adams, 
2015; Zhang et al., 2017; Khan et al., 2018). 

Our approach can be seen as an attempt to further reduce 
the number of parameters of the (already) diagonal covari-
ance matrix. Closest to our approach is the work of Louizos 
& Welling (2016). Their matrix variate Gaussian distribu-
tion instantiated with the Kronecker product of the diagonal 
row- and column-covariance matrices leads to a rank-1 ty-
ing of the posterior variances. In contrast, we explore tying 
strategies beyond the rank-1 case, which we show to lead to 
better performance (both in terms of ELBO and predictive 
metrics). Importantly, we further prove that tying strate-
gies with a rank greater than one cannot be represented in 
a matrix variate Gaussian distribution, thus clearly depart-
ing from Louizos & Welling (2016) (see Appendix A for 
details). 

Our approach can be also interpreted as a form of hierarchi-
cal variational inference from Ranganath et al. (2016). In 
this interpretation, the prior on the variational parameters 
corresponds to a Dirac distribution, non-zero only when 
a pre-specified low-rank tying relationship holds. More 
recently, Karaletsos et al. (2018) proposed a hierarchical 
structure which also couples network weights, but achieves 
this by introducing representations of network units as latent 
variables. 

Our reduction in the number parameters through tying de-
creases the variance of the stochastic gradient estimates 
of the ELBO objective for the posterior standard devi-
ation parameters. Alterantive methods for the variance 
reduction propose to either change the noise sampling 
scheme (Kingma et al., 2015; Wen et al., 2018; Farquhar 
et al., 2020a) or to determinize the variational posterior 
approximation (Wu et al., 2019). Those methods can be 
combined with our method, but some of them are not valid 
in cases when our method is applicable (e.g. the method 
from Kingma et al. (2015) is not valid for convolutional 
layers). 

We close this related work section by mentioning the exis-
tence of other strategies to produce more flexible approx-
imate posteriors, e.g., normalizing flows (Rezende & Mo-
hamed, 2015) and extensions thereof (Louizos & Welling, 
2017). 

5. Conclusion 
In this work we have shown that Bayesian Neural Networks 
trained with standard Gaussian Mean-Field Variational In-
ference learn posterior standard deviation matrices that can 
be approximated with little information loss by low-rank 
SVD decompositions. This suggests that richer parame-
terizations of the variational posterior may not always be 
needed, and that compact parameterizations can also work 
well. We used this insight to propose a simple, yet effec-
tive variational posterior parameterization, which speeds up 
training and reduces the number of variational parameters 
without degrading predictive performance on a range of 
model types. 

In future work, we hope to scale up variational inference 
with compactly parameterized approximate posteriors to 
much larger models and more complex problems. For mean-
field variational inference to work well in that setting several 
challenges will likely need to be addressed (Wenzel et al., 
2020); improving the signal-to-noise ratio of ELBO gradi-
ents using our compact variational parameterizations may 
provide a piece of the puzzle. 

References 
Barber, D. and Bishop, C. M. Ensemble learning for multi-

layer networks. In Advances in neural information pro-
cessing systems, pp. 395–401, 1998. 

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of 
the American Statistical Association, 112(518):859–877, 
2017. 

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, 



The k-tied Normal Mean Field Posterior 

D. Weight uncertainty in neural networks. arXiv preprint 
arXiv:1505.05424, 2015. 

Challis, E. and Barber, D. Concave gaussian variational ap-
proximations for inference in large-scale bayesian linear 
models. In Proceedings of the Fourteenth International 
Conference on Artificial Intelligence and Statistics, pp. 
199–207, 2011. 

Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, 
S., Moore, D., Patton, B., Alemi, A., Hoffman, M., and 
Saurous, R. A. Tensorflow distributions. arXiv preprint 
arXiv:1711.10604, 2017. 

Farquhar, S., Osborne, M., and Gal, Y. Radial Bayesian 
neural networks: Beyond discrete support in large-scale 
bayesian deep learning. Proceedings of the 23rd Interna-
tional Conference on Artificial Intelligence and Statistics, 
2020a. 

Farquhar, S., Smith, L., and Gal, Y. Try Depth instead 
of weight correlations: Mean-field is a less restrictive 
assumption for variational inference in deep networks. 
Bayesian Deep Learning Workshop at NeurIPS, 2020b. 

Giordano, R., Broderick, T., and Jordan, M. I. Covariances, 
robustness and variational bayes. The Journal of Machine 
Learning Research, 19(1):1981–2029, 2018. 

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. 
MIT press, 2016. 

Graves, A. Practical variational inference for neural net-
works. In Advances in neural information processing 
systems, pp. 2348–2356, 2011. 

Gupta, A. K. and Nagar, D. K. Matrix variate distributions. 
Chapman and Hall/CRC, 2018. 

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE 
conference on computer vision and pattern recognition, 
pp. 770–778, 2016. 

Hernández-Lobato, J. M. and Adams, R. Probabilistic back-
propagation for scalable learning of bayesian neural net-
works. In International Conference on Machine Learning, 
pp. 1861–1869, 2015. 

Hinton, G. and Van Camp, D. Keeping neural networks sim-
ple by minimizing the description length of the weights. 
In in Proc. of the 6th Ann. ACM Conf. on Computational 
Learning Theory. Citeseer, 1993. 

Hochreiter, S. and Schmidhuber, J. Long short-term memory. 
Neural computation, 9(8):1735–1780, 1997. 

Jaakkola, T. and Jordan, M. A variational approach to 
bayesian logistic regression models and their extensions. 
In Sixth International Workshop on Artificial Intelligence 
and Statistics, volume 82, pp. 4, 1997. 

Karaletsos, T., Dayan, P., and Ghahramani, Z. Probabilistic 
meta-representations of neural networks. arXiv preprint 
arXiv:1810.00555, 2018. 

Khan, M. E., Nielsen, D., Tangkaratt, V., Lin, W., Gal, 
Y., and Srivastava, A. Fast and scalable bayesian deep 
learning by weight-perturbation in adam. arXiv preprint 
arXiv:1806.04854, 2018. 

Kingma, D. P. and Ba, J. Adam: A method for stochastic 
optimization. arXiv preprint arXiv:1412.6980, 2014. 

Kingma, D. P. and Welling, M. Auto-encoding variational 
bayes. arXiv preprint arXiv:1312.6114, 2013. 

Kingma, D. P., Salimans, T., and Welling, M. Variational 
dropout and the local reparameterization trick. In Ad-
vances in Neural Information Processing Systems, pp. 
2575–2583, 2015. 

Krizhevsky, A., Hinton, G., et al. Learning multiple layers 
of features from tiny images. Technical report, Citeseer, 
2009a. 

Krizhevsky, A., Hinton, G., et al. Learning multiple layers 
of features from tiny images. Technical report, Citeseer, 
2009b. 

LeCun, Y. and Cortes, C. MNIST handwritten digit 
database. 2010. URL http://yann.lecun.com/ 
exdb/mnist/. 

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. 
Gradient-based learning applied to document recognition. 
Proceedings of the IEEE, 86(11):2278–2324, 1998. 

Louizos, C. and Welling, M. Structured and efficient vari-
ational deep learning with matrix gaussian posteriors. 
In International Conference on Machine Learning, pp. 
1708–1716, 2016. 

Louizos, C. and Welling, M. Multiplicative normalizing 
flows for variational bayesian neural networks. In Pro-
ceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pp. 2218–2227. JMLR. org, 
2017. 

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., 
and Potts, C. Learning word vectors for sentiment anal-
ysis. In Proceedings of the 49th annual meeting of the 
association for computational linguistics: Human lan-
guage technologies-volume 1, pp. 142–150. Association 
for Computational Linguistics, 2011. 

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


The k-tied Normal Mean Field Posterior 

MacKay, D. J. A practical bayesian framework for backprop-
agation networks. Neural computation, 4(3):448–472, 
1992. 

Marlin, B. M., Khan, M. E., and Murphy, K. P. Piecewise 
bounds for estimating bernoulli-logistic latent gaussian 
models. In Proceedings of the International Conference 
on Machine Learning, pp. 633–640, 2011. 

Miller, A. C., Foti, N. J., and Adams, R. P. Variational 
boosting: Iteratively refining posterior approximations. 
In Proceedings of the 34th International Conference on 
Machine Learning, pp. 2420–2429. JMLR. org, 2017. 

Mishkin, A., Kunstner, F., Nielsen, D., Schmidt, M., and 
Khan, M. E. Slang: Fast structured covariance approxi-
mations for bayesian deep learning with natural gradient. 
In Advances in Neural Information Processing Systems, 
pp. 6245–6255, 2018. 

Neal, R. M. Bayesian learning via stochastic dynamics. In 
Advances in neural information processing systems, pp. 
475–482, 1993. 

Ong, V. M.-H., Nott, D. J., and Smith, M. S. Gaussian vari-
ational approximation with a factor covariance structure. 
Journal of Computational and Graphical Statistics, 27 
(3):465–478, 2018. 

Osawa, K., Swaroop, S., Jain, A., Eschenhagen, R., 
Turner, R. E., Yokota, R., and Khan, M. E. Practical 
deep learning with bayesian principles. arXiv preprint 
arXiv:1906.02506, 2019. 

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., 
Nowozin, S., Dillon, J. V., Lakshminarayanan, B., and 
Snoek, J. Can you trust your model’s uncertainty? eval-
uating predictive uncertainty under dataset shift. arXiv 
preprint arXiv:1906.02530, 2019. 

Peterson, C. A mean field theory learning algorithm for 
neural networks. Complex systems, 1:995–1019, 1987. 

Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, 
M. Using bayesian model averaging to calibrate forecast 
ensembles. Monthly weather review, 133(5):1155–1174, 
2005. 

Ranganath, R., Gerrish, S., and Blei, D. Black box varia-
tional inference. In Artificial Intelligence and Statistics, 
pp. 814–822, 2014. 

Ranganath, R., Tran, D., and Blei, D. Hierarchical varia-
tional models. In International Conference on Machine 
Learning, pp. 324–333, 2016. 

Rezende, D. and Mohamed, S. Variational inference with 
normalizing flows. In International Conference on Ma-
chine Learning, pp. 1530–1538, 2015. 

Salimans, T., Knowles, D. A., et al. Fixed-form variational 
posterior approximation through stochastic linear regres-
sion. Bayesian Analysis, 8(4):837–882, 2013. 

Seeger, M. Bayesian model selection for support vector 
machines, gaussian processes and other kernel classifiers. 
In Advances in neural information processing systems, 
pp. 603–609, 2000. 

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and 
Winther, O. How to train deep variational autoencoders 
and probabilistic ladder networks. In 33rd International 
Conference on Machine Learning (ICML 2016), 2016. 

Sun, S., Chen, C., and Carin, L. Learning structured weight 
uncertainty in bayesian neural networks. In Artificial 
Intelligence and Statistics, pp. 1283–1292, 2017. 

Tan, L. S. and Nott, D. J. Gaussian variational approx-
imation with sparse precision matrices. Statistics and 
Computing, 28(2):259–275, 2018. 

Titsias, M. and Lázaro-Gredilla, M. Doubly stochastic varia-
tional bayes for non-conjugate inference. In International 
conference on machine learning, pp. 1971–1979, 2014. 

Turner, R. and Sahani, M. Two problems with variational 
expectation maximisation for time-series models, pp. 109– 
130. Cambridge University Press, 2011. 

Wen, Y., Vicol, P., Ba, J., Tran, D., and Grosse, R. Flipout: 
Efficient pseudo-independent weight perturbations on 
mini-batches. arXiv preprint arXiv:1803.04386, 2018. 

Wenzel, F., Roth, K., Veeling, B. S., ´ atkowski, J., Tran,Swi ̨  
L., Mandt, S., Snoek, J., Salimans, T., Jenatton, R., and 
Nowozin, S. How good is the bayes posterior in deep 
neural networks really? arXiv preprint arXiv:2002.02405, 
2020. 

Wu, A., Nowozin, S., Meeds, E., Turner, R. E., Hernández-
Lobato, J. M., and Gaunt, A. L. Deterministic variational 
inference for robust bayesian neural networks. In Inter-
national Conference on Learning Representations (ICLR 
2019), 2019. 

Zhang, C., Butepage, J., Kjellstrom, H., and Mandt, S. Ad-
vances in variational inference. IEEE transactions on 
pattern analysis and machine intelligence, 2018. 

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy 
natural gradient as variational inference. arXiv preprint 
arXiv:1712.02390, 2017. 




