
Quantitative Simulation Games⋆

Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna

IST Austria (Institute of Science and Technology, Austria)

Abstract. While a boolean notion of correctness is given by a preorder
on systems and properties, a quantitative notion of correctness is defined
by a distance function on systems and properties, where the distance be-
tween a system and a property provides a measure of “fit” or “desirabil-
ity.” In this article, we explore several ways how the simulation preorder
can be generalized to a distance function. This is done by equipping the
classical simulation game between a system and a property with quan-
titative objectives. In particular, for systems that satisfy a property, a
quantitative simulation game can measure the “robustness” of the sat-
isfaction, that is, how much the system can deviate from its nominal
behavior while still satisfying the property. For systems that violate a
property, a quantitative simulation game can measure the “seriousness”
of the violation, that is, how much the property has to be modified so
that it is satisfied by the system. These distances can be computed in
polynomial time, since the computation reduces to the value problem in
limit average games with constant weights. Finally, we demonstrate how
the robustness distance can be used to measure how many transmission
errors are tolerated by error correcting codes.

1 Introduction

Classical formalizations of systems and properties are boolean: given a system
and a property, the property is either true or false of the system. The classical
view partitions the world into “correct” and “incorrect” systems, offering few
nuances. In reality, of several systems that satisfy a property in the boolean
sense, often some are more desirable than others, and of the many systems that
violate a property, usually some are less objectionable than others. For instance,
among the systems that satisfy the response property that every request be
granted, we may prefer systems that grant requests quickly (the quicker, the
better), or we may prefer systems that issue few unnecessary grants (the fewer,
the better); and among the systems that violate the response property, we may
prefer systems that serve many initial requests (the more, the better), or we may
prefer systems that serve many requests in the long run (the greater the fraction
of served to unserved requests, the better).

There is thus a natural question whether it is possible to extend the standard
specification frameworks and verification algorithms to capture a finer and more

⋆ This work was partially supported by the European Union project COMBEST and
the European Network of Excellence ArtistDesign.

quantitative view of the relationship between specifications and systems. We
focus on extending the notion of simulation to the quantitative setting. For
reactive systems, the standard correctness requirement is that all executions
of an implementation have to be allowed by the specification. Requiring that
the specification simulates the implementation is a stricter condition, but it
is computationally less expensive to check. The simulation relation defines a
preorder on systems. We extend the simulation preorder to a distance function,
that is, a function that given two systems returns the distance between them.

Let us consider the definition of simulation of an implementation I by a spec-
ification S as a two-player game, where Player 1 (the implementation) chooses
moves (transitions) and Player 2 (the specification) tries to match each move.
The goal of Player 1 is to prove that simulation does not hold, by driving the
game into a state from which Player 2 cannot match the chosen move; the goal
of Player 2 is to prove that there exists a simulation relation, by playing the
game forever. In order to extend this definition to capture how “good” (or how
“bad”) the simulation is, we make the players pay a certain price for their choices.
The goal of Player 1 is then to maximize the cost of the game, and the goal of
Player 2 is to minimize it. The cost is given by an objective function. In this
article, the limit average objective function is considered. For example, for
incorrect implementations, that is those for which the specification S does not
simulate the implementation I, we might be interested in how often the spec-
ification (Player 2) cannot match an implementation move. We formalize this
using a game with a limit-average objective between modified systems. The spec-
ification is allowed to “cheat,” by following a non-existing transition, while the
implementation is left unmodified. More precisely, the specification is modified
by giving the transitions from the original system a weight of 0, and adding new
“cheating” transitions with a non-zero positive weight. As Player 2 is trying to
minimize the value of the game, she is motivated not to cheat. The value of the
game measures how often the specification can be forced to cheat by the imple-
mentation, that is, how often the implementation violates the specification (i.e.,
commits an error) in the worst case. We call this distance function correctness.

Consider now the examples in Figure 1. We take the system S1 as the speci-
fication. The specification allows at most two symbols b to be output in the row.
Now let us consider the two incorrect implementations I3 and I4. The implemen-
tation I3 outputs an unbounded number of b’s in a row, while the implementation
I4 can output three b’s in a row. The specification S1 will thus not be able to
simulate either I3 or I4, but I4 is a “better” implementation in the sense that it
violates the requirement to a smaller degree. We capture this by allowing S1 to
cheat in the simulation game by taking an existing edge while outputting a dif-
ferent symbol. When simulating the system I3, the specification S1 will have to
output a b when taking the edge from state 2 to state 0. This cheating transition
will be taken every third move while simulating I3. The correctness distance
from S1 to I3 will therefore be 1/3. When simulating I4, the specification S1

needs to cheat only one in four times—this is when I4 takes a transition from
its state 2 to state 3. The distance from S1 to I4 will therefore be 1/4.

0 1 2

a

b b

a

a

(a) S1

0 1

a

b

a

(b) I2

0

b

(c) I3

0 1 2 3
b b b

a

(d) I4

Fig. 1. Example Systems

Considering the implementation I2 from the Figure 1, it is easy to see that
it is correct with respect to the specification S1. The correctness distance would
thus be 0. However, it is also easy to see that I2 does not include all behaviors
allowed by S1. Our second distance function, coverage, is the dual of the correct-
ness distance. It measures how many of the behaviors allowed by the specification
are actually implemented by the implementation. This distance is obtained as
the value for the implementation in a game in which I is required to simulate
the specification S, with the implementation being allowed to cheat. Our third
distance function is called robustness. It measures how robust the implementa-
tion I is with respect to the specification S in the following sense: we measure
how often the implementation can make an unexpected error (i.e., it performs
a transition not present in its transition relation), with the resulting behavior
still being accepted by the specification. Unexpected errors could be caused, for
example, by a hardware problem, by a wrong environment assumption, or by
a malicious attack. Robustness measures how many such unexpected errors are
tolerated.

The correctness, coverage, and robustness distances can be obtained by solv-
ing the value problem in the corresponding games. The distances we considered
lead to limit average games with constant weights. The value of such games can
be computed in polynomial time [21].

Finally, we present an application of the robustness distance as well as an
application of the coverage distance. First, we consider error correction systems
for transmitting data over noisy channels and show that the robustness distance
measures how many transmission errors can be tolerated by an implementa-
tion. Three implementations are analyzed, one based on the Hamming code, one
based on triple modular redundancy, and an implementation without any error
correction. Second, a specification of a reactive system with inputs and outputs
is considered, and we use the coverage metric to determine what part of the
input words for which a specification defines an output is covered by different
implementations.

Related work Weighted automata [5, 6, 2, 11] provide a way to assign values to
words, and to languages defined by finite-state systems. In contrast, we propose
measuring distances between systems, and our approach provides distances on
systems which cannot be obtained by calculating a measure for the two systems
in question separately.

There have been several attempts to give a mathematical semantics to reac-
tive processes which is based on quantitative metrics rather than boolean pre-
orders [19, 8]. In particular for probabilistic processes, it is natural to generalize
bisimulation relations to bisimulation metrics [10, 20], and similar generaliza-
tions can be pursued if quantities enter not through probabilities but through
discounting [9] or continuous variables [4] (this work uses the Skorohod metric on
continuous behaviors to measure the distance between hybrid systems). We con-
sider distances between purely discrete (nonprobabilistic, untimed) systems, and
our distances are directed rather than symmetric (based on simulation rather
than bisimulation).

Software metrics measure properties such as lines of code, depth of inheri-
tance (in an object-oriented language), number of bugs in a module or the time
it took to discover the bugs (see for example [7, 13, 15]). These metrics measure
syntactic properties of the source code, and are fundamentally different from
our distance functions that capture the difference in the behavior (semantics) of
programs.

2 Quantitative Simulation Games

2.1 Transition Systems and Games

Transition Systems. A transition system is a tuple 〈S, Σ, E, s0〉 where Σ is
a finite alphabet, S is a finite set of states, E ⊆ S × Σ × S is a set of labeled
transitions between the states, and s0 is the initial state. We require that for
every s ∈ S, there exists a transition from s. The set of all transition systems
is denoted by S. A weighted transition system is a tuple 〈S, Σ, E, s0, v〉 where
S, Σ, E, and s0 are as before, and v is a function from E to Q. The set of all
weighted transition systems is denoted by SQ.

A run in a transition system T is an infinite path ρ = ρ0ρ1ρ2 . . . ∈ Sω where
for all i ≥ 0, (ρi, σ, ρi+1) ∈ E for some σ ∈ Σ.

Game Graphs. A game graph G is a tuple 〈S, S1, S2, Σ, E, s0〉 where S, Σ, E
and s0 are as in transition systems and (S1, S2) is a partition of S. The choice
of the next state is made by Player 1 (Player 2) when the current state is in S1

(respectively, S2). A weighted game graph is a game graph along with a weight
function v from E to Q. A run in the game graph G is called a play. The set of
all plays is denoted by Ω.

When the two players represent the choices internal to a system, we call
the game graph an alternating transition system. We only consider alternating
transition systems where the states of Player 1 and Player 2 alternate. The set
of all alternating transition systems is denoted by A. The set of all weighted
alternating transition systems is denoted by AQ.

Strategies. Given a game graph G, a strategy for Player 1 is a function π :
S∗S1 → S such that ∀s0s1 . . . si ∈ S∗S1, we have that (si, π(s0s1 . . . si)) ∈ E.
A strategy for Player 2 is defined in a similar way. The set of all strategies for
Player i is denoted by Πi. A play ρ = ρ0ρ1ρ2 . . . conforms to a player p strategy

π if ∀i ≥ 0 : (ρi ∈ Sp =⇒ ρi+1 = π(ρ0ρ1 . . . ρi)). The outcome of a Player
1 strategy π1 and a Player 2 strategy π2 is the unique play out(π1 , π2) that
conforms to both π1 and π2.

Two restricted notions of a strategy are sufficient for many classes of games.
A memoryless strategy is one where the value of the strategy function depends
solely on the last state in the history, whereas a finite-memory strategy is one
where the necessary information about the history can be summarized by a finite
amount of information. Formally, a strategy π is called:

1. Memoryless if π(w1s) = π(w2s) for all w1, w2 ∈ S∗ and s ∈ S.

2. Finite-memory if there exists a finite set M , an initial memory state m0 ∈ M ,
a memory update function µ : S∗×M → M and move function ν : S×M →
S such that

(a) µ(ws, m0) = µ(s, µ(w, m0)), and

(b) π(ws) = ν(s, µ(ws, m0)) for all w ∈ S∗ and s ∈ S.

Games and Objectives. A game consists of a game graph and a boolean or
quantitative objective. A boolean objective is a function Φ : Ω → {0, 1}. The goal
of Player 1 in a game with boolean objective Φ is to choose a strategy so that,
no matter what Player 2 does, the outcome maps to 1; and the goal of Player
2 is to ensure that the outcome maps to 0. A quantitative objective is a value

function f : Ω → R. The goal of Player 1 is to maximize the value f of the play,
whereas the goal of Player 2 is to minimize it. Given a boolean objective Φ, a
play ρ is winning for Player 1 if Φ(ρ) = 1. Otherwise, it is winning for Player
2. A strategy π is a winning strategy for Player p if every play starting at the
initial state and conforming to π is winning for Player p.

For a quantitative objective f , the value of the game for a Player 1 strategy
π1, denoted by ν1(π1), is defined as the minimum value of the outcome of the
play resulting from a Player 2 strategy, i.e., ν1(π1) = infπ2∈Π2

f(out(π1 , π2)).
The value of the game for Player 1 is defined as the supremum of the values
of all Player 1 strategies, i.e., supπ1∈Π1

ν1(π1). The value of a Player 2 strategy
π2 and the value of the game for Player 2 are defined analogously as ν2(π2) =
supπ1∈Π1

f(out(π1 , π2)) and infπ2∈Π2
ν2(π2). A strategy is an optimal strategy

for a player if the value of the strategy for that player is equal to the value of
the game.

We consider only the limit-average quantitative objective. Given a game
graph with the weight function v and a play ρ = ρ0ρ1ρ2 . . ., for all i ≥ 0,
let vi = v(〈ρi, ρi+1〉).

LimAvg(ρ) = lim inf
n→∞

1

n
·

n−1∑

i=0

vi

LimAvg is the long-run average of the weights occurring in a play.

Note that for LimAvg objectives, optimal memoryless strategies exist for
both players [12].

2.2 Qualitative Simulation Games

The classical simulation preorder [17] is a useful and polynomially computable
relation to compare two transition systems. In [1] this relation was extended to
alternating simulation between alternating transition systems. These relations
can be cast in the form of 2-player games with qualitative objectives.

Simulation and Alternating Simulation. Consider two transition systems
A = 〈S, Σ, E, s0〉 and A′ = 〈S′, Σ, E′, s′0〉. The system A′ simulates the system
A if there exists a relation H ⊆ S × S′ such that

1. (s0, s
′
0) ∈ H , and

2. ∀s, t ∈ S, s′ ∈ S′ : (s, s′) ∈ H ∧ (s, σ, t) ∈ E ⇒ (∃t′ : (s′, σ, t′) ∈ E′ ∧ (s′, t′) ∈
H).

If A′ simulates A, we write A ≤ A′.
We define a restricted form of alternating simulation defined in [1], which

is sufficient for the 2-player turn-based alternating systems we consider.
For two alternating transition systems A = 〈S, S1, S2, Σ, E, s0〉 and A′ =
〈S′, S′

1, S
′
2, Σ, E′, s′0〉, alternating simulation of A by A′ holds if there exists a

relation H ⊆ S × S′ such that:

1. (s0, s
′
0) ∈ H , and

2. ∀s ∈ S, s′ ∈ S′ : (s, s′) ∈ H ⇒ (s ∈ S1 ⇔ s′ ∈ S′
1)

3. ∀s, t ∈ S, s′ ∈ S′ : ((s, s′) ∈ H ∧ s ∈ S1) ⇒ ∀(s, σ, t) ∈ E : (∃(s′, σ, t′) ∈ E′ :
(t, t′) ∈ H).

4. ∀s ∈ S, s′, t′ ∈ S′ : ((s, s′) ∈ H ∧ s ∈ S2) ⇒ ∃(s′, σ, t′) ∈ E′ : (∀(s, σ, t) ∈ E :
(t, t′) ∈ H).

Simulation and Alternating Simulation Games. Given two (alternating)
transition systems, A and A′, we can construct a game GA,A′ (HA,A′) such that,
(alternating) simulation of A by A′ holds if and only if Player 2 has a winning
strategy in GA,A′ (HA,A′). To construct simulation and alternating simulation
games, we define quantitative simulation game graphs. The quantitative version
of these game graphs are not necessary to define the classical simulation and
alternating simulation games. However, they are introduced here as they will be
used later to define quantitative simulation games.

Given two weighted transition systems A and A′ with the same alpha-
bet, we define the corresponding quantitative simulation game graph GA,A′ =
〈SG, SG

1 , SG
2 , Σ, EG, sG

0 〉 as follows:

1. The alphabet Σ is the same as the alphabet of A and A′.
2. The state space SG = S × (Σ ∪ {#})× S′ ∪ {serr}.
3. The states are partitioned into Player 1 and Player 2 states as follows:

(s, #, s′) ∈ SG
1 , and (s, σ, s′) ∈ SG

2 for all σ ∈ Σ. Also, state serr ∈ SG
1 .

4. The initial state is s0 = (s0, #, s′0).
5. Each transition of the game graph corresponds to a transition in either A or

A′ as follows:

(a) ((s, #, s′), σ, (t, σ, s′)) ∈ EG ⇔ (s, σ, t) ∈ E
(b) ((s, σ, s′), σ, (s, #, t′)) ∈ EG ⇔ (s′, σ, t′) ∈ E′

For each of the above transitions, the weight is the same as the weight of the
corresponding transition in A or A′.

6. If there is no outgoing transition from a particular state, transitions to serr

are added with all symbols. serr is a sink with transitions to itself on all
symbols. Each of these transitions has weight 1.

For classical simulation games, we consider the same game graph without
weights. Now, the boolean objective for the simulation game is as follows. If
the play can proceed ad infinitum without reaching serr, then Player 2 wins. If
the play arrives at the serr state, then Player 1 wins. We denote this classical
simulation game as GA,A′ . Intuitively, in every state, Player 1 chooses a transi-
tion of A and Player 2 has to match it by picking a transition of A′. If Player
2 cannot match at some point, Player 1 wins that play. It is easy to see that A′

simulates A iff there is a winning strategy for Player 2 in GA,A′ .
We can extend the simulation game to an alternating simulation game

as follows. Given two quantitative alternating transition systems A =
〈S, S1, S2, Σ, E, s0, v〉 and A′ = 〈S′, S′

1, S
′
2, Σ, E′, s′0, v

′〉 with the same alpha-
bet, we define the corresponding alternating simulation game graph HA,A′ =
〈SH , SH

1 , SH
2 , Σ, EH , sH

0 , vH〉 as:

1. The alphabet is the same as the alphabet of A and A′. The initial state is
(s0, #, s′A, p) where p is 1 (2) if s0 and s′0 are both Player 1 (respectively,
Player 2) states. Note that if one of them is a Player 1 state and the other
is a Player 2 state, then alternating simulation of A by A′ cannot hold and
hence, we do not define the game graph for such cases.

2. Player 1 states of the graph are SH
1 = {(s, #, s′, 1) | s ∈ S1 ∧ s2 ∈ S′

1} ∪
{(s, σ, s′, 1) | s ∈ S2 ∧ s′ ∈ S′

1 ∧ σ ∈ Σ} ∪ {serr}. The first set of the union
represents the states where Player 1 has to choose a transition for Player 2 to
match and the second set represents the states where Player 2 has already
chosen a transition with the symbol σ and Player 1 has to match it. State
serr is an error state.

3. Player 2 states of the graph are SH
2 = {(s, #, s′, 2) | s ∈ S2 ∧ s′ ∈ S′

2} ∪
{(s, σ, s′, 2) | s ∈ S2 ∧ s′ ∈ S′

1 ∧ σ ∈ Σ}. The sets in this union are analogous
to the ones in Player 1 states.

4. The transitions correspond to A or A′ transitions as follows:

(a) If (s, σ, t) is a transition in A and (s, #, s′, 1) is a Player 1 state, we have
the corresponding transition ((s, #, s′, 1), σ, (t, σ, s′, 2)) in EH , i.e., in
states where Player 1 has to choose a transition of A, the A component
of the state is changed to the destination of the A transition and the
symbol is changed to the symbol of the A transition.

(b) If (s′, σ, t′) is a transition in A′ and (s, #, s′, 2) is a Player 2 state,
we have the corresponding transition ((s, #, s′, 2), σ, (s, σ, t′, 1)) in EH .
These transitions are similar to the previous case, but Player 2 has to
choose a A′ transition for Player 1 to match.

(c) If (s, σ, t) is a transition in A and (s, σ, s′, 1) is a Player 1 state, we have
the corresponding transition ((s, σ, s′, 1), σ, (t, #, s′, 1)) in EH . Here,
Player 1 chooses a transition to match the previous move of Player
2 which had the symbol σ. The A component of the state is changed
accordingly and the symbol is reset to #.

(d) If (s′, σ, t′) is a transition in A′ and (s, σ, s′, 2) is a Player 2 state, we
have the corresponding transition ((s, σ, s′, 2), σ, (s, #, t′, 2)) in EH . This
is the dual of the previous case.

The weight of each transition is equal to the weight of the corresponding A
or A′ transition.

5. If there is no outgoing transition from a particular state, a transition to serr

is added on all symbols. serr is a sink with transitions to itself on all symbols.
Each of these transitions has weight 1.

We consider the game graph without weights to define the alternating simulation
game. As in the case of simulation games, the objective of Player 2 is to ensure
that the play proceeds ad infinitum without reaching serr, and the objective
of Player 1 is to ensure that the play reaches serr. We denote this qualitative
alternating simulation game as HA,A′

. Intuitively, as in the simulation game,
whenever in a Player 1 state of A, Player 1 chooses a transition and Player 2 has
to match it in A′. But, in a Player 2 state of A′, Player 2 chooses a transition
of A′ and Player 1 matches it in A. Player 1 wins if a transition cannot be
matched at some point, and Player 2 wins otherwise. Again, it can be seen that
alternating simulation of A by A′ holds iff there exists a winning strategy for
Player 2 .

2.3 Quantitative Simulation Games

We now define a generalized notion of simulation games called quantitative sim-
ulation games. We replace the qualitative objectives of a simulation game by a
LimAvg objective to measure distances between systems.

Quantitative Simulation Games. Given two quantitative transition systems
A and A′, the quantitative simulation game is played on the quantitative simu-
lation game graph GA,A′ with the objective of Player 1 being to maximize the
LimAvg value of the play, while the objective of Player 2 being to minimize it.
We denote this game as QA,A′ .

Quantitative Alternating Simulation Games. For two alternating transi-
tion systems A and A′, we similarly define the quantitative alternating simula-

tion game played on HA,A′ with the same objectives as a quantitative simulation
game. We denote this game as PA1,A2

.

2.4 Modification Schemes

We will use quantitative simulation games to measure various properties of sys-
tems. For computing these properties, we need to use small modifications of the

original systems. For example, when trying to compute the distance as the num-
ber of errors an implementation commits with respect to a specification, we add
to the specification some recovery behavior to be used in case of error. To ensure
that the specification does not use this recovery behavior when it is not neces-
sary, there is an extra cost for using it. We encode these kind of modifications
using the notion of modification schemes. However, to ensure that modifications
schemes do not change the basic structure system, we impose a strict set of rules
on these schemes.

A modification scheme is a function m : S → SQ∪AQ from transition systems
to quantitative (alternating) transition systems, which can be computed using
the following steps:

1. Edges may be added to the transition system.

2. Each state may be replaced by a local subgraph. The graph is the same for
all states of the system. All edges of the graph, including those obtained
from the previous step, have to be preserved.

3. Every edge of the system is associated with a weight from Q.

The above rules ensure that the modified system retains the structure of the
original system. We present two examples of modification schemes.

Output Modification. This scheme is used to add behavior to a system
that allows it to output an arbitrary symbol while moving to a state specified
by an already existing transition. For every transition (s, σ, s′), transitions with
different symbols are added to the system i.e., {(s, α, s′) | α ∈ Σ}. These transi-
tions are given an weight of 2 to prohibit their free use. All other transitions have
the weight zero. Given a transition system T , we denote the modified system as
OutMod(T).

Error Modification. In a perfectly functioning system, errors may occur
due to unpredictable events. We model this with an alternating transition system
with one player modeling the original system (Player 1) and the other modeling
the controlled error (Player 2). At every state, Player 2 chooses whether or not
a error occurs by choosing one of the two successors. From one of these states,
Player 1 can choose the original successors of the state and from the other, she
can choose either one of the original successors or one of the error transitions.
Therefore, Player 2 controls the possibility of an error occurring, whereas Player
1 actually chooses the transition the system takes. We penalize Player 2 for the
choice of not allowing errors to happen.

Given T = 〈S, Σ, E, s0〉 we define ErrMod(T) to be the quantitative alter-
nating transition system obtained after the following steps.

1. All transitions that differ from existing transitions only in the symbol are
added to the system as in OutMod .

2. The graph used to replace each state s is shown in Figure 2.

3. Only the transitions labeled ¬c are given the weight 2. The rest are given
the weight 0.

s

s′

s′′

c

¬c
E(s)

E(s) ∪ X(s)

Fig. 2. Graph for ErrMod

In addition to these modification schemes, we define the trivial modification
scheme where no changes are made to the transitions of the system and every
edge is given the weight 0. We call this scheme NoMod .

3 Simulation Distances

We present here examples of distances that can be defined using quantitative
simulation games.

3.1 Correctness

Given a specification T2 and an implementation T1, such that T2 is incorrect with
respect to T1, the correctness distance measures the degree of incorrectness. The
boolean simulation relation between systems can determine whether the behavior
of one system can be simulated by another. However, this relation is very strict
in a certain way. Even a single nonconformant symbol can destroy this relation.
Here we present a game which is not as strict and measures the minimal number
of required errors, i.e. the minimal number of times the specification has to use
nonmatching symbols when simulating the implementation.

Definition 3.1 (Correctness distance). The correctness distance dcor(T1, T2)
from transition system T1 to transition system T2 is the Player 1 value of the

quantitative simulation game CT1,T2
= QNoMod(T1),OutMod(T2).

The game C can be intuitively understood as follows. Given two transition
systems T1 and T2, we are trying to simulate the system T1 by T2, but the spec-
ification T2 is allowed to make errors. The implementation T1 tries to make the
specification commit as many errors as possible. Every move by Player 1 chooses
a transition of T1. Every matching move of Player 2 is a zero weight transition of
T2. If Player 2 cannot match a move, she must still choose an existing transition
an incurs a weight of 2. (Other error models are possible where Player 2 can use
a completely new transition.) Player 2 tries to show that the number of errors
of T1 is as small as possible for all strategies of Player 1, i.e., all behaviors of
the implementation. If the implementation is correct (T2 simulates T1), then the
correctness distance is 0. Otherwise, the value of the game is the LimAvg of the
number of errors, i.e., the long run average of the errors.

0

a

(a) I1

0 1 2 3 4
b b b b

a

(b) I5

Fig. 3. Example Systems

We present a few example systems and their distances here to demonstrate
the fact that the above game measures distances that correspond to intuition.
In Figure 3 and Figure 1, S1 is the specification system against which we want
to measure the rest of the systems. In this case, the specification says that there
cannot be more than two b’s in a row. The distances between these systems
according to the LimAvg correctness game are summarized in Table 1.

T1 T2 dcor(T1, T2)

S1 S1 0
S1 I1 0
S1 I2 0
S1 I3 1/3
S1 I4 1/4
S1 I5 1/5

Table 1. Distances according to the Correctness game

Among the systems which do not satisfy the specification, i.e. I3 and I4,
we can intuitively see that I3 is worse than I4 in the sense that I3 violates the
specification that there are no more than two b’s in a row more often than I4.
This fact is reflected in the distances as I3 is more distant from S1 than I4.
However, surprisingly the distance to I5 is less than the distance to I4. In fact,
the distances reflect on the long run the number of times the specification has
to err to simulate the implementation.

3.2 Coverage

Now, we present the dual game of the one presented above. Here, we measure
the behaviors that are present in one system but not in the other system. Given
a specification T2 and an implementation T1, the coverage distance corresponds
to the behavior of the specification which is farthest from any behaviour of the
implementation. Hence, we have that the coverage distance from a system T1 to
a system T2 is the correctness distance from T2 to T1.

Definition 3.2 (Coverage distance). The coverage distance dcov(T1, T2) from

transition system T1 to transition system T2 is the Player 1 value of the quanti-

tative simulation game VT1,T2
= QNoMod(T2),OutMod(T1).

V measures the distance from T1 to T2 as the minimal number of errors that
have to be committed by T1 to cover all the behaviors of T2.

Again, we present examples of systems and their distances according to V .
We use the systems from the examples in Figure 3 and Figure 1. The distances
are summarized in Table 2.

T1 T2 dcov(T1, T2)

S1 S1 0
S1 I1 2/3
S1 I2 1/3
S1 I3 1
S1 I4 3/4
S1 I5 4/5

Table 2. Distances according to the Coverage game

3.3 Robustness

Given a specification system and a correct implementation of the specification,
the notion of robustness presented here is a measure of the number of errors by
the implementation that makes it nonconformant to the specification. The more
such errors tolerated by the specification, the more robust the implementation
is with respect to the specification. In other words, the distance measures the
number of critical points, or points where an error will lead to an unacceptable
behavior. The lower the value of the robustness distance to a given specification,
the more robust an implementation is. In case of an incorrect implementation,
the simulation of the implementation does not hold irrespective of whether im-
plementation commits errors. Hence, in that case, the robustness distance will
be 1.

Definition 3.3 (Robustness distance). The robustness distance drob(T1, T2)
from transition system T1 to transition system T2 is the Player 1 value of the

quantitative alternating simulation game RT1,T2
= PErrMod(T1),ErrMod∅(T2).

The game RErrMod(T1),ErrMod∅(T2) is simple and is played in the following
steps:

1. The specification T2 chooses whether the implementation T1 is allowed to
make an error.

2. The implementation chooses a transition on the implementation system. She
is allowed to err based on the specification choice in the previous step.

3. Specification chooses a matching move to simulate the implementation.

The specification tries to minimize the number of moves where she prohibits the
implementation to commit errors (without destroying the simulation relation),
whereas the implementation tries to maximize it. Intuitively, the positions where
the specification cannot allow errors are the critical points for the implementa-
tion.

T1 T2 drob(T1, T2)

S1 S1 1
S1 I1 1/3
S1 I2 2/3
S1 I3 1
S1 I4 1
S1 I5 1

Table 3. Distances according to the Robustness game

Let us examine the examples from Figure 1 and Figure 3 in detail. In the
game played between S1 and S1, every position is critical. At each position, if
an error is allowed, the system can output three b’s in a row by using the error
transition to return to state 0 while outputting a b. The next two moves can be
b’s irrespective whether errors are allowed or not. This breaks the simulation.
Now, consider I1. This system can be allowed to err every two out of three times
without violating the specification. This shows that I1 is more robust than S1

for implementing S1. The list of distances is summarized in Table 3.

3.4 Computation of Simulation Distances

The computational complexity of computing the three distances defined here is
the same as solving the value problem for the respective games.

The dcor, dcov and drob games are simple graph games with LimAvg objectives.
The decision problem (deciding whether the value is greater than a given value)
for these games is in NP ∩ co-NP [21], but no PTIME algorithm is known.
However, for LimAvg objectives the existence of a pseudo-polynomial algorithm,
i.e., polynomial for unary encoded weights, implies that the computation of the
distances can be achieved in polynomial time. This is due to the fact that we
use constant weights. Using the algorithm of [21] dcor, dcov and drob distances can
be computed in time O((|S||S′|)3 · (|E||S| + |E′||S|)) where S and S′ are state
spaces of the two transition systems; and E and E′ are the sets of transitions of
the two systems.

4 Applications of Distances

In this section, we present two examples of application of the distances defined
in Section 3 to measure interesting properties of larger systems. In Section 4.1,
we show examine forward error correction systems for bit streams and show a
relation between their robustness measured by R and the bit-error rate they can
tolerate. In Section 4.2, we measure the coverage of a number of implementations
of a request-grant system with respect to a specification and illustrate how dcov

measures the restriction placed on the environment by the implementations.

4.1 Forward Error Correction Systems

Forward Error Correction systems are a mechanism of error control for data
transmission on noisy channels [18]. A very important characteristic of these
error correction systems is the maximum tolerable bit-error rate, which is the
maximum number of errors the system can tolerate while still being able to
successfully decode the message. We show that this property can be measured
as the drob distance between a system and an ideal system (specification).

We will examine three forward error correction systems: one with no er-
ror correction facilities, the Hamming(7,4) code [14], and triple modular redun-
dancy [16]. Intuitively, each of these systems is at a different point in the trade-off
between efficiency of the transmission and the tolerable bit-error rate. By design,
the system with no error correction can tolerate no errors and the Hamming(7,4)
system can tolerate one error in seven bits and the triple modular redundancy
system can tolerate one error in three bits. However, the overhead incurred for
transmission of messages increases with increasing error tolerance. The system
with no error correction uses no extra bits while, the Hamming(7,4) system and
the triple modular redundancy system use 3 and 8 extra bits for transmitting
a four bit message. We compute the values of the error tolerance by measuring
robustness with respect to an ideal system which can tolerate an unbounded
number of errors.

The pseudo-code for the three systems we are examining is presented in
Figure 4. The basic architecture of each system is the same. Each system has
a four bit input and an encoder which adds the error correction bits to these.
Then, the bits are multiplexed and transmitted over a noisy channel. The bits
received on the other side of the channel are de-multiplexed and decoded and
output. Each system is split into the sender and receiver. The only errors we
allow are bit flips during transmission.

The transition systems for these systems are constructed according to the
following rules:

1. The state space of the system is {0, 1, #}n × {0, 1, #}m where n and m are
constants specific to the system. The first component is the list of bits to
be transmitted by the sender, and the second component is the list of bits
already received by the receiver. The initial state is (#n, #m).

No error correction
proc sender(B0,B1, B2,B3) ≡

call send(B0,B1,B2,B3); .
proc receiver() ≡

call receive(B0,B1,B2,B3);
return(B0,B1,B2,B3).

Hamming(7,4) error correction

proc sender(B0,B1, B2,B3) ≡

P0 := B0 ⊕ B1 ⊕ B3

P1 := B0 ⊕ B2 ⊕ B3

P2 := B1 ⊕ B2 ⊕ B3

call send(P0,P1, B0,P2,B1,B2,B3); .
proc receiver() ≡

call receive(P0,P1,B0,P2,B1,B2,B3);
P0 := P0 ⊕B0 ⊕ B1 ⊕ B3;
P1 := P1 ⊕B0 ⊕ B2 ⊕ B3;
P2 := P2 ⊕B1 ⊕ B2 ⊕ B3;
B0 := B0 ⊕ (¬P0.P1.¬P2);
B1 := B1 ⊕ (P0.¬P1.P2);
B2 := B2 ⊕ (P0.P1.¬P2);
B3 := B3 ⊕ (P0.P1.P2);
return(B0,B1,B2,B3).

Triple modular redundancy

proc sender(B0,B1,B2,B3) ≡

call send(B0,B0,B0);
call send(B1,B1,B1);
call send(B2,B2,B2);
call send(B3,B3,B3); .

proc receiver() ≡

call receive(B01,B02,B03);
call receive(B11,B12,B13);
call receive(B21,B22,B23);
call receive(B31,B32,B33);
B0 := B01.B02 ∨ B02.B03 ∨ B03.B01;
B1 := B11.B12 ∨ B12.B13 ∨ B13.B11;
B2 := B21.B22 ∨ B22.B23 ∨ B23.B21;
B3 := B31.B32 ∨ B32.B33 ∨ B33.B31;
return(B0,B1,B2, B3).

Fig. 4. Forward Error Correction Algorithms

2. The alphabet for the transition systems consist of Σ = {0, 1, #}4 × {0, 1}×
{0, 1, #}4. Here, the first part of the symbol is the input received at the
sender, the second part is the bit that is transmitted and the third part is
the output at the receiver.

3. All the actions except the transmission are considered to happen instanta-
neously, as they are local and have negligible error rates.

4. Bit flips can occur during the transmission and the state is changed according
to the bit received. These transitions which have a bit flip are considered as
erroneous transmissions. To measure the robustness of the system, we will
be using the modification scheme ErrMod . transitions.

Example. Suppose we are working with the Hamming(7,4) system. Let us ex-
amine the transmission of the bit block 1100. The encoded bit string for this
block is 0111100. Now, from the initial state (#7, #7), on the input 1100, the
transmitted bit is 0 (the first bit of the encoded string) and the state changes
to (#111100, 0######) (assuming no errors). From this state, we go on the
symbol (####, 1, ####) to the state (##11100, 01#####) and so on. The
outline of the set of states and transitions for this transmission is illustrated in
Figure 5.

#######

#######

#111100

0######

##11100

01#####

######0

011110#

######0

011010#

(1100,0,####) (####,1,####)

with some error transitions

(####,0,1100)

(####,0,1100)

Fig. 5. Part of the transition graph for Hamming(7,4) system

T1 T2 drob(T1, T2)

No error correction Ideal System 1
Hamming (7,4) Ideal System 6/7

Triple modular redundancy Ideal System 2/3

Table 4. Robustness of FEC systems

The values of drobof these systems measured against the ideal system are
summarized in Table 4.1. As the table shows, the robustness measured are what
one would expect from the systems. The system which uses no error correction is
the least robust as it cannot tolerate even a single bit error. The Hamming(7,4)
system does better as it can tolerate one error in seven bits on the long run,
whereas the system which uses Triple modular redundancy can tolerate one error
in three bits. The robustness values clearly mirror the error tolerance values as
each robustness value is equal to 1−e where e is the corresponding error tolerance
value.

4.2 Environment Restriction for Reactive Systems

In reactive systems, the transitions of the system are controlled by two agents,
the system itself and the environment. The system has no control over the actions
of the environment. Hence, while considering the refinement of a specification
for a reactive system, care has to be taken to ensure that apart from the fact
that all behaviors of the implementation are simulated by the specification, but
also that the behavior of the environment is not restricted more than in the
specification. A number of refinements of the classical simulation relation have
been suggested to include this requirement, such as ready simulation [3].

We propose here a method to measure the amount of restriction the imple-
mentation system places on the environment over and above the restriction in
the specification. The measure proposed here not only takes into consideration
the languages of the two systems (restricted to the environment actions), but
also the distance of the farthest unimplemented behavior in the implementation.
For example, consider a specification that allows the environment behavior rω

1

and two implementations I1 and I2 that do not allow it. However, say I1 allows

the behavior (r1r2)
ω whereas I2 allows only rω

2 , the implementation I1 will be
given a higher rating than the implementation I2.

The way we will measure the amount of environment restriction is using the
coverage distance (dcov) introduced in Section 3. We model a reactive system with
inputs and outputs as a transition systems with the alphabet ΣI ∪ ΣO (where
I and O are the environment actions (inputs) and system actions (outputs)
respectively), and the transitions labeled with I and O alternate. To measure
the excessive restriction on the environment, we project out the O symbols (as we
are not interested in correctness) and then compute the dcov distance between the
system and the implementation. We demonstrate that this method of measuring
environment restriction by computing the distances for a request-grant system.

0

1

2

3

4

¬r ¬g

r ∧ ¬c g

r ∧ c

¬g

¬c

(a) S1

1

2

4

¬r ∧ ¬c ¬g

r ∧ ¬c

g

(b) I1

0

1

2

3

4

¬r ¬g

r ∧ ¬c

g

¬g

¬c

g

(c) I2

1

2

4

¬r ¬g

r ∧ ¬c

g

(d) I3

0

1

2

3

4

¬r ¬g

r

g

¬g

¬c

g

(e) I4

Fig. 6. Request-grant Systems

Consider the specification S1 and the implementations In in the Figure 6.
All these systems are built so that every request r is granted by g in the same
step or in the next step. However, if cancel c is high, there should be no grant in
that step. These requirement mandatorily forbids some environment behaviors.
For example, the input behavior with both r and c high all the time does not
have any valid output behavior. The specification S1 restricts the environment

so that for every request r, cancel c is low in the current or the following step.
This is the most permissive restriction possible. Implementations I1, I2, I3 and
I4 restrict the environment to various amounts by allowing no cancels at all,
allowing no cancels for the relevant two steps, allowing no cancel when there is
a request, and allowing no cancel for the step following a request respectively.
The restrictiveness as measured by the V is summarized in Table 4.2.

T1 T2 dcov(T1, T2)

S1 S1 0
S1 I1 1/2
S1 I2 1/4
S1 I3 1/4
S1 I4 0

Table 5. Restrictiveness of request-grant systems

The values in Table 4.2 reflects the intuitive notion that I1 is the most re-
strictive, followed by I2 and I3, which are equally restrictive and then by I4

which allows all the input behaviors of the specification.

5 Conclusion

We have motivated the notion of distance between two systems or between a
system and a specification, and introduced quantitative simulation games as a
framework for measuring such distances. We presented three particular distances
— two for quantifying aspects of correct systems, namely coverage and robust-
ness; and one for measuring the degree of correctness of an incorrect system.

There are several possible directions for future work. The theoretical aspects
of the quantitative simulation game framework need to be developed. In the
boolean setting, the simulation relation establishes a preorder on systems. A
preorder is a reflexive and transitive relation; a generalization to the quantita-
tive setting would be a directed metric, that is, a distance function such that the
distance of an object to itself is zero, and such that it conforms to the triangle
inequality property. We will investigate whether these properties hold for the
distance function we defined. Furthermore, we plan to investigate how the dis-
tances between systems change under certain transformations, such as parallel
composition or abstraction. Another interesting question is how to synthesize
a system that minimizes a distance from a given specification — for example,
given a specification, one might be interested in synthesizing the most robust sys-
tem conforming to the specification. Further possibilities include building a tool
for measuring the robustness distance for programs or protocols implementing
various error recovery or error correction mechanisms.

References

1. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement rela-
tions. In CONCUR, pages 163–178, 1998.

2. R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann. Better quality in
synthesis through quantitative objectives. In CAV, pages 140–156, 2009.

3. B. Bloom. Ready simulation, bisimulation, and the semantics of CCS-like lan-
guages. PhD thesis, MIT, 1989.

4. P. Caspi and A. Benveniste. Toward an approximation theory for computerised
control. In EMSOFT, pages 294–304, 2002.

5. K. Chatterjee, L. Doyen, and T. Henzinger. Quantitative languages. In CSL, pages
385–400, 2008.

6. K. Chatterjee, L. Doyen, and T. Henzinger. Expressiveness and closure properties
for quantitative languages. In LICS, pages 199–208, 2009.

7. S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE
Trans. Software Eng., 20(6):476–493, 1994.

8. L. de Alfaro, M. Faella, and M. Stoelinga. Linear and branching system metrics.
IEEE Trans. Software Eng., 35(2):258–273, 2009.

9. L. de Alfaro, T. Henzinger, and R. Majumdar. Discounting the future in systems
theory. In ICALP, pages 1022–1037, 2003.

10. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
markov processes. Theor. Comput. Sci., 318(3):323–354, 2004.

11. M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007.

12. A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. In
International Journal of Game Theory, pages 163–178, 1979.

13. N. Fenton. Software Metrics: A Rigorous and Practical Approach, Revised (Paper-
back). Course Technology, 1998.

14. R. W. Hamming. Error detecting and error correcting codes. Bell System Tech.
J., 29:147–160, 1950.

15. R. Lincke, J. Lundberg, and W. Löwe. Comparing software metrics tools. In
ISSTA, pages 131–142, 2008.

16. R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy to improve
computer reliability. IBM J. Res. Dev., 6(2):200–209, 1962.

17. R. Milner. An algebraic definition of simulation between programs. In IJCAI,
pages 481–489, 1971.

18. C. E. Shannon. A mathematical theory of communication. Bell system technical
journal, 27, 1948.

19. F. van Breugel. An introduction to metric semantics: operational and denotational
models for programming and specification languages. Theor. Comput. Sci., 258(1-
2):1–98, 2001.

20. F. van Breugel and J. Worrell. Approximating and computing behavioural dis-
tances in probabilistic transition systems. Theor. Comput. Sci., 360(1-3):373–385,
2006.

21. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1&2):343–359, 1996.

