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Abstract

Distance metric learning (DML) is to learn a repre-
sentation space equipped with a metric, such that
similar examples are closer than dissimilar exam-
ples concerning the metric. The recent success of
DNNs motivates many DML losses that encour-
age the intra-class compactness and inter-class
separability. The trade-off between inter-class
compactness and inter-class separability shapes
the DML representation space by determining
how much information of the original inputs to re-
tain. In this paper, we propose a Distance Metric
Learning with Joint Representation Diversifica-
tion (JRD) that allows a better balancing point
between intra-class compactness and inter-class
separability. Specifically, we propose a Joint Rep-
resentation Similarity regularizer that captures dif-
ferent abstract levels of invariant features and di-
versifies the joint distributions of representations
across multiple layers. Experiments on three deep
DML benchmark datasets demonstrate the effec-
tiveness of the proposed approach.

1. Introduction
Distance metric learning (DML) is a class of approaches that
learns a mapping from original high-dimensional feature
space to a compact representation space where the metric di-
rectly corresponds to a measure of semantic similarity. With
proper training, the learned mapping could generalize to
unseen classes so that DML has been found especially use-
ful for visual open-set classification tasks such as zero-shot
learning (Weston et al., 2011; Frome et al., 2013), retrieval
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Figure 1. The architectures of embedding loss methods and classifi-
cation loss methods. The embedding losses measure the intra-class
compactness by computing intra-class distance d(xi, xj) between
DML representations xi and xj . The classification losses mea-
sure the intra-class compactness by computing distance d(xi, wyi)
between DML representation xi and the correct class proxy wyi .
The explicit penalization on intra-class distances of DML repre-
sentations in embedding losses imposes stronger restrictions on
intra-class compactness than classification losses.

(Zhou et al., 2004; Yang et al., 2018), and face recognition
(Chopra et al., 2005; Schroff et al., 2015).

In the conventional DML methods (Xing et al., 2003; Wein-
berger et al., 2006; Davis et al., 2007), examples are repre-
sented by hand-crafted features in RD. For similar examples
represented by xi, xj ∈ RD, one commonly used mapping
is parameterized by a projection matrix P ∈ Rd×D such
that ||Pxj − Pxj ||2 is minimized under certain regulariza-
tion constraints (Xie, 2015). Recently, the success of deep
neural networks (DNNs) (Krizhevsky et al., 2012) motivates
more data-driven deep DML methods that learn represen-
tations by DNNs from raw data, leading to a substantial
boost in classification performance of visual tasks (Schroff
et al., 2015). In general, there are two goals of deep DML
optimization objectives: 1) the inner-class compactness and
2) the inter-class separability. The trade-off between inter-
class compactness and the inter-class separability shapes
the DML representation space by determining how much
information of the original inputs to retain.

There are mainly two categories of deep DML loss func-
tions: 1) the embedding losses (Chopra et al., 2005; Schroff
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Figure 2. Hidden limitation of explicit penalization on intra-class
distances. (a) The information discriminating seen classes may
not suffice to discriminate unseen classes. (b) H-divergence and λ
(with 95% confidence bands) w.r.t. magnitude α of penalization
on intra-class distances of representations for nearest neighbor
classifiers. Best viewed in color.

et al., 2015; Sohn, 2016; Oh Song et al., 2016; Wang et al.,
2019a), and 2) the classification losses (Liu et al., 2016;
Movshovitz-Attias et al., 2017; Qian et al., 2019). The
architectures are shown in Figure 1. A major difference be-
tween these two categories of losses is how they measure the
intra-class compactness. The embedding losses measure the
intra-class compactness by computing intra-class distance
d(xi, xj) between DML representations xi and xj . While
the classification losses take advantage of the hierarchical
representations of DNNs by learning class proxies {wj}Cj=1

for all seen classes, and measure the intra-class compact-
ness by computing distance d(xi,wyi) between DML rep-
resentation xi and the correct class proxy wyi . The explicit
penalization on intra-class distances of DML representa-
tions in embedding losses imposes stronger restrictions on
intra-class compactness than classification losses.

The stronger restrictions might result in an overemphasizing
on intra-class compactness such that the DNNs filter out
information that contributes to discriminating examples of
unseen classes. The generalization error bound on DML
representations of unseen classes in a hypothesis space, can
be explicitly estimated by the sum of three components
(Ben-David et al., 2010): a) the error on representations of
seen classes, b) theH-divergence between representations

of seen classes and unseen classes and c) the error of an
ideal joint hypothesis λ on the representation of seen and
unseen classes. A preliminary empirical investigation in
Figure 2 demonstrates that additional explicit penalization
on intra-class distances of representations for AMSoftmax
loss (Wang et al., 2018) (a representative classification loss),
would inflate the error of an ideal joint hypothesis acutely,
implying explicit penalization on intra-class distances of rep-
resentations is error-prone for the high tendency of overem-
phasizing intra-class compactness. The above observation
also motivates a better balancing point between intra-class
compactness and inter-class separability by putting more
emphasis on inter-class separability, which allows more
flexible information retaining.

In the context of representation learning, there is a distinc-
tive advantage of DNNs: deep architectures can lead to
progressively more abstract features at higher layers (Ben-
gio et al., 2013). Each layer captures a different abstraction
level of concepts and is invariant to different level of changes
in the input. Hence encouraging the separability of less ab-
stract concepts constructing the DML representation, as well
as encouraging the separability of more abstract concepts
constructed by the DML representation, are beneficial to en-
hance the inter-class separability of the DML representation
by capturing different abstract levels of invariant features.

In this paper, we propose a Distance Metric Learning with
Joint Representation Diversification (JRD). In particular,
we propose an easy-to-compute Joint Representation Sim-
ilarity (JRS) regularizer, which penalizes inter-class distri-
butional similarities of hidden activations in multiple lay-
ers, capturing different abstract levels of invariant features,
and therefore promotes diversification of DML represen-
tations. Specifically, the JRS regularizer computes inner
products between covariance-operator-based joint distribu-
tion embeddings (Baker, 1973; Fukumizu et al., 2004) in a
tensor product space induced by kernel mean embeddings
(Smola et al., 2007) in reproducing kernel Hilbert spaces
(RKHSs). We give an interpretation of JRS with translation
invariant kernels in terms of inner products of character-
istic functions in L2 spaces.The JRS regularizer promotes
the AMSoftmax loss by learning representations at a better
balancing point of intra-class compactness and inter-class
separability, allowing more flexible information retention.
Experiments on three challenging fine-grained deep DML
benchmark datasets (Cub-200-2011 (Wah et al., 2011), Cars-
196 (Krause et al., 2013), and Stanford Online Products
(Oh Song et al., 2016)) show that the proposed JRD model
is competitive to the state-of-the-art methods.

2. Motivation
In DML, a mapping from the original feature space to a
DML representation space is trained by instances of seen
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classes. The learned mapping can generate DML represen-
tations for seen class instances, denoted by Ds, as well as
representations for unseen class instances, denoted by Du.
The generalization error bound on Du in a hypothesis space
H is a natural metric to quantify the generalizability of the
DML representation. The following result (Ben-David et al.,
2010) provides an estimate for the error bound.

Theorem 1 (Ben-David et al. (2010)). LetH be a hypothe-
sis space. Denote by εs and εu the generalization errors on
Ds and Du, then for every h ∈ H:

εu(h) ≤εs(h) + d̂H(Ds,Du) + λ. (1)

The d̂H in (1) is the H-divergence measuring a sense of
distance between Ds and Du inH, specifically,

d̂H(Ds,Du) = 1−min
h∈H

ε∗(h), (2)

where ε∗(h) is the error of a binary classifier h ∈ H that
discriminates between instances from Ds and Du.

The λ in (1) is the error of an ideal joint hypothesis h∗ =
arg minh∈H εs(h) + εu(h), that is,

λ = εs (h∗) + εu (h∗) . (3)

We empirically investigate the influence of additional ex-
plicit penalization on intra-class distances of representations
for AMSotmax (classification) loss (Wang et al., 2018), by
examining the H-divergence and λ w.r.t. different magni-
tude of additional penalizations with the CUB-200-2011
dataset (Wah et al., 2011). We first train the DML mapping
with a DNN (detailed setting in 5.1) by the loss below,

LAMS − α
∑
I

1

N I
pairs

∑
xIi ,x

I
j∈TI

e−
1
2 (xIi−xIj )2 , (4)

where LAMS is the AMSoftmax loss (12), TI is the set of
examples from class I , N I

pairs is the number of different
sample pairs in TI , and α > 0 controls the magnitude of pe-
nalization on intra-class distances. Then we generate DML
representations {Dαs ,Dαu} with the trained DML mapping.
With a prespecified labeled and unlabeled splits of Dαs and
Dαu respectively, theH-divergence is computed by a binary
classifier discriminating instances from Dαs and Dαu . The
ideal joint hypothesis h∗ is found by a multi-class classifier
on both labeled data of Dαs and Dαu to compute λ. Both
classifiers are fitted on the labeled splits, following practice
Liu et al. (2019). The above process is replicated several
times with different values of α. For DML, we consider
nearest neighbor classifiers as the hypothesis space. The
results are shown in Figure 2. As the magnitude of penaliza-
tion on intra-class distances of representations α grows, the
λ gets inflated more acutely than the declining tendency of
H-divergence, suggesting a larger error bound.

For open-set classification tasks, the information used to
discriminate seen classes may not totally coincide with the
information used to discriminate unseen classes. Explicitly
penalizing intra-class distances of representations violates
the Maximum entropy principle (MEP) (Jaynes, 1957). Ad-
ditional explicit penalization on intra-class distances might
cause the DNNs to filter out necessary information for dis-
criminating unseen classes. As a result, the DML representa-
tion Ds and Du may tend to contain information only about
seen classes. ThoughH-divergence might decline, the error
of an ideal joint hypothesis λ is likely to get inflated acutely,
leading to a worse generalization error bound. This observa-
tion motivates a better balancing point between intra-class
compactness and inter-class separability by putting more
emphasis on inter-class separability with a a diversified
DML representation, which allows more flexible informa-
tion retaining. To promote a diversified DML representation,
a natural choice is encouraging the inter-class distributions
to be dissimilar. In particular, we take advantage of the
hierarchical representations of DNNs and propose the joint
representation similarity (JRS) regularizer.

3. Preliminary
To measure the similarity between distributions, we seek
help from their representers in the reproducing kernel spaces
(RKHSs). The kernel embeddings of distributions is an ef-
fective and powerful tool to study marginal distributions
and joint distributions in RKHSs for many applications
such as independent component analysis (Bach & Jordan,
2002), two-sample test (Gretton et al., 2012), domain adap-
tion (Long et al., 2015; 2017) and generative modeling (Li
et al., 2015; 2017). For better clarification of the proposed
approach, we review the necessary preliminaries.

Definition 1 (reproducing kernel Hilbert space). A Hilbert
spaceRKHS of real-valued functions on non-empty X is
a reproducing kernel Hilbert space if there is a symmetric
and positive definite function k : X × X → R such that

• ∀x ∈ X , k(·, x) ∈ RKHS,
• (The reproducing property) ∀x ∈ X , ∀f ∈ RKHS,
〈f(·), k(·, x)〉RKHS = f(x).

In particular, k is the reproducing kernel of RKHS, and
for any x, y ∈ X , k(x, y) = 〈k(·, x), k(·, y)〉RKHS .

We can define a representer µP in RKHS of a prob-
ability measure P. The existence of µP is assured if
EX∼P[

√
k(X,X)] <∞ (Smola et al., 2007). Formally,

Definition 2 (kernel mean embedding, (Smola et al., 2007;
Berlinet & Thomas-Agnan, 2011)). Let M1

+(X ) be the
space of all probability measures P on a measurable space
(X ,Σ). The kernel mean embedding of probability mea-
sures intoRKHS is defined by the mapping
µ : M1

+(X ) −→ RKHS, P 7−→
∫
k(·, x)dP(x) , µP.
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When there are multiple measurable spaces {X 1, . . . ,XL},
the kernel embedding in Definition 2 defined on one measur-
able space can be generalized to joint distributions by defin-
ing cross-covariance operators on RKHSs (Baker, 1973).
Let X1:L = (X1, . . . ,XL) be a random variable taking val-
ues on Cartesian product ×Ll=1X l = X 1 × · · · × XL. For
l ∈ {1, · · · , L}, let (RKHSl, kl) be the RKHS with a mea-
surable kernel on X l respectively. Throughout, we assume
the integrability EXl [k

l(X,X)] < ∞ which ensures that
RKHSl ⊂ L2(PXl).
Definition 3 (cross-covariance operator, (Baker, 1973;
Fukumizu et al., 2004)). Suppose that M1

+(×Ll=1X l) is
the space of all probability measures P on ×Ll=1X l.
The (uncentered) covariance operator of measures in
M1

+(×Ll=1X l) into a tensor product space ⊗Ll=1RKHS
l =

RKHS1 ⊗ · · · ⊗ RKHSL is defined by the map-
ping, CX1:L : M1

+(×Ll=1X l) −→ ⊗Ll=1RKHS
l, P 7→∫

×Ll=1Xl(⊗
L
l=1k

l(·, xl))dP(x1, . . . , xL) , CX1:L(P).

4. Proposed Approach
Problem Formulation: Assume that the training set of
size N is represented by {zi, yi}Ni=1, in which zi and
yi ∈ {1, . . . , C} denote the training instance and its class
label from population (Ztrain,Ytrain). Let fθ be the neural
network that accounts for the DML mapping. Denote by
xi = fθ(zi) the DML representation of some instance zi.
The goal of DML is learning a θ̂ by {zi, yi}Ni=1 such that for
any testing examples (zs, y0),(z′s, y0) and (zt, y1), possibly
{y0, y1} ∩ {1, . . . , C} = ∅, if y0 6= y1, then

d(xs, x′s) = d(fθ̂(zs), fθ̂(z′s))
< d(fθ̂(zs), fθ̂(zt)) = d(xs, xt).

(5)

The prespecified metric d(·, ·) : Rd × Rd → R+ ∪ {0} is
usually taken as the euclidean distance or the chord distance
induced by cosine similarity: d(s, t) = 2(1− s·t

‖s‖`2‖t‖`2
).1

Framework Overview: We first give an overview of the
proposed approach in Figure 3. Denote by XI the random
variable of the class I DML representation X|Y = I . Fol-
lowing standard deep DML practice Schroff et al. (2015),
we start by extracting a pooling representation X− using a
CNN. The DML representation X is then obtained by an
affine transform of the pooling representation X−. Thus
X can be viewed as a representation capturing more ab-
stract concepts as a linear combination of lower-level con-
cepts. In addition, a classification loss computes a class
level representation vector X+ ∈ RC with each entry denot-
ing the tendency of an input instance falling into a particular
class. This class level representation is capturing even more
abstract concepts. For two different class I and J , the

1If ‖s‖`2 = ‖t‖`2 = 1, the Euclidean distance and the chord
distance are equivalent.

Figure 3. The architecture of distance metric learning with joint
representation diversification (JRD). Denote by x and z the instan-
tiations of random variable X and Z. For class I and J , a joint rep-
resentation similarity regularizer penalizes the similarity between
probability measures P(XI−,XI ,XI+) and Q(XJ−,XJ ,XJ+).

proposed joint representation similarity (JRS) regularizer
promotes the inter-class separability between XI and XJ
by penalizing the similarity between probability measures
P(XI−,XI ,XI+) and Q(XJ−,XJ ,XJ+).

4.1. Joint Representation Similarity Regularizer

A natural choice to measure the similarity between two joint
representations P and Q is by measuring the similarity of
their kernel embeddings defined in Definition 3. Formally,

Definition 4 (Joint Representation Similarity). Suppose that
P(X1, . . . ,XL) and Q(X′1, . . . ,X′L) are probability mea-
sures on ×Ll=1X l. Given L reproducing kernels {kl}Ll=1,
the joint representation similarity between P and Q is de-
fined as the inner product of CX1:L(P) and CX′1:L(Q) in
⊗Ll=1RKHS

l, i.e.,

SJRS(P,Q) , 〈CX1:L(P), CX′1:L(Q)〉⊗Ll=1RKHSl
(6)

Usually the true distribution P(X1, . . . ,XL) is un-
known, in practice we can estimate CX1:L(P) =∫
×Ll=1Xl(⊗

L
l=1k

l(·, xl))dP(x1, . . . , xL) using a finite sample

{x1:L
i }ni=1 ∼ P (Song & Dai, 2013),

ĈX1:L(P) =
1

n

n∑
i=1

⊗Ll=1k
l(·, xli). (7)

This empirical estimate converges to its population coun-
terpart with a rate of O(n−

1
2 ) (Berlinet & Thomas-Agnan,

2011; Muandet et al., 2017), as a consequence of the
√
n-

consistency of the empirical kernel mean embedding (Lopez-
Paz et al., 2015).

The reproducing property gratifies a rather easy-to-compute
empirical estimate of SJRS(P,Q) using two sets of samples
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{x1:L
i }ni=1 ∼ P and {x′1:L

j }n′j=1 ∼ Q,

ŜJRS(P,Q) , 〈ĈX1:L(P), ĈX′1:L(Q)〉⊗Ll=1RKHSl

=
1

nn′

n∑
i=1

n′∑
j=1

〈⊗Ll=1k
l(·, xli),⊗Ll=1k

l(·, x′lj )〉⊗Ll=1RKHSl

=
1

nn′

n∑
i=1

n′∑
j=1

L∏
l=1

kl(xli, x
′l
j ).

(8)
With the definition of joint representation similarity and its
empirical estimate, we next introduce the construction of
the JRS regularizer in terms of pooling representation X−,
DML representation X and class level representation X+, in
which case L = 3 and X1:3 = (X−,X,X+).

Provided a training mini-batch {zi, yi}Mi=1, denote by
{x−i }Mi=1, {xi}Mi=1 and {x+

i }Mi=1 the sets of instances of cor-
responding representations respectively. Specifically, in the
proposed DML approach, we let

xi =
WT x−i + b
‖W>x−i + b‖`2

, x+
i =

(
w1

‖w1‖`2
· · · wC
‖wC‖`2

)T
xi,

(9)
where W ∈ RD×d, b,w1, . . . ,wC ∈ Rd are parameters to
be optimized. We perform `2 normalization for {xi}Mi=1

and {wj}Cj=1 for better robustness against noise such as
illumination, rotation, and scaling (Wang et al., 2018).

Suppose that
⋃C
I=1{xIi }

nI
i=1 is the partition of set {xi}Mi=1

concerning the same-class equivalence relation, where nI

is the number of class I examples in the training set. Simi-
larly we have partitions

⋃C
I=1{x

I−
i }

nI
i=1 of set {x−i }Mi=1 and⋃C

I=1{x
I+
i }

nI
i=1 of set {x+

i }Mi=1 .

The JRS regularizer is defined as follows.
Definition 5 (joint representation similarity (JRS) regular-
izer). The joint representation similarity regularizer LJRS
penalizes the empirical joint representation similarities for
all class pairs {I, J} ⊆ {1, . . . , C}. Specifically,

LJRS ,
∑
I 6=J

nInJ ŜJRS(PI ,PJ)

=
∑
I 6=J

nI∑
i=1

nJ∑
j=1

k−(xI−i , xJ−j )k(xIi , x
J
j )k+(xI+i , xJ+

j ),

(10)
where k−, k and k+ are reproducing kernels, nInJ re-
weights class pair (I, J) according to its credibility.

4.2. Deep DML with Joint Representation
Diversification

Since a deep DML model is often over-parameterized, only
a JRS regularizer might not suffice to train a deep DML
model. However, with the JRS regularizer, we may find a

better balancing point of intra-class compactness and inter-
class separability when combined with classification losses
such as AMSoftmax loss (Wang et al., 2018) that does not
penalize d(xIi , xIj ) explicitly. To this end, we propose deep
distance metric learning with joint representation diversifica-
tion (JRD), which allows more flexible information retaining
than classification losses. The optimization objective of our
proposed JRD takes the form

LJRD = LAMS + α
1

Npairs
LJRS , (11)

where Npairs denotes the number of pairs of instances from
different classes in a mini-batch, and the hyperparameter
α > 0 controls the trade-off between the diversification of
DML representation and the intra-class compactness. The
AMSoftmax loss LAMS is written as

LAMS =
1

M

M∑
i

− log
es(w

′>
yi

xi−m)

es(w′>yi xi−m) +
∑C
j 6=yi e

sw′>j xi
.

(12)

The {w′j}Cj=1 are `2-normalizations of {wj}Cj=1, and can be
viewed as the proxies (Movshovitz-Attias et al., 2017) or
prototypes (Snell et al., 2017) of C classes in the training
set. In (9), xis are `2-normalized. Thus w

′>
yi xi is the cosine

similarity between xi and the correct proxy corresponding
to the yi class, and w

′>
j xi are cosine similarities between xi

and proxies of other classes. The margin hyperparameter
m ∈ (0, 1) encourages w

′>
yi xi being larger than all other

cosine similarities w
′>
j xi by a margin m. Hyperparameter s

is controlling the scale of cosine similarities.

4.3. Theoretical Analysis

4.3.1. INTERPRETATION OF JRS

The nature and implications of the proposed JRS regular-
izer are not apparent. However, with the famous Bochner’s
theorem (Bochner, 1959), we may give some explanations
for SJRS(P,Q) = 〈CX1:L(P), CX′1:L(Q)〉⊗Ll=1RKHSl

when
the kernels are translation invariant kernels kl(x, x′) =
ψl(x − x′) on Rd. Note that translation invariant kernels
cover many useful classes of characteristic kernels such as
Gaussian and Laplace kernels.

Proposition 1. Suppose that {kl(x, x′) = ψl(x−x′)}Ll=1 on
Rd are bounded, continuous reproducing kernels. Let P l ,
P(Xl|X1:l−1) for l = 1, . . . , L with P 1 = P(X1). Then for
any P(X1, . . . ,XL),Q(X′1, . . . ,X′L) ∈M1

+(×Ll=1X l),

SJRS(P,Q) =

L∏
l=1

〈φP l(ω), φQl(ω)〉L2(Rd,Λl), (13)

where φP l(ω) and φQl(ω) are the characteristic functions
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of the distributions P l and Ql, and Λl is a (normalized)
non-negative Borel measure characterized by ψl(x− x′).

(Proof in Appendix A.) When the kernels are translation
invariant, the joint representation similarity is equivalent to
a product of inner products of characteristic functions (of
conditional distributions) in L2 space. The inner products
are associated with a set of measures {Λl}Li=1 that re-weight
the Lebesgue measure in Rd. Moreover, the set of measures
{Λl}Li=1 relies on the choice of translation invariant kernels.

4.3.2. INNER PRODUCT V.S. NORM REGULARIZER

To penalize the similarities between kernel embeddings in
the RKHSs, another possible solution is encouraging the
norm distance, maximum mean discrepancy (MMD) (Gret-
ton et al., 2007; 2012), between kernel embeddings of dis-
tributions from different classes. For ease of illustration,
we only consider the case of a marginal distribution from
one measurable space X . Suppose that the conditions for
the existence of kernel embeddings are satisfied, the MMD
distance between probability measures P and Q is written
as (Gretton et al., 2007),

MMD2(P,Q) = ‖µP − µQ‖2RKHS
= ‖µP‖2RKHS + ‖µQ‖2RKHS − 2〈µP, µQ〉RKHS

(14)

Thus maximizing the MMD distance, MMD2(P,Q), is
equivalent to minimizing the inner product similarity
〈µP, µQ〉RKHS plus maximizing the norm of kernel em-
beddings ‖µP‖2RKHS and ‖µQ‖2RKHS .

In the context of DML, maximizing norm of kernel em-
beddings might lead to less generalizable DML representa-
tion when the kernels are translation invariant. This can be
seen from the empirical estimate by a sample {xi}mi=1 ∼ P,
that is, 1

m2

∑m
i,j=1 k(xi, xj). When k is a translation in-

variant kernel, say a Gaussian kernel k(x, y) = e−
1
2 (x−y)2 ,

maxmimizing the norm estimate 1
m2

∑m
i,j=1 k(xi, xj) im-

pose explicit penalization on intra-class distances of DML
representations and might lead to a less generalizable repre-
sentation from the discussion in Section 2.

5. Experiments
5.1. Experimental Settings

Datasets: We conduct our experiments2 on three benchmark
datasets: CUB-200-2011 (CUB) (Wah et al., 2011), Cars-
196 (CARS) (Krause et al., 2013), Stanford Online Products
(SOP) (Oh Song et al., 2016). We adopt the standard data
split protocol. For the CUB dataset that consists of 200
classes with 11,788 images, we use the first 100 classes
with 5,864 images for training and the remaining 100 classes

2Codes are avalable at github.com/YangLin122/JRD

with 5,924 images for testing. CARS dataset is composed
of 16,185 car images belonging to 196 classes. The first 98
classes are used for training, and the rest classes are used
for testing. SOP dataset contains 120,053 product images
from 22,634 classes, as the first 11,318 classes are used for
training and the rest 11,316 classes for testing.

Kernel design: We consider a mixture of K Gaussian ker-

nels k(x, x′) = 1
K

∑K
k=1 e

−(x−x′)2

σ2
k , with varying bandwidth

σ2
ks for better capturing short-range and long-range depen-

dencies (Wenliang et al., 2019). In this paper, we fix K = 3
for pooling representation and DML representation, with
{σ2

1 , σ
2
2 , σ

2
3} = {0.5τ, τ, 2τ}, and K ′ = 1 for class level

representation with σ2 = τ . τ is a self-adaptive parameter
computed by averages of `2-distances in the exponent part.

Implementation details: Our method is implemented by
Pytorch on four Nvidia RTX8000s. We use the Inception
Network (Szegedy et al., 2015) with BN (Ioffe & Szegedy,
2015) as the backbone, which is pre-trained on the Ima-
geNet ILSVRC 2012 dataset (Russakovsky et al., 2015).
Following practice Qian et al. (2019), BN layers of the back-
bone network is frozen during training. An affine transform
is added on top of the global pooling layer to extract the
DML representation, where the embedding size is fixed as
512 throughout the experiments. All images are cropped
to 224×224 before feeding into the network. Random crop
and random horizontal mirroring are used for data augmen-
tation during training and single-center crop for testing. The
s in cosine softmax is fixed as 20. Adam optimizer (Kingma
& Ba, 2014) is used for optimization. The number of epochs
is set to be 50 (80 for SOP). The initial rates for parameters
in the model and the softmax loss are 1e-4 and 1e-2 (1e-1
for SOP), respectively, and are divided by 10 every 20 (40
for SOP) epochs. The hyperparameters α,m and batch size
M are selected by 10-fold cross-validation, which is α = 1
for CUB and CARS, α = 0.4 for SOP; m = 0.1 for CUB
and SOP, m = 0.05 for CARS; and batch size (100,50,120)
for (CUB,CARS,SOP), respectively.

5.2. Comparison to the State-of-the-art

To emphasize the meliority of our DML framework JRD,
we compare it with some state-of-the-art methods. For a fair
comparison, we only consider methods that use the same
backbone network and embedding size as ours. The meth-
ods with different backbones such as Wang et al. (2019b);
Sanakoyeu et al. (2019), of different embedding sizes such
as Roth et al. (2019); Lu et al. (2019), or adding additional
convolutional layers such as Jacob et al. (2019) are not con-
sidered for comparison. Performances of all methods are
evaluated using Recall@K metric on image retrieval task.
Recall@K indicates the proportion of test images (queries)
whose K nearest neighbors retrieved from the test set include
samples from the same class.

https://github.com/YangLin122/JRD
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Table 1. Retrieval results Recall@K (%) of JRD and the state-of-the-art methods with the same backbone network and embedding size of
512 on the standard test split of three datasets.

CUB CARS SOP
Recall@K(%) 1 2 4 8 1 2 4 8 1 10 100
DE DSP(Duan et al., 2019) 53.6 65.5 76.9 - 72.9 81.6 88.8 - 68.9 84.0 92.6
HDML(Zheng et al., 2019) 53.7 65.7 76.7 85.7 79.1 87.1 92.1 95.5 68.7 83.2 92.4
DAMLRRM(Xu et al., 2019) 55.1 66.5 76.8 85.3 73.5 82.6 89.1 93.5 69.7 85.2 93.2
ECAML(Chen & Deng, 2019a) 55.7 66.5 76.7 85.1 84.5 90.4 93.8 96.6 71.3 85.6 93.6
DeML (Chen & Deng, 2019b) 65.4 75.3 83.7 89.5 86.3 91.2 94.3 97.0 76.1 88.4 94.9
SoftTriple Loss(Qian et al., 2019) 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9 78.3 90.3 95.9
MS(Wang et al., 2019a) 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5 78.2 90.5 96.0
JRD 67.9 78.7 86.2 91.3 84.7 90.7 94.4 97.2 79.2 90.5 96.0

Table 2. Retrieval results Recall@K (%) with 95% confidence intervals of JRD and the variants of JRD in terms of different constituents
of JRS regularizer on three datasets. The results on SOP is evaluated on the standard test split.

CUB CARS SOP
Recall@K(%) 1 2 4 8 1 2 4 8 1 10 100
JRD 50.7(1.1) 63.7(1.1) 74.8(1.2) 84.1(1.2) 61.2(1.3) 72.6(0.9) 82.2(0.6) 89.2(0.7) 79.2 90.5 96.0
MRD 49.4(1.1) 62.3(1.1) 74.5(1.2) 83.6(1.2) 59.8(1.3) 71.5(1.2) 80.6(0.9) 88.0(0.9) 78.8 90.4 95.9
JRD-C 48.6(1.5) 61.4(1.4) 73.4(1.5) 83.0(1.4) 58.5(1.5) 69.6(1.3) 79.1(0.7) 86.6(0.9) 77.7 89.8 95.6
JRD-Pooling 49.4(1.2) 62.2(1.0) 74.1(1.2) 83.3(1.0) 59.1(1.5) 70.7(1.2) 80.3(0.5) 87.7(0.6) 79.0 90.4 95.9

The Table 1 reports the results on three benchmark datasets.
On the more challenging CUB and SOP datasets, our JRD
model achieves state-of-the-art performances on all Re-
call@Ks. Particularly, JRD increases Recall@1 by 2.2%
over the best baseline on the CUB dataset. As for the CARS
dataset, JRD obtains best or second-best in terms of all
metrics. In a word, our proposed JRD model achieves the
best performance or performance on par with the state-of-
the-art on all three different benchmark datasets, denoting
the effectiveness and generalization ability of our model.
Furthermore, since all the compared baselines are based on
DNNs, the proposed modularized easy-to-compute JRS reg-
ularizer is compatible with all those methods. It is possible
to achieve further improvements when combined with other
insights, which we leave as a direction of future works.

5.3. Analysis of the JRS Regularizer

Effects of joint representations: We analyze the effects of
modeling joint representations by comparing the JRD model
with the following variants: a) MRD (M for Marginal): The
model using only DML representation in the regularizer.
b) JRD-C: The model using pooling representation and
DML representation in the regularizer. c) JRD-pooling:
The model using DML representation and class level repre-
sentation in the regularizer.

We divide the test sets in CUB and CARS into ten disjoint
smaller sets, with each smaller set contains examples from
all the classes. This partition is not applicable to the SOP
dataset since the average number of examples in each class
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Figure 4. Recall@1 w.r.t. α on three datasets.

is less than ten, and there are some classes containing only
two examples. We report the mean retrieval results with
95% confidence intervals in Table 2. The results demon-
strate that JRD outperforms all its variants, indicating the
effectiveness of modeling joint representation. In particular,
the JRD model outperforms the MRD model, denoting the
superiority of joint representation over marginal representa-
tion. Besides, JRD-C and JRD-pooling also perform worse
than the JRD model, which demonstrates that using pool-
ing representation and class level representation can both
increase the effectiveness of JRS regularizer.

Sensitivity of α: We study the effects of the magnitudes of
JRS regularizer by varying α from 0 to 2. The Recall@1 on
three datasets are shown in Figure 4. The results of different
datasets are similar. We can observe bell-shaped curves
that confirm the motivation of regularization, controlling
trade-offs between intra-class compactness and inter-class
separability. The regularization effects on SOP are not as
significant as on the other two, possibly because there are
many classes (11,318) for training, and the average number
of examples in each class is less than ten. Thus the proba-
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bility of sampling more than two examples from the same
class in a mini-batch is small and resulting in a relatively
small magnitude of effective gradients of the regularizer.

Effect of explicit penalization on intra-class distances of
representations: To investigate the effect of additional ex-
plicit penalization on intra-class distances of representations
and to substantiate claims in Section 4.3.2, we compare the
proposed inner-product based JRS regularizer with a norm-
based Joint Maximum Mean Discrepancy (JMMD) regular-
izer (Long et al., 2017). We also compare JRD and JMMD
with a model regularized by a Joint Intra-class (JIntra) regu-
larizer. The JMMD regularizer and JIntra regularizer takes
the form as follows.

̂DJMMD(P,Q) , −‖ĈX1:L(P), ĈX′1:L(Q)‖⊗Ll=1RKHSl
,

(15)
D̂JIntra(P,Q) ,− ‖ĈX1:L(P)‖⊗Ll=1RKHSl

− ‖ĈX′1:L(Q)‖⊗Ll=1RKHSl
.

(16)

Using the same kernel design as in Section 5.1, JRD con-
siders inner product similarity and promote presentation
diversification. JIntra is the regularizer considering only the
norm of kernel embeddings and promoting intra-class com-
pactness by imposing explicit penalization on intra-class
distances of representations. JMMD is considering both
inner product similarity and the norm of kernel embeddings.
We train models with JMMD regularizer, models with JIntra
regularizer, and models with JRS regularizer on the CUB
dataset with different values of α. The Recall@1 with 95%
confidence bands w.r.t. α is shown in Figure 5. Only JRD
has a positive impact on performance. For trained models
JRD with α = 1 and JMMD with α = 0.1, we extract
DML representations of seen classes and unseen classes,
respectively. Similar to Section 2, we compute the error of
an ideal joint hypothesis λNN and theH-divergence d̂HNN )
of two groups of representations for nearest neighbor classi-
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Figure 5. Recall@1 with 95% confidence bands w.r.t. α of JRD,
JMMD, and JIntra on the CUB dataset. Best viewed in color.

Table 3. Recall@1, λ and H-divergence with 95% confidence in-
tervals of JMMD, and JRM on the CUB dataset.

Regularizers Recall@1 λNN d̂HNN

JMMD(α@0.1) 0.486(0.015) 0.321(0.006) 0.9275(0.003)
JRD(α@1) 0.506(0.013) 0.310(0.006) 0.934(0.004)

fiers. The results with 95% confidence intervals are shown
in Table 3. The representations produced by the JRS regu-
larizer has smaller (λNN + d̂HNN ), which coincides with
the result of Recall@1 and indicates a lower generalization
error bound. Optimizing with a JMMD regularizer imposes
explicit penalization on intra-class distances of DML rep-
resentations, which potentially filtered out discriminating
information for unseen classes and resulting in an inflated
error of an ideal joint hypothesis.

On kernel design: We use a mixture ofK Gaussian kernels
as the reproducing kernel, with K = 3 for pooling repre-
sentation and DML representation and K ′ = 1 for class
level representation. We study the influence of (K,K ′) on
Recall@1 for the CUB and CARS datasets. The results are
shown in Figure 6. In both datasets, the mixture of Gaus-
sian kernels outperforms the single Gaussian kernel with
(K,K ′) = (1, 1). On the other hand, the optimal values of
(K,K ′) are inconsistent for two datasets.

We study the influence of kernel functions k(x, x′). We
compare several common reproducing kernels, including
the single Gaussian kernel, the single Laplace Kernel, the
degree-p inhomogeneous polynomial kernel for p = 2 and
p = 5, and the kernel inducing moment generating function.
The retrieval results on the CUB dataset are shown in Table
4. Among these kernels, Gaussian kernels and Laplace
kernels are better ones. We guess this is because the kernel
embedding of Gaussian kernels and Laplace kernels are
injective, implying no information loss when mapping the
distribution into the Hilbert space. However, which kernel
is optimal for distance metric learning remains an open
question, which we leave as a future research direction.

(a) CUB (b) CARS

Figure 6. Recall@1 for different values of (K,K′) in the mixture
of Gaussian kernels on the CUB and CARS datasets.
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Table 4. Recall@K (%) of JRD for some common reproducing kernels on the CUB dataset. The magnitude parameter of the JRS
regularizer is searched and set to x, denoted as α@x for different reproducing kernels.

kernel k(x, x′) R@1(%) R@2(%) R@4(%) R@8(%)

Gaussian exp(− (x−x′)2
σ2 ) (α@1) 67.9 78.5 86.1 91.2

Laplace exp(−‖x−x′‖1
σ ) (α@1) 68.1 78.2 86.4 91.8

degree-p Inhomogeneous polynomial kernel
(p=2,p=5)

(x · x′ + 1)2 (α@1e-3) 66.1 77.0 85.3 90.9
(x · x′ + 1)5 (α@1e-3) 65.2 76.2 86.4 90.7

Kernel inducing moment generating function exp(x · x′) (α@1e-3) 66.1 76.7 85.4 91.1

6. Related Work
Distance metric learning: With given input feature vec-
tors, conventional distance metric learning methods (Xing
et al., 2003; Weinberger et al., 2006; Davis et al., 2007)
learn a mapping matrix from the input space to a represen-
tation space. To avoid overfitting, regularizing techniques
such as penalizing `1-norm (Niu et al., 2014), penalizing
trace norm (Liu et al., 2015), and recently, orthogonality-
promoting regularizations (Wang et al., 2012; Xie, 2015;
Carreira-Perpinán & Raziperchikolaei, 2016; Chen et al.,
2017; Xie et al., 2018) are proposed. The orthogonality-
promoting regularizations encourage the projection vectors
to be orthogonal, thus can be viewed as a class of techniques
promoting central moment diversification.

Deep DML: For complex tasks with high-dimensional orig-
inal input, more data-driven deep DML methods are devel-
oped. The triplet loss (Schroff et al., 2015) improves the pi-
oneering contrastive loss (Chopra et al., 2005) by penalizing
the relative intra-class distances compared with inter-class
distances in the sampled triplets. However, during the opti-
mization of triplet loss, the vast majority of sampled triplets
produce gradients with near-zero magnitude and depress
the performance. To generate useful gradients for training,
several lines of efforts are a) hard negative mining meth-
ods (Harwood et al., 2017; Wang et al., 2019a; Duan et al.,
2019) that sample or weighting informative examples, b)
losses (Ustinova & Lempitsky, 2016; Huang et al., 2016;
Sohn, 2016; Oh Song et al., 2016) that constrain on more
examples than triplets, c) classification losses (Movshovitz-
Attias et al., 2017; Wang et al., 2018; Qian et al., 2019)
methods that get rid of sampling by learning a proxy for
each class and constraining distances between examples and
proxies. There are also regularization methods proposed
to control overfitting (Chen & Deng, 2019a; Jacob et al.,
2019). An energy confusion regularization term is proposed
in Chen & Deng (2019a) within an adversarial framework,
which can be viewed as a particular case of JRS regular-
izer when only considering the DML representation with
a degree-1 homogeneous polynomial kernel. A high-order
moment regularizer is proposed in (Jacob et al., 2019). The

JRS regularizer can generalize the high-order moment regu-
larizer by considering infinite-order moment with a kernel
k(x, x′) = e(x·x′), which lead to the kernel mean embedding
being the moment-generating function.

Diversity-Promoting regularization: There are many re-
cent literature on diversity-promoting regularization from
the larger picture of latent space models (LSMs). Examples
are a regularizer encouraging pairwise dissimilarity of latent
components (Xie et al., 2015), a regularizer encouraging
larger volume of the parallelepiped formed by latent compo-
nents (Kwok & Adams, 2012), a regularizer penalizing the
covariances of hidden activations in the DNNs (Cogswell
et al., 2016), and a regularizer promoting uncorrelation as
well as evenness of latent components (Xie et al., 2017). In
contrast, we propose a JRS regularizer that takes advantage
of deep architectures of DNNs and promotes dissimilar joint
representations across multiple layers.

7. Conclusion
In this paper, we have attempted to address two issues of
existing Deep DML methods, including how to leverage
the hierarchical representations of DNNs to improve the
DML representation, and how to better balance between
the intra-class compactness and the inter-class separability.
We propose an easy-to-compute JRS regularizer for deep
DML that captures different abstract levels of invariant fea-
tures and promotes inter-class separability, by diversifying
the joint representation across three layers of hidden activa-
tions. Combining the JRS regularizer with the classification
loss (AMSoftmax) allows a better balancing point between
intra-class compactness and inter-class separability, and thus
more flexible information retention of the original inputs.
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Distance Metric Learning with Joint Representation Diversification

A.
Proposition 1. Suppose that {kl(x, x′) = ψl(x − x′)}Ll=1 on Rd are bounded, continuous reproducing kernels. Let
P l , P(Xl|X1:l−1) for l = 1, . . . , L with P 1 = P(X1). Then for any P(X1, . . . ,XL),Q(X′1, . . . ,X′L) ∈M1

+(×Ll=1X l),

SJRS(P,Q) =

L∏
l=1

〈φP l(ω), φQl(ω)〉L2(Rd,Λl), (1)

where φP l(ω) and φQl(ω) are the characteristic functions of the distributions P l and Ql, and Λl is a (normalized)
non-negative Borel measure characterized by ψl(x− x′).

Proof. The proof of Proposition 1 is a simple corollary of the famous Bochner’s theorem (Bochner, 1959).

Lemma 1 (Bochner’s theorem (Bochner, 1959; Wendland, 2004)). A complex-valued bounded continuous kernel k(x, x′) =
ψ(x− x′) on Rd is positive definite if and only if it is the Fourier transform of a finite non-negative Borel measure Λ on Rd,
i.e.,

ψ (x− x′) =

∫
Rd
e−iω

>(x−x′)dΛ(ω)

By the definition of joint representation similarity in Definition 4, we have,

SJRS(P,Q) = 〈CX1:L(P), CX′1:L(Q)〉⊗Ll=1RKHSl

= 〈
∫
×Ll=1Xl

(⊗Ll=1k
l(·, xl))dP(x1, . . . , xL),

∫
×Ll=1X′l

(⊗Ll=1k
l(·, x′l))dQ(x′1, . . . , x′L)〉⊗Ll=1RKHSl

=

∫
×Ll=1Xl

∫
×Ll=1X′l

〈⊗Ll=1k
l(·, xl),⊗Ll=1k

l(·, x′l)〉⊗Ll=1RKHSl
dP(x1, . . . , xL)dQ(x′1, . . . , x′L)

=

∫
×Ll=1Xl

∫
×Ll=1X’l

L∏
l=1

〈kl(·, xl), kl(·, x′l)〉RKHSldP(x1, . . . , xL)dQ(x′1, . . . , x′L)

(a)
=

∫
×Ll=1Xl

∫
×Ll=1X′l

L∏
l=1

kl(xl, x′l)dP(x1, . . . , xL)dQ(x′1, . . . , x′L)

(b)
=

∫
×Ll=1Xl

∫
×Ll=1X′l

L∏
l=1

∫
Rd
e−iω

>(xl−x′l)dΛl(ω)dP(x1, . . . , xL)dQ(x′1, . . . , x′L)

=

∫
×Ll=2Xl

∫
X1

dP(x1)

∫
×Ll=2X′l

∫
X′1

dQ(x′1)

∫
Rd
e−iω

>(x1−x′1)dΛ1(ω)

L∏
l=2

∫
Rd
e−iω

>(xl−x′l)dΛl(ω)dP(x2:L|x1)dQ(x′2:L|x′1)

(c)
=

∫
×Ll=2Xl

∫
×Ll=2X′l

∫
Rd

∫
e−iω

>x1dP(x1)

∫
eiω
>x′1dQ(x′1)dΛ1(ω)

L∏
l=2

∫
Rd
e−iω

>(xl−x′l)dΛl(ω)dP(x2:L|x1)dQ(x′2:L|x′1)

=

∫
×Ll=2Xl

∫
×Ll=2X′l

∫
Rd
φP 1(ω)φQ1(ω)dΛ1(ω)

L∏
l=2

∫
Rd
e−iω

>(xl−x′l)dΛl(ω)dP(x2:L|x1)dQ(x′2:L|x′1)

=

∫
×Ll=2Xl

∫
×Ll=2X′l

〈φP 1(ω), φQ1(ω)〉L2(Rd,Λ1)

L∏
l=2

∫
Rd
e−iω

>(xl−x′l)dΛl(ω)dP(x2:L|x1)dQ(x′2:L|x′1)

= 〈φP 1(ω), φQ1(ω)〉L2(Rd,Λ1)

∫
×Ll=2Xl

∫
×Ll=2X′l

L∏
l=2

∫
Rd
e−iω

>(xl−x′l)dΛl(ω)dP(x2:L|x1)dQ(x′2:L|x′1),

(d)
=

L∏
l=1

〈φP l(ω), φQl(ω)〉L2(Rd,Λl),

where (a) is obtained by invoking the reproducing property, (b) is obtained by invoking Bochner’s theorem, (c) is obtainied
by invoking Fubini’s theorem, (d) is obtained by the principle of mathematical reduction.


