
Quantitative Specifications for
Verification and Synthesis

PhD Thesis

Author:
Arjun Radhakrishna

Supervisor:
Thomas A. Henzinger, IST Austria, Klosterneuburg, Austria

Thesis Committee:
Roderick Bloem, Technische Universität, Graz, Austria.
Pavol Černý, University of Colorado, Boulder, USA.
Krishnendu Chatterjee, IST Austria, Klosterneuburg, Austria.

Program Chair:
Herbert Edelsbrunner, IST Austria, Klosterneuburg, Austria

A Thesis presented to the faculty of the Graduate School of the Institute of
Science and Technology Austria, Klosterneuburg, Austria, in partial fulfillment

of the requirements for the degree Doctor of Philosophy (PhD).

c© Arjun Radhakrishna, July, 2014.
All Rights Reserved

I hereby declare that this dissertation is my own work along with stated
collaborators, and it does not contain other peoples’ work without this being
so stated; and that the bibliography contains all the literature that I used in
writing the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as
approved by my thesis committee, and that this thesis has not been submitted
for a higher degree to any other university or institution.

Author:

Arjun Radhakrishna

Supervisor:

Thomas A. Henzinger

Thesis Committee:

Roderick Bloem

Pavol Černỳ

Krishnendu Chatterjee

Program Chair:

Herbert Edelsbrunner

To Archu and Archani. . .

Abstract

Standard specifications used for formal verification and synthesis of systems
partition the set of all systems into “good” and “bad” systems. However, a more
nuanced view is often required as not all acceptable systems are equally good,
and not all unacceptable systems are equally bad. The aim of this dissertation
is to explore the possibility of capturing these nuances through quantitative
specifications where instead of a boolean yes/no classification, systems are rated
using a quantitative metric. We extend classical specification, verification, and
synthesis techniques to these quantitative specifications.

In the first part, we develop a framework of quantitative specifications for
reactive systems based on distances between systems. These distances, called
simulation distances, are a quantitative extension of the classical simulation
relation between systems, and can be used to measure various aspects of the
relation of a system to a specification such as correctness, coverage, and ro-
bustness. We then apply simulation distances to the problem of incompatible
specifications — given two or more specifications having no common implemen-
tation, find the implementation that comes “closest” to satisfying each of the
specifications. We also prove a number of properties of simulation distances,
such as compositionality and soundness of abstractions, that aid in analysis of
large systems. Further, we present a number of case studies that illustrate how
the simulation distances framework can be used for various steps in the system
development work-flow, such as test-suite generation and robustness analysis.

In the second part, we adapt a number of classical techniques for for-
mal verification and synthesis of systems to handle quantitative properties.
The techniques we focus on are counterexample-guided inductive synthesis,
abstraction refinement, and infinite-state model checking. First, we present
a counterexample-guided synthesis algorithm for synthesizing concurrent pro-
grams which are not only correct, but also have good performance. Second, we
develop an abstraction and abstraction refinement framework for quantitative
properties and apply it to estimation of worst-case execution time of programs.
Third, we introduce battery transition systems, a modelling framework for sys-
tems that interact with an energy sources, and develop novel model checking
algorithms for such systems.

Acknowledgments

I would like to express my gratitude to all the people without whom this thesis
would not have been possible.

Firstly, my advisor Prof. Thomas A. Henzinger who gave me the support
and guidance to work on all the diverse projects that interested me. The depth
and breadth of his knowledge on a wide range of topics never failed to impress
me. Working with him, I had the good fortune of observing at close quarters
what it means to be a good researcher. I can only hope that some of his acuity
and work ethic has rubbed off on me.

Another person whom I dare not fail to mention is Prof. Pavol Černý. It
was extremely fun and satisfying working with him. While I learned from Tom
what it means to be a good researcher, it was from Pavol I learned the how of it
– the steps and routines needed to try and become one. His reserved optimism
and sharp cynicism about our own work pointed me towards the right way of
being self-critical as a scientist.

In addition, I would also like to thank the members of my thesis committee,
Tom and Pavol mentioned above, and Prof. Roderick Bloem and Prof. Krish-
nendu Chatterjee for agreeing to review the thesis and provide suggestions.

I would also like to thank the members of the Chatterjee group and Henzinger
group at IST for creating a lively and fun work environment. With Damien
Zufferey, whose quips kept the office we were sharing lively; Cezara Dragoi,
dropping by whenever things got too dull; Ali Sezgin, whose sharp sarcasm never
missed anything; Udi Boker, who was great company for both discussion about
batteries and eight-ball pool; Jan Otop, whose obscure factoids always made for
good conversation material; Tatjana Petrov, who was my first office mate all
the way back in 2007; Dejan Nickovic, with his casual and fun approach to both
work and play; and all the rest – Martin Chmelik, Przemys law Daca, Rasmus
Ibsen-Jensen, Andreas Pavlogiannis, Johannes Reiter, Sasha Rubin, Roopsha
Samanta, Vasu Singh, Anmol Tomar, Throsten Tarrach, and Thomas Wies, I
could have scarcely asked for a better place to work. And with Elisabeth Hacker
efficiently mothering me along through the sometimes convoluted administrative
and paper work, I must say that my stay at IST was a most pleasant one.

Another person from IST whom I want thank deeply is Hande Acar with
whom I shared a large number of afternoon teas, weekend brunches, and quiet
conversations over the years. Last, but not the least, I would like to thank the
people dearest to me, my parents, my sister, and Archana Ghangrekar for all
the love and support.

2

Record of Publications

The work appearing in this dissertation was supported in part by the Austrian
Science Fund NFN RiSE (Rigorous Systems Engineering) and by the ERC Ad-
vanced Grant QUAREM (Quantitative Reactive Modeling).

Chapter 3[Pg. 30] is joint work with Pavol Černý and Thomas A. Henzinger,
and contains material that first appeared in [36], [35], and [37]. Chapter 4[Pg.
67] contains material that first appeared in [34] and is joint work with Pavol
Černý, Sivakanth Gopi, Thomas A. Henzinger, and Nishant Totla. However, the
technical parts and the proofs in these chapters have been significantly rewritten
and modified.

Chapter 6[Pg. 90] was published as [32] and is joint work with Pavol Černý,
Krishnendu Chatterjee, Thomas A. Henzinger and Rohit Singh. Chapter 7[Pg.
110] was published as [37] and is joint work with Pavol Černý and Thomas A.
Henzinger. Chapter 8[Pg. 144] is an extension to Chapter 7[Pg. 110] based on an
as yet unpublished manuscript along with Laura Kovacs and Jakob Zwirchmayr.
Chapter 9[Pg. 168] is joint work with Udi Boker and Thomas A. Henzinger and
has appeared as [26].

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Paradigms of Quantitative Analysis 8
1.3 Outline . 14

2 Preliminaries: Systems and Specifications 16
2.1 Modelling Discrete Computational Systems 16
2.2 Automata over Infinite Words . 18
2.3 2 1

2 -Player Games . 19

I Quantities as Preference 26

3 Simulation Distances 30
3.1 Motivation . 30
3.2 Simulation Relations, Simulation Games, and Quantitative Sim-

ulation Games . 33
3.3 Simulation Distances . 41
3.4 Properties of Simulation Distances 51
3.5 Applications of Simulation Distances 59

4 Synthesis from Incompatible Specifications 67
4.1 Motivation . 67
4.2 The Incompatible Specifications Problem 71
4.3 Case studies . 75

5 Discussion 78
5.1 Extensions and Future Work . 78
5.2 Related Work . 82
5.3 Conclusion . 85

II Quantities as Measurement 86

6 Quantitative Synthesis for Concurrency 90
6.1 Motivation . 90
6.2 The Quantitative Synthesis Problem 93
6.3 Quantitative Games on Graphs 96
6.4 Practical Solutions for Partial-Program Resolution 101

4

6.5 Experiments . 104
6.6 Summary . 108

7 Quantitative Abstraction Refinement 110
7.1 Motivation . 110
7.2 Quantitative properties . 114
7.3 State-based quantitative abstractions 115
7.4 Segment-based quantitative abstractions 118
7.5 Generalizations of PathBound abstractions 124
7.6 Quantitative refinements . 135
7.7 Case study: Cache hit-rate analysis 139
7.8 Summary . 143

8 Precision Refinement for Worst-Case Execution Time Analysis144
8.1 Motivation . 144
8.2 Illustrative Examples . 147
8.3 Problem Statement . 151
8.4 Max-Weight Length-Constrained Paths 153
8.5 Interpolation for Segment-Based Abstraction Refinement 157
8.6 Parametric WCET Computation 161
8.7 Experimental Evaluation . 163

9 Battery Transition Systems 168
9.1 Motivation . 168
9.2 Battery Models . 171
9.3 Battery Transition Systems . 174
9.4 The Bounded-Energy Reachability Tree 179
9.5 Model Checking . 184
9.6 Case Study . 191
9.7 Summary . 197

10 Discussion 198
10.1 Future Work . 198
10.2 Related Work . 199
10.3 Summary . 201

11 Conclusion 202

Chapter 1

Introduction

The main goal of this dissertation is to explore the theory and application of
quantitative specifications in formal techniques for system development. To this
end, we develop a quantitative framework for specification of reactive systems,
as well as quantitative analogues of various standard boolean techniques for
verification and synthesis for systems.

1.1 Motivation

Formal techniques in system development have had significant success over the
past several decades. In most formal techniques, the central object is the specifi-
cation of the system. Formal verification, validation, and automated synthesis of
systems would be impossible without quality specifications to define the correct
behaviours. Further, specifications often play other roles in system develop-
ment such as aiding in generation of test cases, and in many cases, acting as
documentation. Often, significant advances in formal verification and synthesis
have been a result of new specification formalisms. For example, the advent of
efficient and practical model checking techniques started with the use of tem-
poral logics for specifications [132, 59], the verification of real time systems and
hybrid systems were enabled by the introduction of timed automata, real-time
logics, and hybrid automata for specifying them [6, 9, 10, 7], and the prolifera-
tion of synthesis techniques for software started with the use of partial-programs
(sketches) as specifications [153, 154, 155]. Hence, it is of paramount importance
that in addition to the study of novel algorithms and methodologies for existing
specification formalisms, the specification formalisms themselves be examined
periodically to learn from their short-comings.

We briefly describe the current state of the art for specifying discrete event
systems. In the domain of hardware systems, most specification frameworks
can be roughly classified into two categories — automata-based and logic-based.
Specifications in this domain are usually full-functional specifications, i.e., the
specification expresses all the requirements on the system. In logic-based frame-
works, the good temporal behaviours of a system are expressed using either a
formula in temporal logic, or a program in a high-level language that compiles
down to temporal logic. These specifications are usually easier to handle — for
example, adding a requirement to the specification can be done by just adding

6

a conjunct to the formula. However, most automated techniques that handles
logic-based specifications must first convert them into an automata-based speci-
fication. On the other hand, automata-based specifications (where the specifica-
tion is expressed either a (possibly symbolic) automata [58, 17] or a program that
compiles down to an automata) are much easier to use in algorithmic techniques,
but are harder to manipulate and modify. In the software domain, there are very
few full-fledged specification frameworks to specify the complete functionality
of programs (exceptions include interactive theorem-prover and code-generation
frameworks such as Coq [19] and Isabelle/HOL [129]). Most automated for-
mal techniques either handle standard “specification-free” requirements (such
as memory safety or absence of integer overflow) or handle partial specifica-
tions written into the program by the developer (such as assertions or pre- and
post-conditions). These specifications do not specify the full functionality of the
system, but instead only some necessary conditions for correctness. A popular
recent paradigm for specification of programs is partial-programs. Here, most
of the program is written by the developer. However, certain non-deterministic
choices for expressions (called holes) are present in the partial program. The
rest of the specification is specified either using assertions of pre- and post-
conditions. A program satisfies the partial-program if it instantiates the holes
with expressions such that the assertions or the pre- and post-conditions are
satisfied.

Most standard specification frameworks come with a host of automated and
semi-automated algorithmic techniques that can be used for verification, synthe-
sis and testing, making them extremely useful for system development. However,
while these classical specification frameworks are extremely successful, there are
several common problems that arise when using these specifications in system
development. Full functional specifications, like those of hardware designs, have
a tendency of becoming large and cumbersome to write or maintain. As a re-
sult, a bug found during verification is as often a bug in the specification as in
the system. Further, requirements change midway during the process of system
development, and often auxiliary specifications derived from these requirements
need to be changed. Systems synthesized from specifications are rarely as good
as hand crafted ones due to missing soft requirements (such as the requirement
of good performance or acceptable quality of service). On the other hand, even
if the developer is aware of these soft requirements, the specification frame-
works often cannot express them and the accompanying automated algorithmic
techniques cannot handle them.

Our main hypothesis is that quantitative specifications can help alleviate
several of these problems. While classical (boolean) specifications classify sys-
tems into good and bad ones, quantitative specifications instead rate the systems
using a quantitative metric to assign values to systems. These metrics may ei-
ther correspond to a physical property of the system (such as execution time
or energy consumption) or to the relation of the system to another. In this
dissertation, we uniformly adopt the convention that a system which is assigned
a lower value by the quantitative specification is preferred over a system that is
assigned a higher value. There are several reasons that motivate our hypothesis
about quantitative specifications.

• Firstly, a large fraction of the soft specifications that are inexpressible in
the classical specification frameworks are “inherently quantitative”, i.e.,

7

they often correspond to a physical, quantitative property of the system
such as execution time, response time, or power consumption.

• Secondly, even when the corresponding requirement is expressible in a
classical specification framework, quantitative specifications allow the de-
veloper to express exactly the “what” of the requirement than the “how”.
For example, a requirement that a system respond to a request within
some fixed time could be translated into a classical boolean specification
by specifying restrictions on the behaviour of various components within
the system. However, such a specification expresses “how” to achieve
the requirement—if the design of the various components of the system
changed, one would need to rewrite the specification. Instead a quan-
titative framework would allow the specification to directly express the
“what” of the requirement, i.e., that the response time is to be minimized
or bounded.

• Thirdly, quantitative specifications allow the developer to naturally ex-
press trade-offs. A large number of design choices that arise during de-
velopment are intuitively trade-offs between various resources or system
properties (for example, CPU usage versus network usage). Quantitative
specifications can be used to specify systems as points on the Pareto curves
of these trade-offs — just by varying the parameters, one can change the
system being specified. In a classical specification framework, there is no
way of switching between different points in the trade-off curve, other than
rewriting the specification from scratch.

While we believe that quantitative specifications can solve various problems
with the classical specifications, there are several hurdles to their adoption. Clas-
sical specification frameworks have been studied for a long time and a host of
algorithmic techniques and development methodologies have been constructed
around them. These include abstraction based techniques to handle large sys-
tem, automatic synthesis of tricky parts of the system, test-case generation in
the cases where full verification is not possible, etc. On the other hand, quanti-
tative specifications are novel enough that not many such techniques exist. We
strive to rectify this situation in this work, and present algorithmic techniques
to enable various development methodologies.

1.2 Paradigms of Quantitative Analysis

In this work, we distinguish between two different paradigms of quantitative
specifications. These are depicted in Figure 1.1[Pg. 9].

• Behavioural Metrics. In the first paradigm, the quantities in the analy-
sis are not an inherent property of the system being analyzed but come
from the relation (or the degree of fit) of the system to an ideal Boolean
specification. This is analogous to the class of specification-based require-
ments in the classical setting – for example, the requirement that all the
behaviours of a reactive system strictly conform to a temporal specifica-
tion given by an automaton. Similarly, in the quantitative setting, we can
define behavioural metrics that measure how closely the behaviour of a

8

Behavioural Metric

System Specification

Fit (R)

Quantitative Property

System

Measure (R)

Figure 1.1: Paradigms of Quantitative Analysis

reactive system conforms to a temporal specification given by an automa-
ton.

• Quantitative Properties. In the second paradigm, the quantities in the
analysis arise inherently as a measurement of some property of the system
itself, and not a distance to any specification. These properties are anal-
ogous to specification-free properties in the boolean world – for example,
the requirement that a program never dereference a null-pointer. Two
common quantitative properties that fall into this paradigm are execution
time and energy consumption.

As in the boolean world, the distinction between behavioural metrics
(specification-based) and quantitative properties (specification-free) paradigms
is neither hard and fast, nor well-defined. However, it is a convenient high-
level categorization to separate the techniques and algorithms required for their
analysis. Part I[Pg. 27] and Part II[Pg. 87] of this dissertation mainly deal with
the behavioural metric paradigm and quantitative property paradigm respec-
tively. In Section 1.2.1[Pg. 9] and Section 1.2.2[Pg. 12], we describe the major
contributions of the two parts.

1.2.1 Quantities as Preference: Specifying Reactive Sys-
tems

Formal methods have seen significant success in the field of hardware verification
and synthesis where most systems can be modelled as reactive systems. In this
domain, the specifications are usually given as either as formulae in temporal
logics or as automata over the set of input and output actions. These specifi-
cations serve as the starting point in a large number of steps in the process of
system design such as verification, test generation, and code synthesis.

However, there are several problems with the use of formal temporal speci-
fications for reactive system design, verification, and synthesis. These problems
usually arise from the quality and source of the specifications. Real specifica-
tions are large and composed of multiple requirements arising from different
sources; and they rarely capture the full intent of the designer. The multiple
requirements in a specification are often incompatible, i.e., they contradict each
other in corner cases; the designer writes more detailed low-level specifications
resolving all the high level incompatibilities. Further, it is very common that
additional requirements are added or existing requirements are modified as the

9

design process proceeds. Due to these changes, the detailed specifications writ-
ten by the designer may possibly need to be rewritten. While synthesizing from
such specifications, these problems lead to a significant drop in the quality of
synthesized systems. As specifications rarely capture the full intent of the de-
signer, the quality of the synthesized systems is often much worse than that of
the corresponding hand-crafted systems. We explain some of these difficulties
with two illustrative examples.

Illustrative Examples. Consider a reactive request-grant system with the
following specification: every request r must be eventually granted with a grant
g. Let us call this specification R0. Now, there are an infinite number of im-
plementation systems all of which satisfy the above requirement. One way of
preferring some implementations over others is by adding the additional require-
ment of minimizing “spurious grants” (say requirement R1). Translating this
into a standard classical specification framework entails adding the following
two specifications:
• S1: There are no grants before the first request; and
• S2: After every grant, there are no more further grants until another

request is seen.
These additional specifications exactly express the no spurious grants require-
ment. However, one caveat is that they express the “how” of the requirement,
rather than the “what” of it.

Another more important caveat is that S1 and S2 are not very robust towards
additional requirements — if other requirements are added, S1 and S2 will need
to be changed. For example, let us add an additional requirement that there
must be at least one grant every 100 steps, to keep the system “live” (call this
requirement R2). Now, specifications S1 and S2 need to be changed to account
for this by rewriting them into S′1 and S′2 as follows:
• S′1: There are no grants before the first request or 100 time steps have

passed; and
• S′2: After every grant, there are no more further grants until another

request is seen or 100 time steps have passed.
While the rewriting was simple in this case, often, the addition specifications
depend non-trivially on more than one requirement and the process becomes
much harder.

We consider another example to illustrate the problem of incompatible spec-
ifications. Consider reactive request-grant systems with two kinds of requests
(r1 and r2) and grants (g1 and g2). The requirements we place on these systems
are:
• R1: Every request r1 is granted in the same step with grant g1;
• R2: Every request r2 is granted in the same step with grant g2; and
• R3: Grants g1 and g2 cannot occur simultaneously.

These requirements are mutually incompatible, i.e., there is no common imple-
mentation. This is because when both request r1 and r2 arrive at the same
step, the system cannot output both g1 and g2. Such incompatibilities are usu-
ally resolved by the designed by writing more detailed specifications. Here, one
resolution S1 can be that when both r1 and r2 arrive at the same time, the
system alternates between granting with g1 and g2. Another resolution S2 is
that if both r1 and r2 arrive in the same step infinitely often, then the system

10

grants with both g1 infinitely often and with g2 infinitely often. However, if
the intention of the designer is that both r1 and r2 are treated with the same
priority, then the resolution S2 is too weak and the resolution S1 is too strong.

The resolution S2 allows systems which grant conflicting requests with g1

more often than with g2, while resolution S1 does not allow systems which grant
alternatingly with g1 for a burst of n steps and then with g2 for a burst of n
steps.

Further, as in the previous example, if either of the original requirements R1

or R2 were to change, the chosen resolution (S1 or S2) needs to be rewritten.
For example, if R1 were to be changed to each request r1 is to be granted either
in the same step or in the next step, the resolution S1 needs to be changed
significantly.

The Simulation Distances Framework. Our approach to solving the prob-
lems with classical specifications described above is to use quantitative specifi-
cations to better express the intent of the designer. We introduce the simulation
distances framework for specifying reactive systems. Simulation distances are a
quantitative extension of the classically used correctness condition, the simula-
tion relation [127]. Simulation distances are defined using a quantitative exten-
sion of the simulation game. In a classical simulation game, two players (say
Player 1 and Player 2) alternatively choose transitions from the implementation
and specification respectively. If Player 2 can always match the implementa-
tion transition chosen by Player 1 with a specification transition having the
same output, the specification simulates the implementation. In a quantitative
simulation game, we allow Player 2 to pick mis-matching transitions from the
specification, but such mismatches are penalized according to an error model.
The simulation distance from the specification to the implementation with re-
spect to the error model is the lowest penalty value achievable by Player 2 in the
quantitative simulation game. We show that using variations of the simulation
game, we can measure various properties (such as correctness, coverage, and
robustness) of the implementation with respect to the specification.

We argue that specifying that the desired system is the one that minimizes
the simulation distance to an ideal specification with respect to a given error
model allows the designer to capture her intent better as many specifications are
“inherently quantitative”. For example, the requirement of minimizing spurious
grants in the above illustrative example could be achieved by adding an ideal
specification that does not grant at all, and an error model that penalized every
grant. Minimizing the distance to this ideal specification would minimize spu-
rious grants. Further, this specification and error model need not be changed
when the additional requirement R1 is added.

Quantitative specifications in general, and simulation distances in particular,
also provide a different approach to the problem of incompatible specifications.
We can resolve multiple incompatible requirements by stating that the desired
system is one that minimizes the maximal simulation distance to each of these
specifications. For example, in the illustrative example above with conflicting
requests, the preferred systems are those that minimize the maximal simulation
distance to requirement R1 and R2. Further, changing one of these requirements
does not require changing any of the further resolutions.

We present an algorithm for synthesizing optimal implementations that min-

11

imize the maximal simulation distances to a number of incompatible specifica-
tions. The algorithm is based on finding optimal strategies in multi-dimensional
quantitative games.

Comparisons to other quantitative specification techniques. While we
have discussed the advantages of the quantitative simulation distances frame-
work over Boolean specifications in many settings, the simulation distances
framework also has several advantages compared to other quantitative speci-
fication techniques (based on weighted automata or weighted logics) [22, 77].
Most important of these being that the simulation distances framework avoids
many of the computational complexity and undecidability issues that arise from
the use of weighted automata or weighted logics. Formally, the weighted con-
tainment problem (quantitative equivalent of Boolean language inclusion), the
problems of checking if there exists a behaviour whose value is greater or lesser
than a given threshold value (quantitative equivalents of Boolean emptiness and
universality problems), and other important language theoretic problems are un-
decidable for weighted automata (see, for example, [73]). On the other hand,
for simulation distances, these problems are decidable, and further, decidable
in polynomial time for the common case of bounded weights. Intuitively, this
difference is due to the fact that simulation distances are inherently “branch-
ing time” specifications, while weighted automata are inherently “linear time”
specifications (see [165, 166] for definition of linear time and branching time
specifications). As in the Boolean case, problems arising from linear time speci-
fications (for example, computing language inclusion) are computationally more
expensive than problems arising from branching time specifications such as com-
puting the simulation relation. Hence, the simulation distances framework lets
us use quantitative specifications without paying the penalty of computational
complexity or undecidability as with many other quantitative specification tech-
niques. Further, the simulation distances framework also enables many standard
system design paradigms such as hierarchical and compositional design. For a
discussion of these and further comparison to other quantitative specification
techniques, see Part I.

1.2.2 Quantities as Measurement: Analyzing Quantitative
Properties

In the second part of the dissertation, we mainly deal with extending classical
verification and synthesis techniques to systems with quantitative properties.
The three classical techniques we focus on are counterexample-guided induc-
tive synthesis, abstraction and abstraction refinement, and model checking of
infinite-state systems.

Performance-aware Synthesis. Partial-program synthesis is a development
methodology where a developer writes only a part of the program, and speci-
fies the rest of her intent declaratively. The incomplete program (often called
a partial-program) may have holes corresponding to various parameters. In
partial-program synthesis for concurrency, these holes usually correspond to
synchronization choices. In most previous work (see, for example, [153, 53])
either the performance penalty of the synthesized synchronization is ignored,

12

or heuristics (such as minimizing the size of synthesized atomic sections, or the
granularity of locks) are used. However, in many cases, these heuristics give the
wrong answer or do not apply at all as in the case of optimistic concurrency.
For example, it is easy to write programs where fine-grained locks performs
much worse than coarse-grained locks (due to the cost of the locking operations
themselves), and the heuristic of minimizing critical sections does not apply at
all to the case of optimistic concurrency as the size of the critical sections are
fixed.

We introduce a counterexample-guided synthesis algorithm that does not
use such heuristics, but instead synthesizes the optimal correct program for a
given architecture. In addition to the standard inputs (the partial program
and correctness condition), the performance characteristics of the architecture
is provided to the algorithm in the form of a performance model, which is a
weighted automaton over various synchronization related actions. The output
is a specialization of the partial program which is not only correct, but is also
optimal with respect to the performance model.

Quantitative Abstraction Refinement. Most formal techniques that are
able to handle large systems and state-spaces are based on abstraction [65, 66]
and automated abstraction refinement [60]. In such techniques, given a (con-
crete) system, a smaller abstract system is built such that the set of behaviours
exhibited by the abstract system is a superset of the set of behaviours exhibited
by the concrete system. Hence, if all the behaviours of the abstract system
satisfy a given property, then all the behaviours of the corresponding concrete
system satisfy the property. Automated abstraction refinement is a technique
where given an abstract system and a spurious (not present in the concrete
system) behaviour of the abstract system that does not satisfy the given prop-
erty, automatically produces another abstract system which does not contain
the behaviour.

Most abstraction and abstraction refinement techniques are state-based, i.e.,
the abstract objects being reasoned about are sets of concrete states. Most
quantitative properties are path-based, i.e., they are a property of whole traces
instead of single states. Path-based or trace-based abstraction has been used
mainly for analysis of termination of programs (See, for example, [135, 62]).
Hence, trace-based abstraction is most suited for quantitative properties. How-
ever, unlike in termination analysis, the techniques need to reason quantitatively
about parts of traces. To this end, we introduce segment-based abstractions for
quantitative properties. In a segment-based abstraction, the abstract objects
are sets of segments (parts of execution traces) and along with each abstract
segment, relevant quantitative properties (for example, the maximum and min-
imum length of a segment) are stored. These quantitative properties of abstract
segments can then be used to compute an abstract system value.

Our quantitative abstraction techniques provide the quantitative version of
the standard guarantee, i.e., that the value of the abstract system is always an
over-approximation of the value of the concrete system. However, in addition,
our abstraction refinement algorithm has the anytime property, by which we
mean that the abstraction refinement algorithm can be stopped at any point
of time during its execution, and it will return a valid over-approximation of
the quantitative property. Further, the algorithm will produce tighter over-

13

approximations given more time to execute.
We apply this algorithm to the problem of estimating the worst-case exe-

cution time of programs. We show that our techniques provide a significant
improvement over standard worst-case execution time analysis.

Model Checking of Battery Systems. Systems interacting with energy
sources have been modelled classically using weighted transition systems and
energy games. In all these modelling frameworks, the state of the energy source
is represented using one number, i.e., the amount of energy remaining in the
source. However, real batteries exhibit behaviour that is not feasible in any of
these ideal models. A major class of these behaviours is dubbed the recovery
effect. In the recovery effect, a battery which is apparently dead and out of
energy recovers a small amount of energy after a certain period of time. Another
non-ideal effect that is observed in real batteries is the rate-limit effect. Here,
not all energy of the battery is immediately available for use, i.e., there is a limit
on the rate at which energy can be used.

We introduce battery transition systems which are able to model such non-
ideal behaviour. Battery transition systems are a discretization of the KiBAM
model, a commonly used physical model of batteries [123]. Intuitively, in a
battery transition system, the total charge in the battery is divided into two
parts – known as tanks. The available charge tank contains energy that is
immediately available for use, while the bound charge tank contains energy that
is attached internally to the battery. As time passes, there is diffusion between
the two tanks of the battery.

Battery transition systems do not fall into any previously known class of
infinite state systems for which standard model checking problems are decid-
able. For example, battery transition systems do not fall into the class of well-
structured transition systems. We present novel model checking algorithms for
battery transitions systems. These algorithms are based on building forward
reachability trees a la Karp-Miller [110], and using specific conditions to stop
exploration before a certain depth is reached.

1.3 Outline

We first start with a preliminary introduction and definitions of the basic con-
cepts and techniques used in this report in Chapter 2[Pg. 16]. Further, this
report is divided into two parts – Part I[Pg. 27] dealing with behavioural met-
rics for specification of reactive systems and Part II[Pg. 87] dealing with analysis
for quantitative properties of systems. Other than the preliminary definitions,
each part is as self-contained as possible and contains an introduction moti-
vating the work described in the part, and a conclusion discussing the related
work.

Quantities as Preference: Part I[Pg. 27]. In Chapter 3[Pg. 30], we in-
troduce simulation distances, a quantitative framework for specifying reactive
systems. In Chapter 4[Pg. 67], we discuss how to extend the simulation distances
framework to handle multiple, incompatible requirements.

14

Quantities as Measurement: Part II[Pg. 87]. In Chapter 6[Pg. 90], we
extend the standard counterexample-guided inductive synthesis algorithm to
account for the performance of the synthesized programs in the domain of con-
current programs. Chapter 7[Pg. 110] deals with the theory of abstraction and
abstraction refinement for quantitative properties. In Chapter 8[Pg. 144], we
apply the techniques developed in Chapter 7[Pg. 110] to the problem of esti-
mating the worst-case execution time of programs. In Chapter 9[Pg. 168], we
introduce a new model for systems that interact with an energy source, and
provide model checking algorithms for such systems.

Chapter 2

Preliminaries: Systems and
Specifications

This report deals mainly with the analysis and synthesis of discrete event com-
putational systems. In this chapter, we introduce the formalisms we use to
model and specify these kinds of systems.

2.1 Modelling Discrete Computational Systems

2.1.1 Labelled Transition Systems

Labelled transition systems have been used to model computational systems
since they were introduced. Labelled transition systems are an elegant way of
separating the operations that can be performed by the computational system
(actions) from the computational state of the system.

Formally, a labelled transition system L is a tuple 〈S,Σ,∆, sι〉 where:

• S is a set of states;

• Σ is a finite set actions;

• ∆ ⊆ S × Σ× S is a set of transitions; and

• sι ∈ S is an initial state.

Further, we require that for every state s ∈ S, there exist σ ∈ Σ and s′ ∈ S
such that (s, σ, s′) ∈ ∆. Intuitively, S represent the state of a computational
system, and Σ represent the class of operations that the computational system
may perform. The transition set ∆ contains the set of single computational
steps the system may perform, i.e., (s, σ, s′) ∈ ∆ implies that the system may
go from state s to state s′ on performing an action σ. The set of all labelled
transition systems sharing the same set of actions Σ is denoted by S(Σ).

A labelled transition system is deterministic if for each state s ∈ S and action
σ ∈ Σ, the next state is unique, i.e., |{s′ | (s, σ, s′) ∈ ∆}| = 1 for each s and σ.
If a labelled transition system is not deterministic, it is non-deterministic.

When a computational system is modelled using a labelled transition system,
the behaviours of the corresponding system are traces of the labelled transition

16

system. Formally, a sequence s0σ0s1σ1 . . . is a infinite trace of the labelled tran-
sition system L = 〈S,Σ,∆, sι〉 if and only if: (a) for all i ∈ N, (si, σi, si+1) ∈ ∆;
and (b) s0 = sι. Similarly, a sequence π = s0σ0s1σ1 . . . sn is a finite trace of L
if: (a) for all 0 ≤ i < n, (si, σi, si+1) ∈ ∆; and (b) s0 = sι. We represent the
set of all infinite traces of a labelled transition system L by Traces(L), and the
set of all finite traces by FiniteTraces(L).

Alternating Transitions Systems We model computational systems that
are controlled by two separate agents, each controlling the “input” and “out-
put” actions of the system, using alternating transition system [11]. Formally,
an alternating transition system is a tuple 〈S, (Sin , Sout),Σ, (Σin ,Σout),∆, sι〉
where 〈S,Σ,∆, sι〉 is a labelled transition system and:

• Sin and Sout form a partition of S, i.e., Sin ∪Sout = S and Sin ∩Sout = ∅
– Sin and Sout are called the input states and output states respectively;

• Σin and Σout form a partition of Σ, i.e., Σin∪Σout = Σ and Σin∩Σout = ∅
– Σin and Σout are called the input actions and output actions respectively;
and

• The transitions ∆ ⊆ Sin ×Σin ×S ∪Sout ×Σout ×S, i.e., the transitions
from input states are on input actions and the transitions from output
states are on output actions.

Intuitively, in an alternating transition system, there are two types of actions
– the input and output actions. The actions Σin represent the inputs from the
environment to the system, and the actions Σout represent the outputs from the
system to the environment. Correspondingly, the input states represent states
where the system waits for input from the environment, and the output states
represent states where the systems provides output to the environment.

An alternating transition system the transitions from Player 1 states go only
to Player 2 states and vice-versa are called synchronous reactive systems.

Fairness constraints A Büchi (weak fairness) condition for a labelled tran-
sition system having state space S is specified as a set of Büchi states B ⊆ S.
Given a Büchi condition B and an infinite trace π = s0σ0s1σ1 . . . of a transition
system, the trace π is fair if and only if ∀n ≥ 0 : (∃i > n : ρi ∈ B).

A Streett (strong fairness) condition for a labelled transition sys-
tem with state space S is a set of request-response pairs F =
{〈R1, G1〉, 〈R2, G2〉, . . . , 〈Rd, Gd〉} where each Ri ⊆ S and each Gi ⊆ S. Given
the above Streett condition, a trace π = s0σ0s1σ1 . . . is fair if and only if
∀1 ≤ k ≤ d :

(
(|{i | si ∈ Rk}| =∞)⇒ (|{i | si ∈ Gk}| =∞)

)
.

Weighted Transition Systems A weighted transition system W =
〈S,Σ,∆, sι, v〉 is a transition system 〈S,Σ,∆, sι〉 along with a weight function
v : ∆ → N that maps transitions of the system to weights given by natural
numbers. The weights of a transition system are used to represent some quanti-
tative metric about the transition (for example, the energy cost associated with
it).

17

Weighted probabilistic transition system. A probabilistic transition sys-
tem (PTS) is a generalization of a transition system with a probabilistic tran-
sition function. Formally, let D(S) denote the set of probability distributions
over S. A PTS consists of a tuple 〈S,Σ,∆, sι〉 where S, Σ, sι are as for tran-
sition systems, and ∆ : S × Σ → D(S) is probabilistic, i.e., given a state and
an action, it returns a probability distribution over successor states. A weighted
probabilistic transition system (WPTS) consists of a PTS and a weight function
v : S × Σ × S → Q ∪ {∞} that assigns weights to transitions. An trace of
a weighted probabilistic transition system is an infinite sequence of the form
(s0σ0s1σ2 . . .) where si ∈ S, σi ∈ Σ, and ∆(si, σi)(si+1) > 0, for all i ≥ 0.

2.2 Automata over Infinite Words

Automata are a standard formalism for modelling properties of discrete compu-
tational systems – they are used to abstract away from implementation details
and instead model properties of the observable input/output behaviours, i.e.,
the actions of the system.

Formally, a finite automaton A is a tuple 〈S,Σ,∆, sι〉 where each of S, Σ,
∆, and sι are as in a labelled transition system with the additional restriction
that the set of states S is finite.

Remark 2.1. In the context of finite automata, the set of actions Σ is called
the alphabet, and A is known as an automaton over the alphabet Σ. Further,
in this setting, finite and infinite traces of an automaton A are known as finite
and infinite runs.

Though the definition of finite automata and labelled transition systems is
very similar, we differentiate between them due to the way each is used. La-
belled transition systems are generally used to model a single computational
system while automata are used to represent sets of behaviours of related sys-
tems sharing the same set of actions (or alphabet).

Languages and Accepting Conditions Given an alphabet (or equivalently
a set of actions) Σ a finite word w over Σ is a finite sequence σ0σ1 . . . σn and an
infinite word w over Σ is an infinite sequence σ0σ1 . . . where each σi ∈ Σ for all
i ∈ N. The set of all finite and infinite words over Σ are represented by Σ∗ and
Σω respectively.

An automata A is used to represent a set Lang(A) of (finite or infinite)
words over Σ – this set of words is called the language of the automaton. Each
word in the language of the automaton is accepted by the automaton – i.e., the
language of the automaton is the set of all words accepted by it. The language
of the automaton is defined using accepting conditions over the set of runs of
the automaton. We list some commonly used accepting conditions:

• Büchi accepting condition. The Büchi acceptance condition is specified
by a subset of automaton states B ⊆ S (known as Büchi states). A word
w = σ0σ1 . . . ∈ Σω is accepted by A with a Büchi accepting condition
given by B if and only if there exists a run of the automaton s0σ0s1σ0 . . .
such that si ∈ B for infinitely many i, i.e., ∀j : ∃i : si ∈ B. An automaton
A along with a Büchi accepting condition is called a Büchi automaton.
For a Büchi automaton A, the language Lang(A) ⊆ Σω.

18

• Finite accepting condition. The finite acceptance condition is specified
by a set of safe states P ⊆ S. A word w = σ0σ1 . . . σn−1 is accepted
by an automaton with a finite accepting condition if there exists a run
of the automaton s0σ0s1σ1 . . . σn−1sn such that ∀0 ≤ i ≤ n : si ∈ F .
An automaton A along with a finite accepting condition is called a finite
automaton. For a finite automaton A, the language Lang(A) ⊆ Σ∗.

• Safety accepting condition. The Safety acceptance condition is specified
by a subset of automaton states P ⊆ S (known as safe states). A word
w = σ0σ1 . . . ∈ Σω is accepted by A with a safety accepting condition
given by P if and only if there exists a run of the automaton s0σ0s1σ0 . . .
such that si ∈ P for infinitely many i, i.e., ∀j : ∃i : si ∈ P . An automaton
A along with a safety accepting condition is called a safety automaton.

Weighted Automata and Objective Functions A weighted automaton is
a tuple 〈S,Σ,∆, sι, v〉 where 〈S,Σ,∆, sι〉 is a finite automaton, and v : ∆ → N
is function mapping transitions of the automaton to weights given by natural
numbers.

Weight functions in weighted automata are used to assign costs or weights
to transitions. They are used to model various quantitative properties of tran-
sitions (for example, energy consumption of the action or execution time).

Given a weighted automaton, an objective function is used to map runs of
the automaton to a single numerical value. Formally, an objective function is a
function mapping infinite sequence of real numbers to a single real number, i.e.,
ν : Rω → R. Given an objective function ν, the value of a run π = s0σ0s1σ1 . . .
is ν(v((s0, σ0, s1))v((s1, σ1, s2)) . . .). We abuse notation and write ν(π) for the
value fo the run π. Given an objective function ν and a weighted automaton A,
the value of a word w ∈ Σω is defined to be inf{ν(π) | π is a run of w in A}.

Now, we define the two major objective functions we use in this dissertation:
• Limit-average objective. The limit-average objective is used to mea-

sure the long run average of weights in a sequence. Formally,
LimAvg(v0v1 . . .) = lim infn

1
n ·
∑i<n
i=0 wi.

• Discounted-Sum objectives. The discounted-sum objectives are a family
of objective functions parameterized by a parameter λ (where 0 ≤ λ ≤ 1).
Intuitively, the discounted-sum objectives compute the sum of a sequence
of weights where the weights appearing later in the sequence are given
lesser priority than the weights appearing in the initial part. Formally,
Discλ(v0v1 . . .) =

∑i=∞
i=0 wi · λi.

2.3 21
2-Player Games

2.3.1 Game Graphs

A 2-player game graph G is a tuple 〈S, (S1, S2),Σ,∆, sι〉 where:

• S is a set of states;

• (S1, S2) is a partition of the states S, i.e., S1 ∪ S2 = S;

• Σ is a finite set actions;

19

• ∆ ⊆ S × Σ× S is a set of transitions; and

• sι ∈ S is an initial state.

The states in S1 and S2 are known as Player 1 states and Player 2 states,
respectively. As with labelled transition systems, we require that there exists at
least one transition from each state, i.e., ∀s ∈ S : ∃s′ ∈ S, σ ∈ Σ : (s, σ, s′) ∈ ∆.
Intuitively, a 2-player game graph represents a computational system being
acted on by two different agents – Player 1 and Player 2. When the system is
in a state s ∈ Si, the next action to be performed is chosen by Player i, and
the state of the system changes according to the set of transitions ∆ (as in a
labelled transition system).

We assume all 2-player game graphs are deterministic – each state and action
lead to exactly one different next state, i.e., (s, σ, s′) ∈ ∆ ∧ (s, σ, s′′) ∈ ∆ =⇒
s′ = s′′.

When the two players represent the choices internal to a system, we call the
corresponding 2-player game graph an alternating transition system. Note that
the difference between 2-player game graphs and alternating transition systems
is only the terminology.

A 2 1
2 -player game graph G is a tuple 〈S, (S1, S2),Σ,∆, δ, sι〉 where S, S1,

S2, Σ, ∆, and sι are as in 2-player game graphs; and δ : S × Σ → D(S) is a
probabilistic transition function such that:
• Non-negativity over support. δ(s, σ)(s′) ≥ 0 for all s, s′ ∈ S and σ ∈ Σ,

and further, δ(s, σ)(s′) > 0 if and only if (s, σ, s′) ∈ ∆; and
• Support unitarity.

∑
s′∈S δ(s, σ)(s′) ∈ {0, 1}.

We say that an action σ ∈ Σ is enabled in a state s ∈ S if and only if∑
s′∈S δ(s, σ)(s′) = 1. As we are interested in infinite computations, we place

an additional restriction that at least one action σ ∈ Σ is enabled in every state
s ∈ S.

Intuitively, 2 1
2 -player game graphs represent computational systems where

in addition to actions chosen by the two agents, the next state of the system
depends on a probability distribution given by the function δ.

Note that 2-player game graphs can be considered a special case of 2 1
2 -player

game graphs by setting δ(s, σ)(s′) = 1 if (s, σ, s′) /∈ ∆ and 0 otherwise.

2.3.2 Strategies and Observations

Histories and Plays. A history of a game graph G with initial state sι and
transitions ∆ is a sequence history = s0σ0s1σ1 . . . sn such that s0 = sι and for
each 0 ≤ i < n, we have that (si, σi, si+1) ∈ ∆. The set of all histories of the
game graph G are denoted by Histories(G), or by Histories when G is clear from
the context. We define the subset of Player i histories Historiesi ⊆ Histories
(for i ∈ {1, 2}) as the set of histories where the last state is a Player i state,
i.e., Historiesi = {s0σ0 . . . sn | s0σ0 . . . sn ∈ Histories ∧ sn ∈ Si}. Intuitively,
a history of a game graph is a finite sequence of computational steps resulting
due to the choices of the agents.

A play of a game graph G is an “infinite” history, i.e., an infinite sequence
ρ = s0σ0s1σ1 . . . where s0 = sι and (si, σi, si+1) ∈ ∆ for all i ∈ N. The set
of all plays of the game graph G are denoted by Plays(G), or by Plays when
G is clear from the context. Intuitively, a play of a game graph is the infinite
sequence of computational steps resulting from the choices of all the agents.

20

Strategies and Outcomes. A strategy for a Player i is a recipe for the player
to choose actions in the game graph. Formally, a pure strategy for Player i in a
game graph G is a function φi : Historiesi(G)→ Σ such that if φi(s0σ0 . . . sn) =
σn, then ∃sn+1 ∈ S : (sn, σn, sn+1) ∈ ∆. The set of all Player i strategies in a
game graph G is denoted by Φi(G), or if G is clear from the context, by Φi.

Remark 2.2. Note that the above definition is a restricted notion of strategies
which is sufficient for all the situations in this monograph. More generally, a
randomized strategy does not map each history to a single action, but instead
to a probability distribution of actions. From this point on, we use the term
strategy to refer to a pure strategy unless otherwise specified.

A play ρ = s0σ0s1σ1 . . . of G conforms to a Player i strategy φi if for each
Player i history history = s0σ0 . . . sn that is a prefix of ρ, we have φi(history) =
σn.

Given a Player 1 strategy φ1 and a Player 2 strategy φ2, the outcome of
the strategy-profile (φ1, φ2) (denoted by Outcomes(φ1, φ2)) is the set of all plays
that conform both to φ1 and to φ2.

We define two special classes of strategies which are important in the analysis
of many types of games and are sufficient for most of the games that appear in
this monograph.

• Memoryless Strategies. A Player i strategy is memoryless if for each pair
of histories history = s0σ0 . . . sn and history ′ = s′0σ

′
0 . . . s

′
m in Historiesi,

if sn = s′m, then φi(history) = φi(history ′). The set of all memoryless
Player i strategies of G is denoted by ΦMi (G).

Intuitively, a memoryless strategy chooses the next action based only on
the current state, i.e., the last state in the history. For a memoryless
strategy φi, we abuse notation and write φi(sn) instead of φi(s0σ0 . . . sn).

• Finite-Memory Strategies. A Player i strategy is finite-memory if there
exist a deterministic finite automata over the alphabet Σ× S with states
M , and a next-action function NextAction : M × S → Σ such that
the following holds: given a Player i history history = s0σ0 . . . sn, let
m0(σ0, s1)m1(σ1, s2) . . . (σn−1, sn)mn be the run of the memory automata
corresponding to the word (σ0, s1) . . . (σn−1, sn) – then, φi(history) =
NextAction(mn, sn).

We call the state-space M of the automaton the memory of the strategy,
and the transition relation of the automaton the memory-update relation.

Intuitively, a finite-memory strategy chooses the next action for each
history based only on a finite amount of information about the his-
tory. The set of all finite-memory Player i strategies of G is denoted
by ΦFM

i (G). Note that every memoryless strategy φi is a finite-memory
strategy having a memory automaton with a single state (say m∗) and
NextAction(m∗, s) = φi(s) for each s ∈ Si.

Partial-Observability and Observation-Based Strategies. Given a
game graph G with states S, a observation mapping is a function Observe
mapping states to a set of observations O. Intuitively, the Observe func-
tion maps a game graph state to a corresponding observation that contains

21

only the information “visible” to a given player. We extend the Observe
function to histories by defining Observe(s0σ0s1 . . . sn) to be the sequence of
Observe(s0)Observe(s1) . . .Observe(sn) for each of the visited states.

Given an observation mapping Observe, a Player i strategy φi is observation-
based if for every pair of histories history and history ′ from Historiesi such that
Observe(history) = Observe(history ′), we have that φi(history) = φi(history ′).

2.3.3 Games and Objectives

The major question in the analysis of games is whether each player can choose a
strategy to enforce that no matter what strategy the opposing player chooses the
resulting play has certain properties. Intuitively, a game is defined by a game
graph along with an objective for each player. Further, a game may restrict the
strategies of each player to observation-based strategies for some observation
mappings. In this case, the game is called a partial information game. If the set
of strategies allowed for the players is unrestricted, the game is called a perfect
information game.

Objectives. For a game graph G,

• A boolean objective Φ is a subset of the set of all plays Plays(G); and

• A quantitative objective ν is a function that maps plays to R.

Intuitively, a boolean objective is a set of outcomes that are favourable to
Player 1; and a quantitative objective measure the payoff to Player 1, i.e.,
higher the ν value of a play, the more favourable the play is to Player 1. For
a given boolean objective Φ, we say that the play ρ is winning for Player 1 if
ρ ∈ Φ, and say that the play is losing for Player 1 if ρ /∈ Φ. Dually, ρ is winning
for Player 2 if it is losing for Player 1, and ρ is losing for Player 2 if it is winning
for Player 1.

We list some standard boolean and quantitative objectives.

• Safety objective. The safety objective is defined by a set of safe states T .
A play is in Safe(T) if and only if each state in the play belongs to T .

• Büchi objective. The Büchi objective is defined by a set of Büchi states
B.A A play is in Büchi(B) if and only if there exists an infinite number
of states in the play that belong to B.

• Streett objective. The Streett objective is defined by a number of request-
response Streett pairs 〈F = (R0, G0), (R1, G1), . . . , (Rn, Gn)〉 where each
Ri and Gi are sets of states. A play ρ is in Streett(F) if and only if for
each 0 ≤ i ≤ n, we have that Ri is visited a finite number of times in ρ or
Gi is visited an infinite number of times in ρ.

• Parity objective. The Parity objective is defined by a sequence of sets of
states PS = 〈P0, P1, P2, . . . Pn〉. A play ρ is in Parity(PS) if and only if
the minimum i such that Pi is visited infinitely often in ρ is even.

• Limit-average objective. The quantitative limit-average objective mea-
sures the long-run average weight of the play is defined by the sequence of

22

weights of the transitions in the play. Formally, if w0w1 . . . is the sequence
of weights in the play ρ, we have

LimAvg(ρ) = lim inf
n→∞

1

n
·
i=n∑
i=0

wi

• Discounted-sum objective. The quantitative objective discounted-sum is a
family of objectives parameterized by a parameter λ (such that 0 < λ < 1)
and measure the sum of the weights of the play such that the earlier
weights count more than than the later ones. Formally, if w0w1 . . . is the
sequence of weights in the play ρ, we have

Discλ(ρ) =

i=∞∑
i=0

λi · wi

• Supremum and Infimum objectives. The quantitative objectives supre-
mum and infimum measure the maximum and minimum weight that oc-
curs in a play. Formally, if w0w1 . . . is the sequence of weights in the play
ρ, we have that sup(ρ) = supi wi and inf(ρ) = infi wi.

• Multi-dimensional limit-average threshold objective. The boolean objec-
tive MLimAvg applies in the case where the weight of a transition is not
a scalar rational number, but instead a n dimensional vector of rational
numbers, i.e., if the weight function has the signature v : ∆→ Qn. Given
a threshold vector v, we have that a play ρ is in MLimAvg(v) if and only
if

lim inf
n→∞

1

n
·
i=n∑
i=0

wi ≤ v

Note that the weights wi are n-dimensional vector here and the limit is
taken component wise.

• Limit-average safety objectives. The limit-average safety objective is a
quantitative objective specified by a separate limit-average objective and
a safety objective. Formally, a play has the value assigned by the limit-
average objective if it is also in the safety objective; otherwise, it has value
∞.

• Limit-average parity objectives. The limit-average safety objective is a
quantitative objective specified by a separate limit-average objective and
a parity objective. Formally, a play has the value assigned by the limit-
average objective if it is also in the parity objective; otherwise, it has value
∞.

Winning Strategies and Optimal Strategies. Given a boolean objective
Φ, Player 1 strategy φ1 is a winning strategy if every ρ corresponding to φ1 is win-
ning for Player 1, i.e., if ∀φ2 : Outcomes(φ1, φ2) ⊆ Φ. Similarly, a Player 2 strat-
egy φ2 is a winning strategy if ∀φ1 : Outcomes(φ1, φ2) ∩ Φ = ∅.

Given a quantitative objective ν, the value of a Player 1 strategy φ1 is defined
as Val1(φ1) = infφ2∈Φ2

E(ν(ρ) | ρ ∈ Outcomes(φ1, φ2)), i.e., the expected value

23

of the play arising from the two strategies. Dually, the value of a Player 2 strat-
egy φ2 is given by Val2(φ2) = supφ1∈Φ1

E(ν(ρ) | ρ ∈ Outcomes(φ1, φ2)). Note
that we have not formally defined the probability measure over the outcome of
a pair of strategies; see, for example, [42] for a formal definition.

The Player 1 value of a game G is the maximum value Player 1 can enforce
for a resulting play no matter what the Player 2 strategy, i.e., it is equiva-
lent to supφ1∈Φ1

Val1(φ1). Similarly, the Player 2 value of a game G is the
minimum value Player 2 can enforce for a resulting play, i.e., equivalent to
infφ2∈Φ2 Val2(φ2).

A strategy φi is optimal for Player i if it achieves the Player i value for the
game, i.e., Val i(φi) = Val i(G). Similarly, a strategy φi is ε-optimal if |Val i(φi)−
Val i(G)| ≤ ε.

2.3.4 Standard Results on 2-player and 21
2
-player Games

We end this chapter by presenting a number of classical results on 2-player and
2 1

2 -player games.

Objective Decision complexity Player 1 str. Player 2 str.

Safety Ptime Memoryless Memoryless
Büchi Ptime Memoryless Memoryless
Streett Exptime Finite memory Memoryless
Parity Np ∩ co-Np Memoryless Memoryless

Limit-average Np ∩ co-Np Memoryless Memoryless
Discounted-sum Np ∩ co-Np Memoryless Memoryless

Multi-dimensional
co-Np complete – Memoryless

limit-average
Limit-average safety Np ∩ co-Np Finite Memory Memoryless
Limit-average parity Np ∩ co-Np – –

Table 2.1: Summary of results for 2-player perfect-information
games. The first column is the complexity of deciding if
Player 1 has a winning strategy for the Boolean objectives or if
the Player 1 value for the game is greater than a given threshold
for quantitative objectives. The second and third columns give the
class of strategies that are suffice for winning (for Boolean objec-
tives) or optimal play (quantitative objectives).

2-player games. Table 2.1[Pg. 24] summarizes the results for 2-player perfect
information (i.e., where the strategies are not based on an observation mapping).

For 2-player partial information games (i.e., where the strategies are
restricted to some observation-based strategies), the classical results come
from [143]. Further extensions to other objectives are summarized in Ta-
ble 2.2[Pg. 25].

24

Objective Decision complexity Player 1 str. Player 2 str.

Safety Ptime Memoryless Memoryless
Büchi Ptime Memoryless Memoryless
Streett Finite memory Memoryless
Parity Np ∩ co-Np Memoryless Memoryless

Limit-average Np ∩ co-Np Memoryless Memoryless
Discounted-sum Np ∩ co-Np Memoryless Memoryless

Multi-dimensional
co-Np complete – Memoryless

limit-average
Limit-average safety Np ∩ co-Np Finite Memory Memoryless
Limit-average parity Np ∩ co-Np – –

Table 2.2: Summary of results for 2 1
2 -player partial information

games. The columns are as in Table 2.1

2 1
2 -player games. For 2 1

2 -player games, the results are of two kinds—in the
first category, the algorithmic problem is to compute if a player has a strategy
to win with probability 1; and in the second, the algorithmic problem is to
compute the exact value of the game for a player. For a comprehensive set of
results on 2 1

2 -player games related to complexity and class of strategies for each
player, we refer the reader to [42].

Relevant results. Here, we explicitly state the results that are used in the
remainder of this report.

Theorem 2.3 ([126]). For 2-player games with safety, Büchi, and parity ob-
jectives, either Player 1 has a memoryless winning strategy or Player 2 has a
memoryless winning strategy.

Theorem 2.4 ([126]). For 2-player games with Streett objectives, either
Player 1 has a finite memory winning strategy or Player 2 has a memoryless
winning strategy.

Theorem 2.5 ([172]). For 2-player games with limit-average, discounted-sum,
and limit-average safety objectives, the Player 1 value of the game is equal to
the Player 2 value of the game. Further, both players have memoryless optimal
strategies.

Theorem 2.6 ([50]). For 2-player games with limit-average parity objectives,
the Player 1 value of the game is equal to the Player 2 value of the game.
Further, Player 2 has a memoryless optimal strategy, and Player 1 has finite-
memory ε-optimal strategies.

Theorem 2.7 ([51]). For 2 1
2 -player games with parity objectives, the

Player 1 value of the game is equal to the Player 2 value of the game. Fur-
ther, both players have optimal memoryless strategies.

Theorem 2.8 ([73]). For 2 1
2 -player partial information games with limit-

average objectives, it is undecidable to compute if Player 1 has a winning strat-
egy.

Part I

Quantities as Preference

26

In this part, we introduce the simulation distances framework for specifying
reactive systems. Here, the classical notion of simulation of an implementation
system I by a specification system S is replaced by a quantitative correctness
distance dcor(I,S). A system I1 is preferred over another I2 with respect to a
specification S if dcor(I1,S) ≤ dcor(I2,S).

We also show how the same framework can be used to define other useful
notions of distances between systems. We define the coverage distance to mea-
sure the coverage of a specification by an implementation, i.e., how much of the
specification behaviour is covered by the implementation. Further, we define the
robustness distance to measure the robustness of an implementation to external
errors with respect to a specification.

In Chapter 4[Pg. 67], we show how the simulation distances framework can
be used to solve the problem of incompatible specifications. In practice, differ-
ent parts of the specification come usually from different sources and are often
incompatible in the corner cases, i.e., there is no common implementation. The
designer then resolves these incompatible requirements and writes more detailed
specifications. These detailed specifications are often cumbersome and hard to
modify. On the other hand, using simulation distances, we can formalize the no-
tion that the desired implementation is the one that comes closest to satisfying
all parts of the specification. Formally, given multiple incompatible specifica-
tions, we define the problem of synthesizing from incompatible specifications as
finding the implementation that minimizes the maximal simulation distance to
these specifications. This is equivalent to stating that in the simulation distances
framework, the equivalent of conjunction of two specifications is taking the max-
imum of the simulation distances to each (i.e., the classical I |= S1 ∧ I |= S2 is
replaced by I minimizes max(d(I,S1), d(I,S2))).

Properties of Simulation Distances

A good specification framework is not necessary only to distinguish good sys-
tems from bad systems, but it must also offer a host of additional properties
and techniques to make standard system development workflows feasible. We
discuss a number of properties of simulation distances and the components of
the system development workflow they enable. In the classical setting, many
of these properties are taken for granted as they are trivially satisfied by most
of the specification frameworks. However, each of these properties need to be
examined and shown for the quantitative specification frameworks.

Compositional Specifications. Systems are usually composed of multiple
components and each of these components is specified separately. Verification
usually takes a parallel route, where each component of the implementation
system is verified against the corresponding component of the specification. In
classical specification frameworks, the property that allows for this is composi-
tionality, which states that is each component of the implementation is correct
with respect to the corresponding component of the specification, then so is the
implementation with respect to the full specification.

We prove the equivalent quantitative compositionality property for simula-
tion distances for a class of error models. Intuitively, the quantitative composi-
tionality property states that the simulation distance from the specification to
the implementation is bounded by the sum of simulation distances from each

27

component of the specification to the corresponding component of the imple-
mentation.

Test-case Generation. In cases where full verification of a system is not
possible either due to the size of the system or other constraints, testing is a
commonly used technique of system validation. In the testing paradigm, a set of
inputs to the system (called the test suite) is chosen and the system behaviour
on these inputs is validated against the specification. The success of the testing
paradigm in detecting bugs is largely dependent on the choice of the test-suite.

Model-based testing provides a structured and robust technique of choos-
ing a test-suite given a specification and an implementation system. In this
framework, a test-suite is chosen to maximize some notion of “coverage” of the
specification by the test-suite (for example, state coverage). We show using
a case study how the simulation distances framework can be used to generate
test-suites in the model-based testing, and how the coverage distance can be
used to generate better test-suites than using any classical notion of coverage.

Hierarchical Design. In workflows where a system is designed starting from
a specification, the final system is not generated at once from the specification,
but instead the development proceeds in steps. From the high level specification,
a slightly lower level design is generated where certain, but not all, aspects of the
implementation are fixed. In each further step, a lower level system is generated
by refining more and more aspects of the design till the concrete implementation
system is finalized.

A good specification framework allows the designer to reason about each
of these refinement steps separately, i.e., by proving that each refined lower
level system is correct with respect to the previous one, the designer should be
able to show that the final concrete system is correct with respect to the initial
specification. The relevent property for classical specification frameworks is
transitivity, i.e., the property that if system S1 is correct with respect to system
S2, and system S2 is correct with respect to system S3, then S1 is correct with
respect to S3. The quantitative analogue of the classical transitivity property is
the triangle inequality which states that d(S1,S3) ≤ d(S1,S2) + d(S2,S3). We
show that simulation distances follow the triangle inequality for a large class of
error models, enabling the same hierarchical development pattern used in the
classical case.

Abstraction. A common technique to overcome large state spaces during ver-
ification is abstraction. Here, from a given concrete system, a smaller abstract
system is constructed such that the abstract system has more behaviours than
the concrete system. The guarantee is that if the abstract system is correct
with respect to a specification, then so is the concrete system. As the abstract
system is smaller than the concrete one, it is potentially easier to verify.

We show that the abstraction similar technique can be used even in the
simulation distances framework. Formally, we prove that the distance from a
specification to the abstract system is an upper bound on the distance from the
specification to the concrete system.

28

Chapter 3

Simulation Distances

Boolean notions of correctness are formalized by preorders on systems. Quan-
titative measures of correctness can be formalized by real-valued distance func-
tions between systems, where the distance between implementation and speci-
fication provides a measure of “fit” or “desirability.” We extend the simulation
preorder to the quantitative setting, by making each player of a simulation game
pay a certain price for her choices. We use the resulting games with quantita-
tive objectives to define three different simulation distances. The correctness
distance measures how much the specification must be changed in order to be
satisfied by the implementation. The coverage distance measures how much
the implementation restricts the degrees of freedom offered by the specifica-
tion. The robustness distance measures how much a system can deviate from
the implementation description without violating the specification. We consider
these distances for safety as well as liveness specifications. The distances can be
computed in polynomial time for safety specifications, and for liveness specifi-
cations given by weak fairness (Büchi) constraints. We show that the distance
functions satisfy the triangle inequality, that the distance between two systems
does not increase under parallel composition with a third system, and that the
distance between two systems can be bounded from above and below by dis-
tances between abstractions of the two systems. These properties suggest that
our simulation distances provide an appropriate basis for a quantitative theory
of discrete systems. We also demonstrate how the robustness distance can be
used to measure how many transmission errors are tolerated by error correcting
codes.

3.1 Motivation

Standard verification systems return a boolean answer that indicates whether a
system satisfies its specification. However, not all correct implementations are
equally good, and not all incorrect implementations are equally bad – there is
a preference order among systems. There is thus a natural question whether
it is possible to extend the standard specification frameworks and verification
algorithms to capture a finer and more quantitative view of the relationship
between specifications and systems.

We focus on extending the notion of simulation to the quantitative setting.

30

For reactive systems, the standard correctness requirement is that all executions
of an implementation have to be allowed by the specification. Requiring that
the specification simulates the implementation is a stricter condition, but it
is computationally less expensive to check. The simulation relation defines a
preorder on systems. We extend the simulation preorder to a distance function
that given two systems, returns a real-valued distance between them.

Let us consider the definition of simulation of an implementation I by a spec-
ification S as a two-player game, where Player 1 (the implementation) chooses
moves (transitions) and Player 2 (the specification) tries to match each move.
The goal of Player 1 is to prove that simulation does not hold, by driving the
game into a state from which Player 2 cannot match the chosen move; the goal of
Player 2 is to prove that there exists a simulation relation, by playing the game
forever. In order to extend this definition to capture how “good” (or how “bad”)
the simulation is, we make the players pay a certain price for their choices. The
goal of Player 1 is then to maximize the cost of the game, and the goal of Player
2 is to minimize it. The cost is given by an objective function, such as the
limit average of transition prices. For example, for incorrect implementations,
i.e., those for which the specification S does not simulate the implementation I,
we might be interested in how often the specification (Player 2) cannot match
an implementation move. We formalize this using a game with a limit-average
objective between modified systems. The specification is allowed to “cheat,” by
choosing mis-matching transitions. However, for each such mismatching tran-
sition, the specification player (Player 2) gets a penalty. As Player 2 is trying
to minimize the value of the game, she is motivated not to cheat. The value of
the game measures how much the specification can be forced to cheat by the
implementation. We call this distance function correctness.

Let us consider the examples in Figure 3.1[Pg. 33]. We take the system S1 as
the specification. The specification allows at most two symbols b to be output
in a row. Now let us consider the two incorrect implementations I3 and I4.
The implementation I3 outputs an unbounded number of b’s in a row, while the
implementation I4 can output three b’s in a row. The specification S1 will thus
not be able to simulate either I3 or I4, but I4 is a “better” implementation in
the sense that it violates the requirement to a smaller degree. We capture this by
allowing S1 to cheat in the simulation game by simulating a b transition action
by an a transition. Each match or mis-match is penalized according to the error
model in Figure 3.6[Pg. 38]. Intuitively, the error model in Figure 3.6[Pg. 38]
states that every mis-match gets a penalty of 1 while every match gets a penalty
of 0. Hence, as per the error model, every third move will be penalized as the
mis-matching transition will be taken every third move while simulating I3. The
correctness distance from S1 to I3 will therefore be 1/3. When simulating I4,
the specification S1 needs to cheat only one in four times—this is when I4 takes
a transition from its state 2 to state 3. The distance from S1 to I4 will be 1/4.

Considering the implementation I2 from Figure 3.1[Pg. 33], it is easy to see
that it is correct with respect to the specification S1. The correctness distance
would thus be 0. However, it is also easy to see that I2 does not include all
behaviors allowed by S1. Our second distance function, coverage, is the dual of
the correctness distance. It measures how many of the behaviors allowed by the
specification are actually implemented by the implementation. This distance is
obtained as the value for the implementation in a game in which I is required
to simulate S, with the implementation being allowed to cheat. The coverage

31

distance can be used, for example, to measure how much of a specification is
actually implemented by the system, or as a coverage metric to measure the
quality of a test suite. Our third distance function is called robustness. It
measures how robust the implementation I is with respect to the specification
S in the following sense: we measure how often the implementation can make
an unexpected error (i.e., it performs a transition not present in its transition
relation), with the resulting behavior still being accepted by the specification.
Unexpected errors could be caused, for example, by a hardware problem, by a
wrong environment assumption, unreliable message channels, or by a malicious
attack. Robustness measures how many such unexpected errors are tolerated.

In addition to safety specifications, we consider liveness specifications given
by weak (Büchi) fairness constraints or strong (Streett) fairness constraints. In
order to define distances to liveness specifications, the notion of quantitative
simulation is extended to fair quantitative simulation. We study variations
of the correctness, coverage, and robustness distances using limit-average and
discounted objective functions. Limit-average objectives measure the long-run
frequency of errors, whereas discounted objectives count the number of errors
and give more weight to earlier errors than later ones.

The correctness, coverage, and robustness distances can be calculated by
solving the value problem in the corresponding games. Without fairness re-
quirements, we obtain limit-average games or discounted games with constant
weights. The values of such games can be computed in polynomial time [172].
We obtain polynomial complexity also for distances between systems with weak-
fairness constraints, whereas for strong-fairness constraints, the best known al-
gorithms require exponential time.

We present composition and abstraction techniques that are useful for com-
puting and approximating simulation distances between large systems. We
prove that distance from a composite implementation I1 ‖ I2 to a compos-
ite specification S1 ‖ S2 is bounded by the sum of distances from I1 to S1 and
from I2 to S2. Furthermore, we show that the distance between two systems
can be bounded from above and below by distances between abstractions of the
two systems.

Finally, we present case studies showing applications of the robustness dis-
tance and the coverage distance. In the first case study, we consider error
correction systems for transmitting data over noisy channels and show that the
robustness distance measures how many transmission errors can be tolerated
by an implementation. Three implementations are analyzed, one based on the
Hamming code, one based on triple modular redundancy, and an implementa-
tion without any error correction. In the second case study, a specification of a
reactive system with inputs and outputs is considered, and we use the coverage
metric to determine what part of the input words for which a specification de-
fines an output is covered by different implementations. In the third case study,
a specification of a drink vending machine as a reactive system is considered,
and the quality of different test suites is measured as the coverage distance to
the specification.

32

s0 s1 s2

b b

a
a

a

(a) Specification S1

s0 s1

a
b

a

(b) Implementation I2

s0

b

(c) Implementation I3

s0 s1 s2 s3

b b b

a

(d) Implementation I4

Figure 3.1: Example systems.

3.2 Simulation Relations, Simulation Games,
and Quantitative Simulation Games

The simulation preorder [127] is a useful and polynomially computable rela-
tion to compare two transition systems. In [12] this relation was extended
to alternating simulation between alternating transition systems. For systems
with fairness conditions, the simulation relation was extended to fair simulation
in [95]. These relations can be computed by solving games with boolean ob-
jectives (called simulation games). Here, we extend various types of simulation
games with quantitative objectives.

3.2.1 Simulation and Alternating Simulation

Simulation Relations. Consider two labelled transition systems L =
〈S,Σ,∆, sι〉, and L′ = 〈S′,Σ,∆′, s′ι〉. The system L′ simulates the system L
if there exists a relation ≤sim⊆ S × S′ having the following properties (note
that we write s ≤sim s′ instead of (s, s′) ∈≤sim and say that s′ simulates s):

• the initial state of L′ simulates the initial state of L, i.e., sι ≤sim s′ι; and

• if s′0 simulates s0, then for each transition from s0 to s′0 on action σ,
there exists a matching transition from s′0 to some state s′1 such that s′1
simulates s1. Formally, ∀s0, s1 ∈ S, s′0 ∈ S′ : s0 ≤sim s′0 ∧ (s0, σ, s1) ∈
∆ =⇒ ∃s′1 : (s′0, σ, s

′
1) ∈ ∆′ ∧ s1 ≤sim s′1. This requirement is captured

by Figure 3.2[Pg. 34].

If L′ simulates L, we abuse notation and write L ≤sim L′. Further, if there
exists at least one witness ≤sim such that s ≤sim s′, we say that s′ simulates s.

Intuitively, s ≤sim s′ if the behaviour of s′ subsumes the behaviour of s in a
specific “local” manner, i.e., we want that every transition from s has a matching
transition from s′ and that the target states of these transitions are also related
by ≤sim . The following classical theorem shows that this definition of “local”
subsumption of behaviour implies the “global” subsumption of behaviour, i.e.,
language inclusion.

33

s0∀

s′0

s1

s′1 ∃

≤sim ≤sim

σ

σ

Figure 3.2: Requirements for simulation of s0 by s′0

s0

s1

ab c

(a) System L

s0

s1s2

aa bc

(b) System L′

Figure 3.3: Counter-example to converse of Theorem 3.1[Pg. 34]:
Lang(L) ⊆ Lang(L′), but L′ does not simulate L

Theorem 3.1 ([127]). If L′ simulates L, then Lang(L) ⊆ Lang(L′).

However, the converse of the above theorem is not true – there are systems
L and L′ such that Lang(L) ⊆ Lang(L′), but L′ does not simulate L. For an
example of such systems, see Figure 3.3[Pg. 34].

Alternating Simulation. For two alternating transition sys-
tems A = 〈S, (Sin , Sout),Σ, (Σin ,Σout),∆, sι〉 and A′ =
〈S′, (S′in , S′out),Σ, (Σin ,Σout),∆

′, s′ι〉, alternating simulation of A by A′ (or A′

alternating simulates A) if there exists a relation ≤asim⊆ Sin ×S′in ∪Sout ×S′out
such that:

• sι ≤asim s′ι; and

• for all s0 ∈ S and s′0 ∈ S′ such that s0 ≤asim s′0, we have that:

– If s0 ∈ Sout , for all (s0, σ, s1) ∈ ∆, there exists (s′0, σ, s
′
1) ∈ ∆′ such

that s1 ≤asim s′1; and

– If s0 ∈ Sin , for all (s′0, σ, s
′
1) ∈ ∆′, there exists (s0, σ, s1) ∈ ∆ such

that s1 ≤asim s′1.

These requirements are summarized in Figure 3.4[Pg. 35]. If A′ alternating
simulates A, we abuse notation and write A ≤asim A′.

The above definition closely follows the definition of simulation with respect
to output actions. However, for input actions, the direction of the matching
(simulation) is the other way, i.e., every input transition from the state in A′

should be matched by a input transition of A. Intuitively, alternating simulation
is the “local” interpretation of the requirement that every output produced by
L is produced by L′ and every input accepted by L′ is accepted by L.

Note that there exist results showing that alternating simulation implies the
alternating analogue of language inclusion (alternating trace containment) [12,
11].

34

s0

∀

s′0

s1

s′1 ∃

s2∃

s′2

≤sim ≤sim

σout

σoutσin

σin

≤sim

Figure 3.4: Requirements for alternating simulation of s0 by s′0

3.2.2 Qualitative Simulation Games

An alternative formulation of simulation and alternating simulation preorders
is based on games. Formally, given two labelled transition systems, L and L′,
we construct a game GL,L′ such that simulation of L by L′ holds if and only if
Player 2 has a winning strategy in GL,L′ . Similarly, for two alternating transi-
tion systems, A and A′, we can construct a game HA,A′ such that alternating
simulation of A by A′ holds if and only if Player 2 has a winning strategy in
HA,A′ . We informally describe the simulation and alternating simulation games
below. The formal descriptions follow.

Given two labelled transition systems L = 〈S,Σ,∆, sι〉, and L′ =
〈S′,Σ,∆′, s′ι〉, the simulation game GL,L′ proceeds in the following steps:

1. Initially, the current state of L and L′ is set to the corresponding initial
states sι and s′ι respectively.

2. In each round, Player 1 picks a transition (say (si, σ, si+1)) from the
current state si of L.

3. Then, Player 2 picks a transition (say (s′i, σ
′, s′i+1)) from the current state

s′i of L′.
4. The current states of L and L′ are updated to si+1 and s′i+1 respectively,

and the game proceeds again with a new round (step 2).
Player 2 wins the game if σ = σ′ (i.e., the actions of the transitions match) in
each round. Otherwise, Player 1 wins.

Similarly, given two alternating transition systems
A = 〈S, (Sin , Sout),Σ, (Σin ,Σout),∆, sι〉 and A′ =
〈S′, (S′in , S′out),Σ, (Σin ,Σout),∆

′, s′ι〉, the alternating simulation game HA,A′ is
proceeds as follows:

1. Initially, the current state of A and A′ is set to the corresponding initial
states sι and s′ι respectively.

2. In each round, we have:
• if the current states are output states, as in a simulation game,

Player 1 picks a transition (say (si, σ, si+1)) from the current state
si of L, and Player 2 picks a transition (say (s′i, σ

′, s′i+1)) from the
current state s′i of L′.

• if the current states are input states, Player 1 picks a transition (say
(s′i, σ

′, s′i+1)) from the current state s′i of L′, and Player 2 picks a
transition (say (si, σ, si+1)) from the current state si of L.

3. The current states of L and L′ are then updated to si+1 and s′i+1 respec-
tively, and the game proceeds again with a new round (step 2).

As before, Player 2 wins the game if σ = σ′ (i.e., the actions of the transitions
match) in each round. Otherwise, Player 1 wins.

35

sok sfail

∀σ : σ/σ

∀σ 6= σ′ : σ/σ′

Σ× Σ

Figure 3.5: Standard Error Automaton

It can be seen that the simulation and alternating simulation games ac-
tually correspond to the simulation and alternating simulation preorders, i.e.,
Player 2 wins in the game if and only if the corresponding relation between
the systems holds. Intuitively, if simulation (or alternating simulation) holds,
Player 2 can ensure that the current states in each round (si and s′i) are in
simulation (or alternating simulation). This holds as sι and s′ι are in simulation
(or alternating simulation) initially, and in each step, Player 2 can choose the
matching transition from the definition of the witness simulation relation ≤sim

(or witness alternating simulation relation ≤asim). Conversely, given a winning
strategy for Player 2 in the game, a witness simulation (or alternating simu-
lation) relation can be constructed by collecting all the pairs of current states
reached in each round over all the strategies for Player 1.

Error Automata. For the formal definition of the simulation and alternat-
ing simulation games, we use error automata. Though this makes the definition
more involved here, it simplifies further definitions in the next section (Sec-
tion 3.2.3[Pg. 38]).

Given a set of actions Σ, an error automata is an automata 〈S,Σ×Σ,∆, sι〉.
Note that in error automata, we write the elements (σ, σ′) of the alphabet Σ×Σ
as σ/σ′ instead. We will use error automata to characterize the matching of the
actions in each round of the simulation game, i.e., error automata are used to
separate valid simulations from invalid ones.

The standard error automaton (See Figure 3.5[Pg. 36]) over actions Σ is
an automaton 〈{sok, sfail},Σ × Σ,∆, sok〉 where ∆ = {(sok , σ/σ, sok) | σ ∈
Σ} ∪ {(sok , σ/σ′, sfail) | σ, σ′ ∈ Σ ∧ σ 6= σ′} ∪ {(sfail , σ/σ′, sfail) | σ, σ′ ∈ Σ}
along with the safety acceptance condition given by Safe({sok}). Intuitively,
the standard error automata accepts a word if and only if at each position of
the word the two actions in the action pair are equal.

Simulation and Alternating Simulation Games Given two labelled tran-
sition systems L = 〈S,Σ,∆, sι〉, and L′ = 〈S′,Σ,∆′, s′ι〉 and an error automata
A = 〈SA,Σ× Σ,∆A, sAι 〉 the simulation game GL,L′,A is played over the simu-
lation game graph G = 〈SG, (SG1 , SG2),Σ,∆G, sGι 〉 where:

• The state space SG = S × (Σ ∪ {#})× S′ × SA × {1, 2} consists of:

– The current states of L and L′ in the simulation game at the first
and third components respectively;

– The current player (either Player 1 or Player 2) at the last compo-
nent;

36

– The action of the previous L transition chosen by Player 1 in the
second component, or # if Player 1 is yet to choose a transition in
this round; and

– The current state of the error automaton in the fourth component.

• The initial state sGι = (sι,#, s
′
ι, s
A
ι , 1).

• A state in SG is in SGi if and only if the last component is equal to i.

• The set of transitions ∆G consists of two types of transitions:

– Testing transitions. If (s0, σ, s1) is a transition of L in ∆, then
((s0,#, s

′
0, s
A
0 , 1), σ, (s1, σ, s

′
0, s
A
0 , 2)) ∈ ∆G; and

– Matching transitions. If (s′0, σ
′, s′1) is a transition of L′ in

∆′ and (sA0 , σ/σ
′, sA1) is transition of the error automaton, then

((s1, σ, s
′
0, s
A
0 , 2), σ′, (s1,#, s

′
1, s
A
1 , 1)) ∈ ∆G.

A play in this game graph is winning for Player 2 if and only if the run of the
error automaton that is embedded in the states of the play is accepting.

We have the following theorem.

Theorem 3.2. Given two labelled transition systems L and L′ over the actions
and the standard error automaton A over Σ, Player 2 has a winning strategy in
the corresponding simulation game GL,L′,A if and only if L′ simulates L.

We skip the proof of the theorem and instead refer the reader to any standard
text on model checking of discrete time systems.

Similarly, given two alternating transition systems
A = 〈S, (Sin , Sout),Σ, (Σin ,Σout),∆, sι〉 and A′ =
〈S′, (S′in , S′out),Σ, (Σin ,Σout),∆

′, s′ι〉 and an error automaton A =
〈SA,Σ × Σ,∆A, sAι 〉 the alternating simulation game HA,A′,A is played
over the alternating simulation game graph H = 〈SH , (SH1 , SH2),Σ,∆H , sHι 〉
where:

• The state space, Player 1 and Player 2 states, actions and the initial state
of HA,A′,A are defined as in a simulation game; and

• The set of transitions ∆H consists of four types of transitions:

– Output Testing transitions. If (s0, σ, s1) is an output transition of A
in ∆, then ((s0,#, s

′
0, s
A
0 , 1), σ, (s1, σ, s

′
0, s
A
0 , 2)) ∈ ∆H ; and

– Output Matching transitions. If (s′0, σ
′, s′1) is a transition of A′

in ∆′ and (sA0 , σ/σ
′, sA1) is transition of the error automaton, then

((s1, σ, s
′
0, s
A
0 , 2), σ′, (s1,#, s

′
1, s
A
1 , 1)) ∈ ∆H .

– Input Testing transitions. If (s′0, σ
′, s′1) is an output transition of A′

in ∆, then ((s0,#, s
′
0, s
A
0 , 1), σ′, (s0, σ

′, s′1, s
A
0 , 2)) ∈ ∆H ; and

– Input Matching transitions. If (s0, σ, s1) is a transition of A in
∆ and (sA0 , σ

′/σ, sA1) is transition of the error automaton, then
((s0, σ

′, s′1, s
A
0 , 2), σ, (s1,#, s

′
1, s
A
1 , 1)) ∈ ∆H

As for simulation games, we have the following theorem for alternating sim-
ulation games.

37

s0∀σ : σ/σ(0) ∀σ 6= σ′ : σ/σ′(1)

Figure 3.6: Standard Error Model

Theorem 3.3. Given two labelled transition systems A and A′ over the actions
and the standard error automaton A over Σ, Player 2 has a winning strategy in
the corresponding alternating simulation game HA,A′,A if and only if A′ alter-
nating simulates A.

Fair Simulation Games. Given two labelled transitions systems with fair-
ness conditions LF and L′F

′
, the fair simulation game is played in the same

game graph GA,A′ as the simulation game. However, in addition to matching
the symbol in each step, Player 2 has to ensure that if the trace produced by the
sequence of transitions of L chosen by Player 1 satisfies is fair, then the trace
produced by the sequence of L′ transitions chosen is also fair.

3.2.3 Quantitative Simulation Games

We define a generalized notion of simulation games called quantitative simu-
lation games where the simulation objectives of matching each transition are
replaced by a quantitative objectives.

Error Models. In quantitative simulation games, we allow Player 2 to match
transitions on one action with transitions on a different action. However, we
assign a cost to such mismatches and Player 2 tries to minimize the cost of
mismatches in the game. These costs are specified using error models, which
are the quantitative analogue of error automata.

Given a set of actions Σ, an error model is a deterministic weighted automa-
ton 〈S,Σ × Σ,∆, sι, v〉 with either a LimAvg or a Discλ objective. As with
error automata, we write the members of the alphabet of error models as σ/σ′

instead of (σ, σ′). We also require that each word over symbols of the form σ/σ
is assigned cost 0 to ensure that correct simulations incur no penalty.

For a set of actions Σ, the standard error model (see Figure 3.6) is the
weighted automaton 〈{s},Σ × Σ,∆, s〉 with the weight function v where:
(a) ∆ = {(s, σ/σ′, s) | σ, σ′ ∈ Σ}, and (b) v((s, σ/σ′, s)) = 0 if σ = σ′

and v((s, σ/σ′, s)) = 1 if σ 6= σ′.
Intuitively, the error models specify quantitatively the “quality” of match for

each simulation run. Intuitively, a transition on label represents that a transition
on label σ1 in the simulated system can be simulated by a transition on label σ2

in the simulating system with the accompanying cost. In a simulation game, the
sequence of transitions chosen by Player 1 form the L trace s0σ0s1σ1 . . ., and
the sequence of transitions chosen by Player 2 form the L′ trace s′0σ

′
0s
′
1σ
′
1 . . .,

the “quality” of match is given the value of the run of the error model on the
word (σ0/σ

′
0)(σ1/σ

′
1)

We present a few natural error models here.

38

g/g(0)
g̃/g̃(0)

g̃/g(1)

∗/g̃(1)

∗/g(0)

(a) Delayed Response

g/g̃(1)

g̃/g̃(0)
g/g(0)

g̃/g(1)

* (1)

(b) No Spurious Response

a/a(0)
b/b(0)

a/b(∞)
b/a(∞)

∗(∞)

(c) Qualitative error model

Figure 3.7: Sample error models: the first component of the symbol
on each transition is the output symbol expected by the specifica-
tion, while the second component is the output symbol actually
produced by the implementation.

• Standard Error Model. (Figure 3.6[Pg. 38]) Every replacement can occur
during simulation with a constant cost and can be used to model “one-off”
errors like bit-flips.

• Delayed Response Model. (Figure 3.7a[Pg. 39]) This model measures the
timeliness of responses (g) to requests (r). Here, when the implementation
outputs g̃ when a grant g is expected, all transitions have a penalty until
the missing grant g is seen. Under this model, the cost of the simulation
is the fraction of time spent waiting for the grant.

• No Spurious Response Model. (Figure 3.7b[Pg. 39]) This model is meant
to ensure that no spurious grants are produced. If an implementation pro-
duces a grant not required by the specification, all subsequent transitions
get a penalty.

• Qualitative Model. (Figure 3.7c[Pg. 39]) This model recovers the boolean
simulation games. The distance is 0 if and only if the simulation relation
holds.

Remark 3.4. In [36], we introduced the notion of modification schemes to
characterize the kinds of errors or mismatches permitted during the simulation
game. However, the modification schemes used in [36] do not cover some natural
kinds of error schemes. Of the above models, the standard model and the qual-
itative model can be expressed as modification schemes from [36], whereas the
delayed response and the spurious response model cannot be cast as modification
schemes.

Quantitative Simulation Games. Quantitative simulation games are de-
fined in exactly the same way as standard simulation games, the only difference
being that the boolean objective obtained from the error automaton is replaced
with the quantitative objective obtained from the error model.

Formally, given two labelled transition systems L = 〈S,Σ,∆, sι〉, and
L′ = 〈S′,Σ,∆′, s′ι〉 and an error model M = 〈SM,Σ × Σ,∆M, sMι , vM〉 the

39

corresponding quantitative simulation game is played on the weighted game
graph Q = 〈SQ, (SQ1 , S

Q
2),Σ,∆Q, sQι , v〉 where:

• 〈SQ, (SQ1 , S
Q
2),Σ,∆Q, sQι , v〉 is the same as the standard simulation game

graph GL,L′,A where A = 〈SM,Σ× Σ,∆M, sMι .

• The weight function v is specified as follows for the different cases:

– LimAvg case. If M has a limit-average objective, we define the
weight functions as follows:

(a) For testing transitions ((s0,#, s
′
0, s
A
0 , 1), σ, (s1, σ, s

′
0, s
A
0 , 2)) ∈

∆Q, we set v(((s0,#, s
′
0, s
A
0 , 1), σ, (s1, σ, s

′
0, s
A
0 , 2))) = 0; and

(b) For matching transitions ((s1, σ, s
′
0, s
A
0 , 2), σ′, (s1,#, s

′
1, s
A
1 , 1)) ∈

∆Q, the set v(((s1, σ, s
′
0, s
A
0 , 2), σ′, (s1,#, s

′
1, s
A
1 , 1))) =

2 · vM((sA0 , σ/σ
′, sA1)), i.e., we set the weight to be twice

the weight of the transition in the corresponding error model.

– Discλ case. If M has a discounted sum objective with discount
factor λ, we define the weight functions as follows:

(a) As for the limit-average case, the testing transitions have weight
0; and

(b) For matching transitions, we set the weight to be a factor of 2√
λ

of the weight of the corresponding error model transition.

The objective of the quantitative simulation game is the limit-average objective
if the error modelM was a limit-average automaton, and it is a Disc√λ objective
if the error model was a Discλ automaton. The scaling factors for the weights
and the change from Discλ to Disc√λ while going from the error model to the
game graph is to normalize the values of the game.

Similarly, for two alternating transition systems, we can define the quantita-
tive alternating simulation game based on the standard alternating simulation
game. The weight function for this game is defined in the same way as for
quantitative simulation games. We do not write the full definition here, but
instead just mention that for alternating systems A and A′, and error model
M, we denote the corresponding quantitative simulation as PA,A′,M and the
quantitative simulation game graph as RA,A′,M.

Quantitative Fair Simulation Games. Given two transition systems L
and L′ with fairness constraints (and an error model), as with standard fair
simulation games, the quantitative fair simulation games are played on the same
graph as the corresponding quantitative simulation game. The objective of the
game is modified to be the hybrid objective consisting of quantitative objective
from the error model and the boolean objective that if the L trace produced
by the transitions chosen by Player 1 is fair, then the L′ trace produced by the
transitions chosen by Player 2 must be fair – in other words, the value of a play
is ∞ if the L trace is fair and the L′ trace is not fair, and the value of the trace
is given by the weight function otherwise.

Note that we do not use discounted objective (Discλ) along with fairness
conditions as the two objectives are independent. The Disc objectives mainly
consider the finite prefix of a play, whereas fairness conditions consider only the
infinite suffix. Whenever a quantitative (alternating) simulation game with Disc

40

objectives is mentioned, it is understood that there are no fairness conditions
on the systems.

3.3 Simulation Distances

We present examples of distances that can be defined using quantitative sim-
ulation games. The first two presented here are modifications of the classical
simulation game in which the simulation relation is not perfect. The games are
set up in such a way that the amount of imperfection in the simulation mea-
sures a property of the relation between the systems. The third game presented
measures the robustness of a system in a novel way.

Remark 3.5 (A note about system nomenclature). Although quantitative sim-
ulation games can be constructed between any two systems over the same set
of actions, in the following discussion, it is usually convenient to think of one
of the systems involved as the specification and the other as a candidate im-
plementation. This nomenclature is justified as the simulation relation and the
simulation pre-order is generally used as a notion of refinement of systems.

3.3.1 Correctness

Given a specification S and an implementation I, such that I is incorrect with
respect to S, the correctness distance measures the degree of “incorrectness” of
I. The boolean (fair) simulation relation is very strict in a certain way. Even a
single nonconformant behavior can destroy this relation. Here we present a game
which is not as strict and measures the minimal number of required errors, i.e.
the minimal number of times the specification has to use nonmatching symbols
when simulating the implementation.

Let I and S be two labelled (resp. alternating) transition systems with the
same set of actions. The correctness distance dcor

M(I,S) from system I to
system S with respect to an error model M is the value of the quantitative
simulation game Gcor

M(I,S) where one of the following holds:
• The systems I and S are labelled transition systems without fairness

constraints, and Gcor
M(I,S) is the quantitative simulation game QI,S,M;

or
• The systems I and S are alternating transition systems without fair-

ness constraints, and Gcor
M(I,S) is the alternating quantitative simula-

tion game PI,S,M; or
• The systems I and S are labelled transition systems with fairness

constraints, and Gcor
M(I,S) is the fair quantitative simulation game

Qfair
I,S,M; or

• The systems I and S are alternating transition systems without fairness
constraints, and Gcor

M(I,S) is the fair quantitative alternating simulation
game P fair

I,S,M.
The game Gcor can be intuitively understood as follows. Given two systems

I and S, we are trying to simulate the system I by S, but the specification S is
allowed to make errors during simulation, i.e., to “cheat”, but she has to pay a
price for such a choice. As the simulating player is trying to minimize the value
of the game, she is motivated not to cheat. The value of the game can thus be

41

s0 a

(a) I1

s0 s1 s2 s3 s4

b b b b

a

(b) I5

s0 s1 s2

b

ab

b

(c) SL

s0 s1

a

b

(d) IL

Figure 3.8: Example Systems

seen as measuring how much she can be forced to cheat, that is, how much the
implementation commits an error.

We interpret the correctness distance as a measure of how much an imple-
mentation deviates from an ideal specification. For example, if the implemen-
tation is correct (S simulates I), then the correctness distance is 0. Otherwise,
the correctness distance measures the “farthest” implementation behaviour from
the given specification. When using the standard error model, the value of the
game is either the limit-average or the discounted-sum of the number of errors,
i.e., if the objective in the error model is LimAvg , then the value is the long run
average of the errors, whereas if the objective is Discλ, the errors which occur
earlier are given more importance and the value is the discounted sum of the
positions of the errors.

Example Systems and Distances We present a few example systems and
their distances here to demonstrate the fact that the above game measures dis-
tances that correspond to intuition. In Figure 3.8[Pg. 42] and Figure 3.1[Pg.
33], S1 is the specification system against which we want to measure the sys-
tems I1 through I5 using the standard error model. In this case, the specifi-
cation says that there cannot be more than two b’s in a row. Also, we have
a specification with a liveness condition SL against which we want to measure
the implementation IL. The distances between these systems according to the
LimAvg correctness game with the standard error model (Figure 3.6[Pg. 38])
are summarized in Table 3.1[Pg. 43].

Among the systems which do not satisfy the specification S1, i.e. I3, I4 and
I5, we showed in the introduction that the distance from I3 to S1 is 1/3, while
the distance from I4 to S1 is 1/4. However, surprisingly the distance from I5 to
S1 is less than the distance from I4. In fact, the distances reflect on the long run
the number of times the specification has to err to simulate the implementation.

In case of the specification SL and implementation IL with liveness condi-
tions, the specification can take the left branch to state s0 to get a penalty of 1

2
or take the right branch to state s2 to get a penalty of 1. However, it needs to
take the right branch infinitely often to satisfy the liveness condition. To achieve
the distance of 1

2 , the specification needs infinite memory so that it can take the
right branch lesser and lesser number of times. In fact, if the specification has

42

T1 T2 dcor
LimAvg(T1, T2) dcov

LimAvg(T1, T2) drob
LimAvg(T1, T2)

S1 S1 0 0 1
I1 S1 0 2/3 1/3
I2 S1 0 1/3 2/3
I3 S1 1/3 1 1
I4 S1 1/4 1 1
I5 S1 1/5 1 1
IL SL 1/2 1 1

Table 3.1: Distances according to the correctness, coverage, and
robustness games.

a strategy with finite-memory of size m, it can achieve a distance of 1
2 + 1

2m .
Further, we present an example of how using simulation distances can sim-

plify the specification of certain requirements. In many cases in practice, the
real requirement on some system is the minimization or maximization of certain
events or conditions. However, due to the use of boolean specification frame-
works, these requirements are extremely hard to express.

Example 3.6. Consider a request-grant requirement which states that every
request r has to be finally granted with g (seen in Figure 3.9a[Pg. 44] – in the
figure, state s0 is a Büchi state). In [130], the authors analyze the additional
specifications that need to be added to ensure that there are no spurious grants,
i.e., g is never output when there is no pending request r. To this goal, the
authors add the following two additional specification requirements: (a) there
are no grants before the first request; and (b) there are no two grants without
a request in between. Although, these additional requirements achieve the goal,
they are neither trivial to come up with, nor do they state exactly the required
condition – the authors develop a tool to help construct and debug such additional
requirements in [130].

Another significant problem is that these additional specifications need to be
changed whenever the original requirement changes. For example, if the orig-
inal requirement changes to every request has to be finally granted, and there
should be at least one g every 10 time steps (say to keep the system “alive”),
the additional requirements need to be rewritten completely.

However, using correctness distances, the same effect can be achieved easily
through adding an ideal specification that states that g never be output (Fig-
ure 3.9b[Pg. 44], along with an error model that penalizes every replacement of
¬g with g (Figure 3.9c[Pg. 44]) and choosing implementations that minimize
this correctness distance while satisfying the original specification. Therefore,
implementations that do not grant spuriously while still granting every request
will be preferred. Also, note that changing the original specification in this set-
ting does not require changing the additional minimization requirement either.

3.3.2 Coverage

We present the dual of the correctness distance which measures the behaviors
present in specification S system but not in the implementation I. Intuitively,
the coverage distance measures “how much” of the specification is actually im-

43

s0 s1 s2s3

r

g

¬g

r,¬r¬r

¬g, g

(a) Request-Grant specification

s0 s1

r,¬r

¬g

(b) Ideal No-grant
Specification

s0

r/ ∗ (0)
¬r/ ∗ (0)
g/ ∗ (0)

¬g/¬g(0)

¬g/g(0)

(c) Spurious-Grant
Penalizing Error
Model

Figure 3.9: Minimizing spurious grants

plemented in the implementation. Hence, we have that the coverage distance
from I to S is the correctness distance from S to I.

Given systems S and I and an error model M, the coverage distance
dcov(I,S) from system I to system S is the value of the quantitative simulation
game GcovI,S,M where if S and I are:

• Labelled transition systems without fairness constraints, Gcov
M(I,S) is

the quantitative simulation game QS,I,M.

• Alternating transition systems without fairness constraints, Gcov
M(I,S)

is the alternating quantitative simulation game PS,I,M.

• Labelled transition systems with fairness constraints, Gcov
M(I,S) is the

fair quantitative simulation game Qfair
S,I,M.

• Alternating transition systems without fairness constraints, Gcov
M(I,S)

is the fair quantitative alternating simulation game P fair
S,I,M.

Gcov measures the minimal number of errors that have to be committed by
I to cover all the behaviors of S. We summarized some examples systems and
their limit-average coverage distances with respect to the standard error model
in Table 3.1[Pg. 43]. Further, we present an example showing how the coverage
distance can be used to measure the “completeness” of an implementation.

Example 3.7. Suppose we have a request-grant system where the specifica-
tion states that every request has to be granted immediately (Figure 3.10a[Pg.
45]). Also, suppose due to physical constraints, implementing a system that suc-
cessively granting multiple requests is difficult. Therefore, the implementation
systems compensate by disallowing requests at certain points of time. We can
now measure how complete the implementation systems are with respect to the
complete specification using the coverage distance with respect to the error model
shown in Figure 3.10b[Pg. 45]. The error model gives a penalty whenever a re-
quest r is ignored, i.e., replaced with a ¬r – it does not care about the outputs
g and ¬g.

For example, the implementation I2 shown in Figure 3.10c[Pg. 45] has a
coverage distance 1

4 to the specification, while the implementation I3 shown in
Figure 3.10d[Pg. 45] has a coverage distance of 1

6 . This intuitively corresponds
to the idea that in the worst case, the I2 disables requests in every second step,
while I3 disables requests in every third step.

44

s0 s1s2

r

g¬r

¬g, g

(a) Immediate-Grant Specification

s0

g/ ∗ (0)
¬g/ ∗ (0)
¬r/ ∗ (0)

r/¬r(1)

r/r(0)

(b) Disable Request Error Model

s0

s1

s2

s3

s4

r g

¬r¬g¬r

¬g

(c) Implementation I2

s0

s1

s2

s3

s4

s5

s6

r g

¬r¬g¬r

¬g r g

¬r
(d) Implementation I3

Figure 3.10: Minimizing disabled requests

3.3.3 Robustness

In a perfectly functioning system, errors may occur due to unpredictable events
– for example, due to uncontrollable bit-flips during message passing. Given
a specification system and a correct implementation of the specification, the
notion of robustness presented here is a measure of the number of external er-
rors that need to be introduced into the implementation behaviour that makes
it nonconformant to the specification. The more such errors tolerated by the
specification, the more robust the implementation is with respect to the specifi-
cation. The lower the value of the robustness distance to a given specification,
the more robust an implementation is. In case of an incorrect implementation,
the simulation of the implementation does not hold irrespective of implementa-
tion errors. Hence, in that case, the robustness distance will be ∞.

Remark 3.8. In this section, we identify every labelled transition system L =
〈S,Σ,∆, sι〉 with the alternating transition system 〈S, (∅, S),Σ, (∅,Σ),∆, sι, i.e.,
we consider all the actions and states of the labelled transition system to be
output actions and output states respectively.

Robustness Measuring Modification. To define the robustness distance,
we need to modify the systems to explicitly encode both the occurrence of an
external error, and the kind of external errors that might happen. To this ef-
fect, we introduce a modification scheme ContErr – a function that extends
systems with additional behaviours relating to the modelling of errors. First,
we describe the function ContErr informally. The ContErr function is param-
eterized by a set of pairs of output actions ErrPairs ⊆ Σout ×Σout . Intuitively,
if (σout , σ

′
out) ∈ ErrPairs, it means that an external error may force the the

system to output σ′out instead of σout . For example, an action to send the
bit 0 over the network (say send0) might get replaced by an action to send
bit 1 over the network (say send1) due to a bit-flip – we model this fact by
letting (send0, send1) ∈ ErrPairs. However, an action to send the bit 0 over
the network cannot get replaced by a completely unrelated action, say action

45

s⊥

serr

s¬err

err

¬err

{σ′ | (σ, σ′) ∈ ErrPairs} ∪ {σ}

σ

σ

Figure 3.11: Gadget for ContErr

zero(r1) to set register r1 to 0, due to any feasible external error – hence,
(send0, zero(r1)) /∈ ErrPairs.

Given a system S and the set of possible errors ErrPairs, the system
ContErr(ErrPairs,S) is obtained by replacing every output state s with the
gadget shown in Figure 3.11[Pg. 46]. Intuitively, before each output, the system
ContErr(ErrPairs,S) takes an additional input (given by either the actions err
or ¬err). This input controls whether an external error happens in this step or
not. If an external error may happen, the system ContErr(ErrPairs,S) may
choose to output not only the actions in the original system S, but also the
possible replacement actions given by ContErr .

Formally, given ErrPairs ⊆ Σout × Σout and an alternating transition sys-
tem S = 〈S, (Sin , Sout),Σ, (Σin ,Σout),∆, sι〉, the system ContErr(ErrPairs,S)
is given by 〈Sin ∪ (Sout × {⊥, err,¬err}), (Sin , Sout × {⊥, err,¬err}),Σ ∪
{err,¬err}, (Σin ∪ {err,¬err},Σout),∆

′, s′ι〉 where:
• If sι ∈ Sin , then s′ι = sι; otherwise, sι = (sι,⊥).
• We have the following transitions in ∆′:

– If (s, σin , s
′) ∈ ∆ and σin ∈ Σin , then (s, σin , (s

′,⊥)) ∈ Σout .
– We have ((s,⊥),¬err, (s,¬err)) ∈ ∆ and ((s,⊥), err, (s, err)) ∈ ∆

for all s ∈ Sout .
– If (s, σout , s

′) ∈ ∆ and σout ∈ Σout , then ((s,¬err), σ, s′) ∈ ∆′ and
((s, err), σ, s′) ∈ ∆′.

– If (s, σout , s
′) ∈ ∆ and σout ∈ Σout , then ((s, err), σ′out , s

′) ∈ ∆′ for
all σ′out such that (σout , σ

′
out) ∈ ErrPairs.

Remark 3.9. Note that the kind of errors we model here are “one-off” errors
such as bit-flips and message losses. In this kind of errors, the influence of the
error is restricted to one step of the computation. The current model cannot
handle errors that are have some kind of temporal correlation (for example,
burst errors where one error leads to loss of a series of messages).

For a given set of actions Σ, the robustness error model is a one state de-
terministic weighted automaton 〈{s},Σ′ × Σ′, {s} × (Σ′ × Σ′) × {s}, s〉 where
Σ′ = Σ ∪ {err,¬err}. Further, we have:

v((s, σ/σ′, s)) =

0 if σ = σ′

2 if σ = err ∧ σ′ = ¬err
2 if σ = ¬err ∧ σ′ = err
∞ otherwise

Intuitively, the robustness error penalizes every mismatch in simulation by a
cost of infinity except replacement of err by ¬err and vice-versa.

46

Robustness distance. Given systems S and I, and the possible error pairs
ErrPairs, the robustness distance drob

ErrPairs(I,S) from system I to system S
is the value of the quantitative alternating simulation game GrobI,S,ErrPairs =
P fair

ContErr(ErrPairs,I),ContErr(∅,S).

Intuitively, one round of the game Grob
ErrPairs
I,S, is played in the following steps

(we describe the round for an output transition of I and S – the round for an
input transition is same as in standard simulation games): (a) Player 1 chooses
either the err or the ¬err transition of in the S. In this step, it is always better
for Player 1 to choose err – hence, we assume that the err transition is chosen.
(b) Player 2 chooses to match the transition either with the err or the ¬err
transition from I. If Player 2 chooses ¬err, she gets a penalty for the mismatch.
Intuitively, Player 2 is choosing whether an uncontrollable error may occur in
the implementation I in the current step; (c) Player 1 chooses a transition
on the implementation system. She is allowed to choose one of the erroneous
transitions (i.e., where an action σ is replaced with σ′ based on ErrPairs) if
Player 2 chose err in the previous step. Otherwise, Player 1 has to choose
an existing transition from I. (d) Player 2 chooses a matching transition
from ContErr(∅,S) (or equivalently, from S) to simulate the implementation.
The matching has to be exact – otherwise, Player 2 gets a penalty of ∞. In
brief, Player 2 chooses whether an error may occur in the current step in the
implementation or not. If she chooses to disallow errors in the current step, she
gets a penalty. However, if she chooses to allow errors, she has to exactly match
the implementation transition (along with possible errors) with a specification
transition.

Player 2 tries to minimize the number of moves where it prohibits implemen-
tation errors (without destroying the simulation relation), whereas the imple-
mentation tries to maximize it. Intuitively, the positions where the specification
cannot allow errors are the critical points for the implementation.

In Figures 3.8[Pg. 42] and 3.1[Pg. 33], in the robustness game for S1 and S1

with ErrPairs = {(a, b), (b, a)}, every position is critical. At each position, if
an error is allowed, Player 1 can make the system output three b’s in a row by
using the error transition to return to state s0 while outputting a b. The next
two moves can be b’s irrespective whether errors are allowed or not. This breaks
the simulation. Now, consider I1. This system can be allowed to err every two
out of three times without violating the specification. This shows that I1 is
more robust than S1 for implementing S1. The list of distances is summarized
in Table 3.1[Pg. 43].

Example 3.10. Consider a simple example of sending a message across an
unreliable channel. The specification is given in Figure 3.12a[Pg. 48] – in the
ideal behaviour, the specification repeatedly accepts a message (symbol accept),
ensures that it is sent successfully at least once (symbol send), and then re-
turns ok. Now, the external error we are trying to model allows messages to be
lost – therefore, a send action may be replaced by a ¬send action, i.e., we set
ErrPairs = {(send ,¬send)}.

Now, among the implementations I1, I2, and I3 in the Figure 3.12[Pg. 48],
we have that I1 attempts to send each message only once, while I2 and I3 at-
tempt to send each message twice and thrice respectively, in order to compensate
for lost messages.

Intuitively, I1 is the least robust implementation, while I3 is the most robust

47

s0

s1s2

accept

send

ok

¬sendsend

(a) Message send specification S

s0

s1s2

accept

send

ok

(b) Message send implementation I1

s0 s1 s2 s3

accept send send

ok

(c) Message send implementation I2

s0 s1 s2 s3 s4

accept send send

send

ok

(d) Message send implementation I3

Figure 3.12: Robustness of Message-Send protocols over an unre-
liable channel

as I1 does nothing to compensate for possible lost messages, while I3 does the
most. The robustness distances also match this – we have that drob(I1,S) = 1

3 ,
drob(I2,S) = 1

4 , and drob(I3,S) = 1
5 . Intuitively, to keep I1 from becoming

erroneous, we ensure that the send is successful, i.e., prevent errors in 1 step
of its 3 step protocol. For I2 and I3, we need to ensure that at least one of
the send is successful, i.e., prevent errors in 1 step of their 4 step and 5 step
protocols, respectively.

Component Robustness Distance. In many cases, a system is composed
of two or more separate “components”. An external error can not only cause
the affected component to produce the wrong outputs, but also may make the
other components behave badly. On the other hand, the components may be
designed to work together robustly by compensating for errors in each others’
behaviour. We extend the robustness distance to such systems with multiple
components.

If S and S ′ are two transition systems, we define asynchronous and syn-
chronous composition of the two systems, written as S ‖ S ′ and S × S ′ respec-
tively as follows:
• The state space is S × S ′;
• ((s0, s

′
0), σ, (s1, s

′
1)) is a transition of S ‖ S ′ iff (s0, σ, s1) is a transition of

S and s′0 = s′1 or (s′0, σ, s
′
1) is a transition of S ′ and s0 = s1, and

• ((s0, s
′
0), σ, (s1, s

′
1)) is a transition of S ×S ′ iff (s0, σ, s1) is a transition of

S and (s′0, σ, s
′
1) is a transition of S ′.

Given system I1×I2 having components I1 and I2, specification S, and error
pairs ErrPairs, the component robustness distance is defined to be the value
of the game QContErr(ErrPairs,I1)×I2 ,S . Note that this definition is presented
assuming that the first component is susceptible to external errors – however,
it is easy to extend the definition to the other components as well as systems

48

with more than two components. We abuse notation and use the same notation
as robustness distance, i.e., drob

ErrPairs(I1 × I2,S) for component robustness
distances.

Example 3.11. Consider a message transmission protocol where in each round,
the system receives either a request to either send a 0 or 1, indicated by r(0) and
r(1) respectively. The system then executes a send protocol where the sender
component transmits a series of 0 or 1 bits – indicated by t(0) and t(1) re-
spectively. The receiver component then receives the transmitted bits and then
outputs either 0 or 1 – indicated by o(0) and o(1) respectively.

In Figure 3.13[Pg. 50], the specification S states that when a 0 is re-
quested, a 0 is output finally, and when a 1 is requested, a 1 is output fi-
nally. We measure robustness in the presence of bit-flips, i.e., a t(0) may
be interpreted as a t(1) by the receiver or vice versa; a r(0) may be inter-
preted as a r(1) by the sender or vice versa; and a o(0) may be replaced by
a o(1) by the receiver or vice versa. Formally, we set error pairs ErrPairs =
{(t(0), t(1)), (t(1), t(0)), (r(0), r(1)), (r(1), r(0)), (o(0), o(1)), (o(1), o(0))}.

The figure illustrates two pairs of sender and receiver components. Sender
component Isend1 transmits the bit which is requested for exactly once, while the
sender component Isend2 transmits the bit which is requested for thrice. Simi-
larly, the receiver component Irecv1 outputs the first bit it receives, while Irecv2

waits for three bits to be received and outputs the bit that is received two or more
times.

Intuitively, the system where the sender transmits three bits and receiver
uses all the three bits for deciding the value to output (i.e., Isend2 × Irecv2 is
more robust than the system where only one bit is used (i.e., Irecv1 × Irecv1).

In the component robustness game, in Isend1 × Irecv1 , we need every action
in the protocol to be correct, i.e., there are no external errors. Otherwise, the
wrong bit may be output. On the other hand, in Isend2 ×Irecv2 , one error (during
transmission) is tolerated. This is because the receiver waits for three bits and
then outputs the majority bit. Hence, we have that drob(Isend1 × Irecv1 ,S) =
3
3 and drob(Isend2 × Irecv2 ,S) = 4

5 . The component robustness distances reflect
the intuition that the system which sends redundant messages is more robust
(smaller robustness distance) than a system that does not.

3.3.4 Computation of Simulation Distances

The computational complexity of computing the three distances defined here is
the same as solving the value problem for the respective games. Firstly, note
that given two systems with state spaces of size n and n′ and transitions sets
of size m and m′ the product game graph has O(nn′) states and O(nm′ +mn)
transitions for a fixed error model.

For systems without fairness conditions, the dcor, dcov and drob games are
simple graph games with limit-average (LimAvg) or discounted-sum (Disc) ob-
jectives. The decision problem (deciding whether the value is greater than a
given value) for these games is in NP ∩ co-NP [172], but no PTIME algorithm
is known. However, for LimAvg objectives the existence of a pseudo-polynomial
algorithm, i.e., polynomial for unary encoded weights, implies that the compu-
tation of the distances can be achieved in polynomial time. This is due to the
fact that we use constant weights. Using the algorithm of [172], in the case

49

r(0)

o(0)r(1)

o(1)

t(0), t(1)t(0), t(1)

(a) Specification S

r(0)

t(0)r(1)

t(1)

(b) Component send Isend
1

r(0) t(0)

t(0)t(0)

r(0)t(0)

t(0) t(0)

(c) Component send Isend
2

t(0)

o(0)t(1)

o(1)

(d) Component receive Irecv1

t(0)t(1)

t(1)t(0)t(1) t(0)

t(1) t(0) t(∗)t(∗) o(0)o(1)

(e) Component receive Irecv2

Figure 3.13: Message Sending Protocol

50

without fairness conditions dcor, dcov and drob distances can be computed in time
O((nn′)3 · (nm′ + mn)). A variation of the algorithm in [172] gives a PTIME
algorithm for the Disc objectives (given a fixed discounting factor).

For systems with Büchi (weak fairness) conditions, the corresponding games
are graph games with LimAvg parity games, for which the decision problem
is in NP ∩ co-NP. However, the use of constant weights and the fact that the
implication of two Büchi conditions can be expressed as a parity condition with
no more than 3 priorities leads to a polynomial algorithm. Using the algorithm
presented in [50], we get a O((nn′)3 · (nm′ + n′m)) algorithm.

For systems with Streett (strong fairness) conditions, the corresponding
games are graph games with LimAvg ω-regular conditions. For an ω-regular
LimAvg game of N states, we can use the latest appearance records to convert
into an equivalent parity game of 2O(N log(N)) states and edges; and N priorities.
The algorithm of [50] gives a 2O(N log(N)) algorithm where N = nn′.

3.4 Properties of Simulation Distances

We present quantitative analogues of boolean properties of the simulation pre-
orders. However, first we prove the following theorem that states that the cor-
rectness simulation distance is a refinement of the classical simulation relation.

Theorem 3.12. If system S simulates I, then we have that dcor
M(I,S) = 0

for all error models.

Proof. We prove the result for labelled transition systems with no fairness con-
straints. The case with fairness constraints and the case of alternating transition
systems is very similar.

We construct a Player 2 strategy φ2 in GcorM,I,S such that Val2(φ2) = 0

proving that dcor
M(I,S) ≤ 0. Since, dcor

M values are always non-negative, this
completes the proof.

Suppose the simulation between I and S is witnessed by the simulation re-
lation ≤sim . The main idea behind the construction of φ2 is to ensure that
the I state and S state in the quantitative simulation game at the begin-
ning of each round are in simulation. In other words, for every Player 1 state
(sI ,#, sS , sM, 1) visited in any play conforming to φ2 ensures that sI ≤sim sS .
This holds in the initial state of the game as the initial states of I and S are in
simulation.

Now, in the first step of a round, say Player 1 picks a testing transition
(sI0 , σ, s

I
1), i.e, moves from game state (sI0 ,#, s

S
0 , s
M
0 , 1) to (sI1 , σ, s

S
0 , s
M
0 , 2). In

reply, the strategy φ2 picks the matching transition (sS0 , σ, s
S
1), i.e., moves to the

state (sI1 ,#, s
S
1 , s
M
1 , 1) such that sI1 ≤sim sS1 . Such a state sS1 and the transition

(sS0 , σ, s
S
1) are guaranteed to exist due to the definition of the simulation relation.

In any such play conforming to φ2, as the matching of the transitions in the
quantitative simulation game is exact, the error model has to assign cost 0 to
the play. Hence, we have Val2(φ2) = 0.

3.4.1 Directed Metrics

Classical simulation relations satisfy the reflexivity and transitivity property
which makes them preorders. In an analogous way, we show that the correct-

51

ness and coverage distances satisfy the quantitative reflexivity and the triangle
inequality properties for a certain class error models defined below. This makes
them directed metrics [71]. Further, we show that the robustness distance sat-
isfies the triangle inequality, but not quantitative reflexivity.

Transitive Error Models. It can be seen easily that the simulation distances
are not directed metrics for all error models as the triangle inequality fails to
hold. Instead, here we provide a necessary and sufficient condition on the error
models, for the triangle inequality to hold.

An error model M is transitive if the following holds: For every triple of
infinite lasso (i.e., ultimately periodic) words generated by the error model M
of the form α = a0

b0
a1
b1
. . ., β = b0

c0
b1
c1
. . . and γ = a0

c0
a1
c1
. . ., the M(α) +M(β) ≥

M(γ).
For a non-transitive error model, the three systems whose only behavior

outputs the lasso-words which witness the non-transitivity violate the triangle
inequality. All the error models introduced in Section 3.2.3[Pg. 38] (see Fig-
ure 3.7[Pg. 39]) are transitive.

The transitiveness of an error model can be checked in polynomial time.

Proposition 3.13. It is decidable in polynomial time whether an error model
M = 〈SM,Σout × Σout ,∆

M, sMι , v〉 is transitive.

Proof. The result follows by constructing the product M×M×M with:
• State-space SM × SM × SM; and
• A transition between (s0, s1, s2) to (s′0, s

′
1, s
′
2) on action σ1

σ3
having

weight w1 + w2 − w3 if and only if there exists transitions (s0, σ1/σ2, s
′
0),

(s1, σ2/σ3, s
′
1) and (s3, σ1/σ3, s

′
3) having weights w1, w2 and w3 respec-

tively.
The model M is transitive iff there is no negative cycle in the product (checkable
in polynomial time).

Now, we are ready to prove the directed metric properties of the simulation
distances.

Theorem 3.14. Given a set of actions Σ, the function dcor
M is a directed

metric on the space of systems over Σ for all transitive error models M. In
other words,
• for all systems S, we have that reflexivity holds for the correctness distance,

i.e., dcor
M(S,S) = 0; and

• for all systems S1, S2, and S3 over Σ we have the triangle inequality for
the correctness distance, i.e., dcor

M(S1,S3) ≤ dcor
M(S1,S2)+dcor

M(S2,S3)

Proof. We will prove the result for alternating systems with fairness conditions
with limit-average objectives. The case without fairness conditions and the case
of discounted-sum objectives are analogous.
Reflexivity. As we have that S simulates S, we have from Theorem 3.12[Pg. 51]
that dcor

M(S,S) = 0.
Triangle Inequality. Consider any ε > 0. Let φ2

2 and φ3
2 be ε

4 -optimal finite
memory strategies for Player 2 in the games GcorS1,S2 and GcorS2,S3 respectively.
The existence of such finite-memory ε

4 -optimal strategies are guaranteed by
standard results on limit-average parity games (See Chapter 2[Pg. 16]). Using

52

φ2
2 and φ3

2, we construct a finite-memory strategy φ∗2 for Player 2 in GcorS1,S3 . Let
S1,2 and S2,3 be the state-spaces of the game graphs of GcorS1,S2 and GcorS2,S3 ,
and let M2 and M3 are the memories of φ2

2 and φ3
2 respectively. The memory

of φ∗2 will be S1,2 ×M2 × S2,3 ×M3.
The main idea behind the construction of φ∗2 is as follows: during each

round of GcorS1,S3 , the strategy simulates rounds of GcorS1,S2 and GcorS2,S3 in its
memory.

Formally, let the state of the game GcorS1,S3 at the beginning of a round be
(s1,#s3, s

M
1,3, 1). We will construct φ∗2 such that the memory of the strategy

when arriving at this state will be ((s1,#, s2, s
M
1,2),m2, (s2,#, s3, s

M
2,3),m3) for

some states s2, m2, and m3 of the S2, M2 and M3 respectively and some states
of the error model sM1,2 and sM2,3.

Now, the round proceeds as follows. Suppose Player 1 chooses the S1 transi-
tion (s1, σ1, s

′
1) in GcorS1,S3 , i.e., moves to (s′1, σ1, s3, s

M
1,3, 2). Then, the matching

transition chosen by φ∗2 is (s3, σ3, s
′
3), i.e., moving to (s′1,#, s

′
3, s
M′
1,3 , 1) where

we have the following:
• GcorS1,S2 round: Suppose in GcorS1,S2 , the current state is (s1,#, s2, s

M
1,2, 1)

and the current state of the memory of Player 2 strategy φ2
2 is m2. Let

Player 1 choose the transition S1 transition (s1, σ1, s
′
1) and Player 2 choose

the transition (s2, σ2, s
′
2) according to strategy φ2

2, and let the memory of
φ2

2 be updated to m′2.
• GcorS2,S3 round: Suppose in GcorS2,S3 , the current state is (s2,#, s3, s

M
2,3, 1)

and the current state of the memory of Player 2 strategy φ3
2 is m3. Let

Player 1 choose the transition S2 transition (s2, σ2, s
′
2) and Player 2 choose

the transition (s3, σ3, s
′
3) according to strategy φ3

2, and let the memory of
φ3

2 be updated to m′3.
• M transition: sM

′

1,3 is the unique M state such that (sM1,3, σ1/σ3, s
M′
1,3) is

a M transition.
Further, the memory of φ∗2 is updated to
((s′1,#, s

′
2, s
M′
1,2 , 1),m′2, (s

′
2,#, s

′
3, s
M′
2,3 , 1),m′3).

Now, fix an ε
2 -optimal Player 1 strategy φ∗1 in GcorS1,S3 – again, it can

be assumed that this is a finite-memory strategy. Now, suppose play ρ1,3 =
Outcomes(φ∗1, φ

∗
2) in GcorS1,S3 . From the above construction, from each round of

the play ρ1,3 and the corresponding memory of φ∗2, we can extract transitions of
GcorS1,S2 and GcorS2,S3 to construct play ρ1,2 and ρ2,3 of GcorS1,S2 and GcorS2,S3 ,
respectively. Further, ρ1,2 and ρ2,3 conform to the ε

4 -optimal Player 2 strategies
φ2

2 and φ3
2, respectively. Therefore, we have

Val(ρ1,2) + Val(ρ2,3) ≤ Val(φ2
2) + Val(φ3

2)

≤ dcor
M(S1,S2) +

ε

4
+ dcor

M(S2,S3) +
ε

4

≤ dcor
M(S1,S2)dcor

M(S2,S3) +
ε

2

Further, by the construction of φ∗2, we have that the values of plays ρ1,3,
ρ1,2 and ρ2,3 are equal to values of words of the form (σ0

1/σ
0
3)(σ1

1/σ
1
3) . . .,

(σ0
1/σ

0
2)(σ1

1/σ
1
2) . . ., and (σ0

2/σ
0
3)(σ1

2/σ
1
3) . . ., respectively. Therefore, by the

transitivity of the error model M, we have

Val(ρ1,3) ≤ Val(ρ1,2) + Val(ρ2,3)

53

Combining the above equations, we have that

dcor
M(S1,S3) = sup

φ1∈Φ1

inf
φ2∈Φ2

Val(Outcomes(φ1, φ2))

≤ inf
φ2∈Φ2

Val(Outcomes(φ∗1, φ2)) +
ε

2
φ∗1 is ε

2 -optimal

≤ Val(Outcomes(φ∗1, φ
∗
2)) +

ε

2
= Val(ρ1,3)

= Val(ρ1,2) + Val(ρ2,3)

≤ dcor
M(S1,S2) + dcor

M(S2,S3) + ε

As the choice of ε was arbitrary, we have

dcor
M(S1,S3) ≤ dcor

M(S1,S2) + dcor
M(S2,S3)

This gives us the triangle inequality in the case without fairness conditions.
In the case with fairness conditions, the same arguments apply as long as

both S1 and S3 perform fair computations in the play ρ1,3. In the case that S1

computation is fair and S3 computation is not fair, the value of the play will be
∞. However, by construction the value of either ρ1,2 or ρ2,3 will also be ∞ and
hence the inequality still holds.

Theorem 3.15. dcov
M is a directed metric whenM is the standard error model

for both limit-average and discounted-sum objective, i.e.,
• for all systems S, we have that dcov

M(S,S) = 0; and
• for all systems S1, S2, S3, we have that dcov

M(S1,S3) ≤ dcov
M(S1,S2) +

dcov
M(S2,S3).

Proof. The proof of this proposition follows from the fact that for any two sys-
tems S1 and S2, we have that dcov

f (S1,S2) = dcor
f (S2,S1) and Theorem 3.14[Pg.

52].

The robustness distance satisfies the triangle inequality, but not the quanti-
tative reflexivity. For example, the system S1 in Figure 3.1[Pg. 33] is a witness
system that violates reflexivity. In fact, for LimAvg objectives and any rational
value v ∈ [0, 1], it is easy to construct a system Sv such that drob(Sv,Sv) = v.

Theorem 3.16. drob
ErrPairs conforms to the triangle inequality for all ErrPairs

– for all systems S1, S2, and S3, we have that drob
ErrPairs(S1,S3) ≤

drob
ErrPairs(S1,S2) + drob

ErrPairs(S2,S3).

Proof. Our proof mainly relies on the fact that drob
ErrPairs(S,S ′) =

dcor
M(ContErr(ErrPairs,S),ContErr(∅,S ′)) for an appropriate error model.

Therefore, by repeated application of the triangle inequality for dcor (Theo-

54

rem 3.14[Pg. 52]) and the above fact, we can write:

drob
ErrPairs(S1,S3) = dcor

M(ContErr(ErrPairs,S1),ContErr(∅,S3))

≤ dcor
M(ContErr(ErrPairs,S1),ContErr(∅,S2))

+dcor
M(ContErr(∅,S2),ContErr(∅,S3))

≤ dcor
M(ContErr(ErrPairs,S1),ContErr(∅,S2))

+dcor
M(ContErr(∅,S2),ContErr(ErrPairs,S2))

+dcor
M(ContErr(ErrPairs,S2),ContErr(∅,S3))

= drob
ErrPairs(S1,S2)

+dcor
M(ContErr(∅,S2),ContErr(ErrPairs,S2))

+drob
ErrPairs(S2,S3)

However, it can be easily seen that ContErr(ErrPairs,S2) simulates
ContErr(∅,S2). In fact, the identity relation of the set of states of each of
these systems is a witness simulation relation. Therefore, by Theorem 3.12[Pg.
51] we have that dcor

M(ContErr(∅,S2),ContErr(ErrPairs,S2)) = 0 .
Substituting this into the above equation, we get the required result.

3.4.2 Compositionality

In the qualitative case, compositionality theorems help analyze large systems
by decomposing them into smaller components. For example, if S1 simulates I1

and S2 simulates I2, we have that the composition of S1 and S2 simulates the
composition of I1 and I2. We show that in the quantitative case, the distance
between the composed systems is bounded by the sum of the distances between
individual systems. Recall the definition of asynchronous composition of systems
from Section 3.3.3[Pg. 45]. We only consider the case of fully asynchronous
composition here. The general case of partially synchronous composition is
harder to deal with.

The following theorems show that the simulation distances between whole
systems is no more than the sum of the distances between the individual compo-
nents for the standard error model. The theorems can be extended to any error
model which has a single state. However, it can be shown that compositional-
ity does not hold for error models with more than one state for asynchronous
systems. For example, in the Figure 3.14[Pg. 56] and the delayed response error
model M from Figure 3.7a[Pg. 39], the distance dcor

M(I1,S1) = 1/2 (as the
system spends 2 out of 4 steps waiting for the missing grant in the worst case)
and dcor

M(I2,S2) = 0. However, we have that dcor
M(I1 ‖ I2,S1 ‖ S2) = 1.

This is due to the fact that in the composed system I1 ‖ I2 (unlike the system
I1), the request and the matching grant in the first component can be separated
by an unbounded number of steps of the second component.

Theorem 3.17. The correctness, coverage, and robustness distances satisfy the
following property for limit-average simulation distances and the standard error
model M:

∀S1,S2, I1, I2 : dM(S1 ‖ S2, I1 ‖ I2) ≤ α · dM(S1, I1) + (1− α) · dM(S2, I2)

where α is the fraction of times S1 is scheduled in S1 ‖ S2 in the long run,
assuming that the fraction has a limit in the long run.

55

r

g¬r

g,¬g

(a) S1

r ¬g

r,¬rg¬r

¬g

(b) I1

r

¬g, g

(c) S2

r

¬g

(d) I2

Figure 3.14: Non-compositionality for multi-state error models

Proof. The proof works for all cases by constructing a Player 2 strategy τ∗ from
the ε

2 -optimal strategies τ1 and τ2 in the games for computing d(S1, I1) and
d(S2, I2) respectively. Let τ1 and τ2 be ε

2 -optimal strategies for Player 2 in
the GcorS1,I1 and GcorS2,I2 , with memory M1 and M2 respectively. We define a
strategy τ∗ for Player 2 in GcorS1×S2,I1×I2 with memory M1×M2. τ∗ works by
playing τ1 and τ2 component-wise.

Correctness. For the correctness game, we define τ∗ as follows: If
Player 1 moves from ((s1, s2),#, (t1, t2), 1) to ((s′1, s2), σ, (t1, t2), 2) according
to the transition (s1, σ, s2) of the first component, and τ∗ has the memory
(m1,m2), it responds by playing the τ1 strategy in the first component, i.e. if
from the game position (s′1, σ, t1) and memory m1, τ1 moves to (s′1,#, t

′
1) and

updates memory to m′1, τ∗ chooses to move to ((s′1, s2),#, (t′1, t2), 1) and up-
dates its memory to (m′1,m2). The response to a Player 1 move in the second
component of the system is similar.

We can prove that τ∗ is a witness to the required inequality as follows: let
ρ be any play conformant to τ∗. Let I1 ⊆ N be the indices where the move is in
the first component and let I2 = N\I1. Now, let ρi be the GcorSi,Ii play obtained
from ρ by taking on the positions in Ii and projecting it into component i. By
construction, we have ρi conformant to τi. Hence, we get for the limit-average

56

case:

LimAvg(ρ) = lim inf
n→∞

1

n

n∑
i=0

v(ρi) = lim inf
n→∞

1

n

(
i≤n∑
i∈I1

v(ρi1) +

i≤n∑
i∈I2

v(ρi2)

)

= lim
n→∞

1

n

(
i≤n∑
i∈I1

v(ρi1) +

i≤n∑
i∈I2

v(ρi2)

)

= lim
n→∞

n1

n
·

(
1

n1
·
i≤n∑
i∈I1

v(ρi1)

)
+
n2

n
·

(
1

n2
.

i≤n∑
i∈I2

v(ρi2)

)
where ni = |{k | k ∈ Ii ∧ k ≤ n}|

= α ·

(
lim

n1→∞

1

n1
·
i≤n∑
i∈I1

v(ρi1)

)
+ (1− α) ·

(
lim

n2→∞

1

n2
·
i≤n∑
i∈I2

v(ρi2)

)
as limn→∞

n1

n = α and limn→∞
n2

n = 1− α

≤ α · (d(S1, I1) +
ε

2
) + (1− α).(d(S2, I2) +

ε

2
)

as ρ1 conforms to τ1 and ρ2 conforms to τ2

= α · d(S1, I1) + (1− α) · d(S2, I2) +
ε

2

Hence, τ∗ is a witness strategy that shows the required inequality.

Coverage. The proof for the coverage distance follows as the coverage distance
is the dual of the correctness distance.

Robustness. For the robustness game, the proof follows by rewriting the
robustness distance from S to I in terms of the correctness distance from
ContErr(∅,S) to ContErr(ErrPairs, I).

3.4.3 Abstraction

In the boolean case, properties of systems can be studied by studying the prop-
erties of over-approximations and under-approximations. In an analogous way,
we prove that the distances between two systems is bounded from above and
below by distances between abstractions of the two systems. We first define
over-approximations and under-approximations of systems.

Given a transition system S = 〈S,Σ,∆, sι〉, a system S∃ = 〈S∃,Σ,∆∃, s∃ι 〉 is
a existential abstraction of S if there exists an equivalence relation ≡ on S such
that

1. S∃ is the set of equivalence classes of ≡;
2. s∃ι is the equivalence class of ≡ containing sι; and
3. (s∃0 , σ, s

∃
1) ∈ ∆∃ if there exist s0 and s1 such that (s0, σ, s1) ∈ ∆ and s∃0

and s∃1 are equivalence classes of s0 and s1 respectively.
Similarly, given a transition system S = 〈S,Σ,∆, sι〉, a system S∀ =

〈S∀,Σ,∆∀, s∀ι 〉 is a existential abstraction of S if there exists an equivalence
relation ≡ on S such that

1. S∀ is the set of equivalence classes of ≡;

57

2. s∀ι is the equivalence class of ≡ containing sι; and
3. (s∀0 , σ, s

∀
1) ∈ ∆∀ if for all s0 and s1 such s∀0 and s∀1 are equivalence classes

of s0 and s1 respectively, we have that (s0, σ, s1) ∈ ∆.

Theorem 3.18. Let S2 and S1 be systems. Let S∃2 and S∃1 be existential ab-
stractions, and S∀2 and S∀1 be universal abstractions of S2 and S1, respectively.
The correctness, coverage, and robustness distances satisfy the three following
properties:
• dcor

f (S∀1 ,S∃2) ≤ dcor
f (S1,S2) ≤ dcor

f (S∃1 ,S∀2)
• dcov

f (S∃1 ,S∀2) ≤ dcov
f (S1,S2) ≤ dcov

f (S∀1 ,S∃2)
• drob

f (S∀1 ,S∃2) ≤ drob
f (S1,S2) ≤ drob

f (S∃1 ,S∀2)

Proof. Our proof relies on the fact that S∀ is simulated by S and S is simulated
by S∃. This is an easy to prove using the witness simulation relation with relates
every state to the corresponding equivalence class, i.e., s ≤sim s∃ and s∀ ≤sim s
where s∃ and s∀ are the equivalence classes containing s for the corresponding
equivalence relations.

• Now, we have the following for the correctness distance by repeated ap-
plication of the triangle inequality (Theorem 3.14[Pg. 52]):

dcor(S∀1 ,S∃2) ≤ dcor(S∀1 ,S1) + dcor(S1,S∃2)

≤ dcor(S∀1 ,S1) + dcor(S1,S2) + dcor(S2,S∃2)

However, by the fact that S∀1 is simulated by S1 and S1 is simulated by
S∃1 , we have that dcor(S∀1 ,S1) = 0 and dcor(S2,S∀2). Substituting in the
above equation, we get

dcor(S∀1 ,S∃2) ≤ dcor(S1,S2)

Dually, we have the following inequality:

dcor(S1,S2) ≤ dcor(S1,S∃1) + dcor(S∃1 ,S2)

≤ dcor(S1,S∃1) + dcor(S∃1 ,S∀2) + dcor(S∀2 ,S2)

≤ dcor(S∃1 ,S∀2)

• The result for the coverage distance follows as the coverage distance is
the dual of the correctness distance.

• For the robustness distance, we have:

drob(S∀1 ,S∃2) = dcor(ContErr(ErrPairs,S∀1),ContErr(∅,S∃2))

≤ dcor(ContErr(ErrPairs,S∀1),ContErr(ErrPairs,S1))

+dcor(ContErr(ErrPairs,S1),ContErr(∅,S∃2))

≤ dcor(ContErr(ErrPairs,S∀1),ContErr(ErrPairs,S1))

+dcor(ContErr(ErrPairs,S1),ContErr(∅,S2))

+dcor(ContErr(∅,S2),ContErr(∅,S∃2))

= dcor(ContErr(ErrPairs,S∀1),ContErr(ErrPairs,S1))

+drob(S1,S2)

+dcor(ContErr(∅,S2),ContErr(∅,S∃2))

58

Now, it is easy to see that ContErr(ErrPairs,S∀1) is simu-
lated by ContErr(ErrPairs,S1) and ContErr(∅,S2) is simulated by
ContErr(∅,S∃2). Hence, we have drob(S∀1 ,S∃2) ≤ drob(S1,S2).

Dually, we have

drob(S1,S2) = dcor(ContErr(ErrPairs,S1),ContErr(∅,S2))

≤ dcor(ContErr(ErrPairs,S1),ContErr(ErrPairs,S∃1))

+dcor(ContErr(ErrPairs,S∃1),ContErr(∅,S∀2))

≤ dcor(ContErr(ErrPairs,S1),ContErr(ErrPairs,S∃1))

+dcor(ContErr(ErrPairs,S∃1),ContErr(∅,S∀2))

+dcor(ContErr(∅,S∀2),ContErr(∅,S2))

= dcor(ContErr(ErrPairs,S1),ContErr(ErrPairs,S∃1))

+drob(S∃1 ,S∀2)

+dcor(ContErr(∅,S∀2),ContErr(∅,S2))

As before, ContErr(ErrPairs,S1) is simulated by ContErr(ErrPairs,S∃1)
and ContErr(∅,S∀2) is simulated by ContErr(∅,S2). Hence, we have
drob(S1,S2) ≤ drob(S∃1 ,S∀2).

3.5 Applications of Simulation Distances

We present three examples of application of the distances defined in Sec-
tion 3.3[Pg. 41] to measure interesting properties of larger systems.

3.5.1 Robustness of Forward Error-Correction Systems

Forward error-correction systems (FECS) are a mechanism of error control for
data transmission on noisy channels. The maximum tolerable bit-error rate of
these systems is the maximum number of errors the system can tolerate while
still being able to successfully decode the message. We show that this property
can be measured as the component robustness distance drob between a system
and an ideal specification.

We examine three forward error correction systems: one with no error correc-
tion facilities, the Hamming(7,4) code [93], and triple modular redundancy [121].
Intuitively, each of these systems is at a different point in the trade-off between
efficiency of transmission and the tolerable bit-error rate. By design, the system
with no error correction can tolerate no errors and the Hamming(7,4) system
can tolerate one error in seven bits and the triple modular redundancy system
can tolerate one error in three bits (or more precisely, three independent errors
in twelve bits). However, the overhead incurred increases with increasing error
tolerance. The system with no error correction uses no extra bits while, the
Hamming(7,4) system and the triple modular redundancy system use 3 and 8
extra bits for transmitting a four bit message. We compute the values of the
error tolerance by measuring robustness with respect to an ideal system which

59

No error correction

proc sender(B0,B1,B2,B3)

send(B0,B1,B2,B3);

proc receiver()

receive(B0,B1,B2,B3);

return (B0,B1,B2,B3)

Hamming(7,4) error correction

proc sender(B0,B1,B2,B3)

P0 := B0 ⊕ B1 ⊕ B3

P1 := B0 ⊕ B2 ⊕ B3

P2 := B1 ⊕ B2 ⊕ B3

send(P0,P1,B0,P2,B1,B2,B3);

proc receiver()

receive(P0,P1,B0,P2,B1,B2,B3);

P0 := P0 ⊕ B0 ⊕ B1 ⊕ B3;

P1 := P1 ⊕ B0 ⊕ B2 ⊕ B3;

P2 := P2 ⊕ B1 ⊕ B2 ⊕ B3;

B0 := B0 ⊕ (¬ P0 . P1 . ¬ P2);

B1 := B1 ⊕ (P0 . ¬ P1 . P2);

B2 := B2 ⊕ (P0 . P1 . ¬ P2);

B3 := B3 ⊕ (P0 . P1 . P2);

return (B0,B1,B2,B3)

Triple modular redundancy

proc sender(B0,B1,B2,B3)

send(B0,B0,B0);

send(B1,B1,B1);

send(B2,B2,B2);

send(B3,B3,B3);

proc receiver()

receive(B01,B02,B03);

receive(B11,B12,B13);

receive(B21,B22,B23);

receive(B31,B32,B33);

B0 := B01 . B02

∨ B02 . B03 ∨ B03 . B01;

B1 := B11 . B12

∨ B12 . B13 ∨ B13 . B11;

B2 := B21 . B22

∨ B22 . B23 ∨ B23 . B21;

B3 := B31 . B32

∨ B32 . B33 ∨ B33 . B31;

return (B0,B1,B2,B3)

Figure 3.15: Forward error correction algorithms.

T1 T2 drob(T1, T2)
None Ideal 1

Hamming Ideal 6/7
TMR Ideal 2/3

Table 3.2: Robustness of FECS for the limit-average distance.

can tolerate an unbounded number of errors. The ideal system is modelled as
a system which non-deterministically sends a number of bits and then outputs
the correct message. The pseudo-code for the three systems is presented in
Figure 3.15[Pg. 60]. The only errors we allow are bit flips during transmission.

The transition systems for these systems are constructed according to the
following rules:
• The state space of the sender component is {0, 1,#}n and the state-space

of the receiver component is {0, 1,#}n where n is a constant specific to
the system. The state of the sender component is the list of bits to be
transmitted by the sender in this round, and the state of the receiver
component is the list of bits already received by the receiver in this round.
The initial state is (\n, \m).

• The input alphabet for the sender component consists of Σin = {0, 1}4 ∪
{#} and the output of the sender component Σout = {0, 1}. The input
represents the bit-block to be transmitted while the output represents the

60

#######

#######

#111100

0######

##11100

01#####

######0

011110#

##11100

00#####

######0

011010#

(1100,0,#) (#,1,#)

(#,0,1100)

(#,1#)(#,0,1100)

Figure 3.16: Part of the transition graph for Hamming(7,4) system.

individual bits transmitted. Similarly, the input to the receiver component
is {0, 1} while the output is is {0, 1}4 ∪ {#} where the input represents
the individual bits received and the output represents the bit-block output
finally.

• Bit flips can occur during the transmission and the state is changed accord-
ing to the bit received – i.e., if the sender sends a bit 0, and an external
error flips it to 1, the receiver state changes as if a 1 were transmitted
while the sender state changes as if a 0 were transmitted. These tran-
sitions which have a bit flip are considered as erroneous transmissions.
To measure the robustness of the system, we will be setting error pairs
ErrPairs to {(0, 1), (1, 0)}.

We explain the modelling with an example: we present the transmission
of the bit block 1100 in the Hamming(7,4) system (Figure 3.16[Pg. 61]). The
encoded bit string for this block is 0111100. In each state, the two components
represent the sequence of bits to be sent and the sequence of bits to be received
– i.e., the state of the sender and the state of the receiver. In each transition
symbol, the first component represents the input message to the system; the
second component represents the bit transmitted in the current step; and the
third component represents the output message from the system. From the
initial state (\7, \7), on the input 1100, the transmitted bit is 0 (the first bit of
the encoded string) and the state changes to (\111100, 0\\\\\\) on the transitions
symbol (1100, 0, \\\\) (assuming no errors). From this state, we go on the symbol
(\\\\, 1, \\\\) to the state (\\11100, 01\\\\\) and so on. An error transition from
(\111100, 0\\\\\\) will lead to the state (\\11100, 00\\\\\).

The values of drob for these systems are summarized in Table 3.2[Pg. 60].
The robustness values clearly mirror the error tolerance values. In fact, each
robustness value is equal to 1 − e where e is the corresponding error tolerance
value.

3.5.2 Environment Restriction for Reactive Systems

In reactive systems, the transitions of the system are controlled by two agents,
the system and the environment. While refining a specification for a reactive
system, care has to be taken to ensure (a) all behaviors of the implementation
are simulated by the specification, and (b) the behavior of the environment is
not restricted more than in the specification. A number of extensions of the
classical simulation relation have been suggested to include this requirement

61

s1s0

s2

s3 s4

¬r¬g
r ∧ ¬c

g
r ∧ c

¬g

¬c

(a) S1

s1s0

s2

s3 s4

¬r¬g
g

r ∧ ¬c g

¬g

¬c

(b) I2

s1

s2

s4

¬r ∧ ¬c¬g

r ∧ ¬c g

(c) I1

s1

s2

s4

r ∧ ¬cg

¬r ¬g

(d) I3

s1s0

s2

s3 s4

¬r¬g
g

r g

¬g

¬c

(e) I4

Figure 3.17: Reactive systems.

such as ready simulation [24].
We propose a method to measure the amount of restriction the implemen-

tation system places on the environment over and above the restriction in the
specification. The measure proposed here not only takes into consideration the
languages of the two systems, but also the distance of the farthest unimple-
mented behavior in the implementation. For example, consider a specification
that allows the environment behavior rω1 and two implementations I1 and I2

forbid it. However, say I1 allows the behavior (r1r2)ω whereas I2 allows only
rω2 , I1 will be given a higher rating than I2.

We measure the amount of environment restriction is using the coverage
distance (dcov). We model a reactive system as a transition systems with the
alphabet Σin ∪ Σout (where Σin and Σout are the environment actions (in-
puts) and system actions (outputs) respectively), and the transitions labeled
with Σin and Σout alternate. To measure the excessive restriction on the en-
vironment, we choose an error model that assigns a constant cost 0 for every
replacement of output actions Σout . We then compute the dcov distance between
the system and the implementation. We demonstrate that this method of mea-
suring environment restriction by computing the distances for a request-grant
system.

Consider the specification S1 and the implementations In in the Fig-
ure 3.17[Pg. 62]. All these systems are built so that every request r is granted
by g in the same step or in the next step. However, if cancel c is high, there

62

T1 T2 dcov(T1, T2)
S1 S1 0
S1 I1 1/2
S1 I2 1/4
S1 I3 1/4
S1 I4 0

Table 3.3: Restrictiveness of request-grant systems in Fig-
ure 3.17[Pg. 62]

should be no grant in that step. These requirements mandatorily forbid some
environment behaviors, like the behavior with both r and c high all the time.
The specification S1 restricts the environment most permissively: for every re-
quest r, cancel c is low in the current or the following step. Implementations I1,
I2, I3 and I4 restrict the environment to various amounts by allowing no c’s,
allowing no c’s for the relevant two steps, allowing no c’s for the current step,
and allowing no c’s for the following step respectively. The restrictiveness values
(dcov) are summarized in Table 3.3[Pg. 63] and reflect the intuitive notion that
I1 is the most restrictive, followed by I2 and I3, and then by the unrestrictive
I4.

3.5.3 Test-Suite Coverage

In black-box testing, the specification of the system is used to generate a test-
suite, i.e., a set of input sequences. The implementation is then tested with
input sequences from the test-suite and it is ensured that the outputs produced
by the implementation match the specification. For an introduction to model-
based testing, see for example [68].

The quality of a test-suite is usually measured through a test-coverage metric
– i.e., a metric that measures how much of the specification behaviour actually
tested by the test-suite. We model a test-suite as a transition system which has
no cycles, i.e., no infinite behaviours. We list several common test-coverage met-
rics commonly used in the literature. There have been many metrics proposed
for measuring test-coverage in literature.
• State coverage. Given a test-suite, state coverage measures the set of all

specification states visited in all the traces of the test-suite.
• Transition coverage. This metric measures the set of all specification

transitions visited in all the traces of the test-suite.
Intuitively, in both these cases, a higher metric implies better coverage, i.e., a
better quality test-suite.

We show how the coverage distance from Section 3.3.2[Pg. 43] can be used
as a coverage metric and illustrate how it can be used to distinguish between
test-suites that are equivalent according to the classical metrics.

Remark 3.19. Note that the vending machine system designs used in the fol-
lowing discussion is for illustration only, and are not intended to be reflective
of real vending machine designs.

Consider the design for a simple vending machine from Figure 3.18a[Pg.
65]. The vending machine has four inputs, namely, r(espresso), r(macchiato),

63

r(green tea), and r(black tea), each representing a request for the respec-
tive drinks. The outputs are g(espresso), g(macchiato), g(green tea), and
g(black tea) – representing a dispensation of the respective drinks. The specifi-
cation S says that every request for a drink is followed by a dispensation of the
same drink.

For example, consider the following two test-suites T1 and T2 (shown in
Figure 3.18b[Pg. 65] and Figure 3.18c[Pg. 65], respectively). Intuitively, T1

checks that the requests for espresso and macchiato are dispensed properly,
while T2 checks the same for espresso and green tea.

According to the standard test-coverage metrics both test-suite T1 and test-
suite T2 have equivalent coverage, i.e., the test-suites both test an equal number
of states (5) and transitions (4) of the specification S. However, intuitively,
there is a difference between the two test-suites. While espresso and macchiato
are similar, green tea and black tea are similar drinks1 Hence, it is likely that
an implementation vending machine prepares espresso and macchiato drinks
through similar internal processes, and green and black tea through similar
processes. Therefore, test-suite T2 which tests the dispensation of espresso and
green tea is likely to test more of the vending machine system than test-suite
T1.

We can formalize this difference by specifying an error model M (Fig-
ure 3.18d[Pg. 65] that describes the similarity between different actions. In-
tuitively, error model M states that replacing r(espresso) by r(macchiato)
and vice versa, and r(green tea) by r(black tea) and vice versa has a lower
penalty than the other combinations of drinks. Now, coverage can be mea-
sured using the coverage distance dcov

M with the discounted objective – we
have dcov

M(T1,S) = 1 while dcov
M(T2,S) = 1

2 . This mirrors the intuition that
T2 is “closer” to S, i.e., that T2 covers more of S. Note that unlike the clas-
sical coverage metrics, in the case of the coverage distance, a lower number is
indicative of higher coverage.

1Espresso and macchiato are brewed coffee-based drinks, while green tea and black tea are
tea-based infusions.

64

r(
es

pre
ss

o)

r(m
acchiato)

r(green tea)

r(black tea)

g(espresso)

g(macchiato)

g(green tea)

g(black tea)

(a) Vending machine specification S

r(espresso)

r(macchiato)

g(espresso)

g(macchiato)

(b) Vending machine test-suite T1

r(espresso)

r(green tea)

g(espresso)

g(green tea)

(c) Vending machine test-suite T2

r(espresso)/r(espresso)(0)
r(macchiato)/r(macchiato)(0)
r(green tea)/r(green tea)(0)
r(black tea)/r(black tea)(0)

r(espresso)/r(macchiato)(1
2)

r(macchiato)/r(espresso)(1
2)

r(green tea)/r(black tea)(1
2)

r(black tea)/r(green tea)(1
2)

g(∗)/g(∗)(0)

(d) Vending machine error model M

Figure 3.18: Coverage metrics for testing vending machine models

65

Chapter 4

Synthesis from
Incompatible Specifications

Systems are often specified using multiple requirements on their behavior. In
practice, these requirements can be contradictory. The classical approach to
specification, verification, and synthesis demands more involved specifications
that resolve any contradictions in the requirements. These resolved specifi-
cations are usually large, cumbersome, and hard to maintain or modify. In
contrast, quantitative frameworks allow the formalization of the intuitive idea
that what is desired is an implementation that comes “closest” to satisfying the
mutually incompatible requirements, according to a measure of fit that can be
defined by the requirements engineer. In the previous chapter (Chapter 3[Pg.
30]), we introduced one flexible framework for quantifying how “well” an imple-
mentation satisfies a specification—simulation distances that are parameterized
by an error model.

We provide an algorithmic solution for the following quantitative synthe-
sis question: given two (or more) behavioral requirements specified by possibly
incompatible finite-state machines, and an error model, find the finite-state im-
plementation that minimizes the maximum of the simulation distances to the
individual requirements. We also demonstrate how quantitative specifications
based on simulation distances might lead to smaller and easier to modify specifi-
cations. Finally, we illustrate our approach using case studies on error correcting
codes and scheduler synthesis.

4.1 Motivation

A major problem for the wider adoption of techniques for the formal verification
and synthesis of systems is the difficulty of writing quality specifications. As we
have seen in the previous chapter, quantitative specifications have the potential
to simplify the task of the designer, by enabling her to capture her intent better,
and more simply. In this chapter, we focus on how quantitative specification
and reasoning can be useful in cases when specifications are mutually incom-
patible. In practice, specifications of systems are often not monolithic. They
are composed of parts that express different design requirements, possibly com-
ing from different sources. Such high-level requirements can be therefore often

67

contradictory (see, for instance, [130, 21, 94] which provide methods for require-
ments analysis). Using the classic boolean approach, the solution would be to
resolve conflicts by writing more detailed specifications that cover all possible
cases of contradictions, and say how to resolve them. However, such specifica-
tions may become too large, and more importantly, the different requirements
become entangled in the specification. The specifications are then much more
difficult to maintain than the original requirements, as it is hard to modify one
requirement without rewriting the rest of the specification. In contrast, simula-
tion distances allow the formalization of the intuitive idea that what is desired
is an implementation that comes “closest” to satisfying the requirements. More
technically, we consider two questions: first, the (rigorously defined) distances
from the implementation to (boolean) requirements are within given bounds,
and second, the maximal distance to a requirement is minimized. It is simple
to generalize the exposition and technical details that follow to minimizing any
max-plus expression over the distances to the individual expressions. However,
we instead choose not to complicate the presentation and restrict ourselves to
simple case of the minimizing the maximal distance to a requirement.

Quantitative reasoning about systems is gaining importance with the spread
of embedded systems with strict requirements on resource consumption and
timeliness of response. The quantitative approach in this paper is fully com-
patible with quantitative resource (e.g. memory, energy) consumption require-
ments: the framework allows us to consider multiple specifications that model
resource consumption, and it allows us to express the relative importance of
resources. We can then ask the same two questions as above: first, we would
like an implementation such that it consumes resources within given bounds;
or, second, an implementation such that its maximal total consumption of a
resource is minimized.

Synthesis from specifications [133, 131, 59] has been studied extensively as
a technique to improve designer and programmer productivity. The possible
utility of synthesis is higher if specifications remain at a high level. If designers
are forced to write detailed low-level specifications to reconcile contradictory re-
quirements, it decreases the usefulness of synthesis. First, it requires more effort
from designers, requiring consideration of how a certain task will be performed,
as opposed to what task should be performed. Second, the space of solutions
to the synthesis problem is reduced, with possibly good implementations be-
ing ruled out. We therefore propose quantitative synthesis as a solution to the
problem of synthesis from incompatible specifications.

Synthesis from incompatible specifications. The main technical problem
we concentrate on in this paper is the problem of synthesis from incompatible
specifications. The input to the synthesis problem consists of a set of (two or
more) mutually incompatible specifications given by finite-state open reactive
systems, and a simulation distance (given by an error model). The output
should be an implementation, given by a deterministic open reactive system,
that minimizes the maximal simulation distance to the given specifications.

Motivating example. Consider a system that grants exclusive access to a re-
source to two processes which periodically seek access to it. The input alphabet
Σin consists of symbols r1, r2, r1r2 and nr representing that requests from either

68

r1/g1

r1r2/g1

nr/ng
r2/∗

(a) S1

r2/g2

r1r2/g2

nr/ng
r1/∗

(b) S2

r1/g1

r1r2/g1

nr/ng
r2/g2

(c) I1
r2/g2

r1r2/g2

nr/ng
r1/g1

(d) I2
r1/g1

r2/g2

nr/ng

r1/g1

r2/g2

nr/ng

r1r2/g1

r1r2/g2

(e) I3

Figure 4.1: Example 1

Process 1, Process 2, both, or neither, respectively, coming in the current step.
The output alphabet Σout consists of symbols g1 (g2) representing granting the
resource to Process 1 (Process 2), and a special “don’t care” symbol ∗. The
specification of the system consists of two parts: the first part R1 states that a
request for the resource from Process 1 should be satisfied with a grant in the
same step, and the second part R2 states that a request for the resource from
Process 2 should be satisfied with a grant in the same step. The two parts of
the specification are shown in Figures 4.1a[Pg. 69] and 4.1b[Pg. 69]. The spec-
ifications are incompatible, because on input r1r2 the specification S1 allows
only g1, whereas specification S2 allows only g2. Classically, the designer would
have to manually resolve the conflict by, for example, constructing a specifica-
tion that grants to Process 1 whenever both processes request in the same step
(requirement R3). However, the designer might not want to resolve the conflict
at the specification level, but instead might want to state that she wants an
implementation that comes close to satisfying the two mutually incompatible
specifications, according to a measure of correctness. We use the correctness
simulation distance as defined in the previous chapter for this measure.

Let us consider an error model that, intuitively, (i) assigns a cost 1 if the
implementation does not grant a request that has arrived in the current step,
and assigns the same cost for every step before the implementation grants the
request, and (ii) assigns a cost 1 if the implementation grants a request that
is not required in the current step. Let us now consider the three different
implementations in Figures 4.1c[Pg. 69], 4.1d[Pg. 69], and 4.1e[Pg. 69], and
their distances to the specifications S1 and S2. The implementation I1 always

69

prefers the request r1 when the two requests arrive at the same time, while
implementation I2 always prefers the request r2 when two requests arrive at
the same time.

The implementation I1 satisfies the specification S1, but on the input
(r1r2)ω, I1 makes a “mistake” at every step with respect to S2. The imple-
mentation I1 thus has simulation distance 0 from S1, and distance 1 from S2

for the limit-average objective. Similarly, implementation I2 has simulation dis-
tance 1 from S1 and distance 0 from S2 for the limit-average objective. The
implementation I3 alternates grants in cases when the requests arrive at the
same step. Its distance to both specifications would be 1

2 . This is because the
worst-case input for this implementation is the sequence (r1r2)ω and on this
input sequence, it makes a mistake in every other step, with respect to both S1

and S2.
The quantitative approach can be compared to the classical boolean ap-

proach to illustrate how it leads to specifications that are easier to modify:
• Consider an alternate requirement R′1 which says that every request by

Process 1 should be granted in the next step (instead of the same step).
In the boolean case, replacing requirement R1 by R′1 also involves chang-
ing the requirement R3 which resolves the conflict between R1 and R2.
Requirement R3 needs to be changed to R′3 which says that given that
request r1 happened in the previous step and r2 happened in the current
step, the output must be g1 in the current step. However, in the quan-
titative case, no changes need to be done other than replacing R1 with
R′1.

• Similarly, we can consider other ways of resolving the conflict between
requirements R1 and R2, instead of using R3 which prioritizes Process 1
over Process 2. We could have the requirement that we are equally tol-
erant to missed grants in each process (say requirement R′3) or that we
tolerate twice as many missed grants in Process 1 than in Process 2, just
by modifying the penalties in the error models. In the boolean case, the
requirement R3 is easily expressible, but the requirement R′3 is very hard
to state without adding additional constraints to the specification. In the
quantitative case, we can simply switch between R3 and and R′3 just by
changing the relative penalties for not granting r1 or r2.

An additional problem with writing detailed specifications in the classical
boolean approach is that the different requirements become intertwined, i.e.,
it is very hard to modify one requirement without rewriting the rest of the
specification. Changing a single requirement requires rewriting the parts of
the specifications which deal with the resolution of any conflicts involving that
requirement. This makes the specifications extremely hard to maintain or to
change.

To illustrate how our framework can model resource consumption, we con-
sider a system that sends messages over a network, as governed by a correctness
specification. It costs a certain amount (in dollars) to send a kB of data, so it
might be useful to compress data first. However, compression uses energy (in
Joules). In our framework, we could add two boolean requirements saying that
(a) data should not be sent on the network, and (b) compression should not
be used. Then we can relax the requirement, by giving error models that have
costs for sending data and using compression. In this way, the framework al-
lows to synthesize a system where e.g. both total energy costs and total network

70

costs are within certain bounds. For further illustration of resource consump-
tion modeling, we refer the reader to our case study on forward error correction
codes, where the number of bits sent is the resource tracked.

Overview of results. The main result of this paper is an ε-optimal con-
struction for the synthesis from incompatible specifications problem. We first
consider the decision version of the problem: given k possibly mutually in-
compatible specifications, and a maximum distance to each specification, the
problem is to decide whether there exists an implementation that satisfies these
constraints. We show that the decision problem is coNP-complete (for a fixed
k). The result is obtained by reduction to 2-player games with multiple limit
average objectives [47]. We then present a construction of an ε-optimal strategy
for the problem of synthesis for incompatible specifications. Furthermore, for
the case of two specifications, and for the standard error model, we show that
the result of our optimal synthesis procedure is always better (in a precise sense)
than the result of classical synthesis from just one of the specifications. Finally,
we demonstrate how our methods can enable simpler specifications, while al-
lowing the synthesis of desirable solutions, using two case studies: on synthesis
of custom forward error correction codes and on scheduler synthesis.

4.2 The Incompatible Specifications Problem

Recall the definition of the correctness distance from the previous chapter
(Chapter 3[Pg. 30]). Here, we use the notation dM(I,S) for the correctness
simulation distance from specification S to implementation I with respect to
the error model M instead of the the notation dcor

M(I,S). Here, we only con-
sider strictly synchronous reactive systems, i.e., input and output transitions
strictly alternate. Further, without loss of generality, we assume that the initial
state of a system is always an input state.

We specify that the error models in this chapter always assign a penalty
of ∞ to mismatches of the sort σin/σ where σin 6= σ and σin ∈ Σin , i.e.,
an input action. Intuitively, this restricts the implementation systems from
re-interpreting the input actions. Further, we only consider the limit-average
objective for the simulation games in this chapter.

Specifications Si and error modelsMi for 1 ≤ i ≤ k are said to be incompati-
ble if ¬∃I :

∧
i d
Mi(I,Si) = 0. Note that our definition may judge specifications

compatible even if there is no common implementation which is simulated classi-
cally by each specification. This happens if there exists an implementation with
the distance 0 to each of the specifications, which is possible if the specifications
share long-term behavior, but differ in the short-term initial behavior.

Synthesis from incompatible specifications involves finding a “best-fit” im-
plementation that minimizes the simulation distances to each specification. We
formalize the synthesis from incompatible specifications problem as follows.

Given Si and Mi for 1 ≤ i ≤ k as above, and a threshold vector v =
〈v1, v2, . . . vk〉 ∈ Qk, the incompatible specifications decision problem asks if ∃I :
∀1 ≤ i ≤ k : dMi(I,Si) ≤ vi.

Given specifications Si and error modelsMi for 1 ≤ i ≤ k and a bound ε > 0,
the incompatible specifications optimization problem is to find an implementation

71

I∗ such that ∀I : maxi∈{1,2,...k} d
Mi(I∗,Si) ≤ maxi∈{1,2,...k} d

Mi(I,Si)+ε. We
call such an implementation I∗ an ε-optimal implementation.

Theorem 4.1. The incompatible specifications decision problem is coNP-
complete for a fixed k.

I state
(φ2 memory)

s s s′ s′′ s′′

G∗ state
component i

si s′i s′i s′i s′′i

σi σo

σi σo

σi σo

Figure 4.2: Working of φ2: Solid edges are transitions in G∗ and
dashed edges are transitions in dMi(I,Si)

Proof. First, we prove that the incompatible specifications decision problem is
in coNP. We reduce the problem to the decision problem in 2-player games
with MLimAvg objectives.

Given specifications Si and error models Mi for 1 ≤ i ≤ k, consider the
following game graph G∗ with:
• Player 1 states S1 = (S1

in × SM1)× . . .× (Skin × SMk) where Siin are the
input states of Si and SMi are the states of Mi;

• Player 2 states S2 = (S1
out × SM1)× . . .× (Skout × SMk) where Siout are

the output states of SMi
i and SMi are the states of Mi; and

• A transition from state ((s1, s
M
1), . . . , (sk, s

M
k)) to

((s′1, s
M′
1), . . . , (s′k, s

M′
k)) on an input action σin exists if and only

if each of (si, σin , s
′
i) ∈ ∆i where ∆i is the transition set of Si and

(sMi , σin/σin , s
M
i) is a transition of the Mi. The weight function

v : ∆ → Qn maps each such transition to a vector of weights with the
ith component being the weight of the corresponding transition Mi

transition (sMi , σ/σ, sMi).
• A transition from state ((s1, s

M
1), . . . , (sk, s

M
k)) to

((s′1, s
M′
1), . . . , (s′k, s

M′
k)) on an output action σout exists if and only if

for each i, there exists a Si transition (si, σ
i
out , s

′
i) and an Mi transition

(sMi , σout/σ
i
out , s

M′
i). The weight function v : ∆ → Qn maps each such

transition to a vector of weights with the ith component being the weight
of the corresponding transition Mi transition (sMi , σout/σ

i
out , s

M
i).

Intuitively, Player 1 chooses the input actions and Player 2 chooses output
actions as well as transitions from Si that should simulate the corresponding
output action. We prove that a witness implementation exists if and only if there
exists a finite memory Player 2 strategy in G∗ for the MLimAvg objective.
(a) For any implementation I, consider the games QI,Si,Mi and the optimal
Player 2 strategy φi2 in each. By standard results on LimAvg games, we have
that each φi2 is memoryless. From these strategies, we construct a finite-memory
Player 2 strategy φ2 in G∗ with the state space of I as the memory. The memory
update function of φ2 mimics the transition relation of I. Let s be the current
state of φ2 memory and let ((s1, s

M
1), . . . , (sk, s

M
k)) be the current state in G∗.

By construction, s is Player 1 state in I iff (s1, . . . , sk) is Player 1 state in G∗.

72

• If ((s1, s
M
1), . . . , (sk, s

M
k)) is a Player 1 state, Player 1 chooses an input

symbol σin ∈ Σin and updates the G∗ state. The memory of φ2 is updated
to s′ which is the unique successor of s on σi.

• Next, if the current state ((s′1, s
M′
1), . . . , (s′k, s

M′
k)) is a Player 2 state,

the memory of φ2 is updated to the unique successor s′′ of s′ in
I (Player 2 states have unique successors in implementations). If
(s′, σout , s

′′) is the corresponding I transition, the chosen G∗ state
is ((s′′1 , s

M′′
1), . . . , (s′′k , s

M′′
k)) where each φi2 chooses the Si transition

(s′i, σ
i
out , s

′′
i) in the state (s′′, σout , s

′
i). The error model state is updated

accordingly.
The construction of φ2 is explained in Figure 4.2[Pg. 72].

For every path ρ conforming to φ2, we can construct a path ρi in
QI,Si,ErrorModeli conforming to φi2 from the memory of φ2 and the projection
of ρ to ith component (See Figure 4.2[Pg. 72]). Furthermore, the weights of the
ith component of ρ have the same LimAvg as the weights of ρi. Therefore, the
LimAvg value of the ith component of ρ is bound by dMi(I,Si). This shows
that the MLimAvg value of φ2, Val(φ2) is at most the maximum of dMi(I,Si).
(b) For every finite-memory strategy φ2 of Player 2 in G∗, we can construct an
implementation I such that Val(φ2) ≥ maxi∈{1,2,...k} d

Mi(I,Si), by consider-
ing the product of G∗ and the memory of φ2 and by removing all transitions
originating from Player 2 states which are not chosen by φ2.

From the results of [47], we have that solving MLimAvg games for the
threshold {0}k for finite memory strategies is coNP-complete. However, we
can reduce the problem of solving MLimAvg games for a threshold v ∈ Qk to
a problem with threshold {0}k by subtracting v from each of the edge weights.
This reduction is obviously polynomial for a fixed k. Therefore, the inconsistent
specifications decision problem can be solved in coNP time in the size of G∗,
which in turn is polynomial in the size of the input for fixed k. To show the
coNP hardness, we can use a modification of the proof of coNP hardness of
MLimAvg games by reduction from the complement of 3-SAT.

Now, we can find an ε-optimal implementation for the optimization problem
by doing a binary search on the space of thresholds.

Corollary 4.2. The incompatible specifications optimization problem can be
solved in Exptime for a fixed k, ε and W , where W is the absolute value of the
maximum cost in the error models.

Proof. Without loss of generality, let ε = 1
q for q ∈ N. As the simulation

distances are between 0 and W , we do a binary search on vectors of form {t}k
to find {N/Wq}k, the highest threshold for which an implementation exists.
Since, the accuracy required is ε, the number of search steps is O(log(W/ε)) =
O(log(Wq)). We find an implementation (equivalently, a Player 2 finite memory
strategy) with a value of at least this threshold. We reduce the problem to
an equivalent threshold problem with integer weights and threshold {0}k by
multiplying weights by Wq and subtracting {N}k. From [47] and [52], we have

that memory of size O(|G∗|2 · (|G∗|qW)
k
) is sufficient and further, this strategy

can be computed in Exp time. Therefore, by guessing a strategy and checking
for sufficiency, we have an Exp time algorithm.

73

For the qualitative error model (Figure 3.7c[Pg. 39]) and any set of incom-
patible specifications, for all implementations the distance to at least one of the
specifications is ∞. However, for the standard error model of [36], we show for
the case of two specifications that it always is possible to do better.

Proposition 4.3. For specifications S1 and S2 with the standard error model
M, let δ = min(dM(S1,S2), dM(S2,S1)). For every ε > 0, there exists an
implementation I∗ with dM(I∗,S1) < δ/2 + ε and dM(I∗,S2) < δ/2 + ε.

Proof. Without loss of generality, let dM(S1,S2) ≤ dM(S2,S1). Consider the
game graph of QS1,S2,M and modify it by letting Player 2 choose the S1 output
transitions, i.e., Player 1 chooses the inputs and Player 2 chooses both S1 and
S2 outputs. Let φ∗2 be the optimal Player 2 strategy in this game. From φ∗2, we
construct two different implementations I1 and I2 having as the state space the
product of the state spaces of S1 and S2. In the transition set,
• There exists an input transition from (s1, s2) to (s′1, s

′
2) on the input sym-

bol σi if and only if (s1, σi, s
′
1) and (s2, σi, s

′
2) are input transitions of S1

and S2;
• There exists an output transition ((s1, s2), σo, (s

′
1, s
′
2)) in I1 iff φ∗2 chooses

the S1 transition (s1, σo, s
′
1) from state (s1,#, s2) and the S2 transition

(s2, σo, s
′
2) in state (s′1, σ

′
o, s2); and

• There exists an output transition ((s1, s2), σo, (s
′
1, s
′
2)) on σo in I2 iff φ∗2

chooses the S1 transition (s1, σ
′
o, s
′
1) from state (s1,#, s2) and the S2 tran-

sition (s2, σ
′
o, s
′
2) in state (s′1, σ

′
o, s2) and S2 transition corresponds to the

S2 transition (s2, σo, s
′
2).

Intuitively, φ∗2 chooses the most benevolent S1 behavior and I1 implements this
S1 behavior, while I2 is the S2 behavior used to simulate this behaviour in the
game.

Now, we construct I∗ by alternating between I1 and I2. For each
Player 1 state (s1, s2) in Ii, let TU((s1, s2)) be the tree unrolling of Ii from
(s1, s2) to a depth N ∈ N and let T (Ii) be the disjoint union of such trees. Let
I∗ be the union of T (I1) and T (I2) where each transition to a leaf state (s1, s2)
in T (I1) is redirected to the root of TU((s1, s2)) in T (I2), and vice versa.

We now show that dM(I∗,Si) < δ/2. Consider the Player 2 strategy φ2

in QI∗,S2,M: to simulate an I∗ transition from (s1, s2) to (s′1, s
′
2) on σo, φ2

chooses the S2 transition (s2, σo, s
′
2). If ((s1, s2), σo, (s

′
1, s
′
2)) was from T (I2),

the cost of the simulation step is 0, and otherwise it is equal to the corresponding
transition from QS1,S2,M. Now, fix φ2 in QI∗,S2,M and let C be the cycle of
the path obtained by fixing the optimal Player 1 strategy. Cycle C is composed
of paths through I1 and I2 each of length N . The cost of the path through I2

is 0. The cost of the path through I1 is equal to the cost of the corresponding
cycle in QS1,S2,M. If N is large enough, the path through I1 is composed of an
acyclic part of length at most n = 2 · |QS1,S2,M| and of cyclic paths of average
cost less than dM(S1,S2) = δ. Therefore, for all ε > 0 and N > nW

ε we have

dM(I∗,S2) ≤ Val(φ2) ≤ (N − n) · δ + n ·W
2N

≤ δ

2
+ ε < δ

Similarly, we can show dM(I∗,S1) < δ/2 + ε to complete the proof.

74

4.3 Case studies

We present two case studies to demonstrate the use of simulation distances for
modeling conflicting requirements. These case studies do not consider large-scale
examples, but rather serve to demonstrate that simulation distances and the
synthesis from incompatible specifications framework are in principle suitable
for specifying real-world problems.

4.3.1 Case study: Synthesis of Forward Error Correcting
Codes

Consider the task of sending messages over an unreliable network. Forward
Error Correcting codes (FECs) are encoding-decoding schemes that are tolerant
to bit-flips during transmission, i.e., the decoded message is correct in-spite of
errors during transmission. For example, the well-known Hamming (7,4) code
can correct any one bit-flip that occurs during the transmission of a bit-block.
The Hamming (7,4) code transmits 7 bits for every 4 data bits to be transferred,
and the 3 additional bits are parity bits.

Suppose bit-blocks of length 3 are to be transferred over a network where
at most 1 bit-flip can occur during transmission. We want to minimize the
number of transmitted bits. Furthermore, we also allow some errors in the
decoded block. Therefore, we have two incompatible specifications:
• Efficiency. To minimize the number of bits transmitted, we add a re-

quirement that only 3 bits are transmitted and an error model that has a
constant penalty of e for each additional bit transmitted.

• Robustness. We want the decoded block to be as correct as possible. In
a standard FEC scheme, all bits are given equal importance. However,
to demonstrate the flexibility of our techniques, we consider the first bit
to be the most significant one, and the third to be the least significant
one. We add a requirement that the decoded bit block is the same as the
original, with the following error model: An error in the first, second, and
third bit have a cost of 4d, 2d, and d, respectively.

Formal modeling. The output and input alphabets are
{T0, T1, R0, R1, O0, O1,⊥} and {I0, I1, F,¬F,⊥} where Ti, Ri, Ii and Oi
stand for transmission, receiving, input and output of bit i respectively.
Symbols F and ¬F denote whether a bit-flip occurs or not during the current
transmission. Symbol ⊥ is used whenever the input/output does not matter.

Remark 4.4. Here, we use the correctness distance to measure robustness in-
stead of the robustness distance. This is done by modelling the system along
with the uncontrollable errors.

Example 4.5. For example, the diagram below represents the transmission of
bit-block 010 through a system without any error correction.

In I0 I1 I0 ⊥ F ⊥ ¬F ⊥ ¬F ⊥ ⊥ ⊥
Out ⊥ ⊥ ⊥ T0 R1 T1 R1 T0 R0 O1 O1 O0

First, three bits are input. Next, each of the three bits is transmitted and received.
The environment decides that the first bit is flipped and the value received is 1
even though 0 is transmitted. Finally, the bit block 110 is output.

75

In addition to Efficiency and Robustness requirements above, we need the
following. For these, we use the qualitative error model where even a single
error is not allowed.
• Encoding and Decoding. For any input (resp., received) bit-block, the same

sequence of bits should be transmitted (resp. output). The specification
remembers the transmitted (resp., output) bits for each input (resp., trans-
mitted) bit-block and ensures that the same bits are transmitted (resp.,
output) in the future.

• Reception. The received bit should be correctly flipped or not based on
whether the input is F or ¬F .

Results. For different relative values of efficiency penalty e and robustness
penalty d, different optimal FEC schemes are obtained. Suppose b1b2b3 is the
input bit-block.
• e = 1 ∧ d = 100. The implementation is fully robust, i.e., always outputs

the right bit-block. For example, one of the optimal strategies transmits
the 6 bits b1, b2, b3, b2⊕b3, b1⊕b3 and b1⊕b2. The bit-block can always be
recovered from the received bits. This has a total error of 3 for efficiency
and 0 for robustness per round.

• e = 100 ∧ d = 1. The implementation transmits only the three input
bits and in the worst case outputs the most significant bit wrong. The
worst-case errors are 0 for efficiency and 4 for robustness per round.

• e = 10 ∧ d = 10. The implementation ensures the correctness of the most
significant bit by transmitting it thrice (triple modular redundancy), i.e.,
transmits the 5 bits b1, b1, b1, b2 and b3. In the worst case, the second bit
is output wrong and the error for efficiency is 20 and for robustness is 20
per round.

These results show how we can obtain completely different FECs just by varying
the costs in the error models.

4.3.2 Case study: Optimal Scheduling for Overloads

Consider the task of scheduling on multiple processors, where processes have
definite execution times and deadlines. Deadlines are either “soft”, where a
small delay is acceptable, but undesirable; or “hard”, where any delay is catas-
trophic. During overload, processes are either delayed or dropped completely;
and usually these processes are chosen based on priorities. Our techniques can
be used to schedule based on exact penalties for missing deadlines or dropping
processes.

Each process repeatedly requests execution and scheduling is based on time-
slices with each processor executing a single process in a time-slice. A process
P(t, d, c) represents:
• the time-slices t needed for the computation;
• the deadline d from invocation time; and
• the minimum time c between the completion of one invocation and the

next request.
We model a process as a reactive system with inputs {r, r̃} and outputs {g, g̃, c}.
The input r represents an invocation, the output g represents a single time-slice
of execution, and the output c indicates completion of the invocation.

76

2,3

1,2

2,21,1

r̃/g̃
r̃/∗

r/g

r/g̃
∗/g

∗/c

∗/c

∗/g̃

Figure 4.3: Modelling processes: P(2, 3, 1)

In Figure 4.3[Pg. 77], all states (except the initial) are labeled by two num-
bers (t, d) representing, respectively, remaining execution steps, and time to
deadline. Once request r is issued, execution starts at the state labeled (2, 3)
(input and output transitions are drawn together for readability). If the first
time slice is granted, the execution goes to state (2, 1) (i.e., deadline in two steps,
and one step of work remaining). If the time slice is not granted, the execution
transitions to a state labeled by (2, 2). The model (specification) ensures that
the task is completed before the deadline. After it is completed, the control is
in the initial state, where a request cannot be issued for at least one time step.

We define both hard and soft deadline error models. In the hard deadline
error model, a missed deadline leads to a one-time large penalty pl, whereas in
the soft deadline error model, a small recurring penalty ps occurs every step until
the process is finished. Furthermore, we have a specification that no more than
n processes can be scheduled in each step, with the qualitative failure model
(Figure 3.7c[Pg. 39]). We describe some optimal implementations obtained for
various inputs.
• For two P(3, 6, 3) processes and one processor, we obtain a 0 cost schedule

where each process is alternately scheduled till completion. This schedule
is obtained independently of whether the deadlines are hard or soft.

• For P1 = P(5, 5, 5), P2 = P(3, 5, 5), and P3 = P(2, 5, 5) with P1 on a soft
deadline (i.e. with the soft deadline error model described above), P2 on
a hard deadline, and P3 on a hard deadline. With ps = 1 and pl = 10, we
get a scheduler where P2 and P3 are treated as having a higher priority.
Whenever P2 or P3 requests arrive, P1 is preempted till P2 and P3 finish.

• For the same processes, but with ps = 5 ∧ pl = 10, we get a scheduler
where P1 is preferred over P2 and P3.

Chapter 5

Discussion

We close this part with discussion of possible extensions and related work.

5.1 Extensions and Future Work

In this section, we present a smorgasbord of possible extensions to the simulation
distances framework. Each of these topics is a promising direction for future
study.

Applications and Practicality. While we have covered several applications
of the simulation distances framework in the case studies from the previous
chapters. However, a large scale case study needs to be done to study the
practicality of the framework. Towards this, we intend to rewrite a medium
sized classical specification in the simulation distances framework to study the
advantages and short-comings of the framework.

Another possible approach to make the simulation distances framework prac-
tical is using symbolic algorithms. In practice, most specifications and systems
are expressed symbolically. However, it is not straightforward to apply symbolic
techniques to simulation distances framework as there are no known symbolic
algorithms for solving games with quantitative objectives.

Linear Distances versus Branching Distances. As with boolean specifi-
cations, a distinction can be made between linear trace containment (language
inclusion) and branching trace containment (simulation relation) even in the
quantitative setting. For example, the linear version of the correctness distance
can be defined as follows: Given systems I and S and an error model M, the
correctness inclusion distance is

dlinM(I,S) = sup
π1∈Traces(I)

inf
π2∈Traces(S)

M(π1/π2)

where if π1 = s0σ0s1σ1 . . ., and π2 = s′0σ
′
0s
′
1σ
′
1 . . ., we have π1/π2 =

(σ0/σ
′
0)(σ1/σ

′
1) The linear versions of the distances we have defined in the

preceding chapters have many of the same properties as the branching versions.
However, as in the classical boolean case, the linear versions of the distances are
computationally more expensive to compute.

78

Further, in the classical case, we have that if S is deterministic, then S
simulates I if and only if Lang(I) ⊆ Lang(S). However, in the quantitative
case, there exists a deterministic specification S and an implementation I (see
Figure 5.1[Pg. 79]) such that dcor(I,S) is strictly more than dlin(I,S) even for
the standard error model. In Figure 5.1[Pg. 79], we have that dcor(I,S) = 1
while dlin(I,S) = 0 for the standard error model and limit-average objectives.

s0

s1

s2

b

c
b

c

(a) Specification S

s′0 s0

s1

s2

a

b

c
b

c

(b) Implementation I

Figure 5.1: Systems such that dcor
lin(I,S) < dcor(I,S) even when

S is deterministic.

Continuous Look-ahead Simulation Distances. In the classical boolean
case, continuous look-ahead simulations [125, 103] are used to bridge the gap
between simulation and language inclusion. Continuous look-ahead simulations
are parameterized by a parameter k ∈ N. A specification S k-continuous look-
ahead simulates an implementation I if Player 2 has a strategy to win in the
following variation of the simulation game:
• First, Player 1 chooses a finite trace of k transitions from the implemen-

tation;
• In each round, Player 1 chooses a transition from the implementation and

Player 2 chooses a transition from the specification.
As in the simulation game, Player 2 wins if the sequence of actions from the
trace chosen from the specification match the sequence of actions from trace
chosen from the implementation, and Player 1 wins otherwise. Intuitively, in
a k-continuous look-ahead simulation, Player 2 is given information about the
next k implementation transitions that will be chosen by Player 1 before she
has to pick the corresponding specification transition. As Player 2 has more
information, it can easily be seen that:
• if S simulates implementation I, then S also k-continuous look-ahead

simulates I;
• if S k−1-continuous look-ahead simulates implementation I, then S also
k-continuous look-ahead simulates I; and

• if S k-continuous look-ahead simulates implementation I, then
Traces(I) ⊆ Traces(S).

We can define the quantitative continuous look-ahead simulation distances
by replacing the boolean acceptance condition in the continuous look-ahead
simulation games with the corresponding error model as in standard quantitative
simulation games. We write dcor

k
M(I,S) for the corresponding k-continuous

look-ahead simulation distance from S to I with respect to error modelM. We
have the following theorem.

79

Theorem 5.1. For any error model M, specification S and implementation I,
we have
• dcor

k
M(I,S) ≤ dcorM(I,S);

• dcor
k
M(I,S) ≤ dcor

k−1
M (I,S); and

• dcor
k
M(I,S) ≤ dcor

lin
M(I,S).

It needs to examined if the properties proved for simulation distances such
as abstraction, compositionality, and triangle inequality hold for continuous
look-ahead simulation distances.

Multi-Pebble Simulation Distances. Like continuous look-ahead simula-
tion relations, multi-pebble simulation relations are also coarser relations on the
set of systems than simulation relations while still being finer than language in-
clusion. Intuitively, in a k-pebble simulation game, Player 2 is allowed to “hedge
her bets” by picking k separate transitions instead of a single transition in a
standard simulation game. For example, in the first step of the 2-pebble simu-
lation game for specification S and implementation I from Figure 5.1[Pg. 79],
Player 2 is not forced to choose to move to either s1 or s2 is the specification,
but instead can post-pone the decision to later. A k-pebble simulation game for
specification S and implementation I proceeds as follows:
• The current state of the game contains the current I state and k current
S states.

• In each round, Player 1chooses an implementation transition from the
current I state; and

• Player 2chooses k separate specification transitions from the current S
states.

Player 2 wins the game if at least one of the S traces match the I trace chosen
by Player 1. As with continuous look ahead simulations, we have that:
• if S simulates implementation I, then S also k-pebble simulates I;
• if S k − 1-pebble simulates implementation I, then S also k-pebble sim-

ulates I; and
• if S k-pebble simulates implementation I, then Traces(I) ⊆ Traces(S).

An additional property is that if k ≥ |S| where |S| is the number of states in S,
then we have that S k-pebble simulates I if and only if Traces(I) ⊆ Traces(S).

Defining the quantitative k-pebble simulation game is slightly more involved
due to the multiple transitions. However, intuitively, the value of a play is
the minimum of the values assigned to the k words over Σ × Σ built consider-
ing the implementation trace in the play and the k separate traces are of the
specification in the play.

Theorem 5.2. For any error model M, specification S and implementation I,
we have
• dcor

k−peb
M (I,S) ≤ dcorM(I,S);

• dcor

k−peb
M (I,S) ≤ dcor

k−1−peb
M (I,S); and

• dcor

k−peb
M (I,S) ≤ dcor

lin
M(I,S).

However, we there exist specification S and implementation I (shown in
Figure 5.2[Pg. 81]) such that even for k = |S|, the k-pebble simulation distance
is not equal to the linear distance.

80

s0

s1

s2

c

c

ba

(a) Specification S

s′0 s0
c

a

b

(b) Implementation I

Figure 5.2: Systems such that dcor
lin(I,S) < dcor(I,S) even when

S is deterministic.

Interface Simulation Distances. In [33], we extended simulation distances
to a restricted class of interface automata. Interface automata are a formalism
used to specify temporal aspects of system interfaces. Intuitively, interface
automata are a transition system over inputs and outputs at a system interface.
We prove various quantitative version of the classical properties of interface
automata such as compositionality and provide an algorithm for finding the
optimal quantitative shared refinement of two incompatible interface automata.

Additional Quantitative Objectives. In our work on simulation dis-
tances, we consider only two kinds of quantitative objectives for accumulating
penalties—the limit-average objective and the discounted sum objective. How-
ever, a case can be made for the use of several other quantitative objectives.
Foremost among these is the ratio limit-average objective where each individual
penalty is specified by two numbers, a cost and a length. The value of a trace
is then given by the average cost per length over the long run. For example,
the length parameter could then be used to ensure that the penalties are av-
eraged over only the transitions relevant to the parts of the specification and
error model under consideration. Other quantitative objectives of interest in
this setting include the maximum-lead distance [96] and the sum objective [77].

Richer Error Models. There are significant restrictions placed on the class
of error models used in the previous chapters. The major one being that the
automata representing error models need to be deterministic. However, some
natural ways of penalizing errors in simulation cannot be captured using deter-
ministic error models. For example, consider a request-grant system where each
request is to be granted immediately in the same step. The error penalizing
scheme penalizes a missed grant with a large one-time penalty, and a delayed
grant with small penalties in each step till is grant is finally output. A deter-
ministic error model cannot encode such a penalizing scheme as it will need to
guess as soon as a request is not granted in the same step whether the grant
will be missed or will just be delayed. Just letting the error models be non-
deterministic in the definition of simulation distances will not solve the problem
either, as the task of guessing whether the grant is delayed or missed is then
shifted to Player 2. While the difficulty can be overcome in certain cases by
using quantitative k-pebble simulation distances, or quantitative k-look-ahead
simulation distances for a large enough k, the solution is not satisfactory as com-
puting these distances is exponentially more expensive than standard simulation

81

distances.
One promising solution to this problem is to use error models given by a

deterministic, but richer formalism such as cost-register automata [8] instead
of standard weighted automata. However, first the problem of computing the
value and finding optimal strategies in two player games where the objective is
given using a cost-register automata needs to be solved.

Other Extensions. In the simulation distances framework for reactive sys-
tems, the simulation distances are defined over the worst-case inputs. However,
the systems themselves might operate in an environment where some inputs are
more likely than others. In this case, it would be beneficial to define a version
of the simulation distances where the inputs are not chosen by Player 1 in the
quantitative simulation game, but instead according to a Markov chain that
models the environment.

Another possible extension is to define bisimulation distances based on the
bisimulation relation instead of the simulation distances. This has already been
explored in [81, 69]. However, these works explore mostly the theoretical aspects
of the bisimulation distances and do not consider the possible applications to
system development.

5.2 Related Work

Specification of Reactive Systems. The formal specification of reactive
systems and the associated techniques have a long history which is too involved
to recount completely here. Instead, we just recall the major milestones here.

The first work on reactive system synthesis was done in the late 1950s and
1960s, mainly by Büchi and Landweber where it was proved that synthesis
of reactive systems from specifications in the S1S sequential calculus is decid-
able [116, 28]. Further improvements in the specification technology came from
the introduction of various temporal logics in the 1970s and 1980s including
linear temporal logic [132], computation tree logic [59], and quantified propo-
sitional temporal logic [152]. Along with the advent of temporal logics, the
corresponding model checking algorithms were discovered [59, 140] and the first
practical and industrial model checking tools were developed [101]. The synthe-
sis algorithms for specifications given in various temporal logics were presented
in [133], [59], and [134]. For linear temporal logic, the first synthesis algorithms
were dependant on the tree automata and were ultimately based on the decid-
ability results of Rabin [79].

On the notion of satisfaction (refinement) relation itself, the main works are
those that introduced the simulation relation [127], alternating simulation [12,
11], refinement mappings [1], and other variations such as ready simulation [24]
and fair simulation [95]. A hierarchy of various refinement relations was studied
and surveyed in [165] and [166].

Other Quantitative Specification Frameworks. There have been several
other quantitative specification frameworks in the literature [77, 46, 45, 4, 169,
13, 5]. We discuss some of them in detail here.

Weighted automata [22, 77] and quantitative languages [45, 46] provide a
way to assign values to words, and to languages defined by finite-state sys-

82

tems. Intuitively, all the quantitative specification from the simulation distances
framework can be expressed using weighted automata by taking the product
of the specification and the error model. However, weighted automata them-
selves are hard to work with due to the undecidability of several basic ques-
tions [46]. Further, when combining the specification and the error model into
one weighted automata, one loses the ability to express various important prop-
erties of the specification framework such as the triangle inequality. There are
several other formalisms that add weights to various notions of automata and
transition systems—for example, weighted modal systems [16] and priced timed
automata [117].

Another important line of work for is quantitative logics (for example, see
[4, 169]). These quantitative specification frameworks have the same advantages
and disadvantages with respect to simulation distances framework as classical
logic-based specifications have with respect to automata-based specifications,
i.e., they are much easier handle and manipulate, but are harder to use with
automated techniques.

An important point about most of the other quantitative specification frame-
works is that they are value-based rather than distance-based, i.e., the fit of the
system is expressed as a value of the system rather than as a distance to a
specification. While each approach has its own advantages, we believe that the
distance-based frameworks have several important properties that are absent in
value-based frameworks. For example, the ability to do hierarchical design, i.e.,
by doing successive refinements of a design while reasoning separately separately
about each refinement step is possible in distance-based frameworks only due
to the triangle inequality properties.

Other work on Simulation Distances. There have been several other
works on simulation distances and related concepts [81, 144, 145, 146]. The
major work in this respect was by Fahrenberg, Legay and Thrane [81] where
the authors introduce and study the whole linear time and branching time spec-
trum of simulation distances. Other works include [144, 145] and [146], where
the authors provide an elegant algebraic and co-algebraic definition of simula-
tion distances as for classical simulation relations. However, one major caveat
of these definitions is that they apply mainly to the discounted objective and
are hard to extend to other objectives. Further, these simulation distances de-
fined by [146] more suitable for processes rather than reactive systems as process
replication has a penalty in their definition—in the world of reactive systems,
this is equivalent to having a penalty for benign non-determinism.

Quantitative Objectives in Synthesis. It was also observed that quanti-
tative measures can lead to simpler specifications and the use of quantitative
objectives to improve the quality of synthesis results was pioneered in [22]. In
these works, the aim is to synthesize a system that is correct with respect to
a boolean specification and has minimal cost with respect to a quantitative
specification given as a weighted automata. In [49], this work was extended to
probabilistic environments. One feature that is present in our work, but not
in these works is the use of multiple quantitative objectives and the ability to
handle incompatible specifications.

83

The Coverage and Robustness distances. There have been several met-
rics introduced specifically for for measuring coverage of a test-suite. Some
of these are state coverage, transition coverage, and path coverage. However,
many of these metrics are syntactic rather than semantic, i.e., they measure the
coverage of the syntax of the implementation system rather than the semantics.
Some of the exceptions we are aware of are the coverage metrics for verification
of temporal logics introduced by Hana Chockler et al [56, 55].

Various boolean and quantitative notions of robustness have been studied
in the literature. A full report of these is beyond what can be presented here.
Instead, we list a couple of these works that are relevant to our presentation.
For transducers, there have been several notions of robustness presented in [148]
and [97]. Majumdar et al. introduced a notion of robustness for both discrete
systems and controllers in [122] and [157] and have presented symbolic tech-
niques for analysis of robustness of systems.

Incompatible Specifications. The fact that in practice requirements on sys-
tems might be inconsistent was recognized in the literature, and several ap-
proaches for requirement analysis [130, 21, 94] and requirement debugging [114]
were proposed. The problem of an inconsistent specification was approached
in [48] by synthesizing additional requirements on the environment so that un-
realizability in the specification is avoided.

Synthesis from inconsistent specifications was considered in [78, 75]. Here
the conflicts between various components of the specification are resolved by
considering priorities for different components, in contrast to our approach of
using quantitative measures of correctness. However, it is not possible to express
several common resolutions of conflicts such as alternation using priorities.

System Metrics. It has been noted in the literature [71, 162] that boolean
notions of correctness may not be suitable for systems that are inherently quan-
titative, such as real-time systems, or probabilistic systems. Metrics on such
quantitative systems have been proposed [71, 162, 163, 43]. There have been
several other attempts to give a mathematical semantics to reactive processes
which is based on quantitative metrics rather than boolean preorders [161, 69].
In particular for probabilistic processes, it is natural to generalize bisimulation
relations to bisimulation metrics [74, 164], and similar generalizations can be
pursued if quantities enter not through probabilities but through discounting
[70] or continuous variables [30] (this work uses the Skorohod metric on contin-
uous behaviors to measure the distance between hybrid systems). In contrast,
in our work, we consider distances between purely discrete finite-state (non-
probabilistic, untimed) systems, and the quantitative aspect of the distance
function arises only from the comparison of the behavior of the two systems
between which we measure the distance.

Software metrics measure properties such as lines of code, depth of inher-
itance (in an object-oriented language), number of bugs in a module or the
time it took to discover the bugs (see for example [83, 120]) have been used to
measure system quality. These functions measure syntactic properties of the
source code, and are fundamentally different from our distances that capture
the difference in the behavior (semantics) of programs.

84

5.3 Conclusion

We have motivated the notion of distance between between systems, and in-
troduced quantitative simulation games as a framework for measuring such dis-
tances. We presented three distances, namely, the correctness, coverage, and
robustness distances and proved various properties of simulation distances that
enable different system verification methodologies. We applied simulation dis-
tances to the problem of synthesizing from incompatible specifications and gave
an algorithm to synthesize the implementation system that comes closest to
satisfying multiple incompatible specifications. Further, we presented several
case studies that illustrate the use of simulation distances in different settings
in the process of system development.

Part II

Quantities as Measurement

86

In this part, we focus on extending some classical techniques used in verifi-
cation and synthesis to quantitative properties. We mainly consider the quan-
titative properties of execution time and energy consumption. However, the
techniques presented in Chapter 7[Pg. 110] apply to the much more general
class of monotonic quantitative properties. Below, we describe the contribu-
tions of this part briefly.

Performance-aware Synthesis for Concurrency. In partial-program syn-
thesis for concurrency, a programmer writes a the functional parts of the pro-
gram, while leaving out the synchronization choices for the synthesizer to au-
tomatically fill in. There has been a large amount of work on this paradigm
in recent years [153, 53, 168]. However, none of these works consider the per-
formance of the synthesized solution program. This is especially important as
in many cases, there is an obvious solution to the synthesis for concurrency
problem which is to acquire a global lock before executing each thread.

Most synthesis for concurrency techniques in the literature use heuristics
based on minimizing the size of the critical sections to choose between differ-
ent solutions. However, in many common classes of programs smaller critical
sections are not necessarily better performing. Further, in some cases such
as optimistic concurrency, the size of the critical sections are fixed while the
performance depends mainly on other parameters.

We present an algorithm for synthesis for concurrency which produces not
just any correct solution, but the optimally performing one. The input to the
algorithm consists of a performance model in addition to the partial program.
The performance model is a weighted automata describing the cost of each op-
eration that affects performance. We reduce the problem of finding the optimal
correct program to the problem of finding the optimal memoryless strategy in
a partial-information limit-average safety game. However, we also show that
this problem is computationally hard, and instead, present several heuristics
to speed up the search for the optimal strategy. The heuristics are based on
abstraction, counter-example guided elimination of partial-strategies, and faster
algorithms for solving Markov chains that exploit the structure of the programs.

Quantitative Abstraction Refinement. We present abstraction and ab-
straction refinement techniques for quantitative properties. The class of proper-
ties considered here are monotonic properties, i.e., the class of properties where
increasing the weight of one transition in the system, and adding more behaviors
to the system can only increase the value of the property. Most common quan-
titative properties such as worst-case execution time and energy consumption
fall into this class.

We present two kinds of abstractions for such quantitative properties. The
first one is the state-based ExistMax abstraction. Intuitively, the ExistMax ab-
straction is a straight-forward extension of the classical state-based existential
abstraction. However, quantitative properties are usually path-based rather
than state-based, i.e., the value of the property depends on the whole trace
rather that states of the trace. Hence, a more suitable abstraction for quantita-
tive properties is the segment-based PathBound abstraction. Here, the abstract
object being reasoned about are not sets of states as in state-based abstrac-
tions, but parts of execution traces. We provide automatic counter-example

87

guided abstraction refinement algorithms for both the ExistMax abstraction
and PathBound abstractions.

We apply the segment-based abstractions to the problem of computing the
worst-case execution time of programs. We show that our techniques based on
segment-based quantitative abstractions can give tighter bounds on the worst-
case execution time than the standard tools. Further, we also show how many
commonly used ad-hoc program transformations used as pre-processing steps
in worst-case execution time analysis arise naturally as refinements of segment-
based abstractions.

Model Checking of Battery Transition Systems. As described in Chap-
ter 1[Pg. 6], most formalisms for modelling systems interacting with energy
sources treat the state of the energy source as one number, i.e., the amount of
energy remaining in the energy source. However, real batteries exhibit many
behaviours that are cannot be exhibited by ideal sources that can be modelled
using just the amount of energy remaining in the source.

We introduce a formal model of systems interacting with batteries, battery
transition systems which is based on the physical battery model KiBaM [123].
Here, the energy in the battery is divided into two tanks — the available charge
tank and the bound charge tank. The energy in the available charge tank is
immediately available for use, while the energy in the bound charge tank is only
available after diffusion into the available charge tank.

Battery transition systems do not fall into any previously known decidable
class of infinite state transition systems. The closest related decidable class
of systems are well-structured transition systems [86]. In fact, a partial order
compatible with the transition relation can be defined for battery transition
systems as in the case of well-structured transition systems. However, this
partial order is not well-founded in general.

The model checking algorithms for battery transition systems are reminis-
cent of the forward exploration algorithms for well-structured transition systems
in general, and specifically the Karp-Miller tree and Petri-nets. However, in the
case of battery transition systems, unlike in the generic well-structured transi-
tion system case, we can accelerate cycles in the systems precisely and obtain
decidability.

88

Chapter 6

Quantitative Synthesis for
Concurrency

We present an algorithmic method for the quantitative, performance-aware syn-
thesis of concurrent programs. The input consists of a nondeterministic partial
program and of a parametric performance model. The nondeterminism allows
the programmer to omit which (if any) synchronization construct is used at a
particular program location. The performance model, specified as a weighted
automaton, can capture system architectures by assigning different costs to ac-
tions such as locking, context switching, and memory and cache accesses. The
quantitative synthesis problem is to automatically resolve the nondeterminism
of the partial program so that both correctness is guaranteed and performance
is optimal. As is standard for shared memory concurrency, correctness is for-
malized “specification free”, in particular as race freedom or deadlock freedom.
For worst-case (average-case) performance, we show that the problem can be
reduced to 2-player graph games (with probabilistic transitions) with quan-
titative objectives. While we show, using game-theoretic methods, that the
synthesis problem is computationally hard, we present an algorithmic method
and an implementation that works efficiently for concurrent programs and per-
formance models of practical interest. We have implemented a prototype tool
and used it to synthesize finite-state concurrent programs that exhibit different
programming patterns, for several performance models representing different
architectures.

6.1 Motivation

A promising approach to the development of correct concurrent programs is
partial program synthesis. The goal of the approach is to allow the programmer
to specify a part of her intent declaratively, by specifying which conditions, such
as linearizability or deadlock freedom, need to be maintained. The synthesizer
then constructs a program that satisfies the specification (see, for example, [154,
153, 168]). However, quantitative considerations have been largely missing from
previous frameworks for partial synthesis. In particular, there has been no
possibility for a programmer to ask the synthesizer for a program that is not
only correct, but also efficient with respect to a specific performance model.

90

1: while(true) {
2: lver=gver; ldata=gdata;

3: n = choice(1..10);

4: i = 0;

5: while (i < n) {
6: work(ldata); i++;

7: }
8: if (trylock(lock)) {
9: if (gver==lver) {
10: gdata = ldata;

11: gver = lver+1;

12: unlock(lock);

13: } else {
14: unlock(lock)

15: }
16: }
17: }

Figure 6.1: Example 2

We show that providing a quantitative performance model that represents the
architecture of the system on which the program is to be run can considerably
improve the quality and, therefore, potential usability of synthesis.

Motivating examples. Example 1. Consider a producer-consumer program,
where k producer and k consumer threads access a buffer of n cells. The pro-
grammer writes a partial program implementing the procedures that access the
buffer as if writing the sequential version, and specifies that at each control
location a global lock or a cell-local lock can be taken. It is easy to see that
there are at least two different ways of implementing correct synchronization.
The first is to use a global lock, which locks the whole buffer. The second is to
use cell-local locks, with each thread locking only the cell it currently accesses.
The second program allows more concurrent behavior and is better in many
settings. However, if the cost of locks is high (relative to the other operations),
the global-locking approach is more efficient. In our experiments on a desk-
top machine, the global-locking implementation out-performed the cell-locking
implementation by a factor of 3 in certain settings.

Example 2. Consider the program in Figure 6.1[Pg. 91]. It uses classic
conflict resolution mechanism used for optimistic concurrency. The shared vari-
ables are gdata, on which some operation (given by the function work()) is
performed repeatedly, and gver, the version number. Each thread has local
variables ldata and lver that store local copies of the shared variables. The
data is read (line 2) and operated on (line 6) without acquiring any locks. When
the data is written back, the shared data is locked (line 8), and it is checked (us-
ing the version number, line 9) that no other thread has changed the data since
it has been read. If the global version number has not changed, the new value
is written to the shared memory (line 10), and the global version number is in-
creased (line 11). If the global version number has changed, the whole procedure

91

is retried. The number of operations (calls to work) performed optimistically
without writing back to shared memory can influence the performance signifi-
cantly. For approaches that perform many operations before writing back, there
can be many retries and the performance can drop. On the other hand, if only
a few operations are performed optimistically, the data has to be written back
often, which also can lead to a performance drop. Thus, the programmer would
like to leave the task of finding the optimal number of operations to be per-
formed optimistically to the synthesizer. This is done via the choice statement
(line 4).

The partial program resolution problem. Our aim is to synthesize con-
current programs that are both correct and optimal with respect to a perfor-
mance model. The input for partial program synthesis consists of (1) a finite-
state partial program, (2) a performance model, (3) a model of the scheduler,
and (4) a correctness condition. A partial program is a finite-state concur-
rent program that includes nondeterministic choices which the synthesizer has
to resolve. A program is allowed by a partial program if it can be obtained
by resolving the nondeterministic choices. The second input is a parametric
performance model, given by a weighted automaton. The automaton assigns
different costs to actions such as locking, context switching, and memory and
cache access. It is a flexible model that allows the assignment of costs based on
past sequences of actions. For instance, if a context switch happens soon after
the preceding one, then its cost might be lower due to cache effects. Similarly,
we can use the automaton to specify complex cost models for memory and cache
accesses. The performance model can be fixed for a particular architecture and,
hence, need not be constructed separately for every partial program. The third
input is the scheduler. Our schedulers are state-based, possibly probabilistic,
models which support flexible scheduling schemes (e.g., a thread waiting for a
long time may be scheduled with higher probability). In performance analysis,
average-case analysis is as natural as worst-case analysis. For the average-case
analysis, probabilistic schedulers are needed. The fourth input, the correctness
condition, is a safety condition. We use “specification-free” conditions such as
data-race freedom or deadlock-freedom. The output of synthesis is a program
that is (a) allowed by the partial program, (b) correct with respect to the safety
condition, and (c) has the best performance of all the programs satisfying (a)
and (b) with respect to the performance and scheduling models.

Quantitative games. We show that the partial program resolution problem
can be reduced to solving imperfect information (stochastic) graph games with
quantitative (limit-average or mean-payoff) objectives. Traditionally, imperfect
information graph games have been studied to answer the question of existence
of general, history-dependent optimal strategies, in which case the problem is
undecidable for quantitative objectives [73]. We show that the partial program
resolution problem gives rise to the question (not studied before) whether there
exist memoryless optimal strategies (i.e. strategies that are independent of
the history) in imperfect information games. We establish that the memory-
less problem for imperfect information games (as well as imperfect information
stochastic games) is Np-complete, and prove that the partial program reso-
lution problem is computationally hard for both average-case and worst-case

92

performance based synthesis. We present several techniques that overcome the
theoretical difficulty of hardness in cases of programs of practical interest: (1)
First, we use a lightweight static analysis technique for efficiently eliminating
parts of the strategy tree. This reduces the number of strategies to be examined
significantly. We then examine each strategy separately and, for each strategy,
obtain a (perfect information) Markov decision process (MDP). For MDPs, effi-
cient strategy improvement algorithms exist, and require solving Markov chains.
(2) Second, Markov chains obtained from concurrent programs typically satisfy
certain progress conditions, which we exploit using a forward propagation tech-
nique together with Gaussian elimination to solve Markov chains efficiently. (3)
Our third technique is to use an abstraction that preserves the value of the
quantitative (limit-average) objective. An example of such an abstraction is the
classical data abstraction.

Experimental results. In order to evaluate our synthesis algorithm, we im-
plemented a tool and applied it to four finite-state examples that illustrate
basic patterns in concurrent programming. In each case, the tool automati-
cally synthesized the optimal correct program for various performance models
that represent different architectures. For the producer-consumer example, we
synthesized a program where two producer and two consumer threads access a
buffer with four cells. The most important parameters of the performance model
are the cost l of locking/unlocking and the cost c of copying data from/to shared
memory. If the cost c is higher than l (by a factor 100:1), then the fine-grained
locking approach is better (by 19 percent). If the cost l is equal to c, then the
coarse-grained locking is found to perform better (by 25 percent). Referring
back to the code in Figure 6.1[Pg. 91], for the optimistic concurrency exam-
ple and a particular performance model, the analysis found that increasing n
improves the performance initially, but after a small number of increments the
performance started to decrease. We measured the running time of the program
on a desktop machine and observed the same phenomenon.

6.2 The Quantitative Synthesis Problem

6.2.1 Partial Programs

In this section we define threads, partial programs, programs and their seman-
tics. We start with the definitions of guards and operations.

Guards and operations. Let L, G, and I be finite sets of variables (rep-
resenting local, global (shared), and input variables, respectively) ranging over
finite domains. A term t is either a variable in L, G, or I, or t1 op t2, where
t1 and t2 are terms and op is a binary operator. Formulas are defined by the
following grammar, where t1 and t2 are terms and op is a relational operator:
e := t1op t2|e ∧ e|¬e. Guards are boolean formulae over L, G, and I. Opera-
tions are simultaneous assignments to variables in L∪G, where each variable is
assigned a term over L, G, and I.

Threads. A thread is a tuple 〈Q,L,G, I, δ, ρ0, q0〉, with: (a) a finite set of
control locations Q and an initial location q0; (b) L, G and I are as before;

93

(c) an initial valuation of the variables ρ0; and (d) a set δ of transition tuples
of the form (q, g, a, q′), where q and q′ are locations from Q, and g and a are
guards and operations over variables in L, G and I.

The set of locations Sk(c) of a thread c = 〈Q,L,G, I, δ, ρ0, q0〉 is the subset
of Q containing exactly the locations where δ is non-deterministic, i.e., locations
where there exists a valuation of variables in L, G and I, for which there are
multiple transitions whose guards evaluate to true.

Partial programs and programs. A partial program M is a set of threads
that have the same set of global variables G and whose initial valuation of
variables in G is the same. Informally, the semantics of a partial program is a
parallel composition of threads. The set G represents the shared memory. A
program is a partial program, in which the set Sk(c) of each thread c is empty. A
program P is allowed by a partial program M if it can be obtained by removing
the outgoing transitions from sketch locations of all the threads of M , so that
the transition function of each thread becomes deterministic.

The guarded operations allow us to model basic concurrency constructs such
as locks (for example, as variables in G and locking/unlocking is done using
guarded operations) and compare-and-set. As partial program defined as a
collection of fixed threads, thread creation is not supported.

Semantics. The semantics of a partial program M is given in terms of a tran-
sition system (denoted as Tr(M)) which we describe informally below. Given
a partial program M with n threads, let C = {1, . . . , n} represent the set of
threads of M .
• State space. Each state s ∈ S of Tr(M) contains input and local variable

valuations and locations for each thread in C, and a valuation of the global
variables. In addition, it contains a value σ ∈ C ∪ {∗}, indicating which
(if any) thread is currently scheduled. The initial state contains the ini-
tial locations of all threads and the initial valuations ρ0, and the value ∗
indicating that no thread is currently scheduled.

• Transitions. The transition function ∆ defines interleaving semantics for
partial programs. There are two types of transitions: thread transitions,
that model one step of a scheduled thread, and environment transitions,
that model input from the environment and the scheduler. For every
c ∈ C, there exists a thread transition labeled c from a state s to a state
s′ if and only if there exists a transition (q, g, a, q′) of c such that (i) σ = c
in s (indicating that c is scheduled) and σ = ∗ in s′, (ii) the location of
c is q in s and q′ in s′, (iii) the guard g evaluates to true in s, and (iv)
the valuation of local variables of c and global variables in s is obtained
from the valuation of variables in s′ by performing the operation a. There
is an environment transition labeled c from state s to state s′ in Tr(M)
if and only if (i) the value σ in s is ∗ and the value σ in s′ is c and (ii)
the valuations of variables in s and s′ differ only in input variables of the
thread c.

6.2.2 The performance model

We define a flexible and expressive performance model via a weighted automa-
ton with limit-average objective that specifies costs of actions. A performance

94

q0(l, 3) (cs, 2)

(m, 5)

(⊥, 1)

Figure 6.2: Example Performance Automaton

automaton W is a weighted automaton W = (SW ,ΣW ,∆W , sι, v) where each
component is as described in Chapter 2[Pg. 16]. The labels in ΣW represent
(concurrency related) actions that incur costs, while the values of the function v
specify these costs. The actions in ΣW are matched with the actions performed
by the system to which the performance measures are applied. A special action
⊥ ∈ Σ denotes that none of the tracked actions occurred. The costs that can
be specified in this way include for example the cost of locking, the access to
the (shared) main memory or the cost of context switches.

An example specification that uses the costs mentioned above is the automa-
ton W in Figure 6.2[Pg. 95]. The automaton describes the costs for locking (l),
context switching (cs), and main memory access (m). Specifying the costs via
a weighted automaton is more general than only specifying a list of costs. For
example, automaton based specification enables us to model a cache, and the
cost of reading from a cache versus reading from the main memory, as shown in
Figure 6.6[Pg. 107] in Section 6.5[Pg. 104]. Note that the performance model
can be fixed for a particular architecture. This eliminates the need to construct
a performance model for the synthesis of each partial program.

6.2.3 The partial program resolution problem

Schedulers. Informally, a scheduler has a finite set of internal memory states
QSch. At each step, it considers all the active threads and chooses one ei-
ther (i) nondeterministically (nondeterministic schedulers) or (ii) according to
a probability distribution (probabilistic schedulers), which depends on the cur-
rent internal memory state. Formally, a scheduler can be modelled as a Markov
chain where the transitions are labelled with threads of the program.

Composing a program with a scheduler and a performance model. In
order to evaluate the performance of a program, we need to take into account the
scheduler and the performance model. Given a program P , a scheduler Sch, and
a performance model W , we construct a WPTS, denoted Tr(P,Sch,W), with a
weight function v as follows. A state s of Tr(P,Sch,W) is composed of a state
of the transition system of P (Tr(P)), a state of the scheduler Sch and a state
of the performance model W . The transition function matches environment
transitions of Tr(P) with the scheduler transitions (which allows the scheduler
to schedule threads) and it matches thread transitions with the performance
model transitions. The weight function v assigns costs to edges as given by the
weighted automaton W . Furthermore, as the limit average objective is defined
only for infinite executions, for terminating safe executions of the program we

95

add an edge back to the initial state. The value of the limit average objective
function of the infinite execution is the same as the average over the original
finite execution. Note that the performance model can specify a locking cost,
while the program model does not specifically mention locking. We thus need
to specifically designate which shared memory variables are used for locking.

Correctness. We restrict our attention to safety conditions for correctness.
We illustrate how various correctness conditions for concurrent programs can be
modelled as Safety objectives: (a) Data-race freedom. Data-races occur when
two or more threads access the same shared memory location and one of the
accesses is a write access. We can check for absence of data-races by denoting
as unsafe states those in which there exist two enabled transitions (with at
least one being a write) accessing a particular shared variable, from different
threads. (b) Deadlock freedom. One of the major problems of synchronizing
programs using blocking primitives such as locks is that deadlocks may arise.
A deadlock occurs when two (or more) threads are waiting for each other to
finish an operation. Deadlock-freedom is a safety property. The unsafe states
are those where there exists two or more threads with each one waiting for a
resource held by the next one.

Value of a program and of a partial program. For P , Sch, W as be-
fore and SafetyB is a safety objective, we define the value of the program
using the composition of P , Sch and W as: ValProg(P,Sch,W,SafetyB) =
Val(Tr(P,Sch,W), v,SafetyB). For be a partial program M , let P be the set
of all allowed programs. The value of M , ValParProg(M,Sch,W,SafetyB) =
minP∈P ValProg(P,Sch,W,SafetyB).

Partial Program resolution problem. The central technical questions we
address are as follows: (1) The partial program resolution optimization problem
consists of a partial program M , a scheduler Sch, a performance model W and
a safety condition SafetyB , and asks for a program P allowed by the partial
program M such that the value ValProg(P,Sch,W,SafetyB) is minimized. In-
formally, we have: (i) if the value ValParProg(M,Sch,W,SafetyB) is∞, then no
safe program exists; (ii) if it is finite, then the answer is the optimal safe program,
i.e., a correct program that is optimal with respect to the performance model.
The partial program resolution decision problem consists of the above inputs and
a rational threshold λ, and asks whether ValParProg(M,Sch,W,SafetyB) ≤ λ.

6.3 Quantitative Games on Graphs

Games for synthesis of controllers and sequential systems from specifications
have been well studied in literature. We show how the partial program resolution
problems can be reduced to quantitative imperfect information games on graphs.
We also show that the arising technical questions on game graphs is different
from the classical problems on quantitative graph games.

Recall from Chapter 2[Pg. 16] the definitions related 2 1
2 -player, observation

based strategies, memoryless strategies, and values of strategies.

96

Given a game graph G, an objective f , an observation mapping for
Player 1 O and a rational threshold q ∈ Q, the general decision prob-
lem (resp. memoryless decision problem) asks if there is a observation-
based Player 1 strategy (resp. observation-based memoryless strategy) φ1

with supφ2∈Φ2
E(f(Outcomes(φ1, φ2))) ≤ q. Similarly, the value prob-

lem (memoryless value problem) is to compute infφ1∈Φ1
ValGame(f,G, φ1)

(minφ1∈ΦM1
ValGame(f,G, φ1) resp.). Traditional game theory study always

considers the general decision problem which is undecidable for limit-average
objectives [73] in imperfect information games.

Theorem 6.1. [73] The decision problems for LimAvg and LimAvg-Safety
objectives are undecidable for imperfect information 2 1

2 -player and imperfect
information 2-player games.

However, we show here that the partial program resolution problems reduce
to the memoryless decision problem for imperfect information games.

Theorem 6.2. Given a partial program M , a scheduler Sch, a performance
model W , and a correctness condition φ, we construct an exponential-size ImpIn
2 1

2 -player game graph GpM with a LimAvg-Safety objective such that the memo-
ryless value of GpM is equal to ValParProg(M, Sch,W,Safety).

The proof relies on a construction of a game graph similar to the product of
a program, a scheduler and a performance model. Player 2 chooses the thread
to be scheduled and Player 1 resolves the nondeterminism when the scheduled
thread c is in a location in Sk(c). The crucial detail is that Player 1 can observe
only the location of the thread and not the valuations of the variables. This
partial information gives us a one-one correspondence between the memoryless
strategies of Player 1 and programs allowed by the partial program.

Proof. The proof relies on the construction of an imperfect information game
graph, denoted G(M,Sch,W), in which fixing a memoryless strategy φ1 for
Player 1 yields a WPTS Tr(Pφ1

,Sch,W) with weight function v that corresponds
to the product of a program Pφ1

allowed by the partial program M , composed
with the scheduler Sch and the performance model W . The construction of this
game graph is similar to the construction of the product of a program, sched-
uler and performance model, but with a partial program replacing the program.
Due to the nondeterministic transition function of the partial program, there
will exist extra nondeterministic choices in the WPTS (in addition to the choice
of inputs). This nondeterminism is resolved by Player 1 choices and the nonde-
terminism due to input (and possibly scheduling) is resolved by Player 2 choices.
We refer to this game as the program resolution game.

The crucial point of the construction is the observations, i.e., the information
about the state that is visible to Player 1. Since Player 1 is to resolve the
nondeterminism from the partial program, he is allowed only to observe the
scheduled thread and its current location. He may choose a set of transitions,
from that location, such that only one of the set is enabled for any valuation
of the variables. The formal description of the reduction of partial program
resolution to imperfect information games is as follows.

• State space. Analogous to the construction of Tr(P,Sch,W), a state in the
state space of G(M, Sch,W) is a tuple (s, qSch, qW) where s, qSch and qW
are states of Tr(M), Sch and W , respectively.

97

• Player-1 and Player-2 partition. The state is a Player 1 state if s is labelled
with a scheduled thread, and a Player 2 state if s has no thread scheduled
and is labelled with a ∗.

• Observation and observation mapping. The set of observations O is the
set of locations from all the threads of M along with a ⊥ element, i.e., O =
{⊥} ∪ {(t, q)|t is a thread of M and q is a partial program location of t}.
All Player 2 states are mapped to ⊥ by η. Player 1 states with thread t
scheduled and thread t in location q are mapped to (t, q) by η.

• Enabled actions and transitions. Suppose (s, qSch, qW) is a Player 1 state
with η((s, qSch, qW)) = (t, q). Any action a enabled in this state is a set of
transitions of thread t from state q such that only one of them is enabled
for any valuation of local, global and input variables. On choosing action
a in (s, qSch, qW), the control moves to the state (s′, q′Sch, q

′
W) where s′ is

the state obtained by executing the unique enabled transition from a in
s. The states q′Sch and q′W are as in Tr(P,Sch,W). The set of Player 2
actions and transitions are as in Tr(P,Sch,W).

• Initial state. The initial state of G(M, Sch,W) is the tuple of initial states
of M , Sch and W .

To complete the proof, we show that given a memoryless Player 1 strategy φ1,
there exists a program Pφ1

allowed by M such that Tr(Pφ1
,Sch,W) corresponds

to the MDP obtained by fixing φ1 in G(M,Sch,W) and vice-versa.
Given a program Pφ1 allowed by the partial program, we construct a mem-

oryless φ1 as follows: φ1((t, q)) is the action consisting of the set of transitions
from location q in thread t in Pφ1

. As Pφ1
is deterministic, only one of them

will be enabled for a valuation of the variables. Similarly, given a memoryless
Player 1 strategy, we construct Pφ1

by preserving only those transitions from lo-
cation q of thread t which are present in φ1((t, q)). From the above construction
we conclude the desired correspondence.

6.3.1 Complexity of ImpIn Games and partial-program res-
olution

We establish complexity bounds for the relevant memoryless decision problems
and use them to establish upper bounds for the partial program resolution
problem. First, we state a theorem on complexity of MDPs.

Theorem 6.3. [85] The memoryless decision problem for LimAvg-Safety ob-
jectives can be solved in polynomial time for MDPs.

Theorem 6.4. The memoryless decision problems for Safety, LimAvg, and
LimAvg-Safety objectives are Np-complete for ImpIn 2 1

2 - and ImpIn 2-player
game graphs.

For the lower bound we show a reduction from 3SAT problem and for the
upper bound we use memoryless strategies as polynomial witness and Theo-
rem 6.3[Pg. 98] for polynomial time verification procedure.

Lemma 6.5. The memoryless decision problem for ImpIn-2-player game graphs
with Safety and LimAvg objectives are NP-hard.

Proof. We first show NP-hardness for safety objectives.

98

init

x1 ¬x3

¬x2 ¬x4

x3 x1

bad

true

false

true

false

false

true

⊥ ⊥

false

true

false

true

true

false

C1

C2

Figure 6.3: 3-SAT to memoryless imperfect information Safety
games

(NP-hardness). We will show that the memoryless decision problem for
ImpIn-2-player safety game is NP-hard by reducing the 3-SAT problem. Given
a 3-SAT formula Φ over variables x1, x2, . . .xN , with clauses C1, C2, . . .CK ,
we construct an imperfect information game graph with N +1 observations and
3K + 2 states such that Player 1 has a memoryless winning strategy from the
initial state if and only if Φ is satisfiable. The construction is described below:

• The states of the game graph are {init}∪{si,j | i ∈ [1,K]∧j ∈ {1, 2, 3}}∪
{bad}.

• The observations and the observation mapping are as follows: init and
bad are mapped with observation 0, and si,j is mapped with observation
k if the jth variable of the Ci clause is xk or ¬xk.

• init and bad are Player 2 states and all other states are Player 1 states.

• The actions and transition function of the game graph are as follows:

1. For all i ∈ [0,K], there is a transition from init to si,1 on the action
⊥.

2. If the jth literal of clause Ci is xk, then there are two actions enabled
(true and false) and there is a transition from si,j to init on true
and to si+1,j on false (for j ∈ {1, 2}). For j = 3, the transition on
true leads to init and the transition on false leads to bad.

3. If the jth literal of clause Ci is ¬xk, there is a transition from si,j to
init on false and to si+1,j on true (for j ∈ {1, 2}). For j = 3, the
transition on false leads to init and the edge on true leads to bad.

99

• The objective for Player 1 is to avoid reaching bad and the objective for
Player 2 is to reach bad.

Intuitively, Player 2 chooses a clause Ci in the initial state init. Player 1
then plays according to her memoryless strategy from each of the states si,j .
If the action a ∈ {true, false} chosen in si,j makes the literal at position j in
clause Ci true, control goes back to init. Otherwise, the control goes to the next
si,j+1. If the choices at all three si,j ’s make the corresponding literal false, the
control goes to bad. The game graph structure is illustrated in Figure 6.3[Pg.
99].

Given a truth value assignment of xi’s such that Φ is satisfied, we can con-
struct a memoryless strategy of Player 1 which chooses the action at obser-
vation i same as the valuation of xi, and the memoryless strategy is winning
for Player 1. In every triple of si,j ’s at least one of the edges dictated by this
strategy lead to init. If that were not the case, the corresponding clause would
not have been satisfied. Given a winning memoryless strategy φ1, the valuation
of xi’s which assigns the φ1(i) to xi satisfies each clause Ck in Φ. This follows
from a similar argument as above. Hence the hardness result follows.

The above reduction is slightly modified to show that the LimAvg memo-
ryless decision problem is also NP-hard. This can be done by adding a self
loop on state bad with weight 1 and attaching the weight 0 to all other edges.
Now, Player 1 can obtain a value less than 1 if and only if she has a memoryless
winning strategy in the Safety game. The desired result follows.

Lemma 6.6. The memoryless decision problem for LimAvg-Safety objectives
for ImpIn 2 1

2 -player game graphs is in NP.

Proof. Given a memoryless winning strategy for a Player 1 in a ImpIn 2 1
2 -player

game graph, the verification problem is equivalent to solving for the same ob-
jective on the MDP obtained by fixing the strategy for Player 1. Hence the
memoryless strategy is the polynomial witness, and Theorem 6.3[Pg. 98] pro-
vides the polynomial time verification procedure to prove the desired result.

Lemma 6.5[Pg. 98] and Lemma 6.6[Pg. 100] gives us Theorem 6.4[Pg. 98].

Remark 6.7. The Np-completeness of the memoryless decision problems rules
out the existence of the classical strategy improvement algorithms as their ex-
istence implies existence of randomized sub-exponential time algorithms (using
the techniques of [20]), and hence a strategy improvement algorithm would imply
a randomized sub-exponential algorithm for an Np-complete problem.

100

6.4 Practical Solutions for Partial-Program
Resolution

Algorithm 1 Strategy Elimination

Input: M : partial program;
W : performance model;
Sch: scheduler;
Safety: safety condition

Output: Candidates: Strategies
StrategySet ← CompleteTree(M)
{A complete strategy tree}
Candidates ← ∅
while StrategySet 6= ∅ do

Choose Tree from StrategySet
φ1 ←Root(Tree)
if PartialCheck(φ1,Safety) then

StrategySet =
StrategySet ∪ children(Tree)

if Tree is singleton then
Candidates = Candidates ∪ {φ1}

return Candidates

We present practical solutions for the computationally hard (Pspace-
complete) partial-program resolution problem.

Strategy elimination. We present the general strategy enumeration scheme
for partial program resolution. We first introduce the notions of a partial strat-
egy and strategy tree.
Partial strategy and strategy trees. A partial memoryless strategy for Player 1
is a partial function from observations to actions. A strategy tree is a finite
branching tree labelled with partial memoryless strategies of Player 1 such that:
(a) Every leaf node is labelled with a complete strategy; (b) Every node is
labelled with a unique partial strategy; and (c) For any parent-child node pair,
the label of the child (φ1

c) is a proper extension of the label of parent (φ1
p),

i.e., φ1
c(o) = φ1

p(o) when both are defined and the domain of φ1
p a proper

superset of φ1
c. A complete strategy tree is one where all Player 1 memoryless

strategies are present as labels.
In the strategy enumeration scheme, we maintain a set of candidate strategy

trees and check each one for partial correctness. If the root label of the tree
fails the partial correctness check, then remove the whole tree from the set.
Otherwise, we replace it with the children of the root node. The initial set
is a single complete strategy tree. In practice, the choice of this tree can be
instrumental in the efficiency of partial correctness checks. Trees which first fix
the choices that help the partial correctness check to identify an incorrect partial
strategy are more useful. The partial program resolution scheme is shown in
Algorithm 1[Pg. 101].

The PartialCheck function checks for the partial correctness of partial
strategies, and returns “Incorrect” if it is able to prove that all strategies com-

101

Algorithm 2 Synthesis Scheme

Input: M : partial program;
W : performance model;
Sch: a scheduler;
Safety: a safety condition

Output: P : correct program or ⊥
Candidates ← StrategyElimination(M,Sch,W,Safety)
StrategyValues ← ∅
while Candidates 6= ∅ do

Pick φ1 from Candidates
Gφ1 ← G(M,Sch,W) with φ1 fixed
G∗φ1
← Abstract(Gφ1

)
Valid ← SoftwareModelCheck(G∗φ1

,Safety)
if Valid then

Value ← SolveMDP(G∗φ1
)

StrategyValues ← StrategyValues ∪ {φ1 7→ Value}
if StrategyValues = ∅ then

return ⊥
else

OptimalStrategy = minimum(StrategyValues)
return M with OptimalStrategy strategy fixed

patible with the input are unsafe, or it returns “Don’t know”. In practice, for
the partial correctness checks the following steps can be used: (a) checking of
lock discipline to prevent deadlocks; and (b) simulation of the partial program
on small inputs; The result of the scheme is a set of candidate strategies for
which we evaluate full correctness and compute the value.

The result of the scheme is a set of candidate strategies for which we eval-
uate full correctness and compute the value. The algorithm is shown in Al-
gorithm 2[Pg. 102]. In the algorithm, the procedures SoftwareModelCheck,
Abstract and SolveMDP are of special interest. The procedure Abstract ab-
stracts an MDP preserving the LimAvg-Safety properties as described in the
following paragraphs. The SolveMDP procedure uses the optimizations described
below to compute the LimAvg value of an MDP efficiently. The Safety condi-
tions are checked by SoftwareModelCheck procedure. It might not explicitly
construct the states of the MDP, but may use symbolic techniques to check the
Safety property on the MDP. It is likely that further abstraction of the MDP
may be possible during this procedure as we need abstractions which preserve
Safety, and G∗φ1

is abstracted to preserve both Safety and LimAvg values.

Evaluation of a memoryless strategy. Fixing a memoryless Player 1 strat-
egy in a ImpIn 2 1

2 -player game for partial program resolution gives us (i) a non-
deterministic transition system in the case of a non-deterministic scheduler, or
(ii) an MDP in case of probabilistic schedulers. These are perfect-information
games and hence, can be solved efficiently. In case (i), we use a standard min-
mean cycle algorithm (for example, [109]) to find the value of the strategy . In
case (ii), we focus on solving Markov chains with limit-average objectives effi-
ciently. Markov chains arise from MDPs due to two reasons: (1) In many cases,

102

program input can be abstracted away using data abstraction and the problem
is reduced to solving a LimAvg Markov Chain. (2) The most efficient algo-
rithm for LimAvg MDPs is the strategy improvement algorithm [85], and each
step of the algorithm involves solving a Markov chain (for standard techniques,
see [85]).

In practice, a large fraction of concurrent programs are designed to ensure
progress condition called lock-freedom [98]. Lock-freedom ensures that some
thread always makes progress in a finite number of steps. This leads to Markov
chains with a directed-acyclic tree like structure with only few cycles introduced
to eliminate finite executions as mentioned in Section 6.2[Pg. 93]. We present
a forward propagation technique to compute stationary probabilities for these
Markov chains. Computing the stationary distribution for a Markov chain in-
volves solving a set of linear equalities using Gaussian elimination. For Markov
chains that satisfy the special structure, we speed up the process by eliminating
variables in the tree by forward propagating, i.e., substituting the root variable.
Using this technique, we were able to handle the Markov chains of up to 100,000
states in a few seconds in the experiments.

Quantitative probabilistic abstraction. To improve the performance of
the synthesis, we use standard abstraction techniques. However, for the partial
program resolution problem we require abstraction that also preserves quantita-
tive objectives such as LimAvg and LimAvg-Safety. We show that an extension
of probabilistic bisimilarity [119] with a condition for weight function preserves
the quantitative objectives.

Quantitative probabilistic bisimilarity. A binary equivalence relation ≡
on the states of a MDP is a quantitative probabilistic bisimilarity relation if
(a) s ≡ s′ iff s and s′ are both safe or both unsafe; (b) ∀s ≡ s′, a ∈ Σ :∑
t∈C ∆(s, a)(t) =

∑
t∈C ∆(s′, a)(t) where C is an equivalence class of ≡; and

(c) s ≡ s′∧t ≡ t′ =⇒ v(s, a, s′) = v(t, a, t′). The states s and s′ are quantitative
probabilistic bisimilar if s ≡ s′.

A quotient of an MDP G under quantitative probabilistic bisimilarity relation
≡ is an MDP (G/≡) where the states are the equivalence classes of ≡ and:
(i) v(C, a,C ′) = v(s, a, s′) where s ∈ C and s′ ∈ C ′, and (ii) ∆(C, a)(C ′) =∑
t′∈C′ ∆

′(s, a)(t) where s ∈ C.

Theorem 6.8. Given an MDP G, a quantitative probabilistic bisimilarity rela-
tion ≡, and a limit-average safety objective f , the values in G and G/≡ coincide.

Proof. For every Player 2 strategy φ2 in G, we define a Player 2 strategy
(φ2/≡) in G/≡ (or vice-versa) where: φ2((s1, a1)(s2, a2) . . . (sn, an) · sn+1) =
(φ2/≡)((C1, a1)(C2, a2) . . . (Cn, an) ·Cn+1) where Ci is the equivalence class con-
taining si. By the properties of ≡, it is simple to check that both φ2 and φ2/≡
have equal values.

Consider a standard abstraction technique, data abstraction, which erases
the value of given variables. We show that under certain syntactic restrictions
(namely, that the abstracted variables do not appear in any guard statements),
the equivalence relation given by the abstraction is a quantitative probabilistic
bisimilarity relation and thus is a sound abstraction with respect to any limit-
average safety objective. We also consider a less coarse abstraction, equality and

103

LC: CC Granularity Performance

1:100
Coarse 1

Medium 1.15
Fine 1.19

1:20
Coarse 1

Medium 1.14
Fine 1.15

1:10
Coarse 1

Medium 1.12
Fine 1.12

1:2
Coarse 1

Medium 1.03
Fine 0.92

1:1
Coarse 1

Medium 0.96
Fine 0.80

Table 6.1: Performance of shared buffers under various locking
strategies: LC and CC are the locking cost and data copying cost

order abstraction, which preserves equality and order relations among given vari-
ables. This abstraction defines a quantitative probabilistic bisimilarity relation
under the syntactic condition that the guards test only for these relations, and
no arithmetic is used on the abstracted variables.

6.5 Experiments

We describe the results obtained by applying our implementation of techniques
described above on four examples. In the examples, obtaining a correct program
is not difficult and we focus on the synthesis of optimal programs.

The partial programs were manually abstracted (using the data and order
abstractions) and translated into PROMELA, the input language of the SPIN
model checker [101]. The abstraction step was straightforward and could be
automated. The transition graphs were generated using SPIN. Then, our tool
constructed the game graph by taking the product with the scheduler and perfor-
mance model. The resulting game was solved for the LimAvg-Safety objectives
using techniques from Section 6.4[Pg. 101]. The examples we considered were
small (each thread running a procedure with 15 to 20 lines of code). The synthe-
sis time was under a minute for all but one case (Example 2 with larger values
of n), where it was under five minutes. The experiments were run on a dual-core
2.5Ghz machine with 2GB of RAM. For all examples, the tool reports normal-
ized performance metrics where higher values indicate better performance.

Example 1. We consider the producer-consumer example described in Sec-
tion 6.1[Pg. 90], with two consumer and two producer threads. The partial
program models a four slot concurrent buffer which is operated on by producers
and consumers. Here, we try to synthesize lock granularity. The synthesis re-
sults are presented in Table 6.1[Pg. 104]. The most important parameters in the

104

WC : LC LWO
Performance for n

1 2 3 4 5
20:1 1 1.0 1.049 1.052 1.048 1.043
20:1 2 1.0 0.999 0.990 0.982 0.976
10:1 1 1.0 1.134 1.172 1.187 1.193
10:1 2 1.0 1.046 1.054 1.054 1.052

Table 6.2: Optimistic performance: WC, CC, and LWO are the
work cost, lock cost, and the length of the work operation

performance model are the cost of locking/unlocking l and the cost c of copying
data from/to shared memory. If c was higher than l (by 100:1), then the fine-
grained locking approach is better (by 19 percent), and is the result of synthesis.
If the cost l is equal to c, then the coarse-grained locking approach was found
to perform better (by 25 percent), and thus the coarse-grained program is the
result of the synthesis.

Example 2. We consider the optimistic concurrency example described in
detail in Section 6.1[Pg. 90]. In the code (Figure 6.1[Pg. 91]), the number of op-
erations performed optimistically is controlled by the variable n. We synthesized
the optimal n for various performance models and the results are summarized in
Table 6.2[Pg. 105]. We were able to find correspondence between our models and
the program behavior on a desktop machine: (a) We observed that the graph
of performance-vs-n has a local maximum when we tested the partial program
on the desktop. In our experiments, we were able to find parameters for the
performance model which have similar performance-vs-n curves. (b) Further-
more, by changing the cost of locking operations on a desktop, by introducing
small delays during locks, we were able to observe performance results similar
to those produced by other performance model parameters.

Example 3. We synthesize the optimal number of threads for work shar-
ing (pseudocode in Figure 6.4[Pg. 106]). For independent operations, multiple
threads utilize multiple processors more efficiently. However, for small number
of operations, thread initialization cost will possibly overcome any performance
gain.

The experimental results are summarized in Figure 6.5[Pg. 106]. The x-
and y- axes measure the initialization cost and performance, respectively. Each
plot in the graph is for a different number of threads. The two graphs (a) and
(b) are for a different amounts of work to be shared (the length of the array
to be operated was varied between 16, and 32). As it can be seen from the
figure, for smaller amounts of work, spawning fewer threads is usually better.
However, for larger amounts of work, greater number of threads outperforms
smaller number of threads, even in the presence of higher initialization costs.
The code was run on a desktop (with scaled parameters) and similar results
were observed.

105

main:

n = choice(1..10);

i = 0;

array[0..N];

while (i < n) {
spawn(worker, i * (N/n), (N/n));

i++;

}

worker(start, length):

i = start;

while(i < start + length) {
work(array[i]);

}

Figure 6.4: Pseudo-code for Example 3

Figure 6.5: Work sharing for initialization costs and thread counts:
More work is shared in case (b) than case (a)

106

1: while(true) {
2: n = choice(1..10);

3: lock();

4: while (i < n) {
5: data = write(work(read(data)));

6: }
7: unlock(lock);

8:}

Figure 6.7: Pseudo-code for Example 4

in cache ∧ dirty

in cache ∧ !dirty

!in cache ∧ !dirty

?WRITE /

!EVICT (0)

?FLUSH /

!EVICT (MEM WRITE)

?EVICT /

⊥ (0)

?READ /

!FLUSH

(MEM READ)

?FLUSH / ⊥ (0)

?READ / ⊥ (CACHE READ)

?WRITE / ⊥ (CACHE READ)

?READ / ⊥ (CACHE READ)

Figure 6.6: Performance automaton for Example 4

Example 4. We study the effects of processor caches on performance using
a simple performance model for caches. A cache line is modeled as in Fig-
ure 6.6[Pg. 107]. It assigns differing costs to read and write actions if the line
is cached or not. The performance model is the synchronous product of one
such automata per memory line. The only actions in the performance model
after the synchronous product (caches synchronize on evict and flush) are
READ and WRITE actions. These actions are matched with the transitions of the
partial program.

The partial program is a pessimistic variant of Figure 6.1[Pg. 91] (pseudocode
shown in Figure 6.7[Pg. 107]). Increasing n, i.e., the number of operations per-
formed under locks, increases the temporal locality of memory accesses and
hence, increase in performance is expected. We observed the expected results
in our experiments. For instance, increasing n from 1 to 5 increases the perfor-
mance by a factor of 2.32 and increasing n from to 10 gives an additional boost
of about 20%. The result of the synthesis is the program with n = 10.

107

6.6 Summary

Our main contributions are: (1) we developed a technique for synthesizing con-
current programs that are both correct and optimal; (2) we introduced a para-
metric performance model providing a flexible framework for specifying perfor-
mance characteristics of architectures; (3) we showed how to apply imperfect-
information games to the synthesis of concurrent programs and established the
complexity for the game problems that arise in this context (4) we developed
and implemented practical techniques to efficiently solve partial-program syn-
thesis, and we applied the resulting prototype tool to several examples that
illustrate common patterns in concurrent programming.

108

Chapter 7

Quantitative Abstraction
Refinement

We propose a general framework for abstraction with respect to quantitative
properties, such as worst-case execution time, or power consumption. Our
framework provides a systematic way for counter-example guided abstraction
refinement for quantitative properties. The salient aspect of the framework is
that it allows anytime verification, that is, verification algorithms that can be
stopped at any time (for example, due to exhaustion of memory), and report
approximations that improve monotonically when the algorithms are given more
time.

We instantiate the framework with a number of quantitative abstractions
and refinement schemes, which differ in terms of how much quantitative in-
formation they keep from the original system. We introduce both state-based
and trace-based quantitative abstractions, and we describe conditions that de-
fine classes of quantitative properties for which the abstractions provide over-
approximations. We give algorithms for evaluating the quantitative properties
on the abstract systems. We present algorithms for counter-example based re-
finements for quantitative properties for both state-based and segment-based
abstractions. We perform a case study on worst-case execution time of executa-
bles to evaluate the anytime verification aspect and the quantitative abstractions
we proposed.

7.1 Motivation

The quantitative analysis of systems is gaining importance due to the spread
of embedded systems with requirements on resource consumption and timeli-
ness of response. Quantitative analyses have been proposed for properties such
as worst-case execution time (see [171] for a survey), power consumption (pio-
neered in [158]), and prediction of cache behavior for timing analysis (see, for
example, [84]).

Anytime algorithms (see [25]) are algorithms that generate imprecise answers
quickly and proceed to construct progressively better approximate solutions over
time, eventually finding the correct solution. Anytime algorithms are useful in
verification, as they offer a way to deal with the state-space explosion problem

110

int a, b, c, i;

volatile int v; // input

if (v == 1)

for (i=0;i<16;i++)

read(a);

else if(v == 2)

for (i=0;i<16;i++)

if (i mod 2 = 0)

read(b);

else

for (i=0;i<16;i++)

if (i mod 4 = 0)

read(c);

Figure 7.1: Example 1

— if the algorithm is terminated early, for example due to memory exhaus-
tion, it is still able to report an approximation of the desired result. The term
anytime verification has been proposed [151] recently in the context of verify-
ing boolean properties, as a way to get (non-quantifiably) better estimates on
whether a property holds for a system. The anytime concept, however, is par-
ticularly well-suited in the context of quantitative verification. In this context,
abstraction gives a quantitative over-approximation of the quantitative answer
to a verification question, and it is natural to require the anytime property:
the more time the verification run is given, the (quantifiably) better the over-
approximation of the correct answer should be. We implement this anytime
property for quantitative verification through an abstraction refinement scheme
that monotonically improves the answer. For instance, abstraction refinement
may compute increasingly better approximations of power consumption of a
system.

We propose a framework for abstraction and abstraction refinement for quan-
titative properties that is suitable for anytime verification. We explain the mo-
tivation and intuition behind the framework using the following example.

Motivating example. Consider the problem of estimating the worst-case
execution time (WCET) of the program in Figure 7.1[Pg. 111]. We assume
an idealized situation where the performance is affected mostly by the cache
behavior. Let each program statement have a cost depending on whether it
accesses only the cache (or no memory at all), for a cost of 1, or main memory
for a cost of 25. we assume that the program variables i,a,v are mapped to
different cache entries, while b and c are mapped to the same entry (different
from the entries for the other variables). We consider abstractions that abstract
only the cache (not the program). The cache is abstracted by an abstract cache
with a smaller number of entries (accesses to the entries not tracked in the
abstract cache are always considered to be a cache miss). Let us start the
analysis with an abstract cache of size 2 which caches variables i and v. In the
abstract system (i.e., the original program composed with the abstract cache),
the worst-case trace has v equal to 1, and the program accesses the (uncached)

111

variable a 16 times. The analysis then uses this trace to refine the abstraction.
The refinement extends the cache to include the cache entry for a. The worst-
case execution then has v equal to 2, and it has 8 accesses to b. The analysis now
refines the abstraction by extending the cache with an entry for b. The WCET
estimate is thus tightened, until either the highest-cost trace corresponds to a
real execution (and thus the WCET estimate is precise), or the analysis runs
out of resources and reports the computed over-approximation.

Abstraction for quantitative properties. Our model of systems is
weighted transition systems. We provide a way of formalizing quantitative
properties of systems which capture important properties studied in literature,
including limit-average, discounted-sum, and boolean properties such as safety
and liveness. The framework makes it possible to investigate quantitative ver-
sions of the boolean properties: for instance, for safety one could ask not only
if an error state is reached, but also how often it is reached. We focus on prop-
erties that admit a linear trace that maximizes (or minimizes) the value of the
quantitative property. Such a trace is called the extremal trace (ext-trace for
short).

We present two types of quantitative abstraction schemes. The first is state-
based, that is, the elements of the abstract domain correspond to sets of states.
The second is segment-based, that is, the elements of the abstract domain cor-
respond to sets of trace segments.

State-based quantitative abstractions. The abstraction scheme ExistMax
is state-based. It is a direct extension of predicate abstraction, where each
abstract state corresponds to an equivalence class of concrete states. In ad-
dition, with each abstract state, ExistMax stores the maximum weight of the
corresponding concrete states. We give conditions for the class of quantitative
properties for which ExistMax is a monotonic over-approximation (that is, it
provides better estimates as the underlying equivalence relation on states is
refined). This class includes all the quantitative properties mentioned above.
However, we show that there are naturally defined properties for which ExistMax
is not a monotonic over-approximation. This is in contrast to the abstraction
refinement of boolean properties (in the boolean case, we do not get less precise
invariants if we add more predicates).

Segment-based quantitative abstractions. We introduce a number of
segment-based abstraction schemes. A segment is a (finite or infinite) sequence
of states that is a consecutive subsequence of an execution trace. As the quanti-
tative properties we consider accumulate quantities along (infinite) traces, it is
natural, and advantageous, to consider abstract domains whose elements corre-
spond to sets of segments, not sets of states. This is similar to termination and
liveness analysis using transition predicates [136], and their generalizations to
segment covers [67]. We build upon these approaches to develop our quantita-
tive abstractions. The PathBound abstraction scheme stores with each abstract
state t (representing a set of segments) (i) minp(t), the length of a shortest fi-
nite segment in t, (ii) maxp(t), the length of the longest finite segment in t, (iii)
hasInfPath(t) a bit that is true if t contains a segment of infinite length, and (iv)
Val(t), a summary value of the weights of the states. Defining Val(t) as the max-

112

imal weight of a state occurring in one of the segments in t makes PathBound
a sound over-approximation for a general class of quantitative properties. To
get better approximations for particular quantitative properties Val(t) can be
a different summary of the weights. For instance, we specialized PathBound
to limit average by storing not the maximal occurring value, but the maximal
average of values along a segment.

In order to compare state-based and segment-based abstractions, let us con-
sider the limit-average property applied to a program with a simple for loop for
which the loop bound is statically known to be 10. Let us assume that the cost
of the operations inside the loop is much greater than the cost of the operations
outside the loop. Now consider the state-based abstraction ExistMax with an
abstract state t that groups together all states whose control location is in the
for loop. In the ExistMax abstraction, this abstract state has a self-loop. Ana-
lyzing the abstract system would conclude that the highest-cost trace is the one
which loops forever in t. This would be a very imprecise result, as the concrete
traces all leave the loop after 10 iterations. To correct for this, the loop would
have to be unrolled 10 times, using 10 counterexample-guided refinement steps.
On the other hand, consider the PathBound abstraction, with an abstract state
t representing all the segments in the loop. For t, hasInfPath(t) is false and
maxp(t) = 10, allowing immediately for more precise estimates.

The PathBound abstraction scheme is a sound abstraction in the sense
that the quantitative value we obtain by analyzing the abstract system over-
approximates the value for the concrete system. As in ExistMax , this holds for
a large class of quantitative properties. However, we show that PathBound is
not a monotonic over-approximation even for standard quantitative properties
such as the limit-average property in the sense that after refinement of the ab-
stract states, we may get worse estimates. We therefore present a hierarchical
generalization of PathBound called HPathBound . In PathBound , each abstract
state represents a set of segments, and stores some quantitative characteristics
(such as minp, maxp) of that set. In order to compute better estimates of
these quantitative characteristics, one can perform another level of refinement,
within abstract states. This leads to the idea of a hierarchical abstraction. It
is particularly useful for software, which already has a hierarchical structure in
many cases (e.g., nested loops, function calls). This approach corresponds to
the (multi-level) abstract inductive segment cover of introduced in [67, Section
16.1].

Refinement of state-based abstractions for quantitative properties.
For the state-based abstraction scheme ExistMax , we give an algorithm for
counterexample-guided abstraction refinement (CEGAR) for quantitative prop-
erties. The algorithm is based on the classical CEGAR algorithm [60], which we
extend to the quantitative case. In the classical CEGAR loop, the counterex-
ample to be examined is chosen using heuristics. For quantitative properties, it
is clear that an extremal counterexample trace (the ext-trace) should be chosen
for refinement. The reason is that if the ext-trace does not correspond to a
real trace, then a refinement which does not eliminate this trace would have the
same value as the previous abstract system.

113

Refinement of segment-based abstractions for quantitative proper-
ties. We propose a refinement algorithm for the segment-based abstraction
HPathBound . We chose HPathBound because, as discussed above, it is particu-
larly suitable for software, and it is a monotonic over-approximation for a large
set of quantitative properties. An abstract counterexample for HPathBound is
a hierarchical trace. Given an extremal abstract counterexample which does
not correspond to a concrete counterexample, the abstract counterexample is
traversed, similarly as in the classical CEGAR algorithm, until an abstract seg-
ment that provides values that are too “pessimistic” (e.g., maxp and Val values
which cannot be achieved in the concrete system by a concretization of the ab-
stract counterexample) is found. This abstract segment is then refined. Note
that the fact that the counterexample is hierarchic gives freedom to the traver-
sal algorithm — at each step, it can decide whether or not to descend one level
lower and to find a mismatch between a concrete and abstract execution there.

Experimental results In order to evaluate the proposed abstraction
schemes, both state-based and segment-based, we performed a case study on
worst-case execution time analysis of x86 executables. We focused on one as-
pect, the cache behavior analysis, and in particular, on estimating the rate of
cache misses over the course of the worst-case execution. In order to abstract the
cache, we used the abstractions introduced in [84]. To the best of our knowledge,
this is the first work on automated refinement for these abstractions.

We implemented two abstraction schemes: the state-based ExistMax and
the segment-based HPathBound . We performed the case study on our own
(small) examples, and on some of the benchmarks collected in [91]. The experi-
ments show that we obtain more precise quantitative results as the abstraction
is refined, for example, by having a larger abstract cache. Furthermore, we
show that using the segment-based abstraction HPathBound enables scaling
up. This is due to the fact that in the presence of loops, the HPathBound ab-
straction can quickly obtain good over-approximations if it can statically over-
approximate loop bounds, whereas the ExistMax abstraction would have to un-
roll the loop many times to get comparable results. Similarly to the ExistMax
case, the experiments show that we obtain more precise quantitative results as
the HPathBound abstraction is (hierarchically) refined by computing better es-
timates for loop bounds. The running time of the analysis was under 35 seconds
in all cases.

7.2 Quantitative properties

In this chapter, we use weighted transition systems where the weights are as-
signed to states rather than transitions. An unlabelled weighted transition sys-
tem (UWTS) is given by W = 〈S,∆, v〉 where S are a finite set of states,
∆ ⊆ S × S are a set of unlabelled transitions, and v : S → Q is a weight
function mapping states to rational weights. We use W to denote the set of all
UWTSs and W(S) ⊆ W to denote the set of all UWTSs with a set of states S
such that S ⊆ S.

A trace of a UWTS is given by a sequence π = s0s1 . . . such that (si, si+1) ∈
∆ for each i ≥ 0. A trace π = s0s1 . . . is memoryless if for all i, j ≥ 0, we have
si = sj → (si+1 = sj+1). We extend the weight function v to traces by defining

114

1
10 4

3

1
1

1

11

1

Figure 7.2: System W1

v(s0s1 . . .) = v(s0)v(s1) For instance, system W1 in Figure 7.2[Pg. 115] has
two memoryless traces, a trace π1 with v(π1) = (1 10 4 3 1 1 1)ω, and a trace
π2 with v(π2) = (1 10 4 3 1 1 1 1)ω.

We define quantitative properties by using a trace value function and a sys-
tem value function. A trace value function ft : Rω → R maps a sequence of
weights to a real number and a system value function fs : 2R → R. For trace
value functions, we use standard functions from Chapter 2[Pg. 16] such as limit-
average, infimum, supremum, and discounted-sum. We also give some examples
of standard system value functions.
• Supremum and Infimum. Intuitively, the supremum and infimum func-

tions measure the worst-case and best-case traces in the system.
• Threshold. The threshold function checks if any of the values in the given

set are above or below given thresholds. Formally, thresholdu(R) = 1 if
∃r ∈ R : r ≥ u, and thresholdu(R) = 0 otherwise.

Any combination of a trace value function ft and a system value function ft
defines a quantitative property of the system W as fs({ft(π) | π ∈W}).

In this chapter, we implicitly assume that the system value function for any
quantitative property is sup unless otherwise mentioned. A trace π is an ex-
tremal counterexample trace (or ext-trace for short) if f(W) = fs({ft(v(π))}).
We restrict ourselves to a class of quantitative properties that admit mem-
oryless extremal counterexample traces, i.e., every system W has a extremal
counterexample trace that is memoryless. Formally, f is memoryless if and only
if ∀W ∈ W : ∃π ∈ Π(W) : f(W) = fs({ft(v(π))}). Note that all properties
mentioned above are memoryless.

7.3 State-based quantitative abstractions

A quantitative abstraction C = (WC , fC , αC) is triple consisting of a set of
abstract systems WC , an abstract quantitative property fC : WC → R and
an abstraction function αC : W → WC . A quantitative abstraction C is an
over-approximation of f , if for all W ∈ W, fC(αC(W)) ≥ f(W).

7.3.1 ExistMax abstraction.

In this section, we present a quantitative abstraction technique based on state
abstractions. In this case, the abstract system is a UWTS whose states are
sets of states of the concrete systems. In particular, our abstraction scheme
ExistMax is a direct extension of the classical predicate abstraction. Com-
pared to predicate abstraction, ExistMax additionally stores, with each abstract
state, the maximum weight occurring in the set of corresponding concrete states.

115

1

10 4

3

1
1

1

11

1

110

W1

αem
≈ (W1)

Fig. 7.3: ExistMax abstraction

The name ExistMax refers to transitions abstracted existentially, and that the
weights abstracted by maxima.

ExistMax is a state based abstraction scheme: a family of quantitative ab-
stractions parameterized by equivalence relations on S. Given an equivalence
relation ≈⊆ S×S, the quantitative abstraction ExistMax≈ = (Wem , fem , αem

≈)
has (a) Wem = W(2S), (i.e., abstract states are set of concrete states),
(b) fem = f as the abstract quantitative property, and (c) for a UWTS
W = (S,∆, v, sι) we have that the abstract system αem

≈ (W) is a UWTS
W em = (Sem ,∆em , vem , temι) where:
• Sem are equivalence classes of ≈ that contain states from S;
• (t1, t2) ∈ ∆em ⇔ ∃s1 ∈ t1, s2 ∈ t2 : (s1, s2) ∈ ∆;
• v(t) = sup{d | ∃s ∈ t : v(s) = d}; and
• temι is the equivalence class in Sem that contains sι.

Intuitively, αem(W) is an existential abstraction and vem maps an abstract state
to the maximum weight of the corresponding concrete state.

Example 7.1. Consider again the system W1 from Figure 7.2[Pg. 115], and the
equivalence relation ≈, whose two equivalence classes (indicated by the dashed
shapes) are shown in the upper part of Figure 7.3[Pg. 116]. The abstract sys-
tem W em = αem

≈ (W1) is in the lower part of Figure 7.3[Pg. 116]. We have
LimAvgem(αem

≈ (W em)) = 10, due to a self-loop on the abstract node with weight
10.

Over-approximation and monotonicity.

We characterize the quantitative properties for which ExistMax is an over-
approximation, and for which monotonicity of refinements holds, i.e., where
refinement of the abstraction leads to tighter approximations of the system
value.

We borrow the classical notion of refinement for abstractions. An equivalence
relation ≡ is a refinement of an equivalence relation ≈ if and only if every
equivalence class of ≡ is a subset of an equivalence class of ≈.
We define the following quasi-orders:
• let ≤p⊆ Rω × Rω be defined by: r1

0r
1
1 . . . ≤p r2

0r
2
1 . . . if and only if ∀i :

r1
i ≤ r2

i , and
• let v⊆ 2R × 2R be defined by: for U,U ′ ⊆ R, we have U v U ′ iff supU ≤

supU ′.

116

A quantitative property f is (≤p,v)-monotonic if ∀r, r′ ∈ Rω : r ≤p r′ =⇒
ft(r) ≤ ft(r′) and ∀U,U ′ ∈ 2R : U v U ′ =⇒ fs(U) ≤ fs(U ′).

ExistMax is a monotonic over-approximation for a quantitative property f ,
if (a) ExistMax is an over-approximation for f , and (b) if for all W ∈ W(S),
and for all equivalence relations ≡ and ≈ on S, such that ≡ is a refinement of
≈, we have that fem(αem

≡ (W)) ≤ fem(αem
≈ (W)).

Theorem 7.2. If f is (≤p,v)-monotonic quantitative property, then ExistMax
is a monotonic over-approximation of f .

Proof. We first prove the monotonicity property of ExistMax . The over-
approximation property follows naturally as follows. For any system W , we
have W = αem

id (W) where id is the identity relation. As id is a refinement of any
equivalence relation ≈, by monotonicity it follows that f(W) = fem(αem

id (W)) ≤
fem(αem

≈ (W)).
Let W be a system in W(S), and let ≡ and ≈ be equivalence relations on

S. Let α≈(W) = (S1,∆1, v1, s1
ι) and α≡(W) = (S2,∆2, v2, s2

ι) be ExistMax
abstractions of W , where ≡ is a refinement of ≈. Furthermore, let f defined
by ft and fs be (≤p,v)-monotonic. For each equivalence class t of ≡, let t] be
the unique equivalence class of ≈ for which t ⊆ t]. The class t] is guaranteed
to exist as ≡ is a refinement of ≈. Furthermore, by the definition of ExistMax ,
we have that: (a) v1(t) ≤ v2(t]), and (b) (t1, t2) ∈ ∆1 =⇒ (t]1, t

]
2) ∈ ∆2.

Therefore, for any trace π = t0t1 . . . of α≡(W), there exists a trace π] = t]0t
]
1 . . .

of α≈(W) such that: v1(t0)v1(t1) . . . ≤p v2(t]0)v2(t]1) By ≤p-monotonicity
of ft, we get ft(v(π)) ≤ ft(v(π])). Hence, for each w ∈ ft(v(Π(α≡(W)))),
there exists w] ∈ ft(v(Π(α≈(W)))) with w ≤ w]. This, in turn, gives us
ft(v(Π(α≡(W)))) v ft(v(Π(α≡(W)))). Hence, by v-monotonicity of fs, we
get fs(ft(v(Π(α≡(W))))) ≤ fs(ft(v(Π(α≈(W))))), or equivalently, f(α≡(W)) ≤
f(α≈(W)). This proves the required theorem. as f = fem .

It is easy to show that limit average, and discounted sum are (≤p,v)-
monotonic. The following proposition is a direct consequence.

Proposition 7.3. ExistMax is a monotonic over-approximation for the limit-
average, and discounted-sum.

Example 7.4. We describe a property for which ExistMax is not a mono-
tonic over-approximation. Let f be defined by ft(r) = supi,j≥0(ri − rj) and
fs(U) = supU . The property f can be used to measure the variance in resource
usage (where the usage in each step is given by the weight) during the execution
of a program. Consider the system in Figure 7.4[Pg. 118] and the ExistMax
abstraction with abstract states given by the rectangles (the nodes outside the
dotted boxes are each in a separate singleton equivalence classes) . Property f
has value 2 on the abstract system due to the trace A→ B → C having maximal
and minimal weights as 5 and 3 (under ExistMax abstract state A, B, and C
have weights 5, 3, and 3 respectively). Refining the abstraction by completely
splitting state B increases f to 4. Refining further by splitting both states A and
C decreases f to 3 which is the true value of the concrete system. The sequence
of refinements show that for property f , the ExistMax abstraction is neither an
over-approximation (as the first abstract system has value 2 which is less than 3,
the value of the concrete system), nor monotonic (as the sequence of values 2, 4
and 3 obtained through subsequent refinements first increase and then decrease).

117

5 2 2

5 1 3

3 2

A B C

Fig. 7.4: Non-monotonic refinements

Evaluating quantitative properties on ExistMax abstractions.

Recall fem = f for ExistMax abstractions. To evaluate fem (and obtain an ext-
trace for refinement), any algorithm for finding ext-traces for the quantitative
property f suffices. Standard algorithms exist when f is one of safety, liveness,
discounted-sum, and limit-average properties. For limit-average, we use the
classical Howard’s policy iteration.

7.4 Segment-based quantitative abstractions

In this section, we present quantitative abstractions where elements of the ab-
stract domain correspond to sets of trace segments.
Segments. A segment is a finite or infinite sequence of states in S. Let S∗
be the set of all finite segments, S∞ the set of all infinite segments, and let
S∗∞ = S∗ ∪ S∞ be the set of all finite and infinite segments. Given a segment
σ, let ‖σ‖ denote the length of the segment (the range of |.| is thus N ∪ {∞}).
Given two segments σ1 and σ2 in S∗∞ we write σ1σ2 for their concatenation,
with σ1σ2 = σ1, if σ1 is in S∞. Also, we the notation last(σ1) and first(σ2) to
represent the last state of a finite segment σ1 and the first state of a segment
σ2.

We dub a nonempty set of segments a SegmentSet. We define the following
operations and relations on SegmentSets and sets of SegmentSets.
• For SegmentSets T1 and T2, we have T1 F T2 if T1 ⊆ {w | ∃x ∈ S∗,∃y ∈
S∗∞ : xwy ∈ T}, that is, all segments from T1 occur as sub-segments of
segments in T2.

• For a set of SegmentSets T , we define
⊎
T to be set of segments which

can be obtained by concatenation of segments contained in SegmentSets
in T . Formally,

⊎
T = {σ0σ1 . . . σn | ∃T0, T1 . . . Tn : (∀i : 0 ≤ i ≤ n =⇒

σi ∈ Ti)} ∪ {σ0σ1 . . . | ∃T0, T1 . . . : (∀i : 0 ≤ i→ σi ∈ Ti)}.
• A set of SegmentSets T covers a SegmentSet T if and only if

– for all Ti ∈ T , we have Ti D T , and
– T ⊆

⊎
T .

Note that for a UWTS W , the set of all its traces Π(W) is a SegmentSet.
We call T a segment cover of a system W if and only if T covers Π(W). For
example, the two SegmentSets T1 and T2 in Figure 7.5[Pg. 119] form a segment
cover of the system in Figure 7.2[Pg. 115]. It is easy to see that all traces of W
are covered by segments in T1 and T2. Our notion of segment cover corresponds
to the inductive trace segment cover from [67] with height 1. The notion of
the segment cover plays the same role in segment-based abstractions as the
equivalence relation on states plays in state-based abstractions.

118

1 10 4 3Val = 10
maxp = 4
minp = 4

hasInfPath = false

1 1 1

1 1 1 1

T1 T2

Val = 1
maxp = 4
minp = 3

hasInfPath = false

Figure 7.5: PathBound abstraction of W1

7.4.1 PathBound abstraction.

PathBound is a segment-based abstraction scheme: a family of quantita-
tive abstractions parameterized by sets of SegmentSets on S. Given a set
of SegmentSets T , the quantitative abstraction PathBoundT is defined by
(Wpb
T , f

pb , αpb
T). We now define each element of the triple.

Abstract systems Wpb
T . An abstract system in Wpb

T is a tuple
(R,∆R,Val ,minp,maxp, hasInfPath, R0), where R is T , ∆R is a transition re-
lation, and R0 is the set of initial states. The type of Val , minp and maxp
functions is R → R and the type of hasInfPath is R → {true, false}. Their

intuitive meaning is given below. The systems in Wpb
T are called pb-systems.

Abstraction αpb
T . The partial abstraction function αpb

T is defined as follows.

For a UWTS W , if T is not a segment cover of Π(W), then the value αpb
T (W) is

undefined. Otherwise, given W = (S,∆, v, sι), let αpb
T (W) = W pb ∈ Wpb where

W pb = (Spb ,∆pb ,Val ,minp,maxp, hasInfPath, Spb
0) and

• Spb is T
• (T1, T2) ∈ ∆pb if ∃σ1 ∈ T1, σ2 ∈ T2, such that σ1 is a finite segment in S∗,

(last(σ1),first(σ2)) ∈ ∆.
• Val(T) = max{v(s) | ∃σ ∈ T and s occurs in σ}, i.e., Val(T) is the maxi-

mal weight of a state occurring in one of the segments in T
• minp(T) = min{‖σ‖ | σ ∈ T is a finite segment} if T contains a finite

segment, and is ∞ otherwise.
• maxp(T) = max{‖σ‖ | σ ∈ T is a finite segment}, if T contains a finite

segment, and is ∞ otherwise.
• hasInfPath(T) = true iff T ∩ S∞ 6= ∅, i.e., hasInfPath(T) is true if and

only if T contains an infinite segment,
• Spb

0 contains a set T in T iff T contains a segment whose first state is sι.

As T is a segment cover of W , we have that Spb
0 is non-empty.

A pb-trace ρ of a pb-system Wα is either (a) a finite sequence T0T1 . . . Tn such

that T0 ∈ Spb
0 , hasInfPath(Tn), and ∀i : 0 ≤ i < n : (Ti, Ti+1) ∈ ∆pb , or (b) an

infinite sequence T0T1 . . . with T0 ∈ Spb
0 , and ∀i ≥ 0 : (Ti, Ti+1) ∈ ∆pb . The set

of all pb-traces of Wα is denoted by Πpb(Wα).

Example 7.5. Recall the system W1 from Figure 7.2[Pg. 115]. Consider a
segment cover T = {T1, T2} of Π(W) depicted in Figure 7.5[Pg. 119]. T1 and T2

can now act as abstract states, with the values Val,minp,maxp, and hasInfPath
given in Figure 7.5[Pg. 119].

Abstract quantitative property fpb. In order to define the abstract quan-
titative property fpb , we will need the following notions.

Let us fix a system W = (S,∆, v, sι). Let us also fix a set T of Seg-

mentSets, such that T is a segment cover for W . Let αpb
T (W) = Wα =

119

(Spb ,∆pb ,Val ,minp,maxp, hasInfPath, Spb
0) be a PathBound abstraction of W

for T .
We now define a function B that for a given pb-trace ρ returns a set of

possible sequences of weights that correspond to ρ. The function B : Π(Wα)→
2R

ω

is defined as follows. The set B(ρ) contains a sequence:
• wn0

0 wn1
1 . . . w∞n in Rω iff ρ is a finite pb-trace T0T1T2 . . . Tn, such that (a) ∀i

such that 0 ≤ i ≤ n, we have wi = Val(Ti), and (b) ∀i such that 0 ≤ i < n,
we have minp(Ti) ≤ ni ≤ maxp(Ti) and 0 < ni 6=∞.

• wn0
0 wn1

1 . . . in Rω iff ρ is an infinite pb-trace T0T1 ∈ Πpb(Wα) such that
(a) ∀i ≥ 0 : wi = Val(Ti), and (b) ∀i ≥ 0 : minp(Ti) ≤ ni ≤ maxp(Ti)∧0 <
ni 6=∞.

Let f be a quantitative property defined by a trace value function ft and a
system value function fs. We are now able to define the abstract quantitative
property fpb by fpb(Wα) = fs(ft((

⋃
ρ∈Πpb B(ρ)))).

Example 7.6. Recall again the system W1 from Figure 7.2[Pg. 115] and the
abstract cover described in Example 7.5[Pg. 119]. Consider the abstraction

αpb
T (W1) (the abstract system is depicted in Figure 7.5[Pg. 119]). There is only

one pb-trace ρ of the abstract system, and we have ρ = (T1T2)ω. Let us assume
that the quantitative property we are interested in is the limit average quantita-
tive property. We get that B(ρ) = {(10 10 10 10 1 1 1 1)ω, (10 10 10 10 1 1 1)ω}.
We therefore obtain fpb(αpb

T (W1)) = (10·4+1·3)/(4+3) = 43
7 , as the maximum

value is achieved if the execution stays at the more costly abstract state T1 as
much as possible (maxp(T1) times), and at the less costly abstract state T2 as
little as possible (minp(T2) times).

Over-approximation and monotonicity

The following theorem states that the abstraction scheme PathBound is an
over-approximation for a large class of quantitative properties.

Theorem 7.7. PathBound abstraction scheme is an over-approximation for a
quantitative property f if f is (≤p,v)-monotonic.

Proof. Let W be a UWTS and let T be a trace cover of W . Furthermore,
let W pb = αpbT (W) = (Spb,∆pb,Val ,minp,maxp, hasInfPath, Spb0). Let π be an
extremal trace of W .

As T is a trace cover of W , we have either:
• Infinite case. There exist segments σ0, σ1, . . . and SegmentSets T0, T1,

. . . with π = σ0σ1 . . . and ∀i > 0 : |σi| <∞∧ σi ∈ Ti.
• Finite case. There exist segments σ0, σ1, . . . , σn and SegmentSets T0,
T1, . . . , Tn with π = σ0σ1 . . . σn with ∀0 ≤ i ≤ n : σi ∈ Ti ∧ (i 6= n) =⇒
|σi| <∞.

It is easy to show that πpb = T0T1 . . . (resp. πpb = T0T1 . . . Tn) is pb-trace
of W pb in the infinite (resp. finite) case. Furthermore, it can be seen from the
definitions of minp, maxp and hasInfPath that
• minp(Ti) ≤ |σi| ≤ maxp(Ti) for i ≥ 0 (resp. 0 ≤ i < n) for the infinite

(resp. finite) case.
• hasInfPath(Tn) = true in the finite case.
• Val(Ti) ≥ v(s) for all s ∈ σi.

120

r1.9in

10
A

10
B

10
C

10
D

10
E

10
F

10
G

10
H

4
I

Figure 7.6: System W2

Therefore, we have that r = Val(T0)|σ0|Val(T1)|σ1| . . . ∈ B(πpb) (resp. r =
Val(T0)|σ0|Val(T1)|σ1| . . .Val(Tn)∞ ∈ B(πpb)) in the infinite (resp. finite) case.

Now, we have v(π) ≤p r, and hence ft(v(π)) ≤ ft(r) from the fact that ft is
≤p-monotonic. From this, we get that {v(π)} v ft(

⋃
ρ∈πpb(Wpb)B(ρ)). Hence,

by v-monotonicity of fs, we have fpb(W pb) ≥ fs({ft(π)}) = f(W). The last
equality follows from the fact that π is an ext-trace of the system W .

A set of SegmentSets T1 refines a set of SegmentSets T2 iff for all T ∈ T2,
there exists a set of SegmentSets T , such that T ⊆ T1, and T covers T .

PathBound is a monotonic over-approximation for a quantitative property
f , if (a) PathBound is an over-approximation for f , and (b) if for all W ∈ W(S),
and for all sets T1 and T2 of SegmentSets such that (a) T1 covers Π(W), (b)

T2 covers Π(W), and (c) T2 is a refinement of T1, we have that fpb(αpb
T2(W)) ≤

fpb(αpb
T1(W)).

The abstraction PathBound is not a monotonic approximation in general
even for quantitative properties that are (≤p,v)-monotonic. We show this by
constructing a counterexample (see Example 7.10[Pg. 122]) for which the ab-
straction is not a monotonic approximation for the limit-average property.

7.4.2 State-equivalence induced segment-based abstrac-
tion

Given an equivalence relation on states, we can define a set of SegmentSets. Let
W = (S,∆, v, sι) be a UWTS, and let ≈ be an equivalence relation on states in
S. Given an equivalence class e of ≈, we can define a corresponding SegmentSet
Te as follows. First, let T ′e be the set of (finite or infinite) segments σ such that
all states s that occur in σ are in e. Now we define Te as the set of maximal
segments in T ′e. A segment σ is maximal in Te iff (a) σ is in T ′e; (b) there is a
transition (sb,first(σ)) ∈ ∆ such that sb /∈ e; and (c) either σ ∈ S∞ or there is
a transition (last(σ), sf) ∈ ∆ such that sf /∈ e. Let T≈ be a set of SegmentSets
defined by {Te | e is an equivalence class of ≈}.

Example 7.8. Consider again the system W1 in Figure 7.2[Pg. 115], and the
equivalence relation ≈ on its states given by the dashed shapes in Figure 7.3[Pg.
116]. The SegmentSets we get from the equivalence classes are given by the
nodes T1 and T2 in Figure 7.5[Pg. 119]. The set of these SegmentSets is T≈.
As calculated in Example 7.6[Pg. 120], the value for the abstract system (for the
limit-average objective) given by PathBoundT≈ is 43

7 . Note that this is better
(more precise) than the value given by the ExistMax abstraction defined by the

121

Val = 10

maxp = 5

minp = 5

hasInfPath = false

I

(a) αpb
T1(W)

Val = 1

maxp = 4

minp = 1

hasInfPath = false

Val = 10

maxp = 4

minp = 1

hasInfPath = false

I

(b) αpb
T2(W)

Figure 7.7: Abstractions of system W2

same equivalence relation ≈. As calculated in Example 7.1[Pg. 116], the value
given by ExistMax is 10.

Given an equivalence relation ≈ on states, the abstraction PathBoundT≈
gives a better over-approximation for limit-average objective than the
ExistMax≈.

Proposition 7.9. Let f be a (≤p,v)-monotonic quantitative property. Let
≈ be an equivalence relation on S and consider the two abstraction schemes
PathBoundT≈ = (Wpb , fpb , αpb

T≈) and ExistMax≈ = (Wem , fem , αem
≈) parame-

terized by ≈. Then, for all W ∈ W(S), fpb(αpb
T≈(W)) ≤ fem(αem

≈ (W)).

We observe that if ≈2 is a refinement ≈1, then T≈2
is a refinement T≈1

.
However, we show an example system where the over-approximation computed
using the T≈2 abstraction is worse (less precise) than the over-approximation
computed using the T≈1

. This means that, in general, PathBound is not a
monotonic over-approximation for (≤p,v)-monotonic quantitative properties.

Example 7.10. Consider the system W2 in Figure 7.6[Pg. 121]. Consider
an equivalence relation ≈ on states given by the dotted rectangle in the figure
(that is all states except the state I are equivalent to each other). This equiv-
alence relation defines a set T1 of SegmentSets. The resulting abstract system
αpb
T1(W) is in Figure 7.7[Pg. 122] (a). Note that in Figure 7.7[Pg. 122] (a),

the node for which the values of maxp, minp, etc. are given corresponds to the
dotted rectangle in Figure 7.6[Pg. 121], the other node in the abstract system
corresponds to the singleton segment of length one generated from the singleton
equivalence class of the node I of system W2. Consider now a refinement of ≈
where the equivalence class of the dotted rectangle is split into two equivalence
classes given by the dashed rectangles. The new equivalence relation defines a
set T2 of SegmentSets. The abstract system in Figure 7.7[Pg. 122] (b) results
from a refinement where the equivalence class of the dotted rectangle is split into
two equivalence classes given by the dashed rectangles. The resulting abstract
system αpb

T2(W) is in Figure 7.7[Pg. 122] (b).
Let us now assume that the abstract quantitative objective is LimAvg. The

value we get for system αpb
T1(W) is ((10 · 5 + 4 · 1)/6) = 9. The value we get for

its refinement αpb
T2(W) is ((10 ·4+10 ·4+4 ·1)/9) = 84

9 > 9. This shows that the

estimate is worse (less precise) for the refinement αpb
T2(W) than for αpb

T1(W).

122

7.4.3 Specialization of PathBound abstraction for the limit-
average quantitative property

We presented a general definition of the PathBound abstraction which is an over-
approximation for a large class of quantitative properties. We now specialize
the PathBound abstraction for the limit-average property by introducing sound
optimizations.

We define the limit-average PathBound -abstraction (denoted by

PathBoundLA) scheme as (Wpba , fpba , αpba
T). Let W be a system and

let W pb = αpb
T (W) = (Spb ,∆pb ,Val ,minp,maxp, hasInfPath, Spb

0) be a
PathBound abstraction of W . Furthermore, we fix f to be the limit-average
property, i.e., ft = LimAvg and fs = sup for the remainder of this subsection.
We have that W pba = αpba

T (W) = (Spb ,∆pb ,Valpba ,minp,maxp, hasInfPath) is

a pb-system similar to αpb
T (W). In the PathBoundLA abstraction scheme, we

have the following differences:

• Valpba(T) = max{supσ∈(T∩S∗)

∑
s∈σ v(s)

|σ| , supσ∈(T∩S∞) LimAvg(σ)}.
Here, we let the value of an abstract SegmentSet T be the supremum
of the average weight of the segments in T , rather than the maximum
weight occurring in T . Note that if T ⊆ S∞, we have Valpba(T) =
sup(LimAvg(v(T))).

• The abstract quantitative property fpba is defined in the same way as fpb

(at the beginning of Section 7.4[Pg. 118]), except that the definition of
B : Π(Wα)→ 2R

ω

we have that:
– wn0

0 wn1
1 . . . ∈ B(ρ) if and only if ρ = T0T1 . . . with wi = Valpba(Ti)∧

0 < ni <∞∧ ni ∈ {minp(Ti),maxp(ti)}.
– wn0

0 wn1
1 . . . w∞n ∈ B(ρ) if and only if ∀0 ≤ i ≤ n : wi = Valpba(Ti) ∧

(i < n =⇒ 0 < ni <∞∧ ni ∈ {minp(Ti),maxp(ti)}).
The above differences between the PathBoundLA and PathBound can be

summarized as follows: (a) the value summarization function for each Seg-
mentSet can be average instead of maximum, and (b) more crucially (from a
practical point of view), the evaluation of the abstract property on a pb-system
can be done by considering only the lengths of the longest and shortest finite
paths of an SegmentSet, rather than considering all lengths between them. This
is because limit-average is a memoryless property.

The following theorem states that PathBoundLA provides a better approxi-
mations of the limit-average property than PathBound .

Theorem 7.11. Given a system W and an segment cover T of Π(W) and f
being the limit-average property, we have

f(W) ≤ fpba(αpba
T (W)) ≤ fpb(αpb

T (W))

Proof. (a) The proof of the fact that f(W) ≤ fpba(αpba
T (W)) is similar to the

proof of Theorem 7.7[Pg. 120]. The key insight is as follows: let π be an extremal
trace of W with ft(v(π)) = v∗. Also, let π be composed of the infinite sequence
of segments π = σ0σ1 . . . with each σi ∈ Ti ∈ T . The case where the sequence
of segments is finite is simpler.

Consider the abstract trace πpba = T0T1 . . . and the sequence
(w0, n0)(w1, n1) . . . ∈ B′(πpba) with wi = Valpba(Ti), ni = maxp(Ti) if wi ≥ v∗

and ni = minp(Ti) if wi < v∗. Intuitively, we take the value of the abstract

123

trace where we take the longest path in a SegmentSet if its value is high (≥ v∗)
and shortest paths if its value is low (< v∗). It is now easy to show that

LimAvg(wn0
0 wn1

1 . . .) > v∗, we have that f(W) ≤ fpbat (πpba) ≤ fpba(αpba
T (W)),

which proves the required inequality.

(b) The inequality fpb
∗
(αpb

∗

T (W)) ≤ fpb(αpb
T (W)) easily follows from the

fact that Valpba(T) ≤ Valpb(T) for all T .

Example 7.12. Consider again the system W1 from Figure 7.2[Pg. 115], and
the SegmentSets T1 and T2 from Figure 7.5[Pg. 119]. In PathBoundLA abstrac-
tion, we have Val(T1) = (10 + 1 + 4 + 3)/4 = 18/4 (while the other values for T1

are as in Figure 7.5[Pg. 119]). For Val(T2), we have Val(T2) = (1+1+1)/3 = 1.
The value of the system is fpba(αT (W1)) = (18 + 3)/7 = 3. Recall that for
PathBound abstraction, the value fpb for W1 was calculated in Example 7.6[Pg.
120] to be 43

7 . For PathBoundLA abstraction, we thus get a better approximation
than in the PathBound abstraction.

Evaluating limit-averages on pb-abstract systems. Minimum-mean cy-
cle algorithms compute the limit-average value for a graph with weights on
edges. Therefore, from a pb-system, we construct a graph which has weights
and lengths on edges, rather than nodes. Intuitively, we consider the graph with
edges of the pb-system being the nodes. There are two edges between the node
(T1, T) and (T, T2): one of weight maxp(T)×Val(T) and length maxp(T), and
another of weight minp(T)×Val(T) and length minp(T). The node (T1, T) has
the self-loop of weight Val(T) and length 1, if hasInfPath(T) is true. We denote
this graph by W †.

Howard’s policy iteration was extended in [61] to compute the limit-average
values in graphs where edges have both weight and length, as is the case of
W †. Howard’s policy iteration works by picking a policy (that maps states to
successors) and improves the policy as long as possible. Each improvement takes
linear time, but only an exponential upper-bound is known on the number of
improvements required. However, a number of reports state that only linear
number of improvements are required for most cases in practice [61].

7.5 Generalizations of PathBound abstractions

In this section, we present two generalizations of the PathBound abstraction
scheme. The first one generalizes PathBound by considering different summaries
of SegmentSets rather than set of properties {minp,maxp,Val , hasInfPath}.
The second one generalizes PathBound by allowing inductive fixed-point style
computations of properties.

7.5.1 Generalized segment-based abstraction

Let W be a UWTS, and let T be a segment over of Π(W). In the PathBoundLA
abstraction from Section 7.4.3[Pg. 123], we used the values of maxp, minp,
hasInfPath, and Valpba to abstract SegmentSets in T . The abstract values are
in turn used to compute an over-approximation of the limit-average property for
W . In this subsection, we provide a generic segment-based abstraction scheme
for any set of properties.

124

More specifically, let us assume that we have a set P of quantitative prop-
erties, a set T of SegmentSets that is a segment cover of a segment set T . We
provide a generic technique to answer the following question: if we know the
values of quantitative properties in P on all SegmentSets in T , can we compute
the values of quantitative properties in P on SegmentSet T?

We need to extend notation in two ways: (a) We will use quantitative prop-
erties f defined by ft and fs for both finite and infinite traces. The type of ft
will thus be Rω ∪ R∗ → R; and (b) We will evaluate quantitative properties on
a SegmentSet T (instead of a UWTS) by letting f(T) = fs({ft(v(π)) | π ∈ T}).

Fix an arbitrary UWTS W = (S,∆, v, sι). Consider an arbitrary set of Seg-
mentSets T = {T0, T1, . . . , Tn}, where all segments are sequences of states from

S. We define the set of valid segments generated by T as
⊎∆ T = {σ0 . . . σn |

∀j : σj ∈
⋃
T ∧ ∀j < n : (last(σj),first(σj+1)) ∈ ∆} ∪ {σ0 . . . | ∀j : σj ∈⋃

T ∧ ∀j ≥ 0 : (last(σj),first(σj+1)) ∈ ∆} where first(σ) and last(σ) denote

the first and last states of a segment. Intuitively, the set
⊎∆ T is the set of

segments generated by T where the transition relation of the system W holds
at the sub-segment boundaries.

Let T = {T1, . . . , Tn} be a cover of the SegmentSet T (not necessarily Π(W)).

Note that
⊎∆ T can be a proper subset of T , i.e., T ⊆

⊎
T , but

⊎∆ T (T .

We call the SegmentSet T ∩
⊎∆ T the strengthening of the SegmentSet T by

T and ∆. Our question thus becomes: provided that we know the values of
quantitative properties in P on all SegmentSets in T , can we compute the
values of quantitative properties in P on the strengthening of the SegmentSet T
by T and ∆, i.e. on T ∩

⊎∆ T ?

Abstract SegmentSet and property domains. Let 〈SEG ,⊆〉 be the set
of all SegmentSets partially ordered by the subset relation, and let 〈L,�〉 be
a lattice. The lattice serves as an abstract domain for describing SegmentSets.
Elements of L can be for instance syntactical objects, such as formulas in a

logic. Let 〈SEG ,⊆〉 −−−−−→←−−−−−
αSEG

γSEG

〈L,�〉 be a Galois connection (see [66]). We call

the domain 〈L,�〉 the abstract SegmentSet domain and each element φ ∈ L an
abstract SegmentSet.

A property set P is a tuple 〈〈f l1, . . . f ln〉, 〈fu1 , . . . fum〉〉 where (a) all f li ’s are
quantitative properties where fs = inf; and (b) all fui ’s are quantitative prop-
erties where fs = sup. We define the corresponding property domain DP =
〈(Rn×Rm),vP〉 to be the abstract domain where ((al1, . . . , a

l
n), (au1 , . . . , a

u
n)) v

((bl1, . . . , b
l
n), (bu1 , . . . , b

u
n)) if and only if all ali ≥ bli and aui ≤ bui . We write P(T)

for ((f l1(T), . . . , f ln(T)), (fu1 (T), . . . , fun (T))).

Example 7.13. The set PLA = 〈〈minp〉, 〈maxp,Valpba , hasInfPath〉 is an prop-
erty set. For example, minp(T) = inf({|σ| | σ ∈ T}) and hasInfPath(T) =
sup({hasInfPatht(σ) | σ ∈ T}) where hasInfPatht(σ) is 1 if |σ| = ∞ and 0
otherwise.

It is easy to see that a Galois connection 〈SEG ,⊆〉 −−−−→←−−−−
αP

γP

〈DP ,vP〉 can be

defined by letting αP(T) = P(T) and γP(P) =
⋃
{T | P(T) v P}. Intuitively,

((l1, . . . , ln), (u1, . . . , un)) ∈ P(T) represents the largest SegmentSet T that re-
spects the lower and upper bounds placed by P , i.e., f li (T) ≥ li ∧ fuj (T) ≤ uj .

125

We call DP the property bound domain and an individual P ∈ DP a property
bound.

Let 〈L×DP ,≤〉, where ≤ is � × vP , be the product of 〈L,�〉 and 〈DP ,vP〉.
We call L×DP the domain of abstract bound pairs and each element (written

as φ ∧ P) an abstract bound pair. Let 〈SEG ,⊆〉 −−−→←−−−α
γ
〈L × DP ,� × vP〉 be a

Galois connection naturally defined for the product of abstract domains, where
α(T) = (αSEG(T), αP(T)), and γ(φ, P) = γSEG(φ) ∩ γP(P). Intuitively, the
element φ ∧ P represents a SegmentSet that is contained in φ and respects the
property bounds P . We identity abstract segments φ ∈ L with the abstract
bound pair in φ∧> where > = ((−∞, . . . ,−∞), (∞, . . . ,∞)), i.e., there are no
bounds on any of the properties in P.

Example 7.14. Let L = SEG, i.e., the abstract SegmentSets are the same as
concrete SegmentSets. Note that this assumption is to simplify the example. It
would be more natural to use syntactical objects (e.g. formulas in some logic) for
L. Consider DLAP for the property bound domain defined in Example 7.13[Pg.
125]. An example of an element in L×DLAP is T1 ∧ ((4), (4, 18

4 , 0)) where T1 is
from Example 7.12[Pg. 124]. Here, ((4), (4, 18

4 , 0)) represent bounds on values of

properties ((minp), (maxp,Valpba , hasInfPath)). Note that T1 ∧ ((4), (4, 18
4 , 0))

contains exactly the same information that PathBoundLA stores about a Seg-
mentSet.

Evaluating quantitative properties on abstract SegmentSets. In what
follows, we fix a UWTS W , and a segment cover T = {T1, T2, . . . , T‖T ‖} of
T = Π(W).

Let K be the interval [1..‖T ‖]. Given an abstract bound pair domain 〈L ×
DP ,� × vP〉, where f is a property in P, we can perform the computation of

f(T ∩
⊎∆ T) in the abstract domain. For this computation, the abstract bound

pair domain needs to support the following additional operations.
Let φ∧P be an abstract bound pair, and Φ = {φ1∧P1, . . . , φ‖T ‖∧P‖T ‖} be a

set of abstract bound pairs. The abstract bound pairs domain 〈L×DP ,� × vP〉
is an inductive domain if it supports the following operations in addition to the
standard lattice operations.
• Transition check. This operation checks for two abstract SegmentSets,

whether a segment from the first can be validly followed by a segment
from the second. Formally, TrCheckφ(φi, φj) is true if and only if there

is validly generated segment σ, i.e., σ ∈ γ(φ) ∩
⊎∆{γ(φi) | i ∈ K}, where

σ = σ′σiσjσ
′′ such that (a) σi ∈ γ(φi)∧σj ∈ γ(φj), and (b) σ′ and σ′′ are

also validly generated.
• Reduce Property Bounds. Given an abstract SegmentSet φ, com-

pute (an over-approximation) of the property bounds on φ. Formally,
ReduceBound(φ) returns φ ∧ P ∗ such that γ(φ ∧ P ∗) ⊇ γ(φ).

• Property computation. Given only the bounds Pi on abstract Seg-
mentSets φi and the values TrCheckφ(φi, φj), PropComp computes (an
over-approximation) of the property bounds on the abstract segment φ∧P .
Formally, given ∆gpb = {(i, j) | TrCheckφ(φi, φj) = true}, and the values
Pi for all i, the function PropComp(φ,∆gpb, 〈P1 . . . P‖T ‖〉) outputs φ∗∧P ∗

such that φ∗ ∧ P ∗ ≥ (φ ∧ >) ∧ α(
⊎∆{γ(φi ∧ Pi) | i ∈ K}). Note that we

sometimes abuse the notation and write PropComp(φ, {φ1∧P1, . . . , φ‖T ‖∧

126

P‖T ‖}) instead of PropComp(φ,∆gpb, 〈P1 . . . P‖T ‖〉i).

Example 7.15. Continuing from Example 7.14[Pg. 126], i.e., L = SEG and
the system under consideration is W1 from Figure 7.5[Pg. 119].
• TrCheckΠ(W)(T1, T2) can be as precise as the transition relation of

PathBoundLA, i.e, (T1, T2) ∈ ∆pba ⇔ TrCheckΠ(W)(T1, T2). Suppose
σ1 ∈ T1 and σ2 ∈ T2. We have that σ1 can be followed by σ2 if and only if
(last(σ1),first(σ2)) ∈ ∆. This is the condition that defines (T1, T2) ∈ ∆pb.

• If we take ReduceBound(T2) to be precise (and computationally expensive)
procedure that concretizes abstract states, it can return T2 ∧ ((3), (4, 1, 0)),
i.e., it computes (an over-approximation) of the information stored for the
particular SegmentSetT2.

• PropComp(Π(W), {T1 ∧ P1, T2 ∧ P2}) (where P1 = ((4), (4, 18
4 , 0)) and

P2 = ((3), (4, 1, 0))) computes an over-approximation of P(Π(W)) by com-
puting on abstract states. If PropComp is defined using the same ap-
proach as the B and fpba definitions from Section 7.4.3[Pg. 123], it re-
turns ((4), (∞, 3, 1)). Here, Valpba(Π(W)) is 3, minp = 4, and maxp and
hasInfPath are over-approximated to the largest possible values.

Remark 7.16. Note that in the arguments of PropComp, we do not require
Pi to be equal to P(φi). In fact, even in the case where Pi is a vP -over-
approximation of P(φi), the procedure PropComp is required to produce a valid

vP -over-approximation of the P value of γ(φ) ∩
⊎∆{γ(φi) | i ∈ K}.

We call an abstract bound pair domain effective if: (a) each of the operations
ReduceBound , TrCheck , and PropComp can be computed effectively, i.e., by a
terminating procedure; and (b) ReduceBound and PropComp are monotonic,
i.e., giving more precise inputs produces more precise outputs. Formally, (a) φ �
φ′ =⇒ ReduceBound(φ) ≤ ReduceBound(φ′); (b) (φ � φ′ ∧ ∀i ∈ K : Pi v P ′i ∧
φi � φ′i) =⇒ PropComp(φ, {φ1 ∧ P1, . . . , φ‖T ‖ ∧ P‖T ‖}) ≤ PropComp(φ, {φ1 ∧
P ′1, . . . , φ‖T ‖ ∧ P ′‖T ‖}); and (c) (φ1

1 ∧ P 1
1 ≤ φ1 ∧ P1) ∧ (φ2

1 ∧ P 2
1 ≤ φ1 ∧ P1) =⇒

PropComp(φ, {φ1
1∧P 1

1 , φ
2
1∧P 2

1 , φ2∧P2, . . . , φ‖T ‖∧P‖T ‖}) ≤ PropComp(φ, {φ1∧
P1, φ2 ∧ P2, . . . , φ‖T ‖ ∧ P‖T ‖}).

We can now generalize PathBound abstraction scheme by letting the sum-
maries of SegmentSets be the set of values of properties from any effectively
inductive quantitative property set. Intuitively, given a UWTS W , and a prop-
erty set P, the PathBound [L×DP] abstraction stores with each SegmentSet T
in the cover of Π(W) the values αSEG(T) ∧ P(T). To compute the value of the
abstract system, the procedures ReduceBound , TrCheck , and PropComp are
used.

Formally, PathBound [L × DP]T = 〈W[L × DP], α[L × DP]T , f [L × DP]〉 is
defined as:
• α[L×DP]T (W) = 〈φ, 〈φ1, . . . , φ‖T ‖〉,∆gpb〉 where (a) φ = αSEG(Π(W));

(b) φi = αSEG(Ti); and (c) (i, j) ∈ ∆gpb if and only if TrCheckφ(φi, φj)
returns true.

• f [L × DP] is computed as the value of f in P ∗ where
φ∗ ∧ P ∗ = PropComp(φ,∆gpb, 〈ReduceBound(φ1), . . . ,
ReduceBound(φ‖T ‖)〉) ∧ ReduceBound(φ).

Precise abstractions. In the ExistMax case, if the abstraction function does
not lose any information, i.e., if the equivalence relation used is the identity

127

relation, the abstract system value is the same as the concrete system value.
We give the conditions when an segment-based abstraction does not lose any
information either.

Intuitively, we want the property computation for a SegmentSet T from a
cover T = {T1, . . . Tn} to be accurate when T is exactly covered by T , i.e,

T =
⊎∆ T .

An quantitative property set is precisely inductive if there exists a PropComp
procedure which produces the output (φ,P(φ)) when the following hold:

(a) Pi = P(γ(φi)), and (b) γ(φ) =
⊎∆{γ(φi) | i ∈ K}.

Example 7.17. The limit-average property is not precisely inductive, i.e.,
by knowing only the limit-average value of the subsegments of a seg-
ment, we cannot estimate the limit-average accurately without knowing the
length of the subsegments. However, strengthening it to the property set
〈〈minp〉, 〈maxp,LimAvg, hasInfPath〉〉 makes it precisely inductive.

7.5.2 Hierarchical segment-based abstraction

Effective abstract bound pair domains allow computation of property bounds
for a whole set of properties on a SegmentSet from the property bounds on
each element of the cover. For example, if T covers T , the four properties
minp,maxp,Val , hasInfPath of SegmentSets in T are used to compute not only
the LimAvg, but also the maxp, minp, and hasInfPath values of the Seg-
mentSet T too. This leads to the possibility of computing these properties
hierarchically for a multi-level trace segment cover.

An inductive trace segment cover [67] C is a finite rooted-tree where the nodes
are labelled with abstract bound pairs such that for every non-leaf node labelled
with SegmentSet φ∧P , and φ1∧P1, . . . , φn∧Pn the set of labels of its children,
{γ(φ1 ∧P1), . . . , γ(φn ∧Pn)} is a segment cover of γ(φ∧P). An inductive trace
segment cover C inductively covers a SegmentSet T if T ⊆ γ(root(C)). Similarly,
C inductively covers a system W if Π(W) ⊆ γ(root(C)).

We can now introduce an abstraction scheme HPathBound [L × DP]C =
〈Whpb[L × DP], αhpb[L × DP]C , f

hpb[L × DP]〉 parameterized by an abstract
bound pair domain L × DP , and an abstract inductive trace segment cover C.
Intuitively, HPathBound stores for each internal node a of C, a PathBound [L×
DP]T (a) abstraction 〈label(a), T (a),∆gpb〉. The abstract trace segment cover
T (a) for this abstraction is the labels of the set children(a).

Abstract hierarchical traces. We fix an abstract bound pair domain
L×PD. An abstract hierarchical trace ψ = 〈(φ0∧P0)(φ1∧P1) . . . , subψ〉 consists
of (a) a finite or infinite sequence of abstract bound pairs; and (b) a partial
function subπ from N to hierarchical traces.

The concrete traces γ(ψ) corresponding to a given abstract trace ψ = 〈(φ0∧
P0)(φ1 ∧ P1) . . . , subψ〉 are defined as {σ0σ1 . . . ‖∀i : σi ∈ γ(φi ∧ Pi)∧ subψ(i) 6=
⊥ =⇒ σi ∈ γ(subψ(i))}. Intuitively, a concrete trace of an abstract hierarchical
trace ψ is made of segments σi from φi ∧Pi, with the additional condition that
σi ∈ subψ(i) if subψ(i) is defined.

Given a property set P, an effective abstract bound pair domain, and an
inductive trace segment cover C of system W , we inductively compute property
bounds (and hence, abstract system values) using Algorithm 3[Pg. 129]. The
algorithm is based on the inductive proof method presented in [67]. It can be

128

Algorithm 3 Inductive Property Computation (InductiveCompute)

Input: UWTS W ,
Effective abstract bound pair domain L ×DP ,
Abstract Inductive Segment Cover C (labelled from L ×DP),

Output: abstract bound pair φ∗ ∧P ∗ such that (φ∗ ∧P ∗) ≥ P(label(root(C)))

1: (φ ∧ P)← label(root(C))
2: if root(C) has no children then
3: return (φ ∧ P) ∧ (ReduceBound(φ ∧ P))
4: else
5: subTrees← top level sub-trees of C
6: return (φ ∧ P) ∧ PropComp(φ ∧ P, {InductiveCompute(C′) | C′ ∈

subTrees})

rewritten as a fixed-point computation in the lattice C → L×DP of maps from
nodes(C) to L × DP (the lattice ordered point-wise by (�,vP)). At the final
line in Algorithm 3[Pg. 129], the value of C will be the least fixed-point of the
function which replaces each node in C with a best approximation obtained from
among the current value of the node, and (a) ReduceBound applied on the node
if it is a leaf node, or (b) PropComp applied on the node and its children if it is
an internal node.

Monotonicity. We define refinements of HPathBound abstractions using re-
finement steps. Let C be an inductive trace segment cover and let a be a non-root
node in C, b be its parent, C(a) be the sub-tree of C rooted at b, and φ ∧ P and
φb ∧P b the labels of a and b. A one-step refinement of C is one of the following:
• Horizontal refinement. Let φ1 and φ2 be such that γ(φ ∧ P) = γ(φ1 ∧
P1)∪γ(φ2∧P2). Let C(a)[label(a)← φ1∧P1] and C(a)[label(a)← φ2∧P2]
be the tree C(a) with φ∧P replaced by φ1 ∧P1 and φ2 ∧P2, respectively.
Let the tree C′ be obtained by detaching C(a) from p and then attaching
C(a)[label(a) ← φ1 ∧ P1] and C(a)[label(a) ← φ2 ∧ P2] to p. Then C′ is a
one-step horizontal refinement of C.

• Vertical splitting refinement. Suppose {γ(φ1 ∧ P1), . . . γ(φn ∧ Pn)} cover
φ∧P and that a does not have any children. Suppose C′ is obtained from
C by adding the children with labels φ1 ∧ P1, . . . , φn ∧ Pn to a. Then, C′
is a one-step vertical splitting refinement of C.
• Vertical joining refinement. Suppose that b has no grandchildren, and

let (φb ∧ P b) ≤ PropComp(φ ∧ P, children(b),∆) and ∀c ∈ children(b) :
label(c) ≤ ReduceBound(label(c)). If C′ is the tree obtained by removing
all the children of b in C, then C′ is a one-step vertical joining refinement
of C.
• Downward strengthening refinement. Suppose γ(φ′) ⊆ γ(φ) and φb∧P b ⊆⊎∆{γ(ψ) | ψ ∈ ((children(b) \ {φ ∧ P}) ∪ {φ′ ∧ P ′})}. Let C′ be the tree

obtained by replacing C(a) by C(a)[label(a) ← φ′ ∧ P ′]. Then, C′ is a
one-step downward strengthening refinement of C.
• Upward strengthening refinement. Suppose that φ′ ∧ P ′ is such that⊎∆{γ(ψ) | ψ ∈ children(b)} ⊆ γ(φ′ ∧ P ′) ⊆ γ(φb ∧ P b). If C′ is obtained

from C by replacing φb ∧ P b with φ′ ∧ P ′, then C′ is a one-step upward

129

strengthening refinement of C.
A Cn is a refinement of C0 if there exists a sequence C1, C2, . . . , Cn−1 such that
Ci is a one-step refinement of Ci−1 for all i such that n ≥ i > 0.

HPathBound [L×DP] is monotonic if for all systems W and abstract induc-
tive trace segment covers C and C′ of W , if C′ is a refinement of C, then abstract
value fhpb[L ×DP](αhpb[L ×DP]C′(W)) ≤ fhpb[L ×DP](αhpb[L ×DP]C(W)).

Theorem 7.18. If f is a property such that fs = sup, and the inductive property
set P contains f , and L×DP is effectively inductive, HPathBound [L×DP] is
monotonic for f .

Intuitively, the theorem holds as every one-step refinement preserves the
information about the property-bounds of nodes from the previous iteration.
For all one-step refinements other than the vertical joining refinements, the
monotonicity follows from the monotonicity of PropComp and ReduceBound .
For vertical splitting one-step refinements, the monotonicity holds as all the
information that can be generated from the deleted children is already present
in the parent node.

7.5.3 HPathBound abstractions for control-flow graphs

A control-flow graph of a program written in a high-level language is contains
many structures like loops and function calls. The traces of transition systems
produced from such programs are structured. This opens the possibility of using
hierarchical segment-based abstractions to analyze them.

Control-flow graphs and Programs. Following, e.g., [62], we abstract away
from the syntax of a concrete programming language, and model programs as
graphs whose nodes correspond to program locations. Here we assume simple
programs with inlined function calls (this implies that there are no recursive
functions).

Let V be a set of variables and let D(V) be the combined range of variables
in V . A control-flow graph (CFG) is a tuple of 〈L, V,∆, ψ : ∆ → 2D(V)×D(V)〉
where L is a finite set of control locations, ∆ is a transition relation, V is a set
of variables, and ψ is a function from ∆ to assertions over program variables V
and their primed versions V ′. The primed variables V ′ refer to the values of the
variables after executing the transition. We assume that V contains a special
variable wt ranging over R which denotes the weight of a particular state.

Given a CFG C, a corresponding transition system can be generated (with
state-space L×D(V)) in a standard way. We add the weight function v(l, d) =
w, where w is the value of the special variable wt in d, to turn the transition
system into a UWTS.

We assume the following about the CFG (these assumptions are valid for
CFGs generated for programs in most programming languages): (a) Reducibility.
In the graph (L,∆), every maximal strongly connected component has a single
entry and exit point, i.e., if G ⊆ L is a maximal strongly connected component,
there exists a node lG such that (l, l′) ∈ ∆∩ ((L\G)×G) =⇒ l′ = lG∧ (l, l′) ∈
∆ ∩ (G × (L \ G)) =⇒ l = lG; (b) Recursive reducibility. Suppose G ⊆ L is
a maximal strongly connected component. The graph (G,∆ ∩ (G× (G \ {lG}))
is also reducible. Intuitively, the above conditions imply that loops in the CFG
are single-entry and single-exit, and that they are nested.

130

while(true)

b = false;

j = 10;

while j > 0

b = not b;

if b

costlyOp;

j--

k = 10;

while (k>0)

k--

Figure 7.8: Sample Program

A hierarchical control-flow graph (HCFG) is a graph 〈H,∆ ⊆ H × H, hi〉
where each node h ∈ H is either a control-flow location, or a hierarchical control-
flow graph. We call the first kind of nodes, abstract state nodes and the second
kind of nodes subgraph nodes.

Any recursively reducible CFG C can be converted into a HCFG H of a
special form using a standard algorithm on reducible graphs. In this special
form, H and all sub-HCFGs occurring in H have the following property: either
they are acyclic, or they have a single node with a self-loop on itself. Note that
each loop of a program will correspond to such sub-HCFG. In what follows, we
assume that all our HCFGs are of this special form.

Example 7.19. Consider the example CFG shown in Figure 7.9[Pg. 133] (gen-
erated from program in Figure 7.8[Pg. 131]). The equivalent HCFG of the special
form to this CFG is shown in Figure 7.10[Pg. 133]. The statements on the tran-
sitions in Figure 7.10[Pg. 133] are omitted for the sake of clarity. Each of the
dotted boxes represent a HCFG. Intuitively, each loop has been separated out
into an acyclic CFG containing the loop body and a single self-loop CFG.

Inductive trace segment covers can be derived from HCFGs. In particular,
every HCFG H represents a unique inductive trace segment cover C(H). Intu-
itively, the root of the inductive trace segment cover is the set of all traces of
H, and the children of the root node are either (a) C(H ′) if H ′ is a subgraph
node of H, and (b) {W} if W is a abstract state node of H where {W} is the
SegmentSet containing all segments of length 1 with states in W . From now on,
we use HCFGs and abstract inductive trace segment covers interchangeably.

Example 7.20. Consider the program in Figure 7.8[Pg. 131]. Its CFG is in
Figure 7.9[Pg. 133] and the corresponding HCFG is in Figure 7.10[Pg. 133]. We
use regular expressions over control locations as our abstract SegmentSet domain
L. The regular expressions have their intuitive meaning. For example, (a) the
expression s1s2 represents all segments s1s2 such that the control location of s1

(resp. s2) is s1 (resp. s2); and (b) the expression (s1s2)∗ represents the set of
segments obtained by concatenation of segments from s1s2.

The HCFG corresponds to the following inductive trace segment cover C
of the traces generated by the CFG. The root of C is the expression H =
(s1s2s3(s4s5(s6 + s7)s3)∗s8s9(s10s9)∗)∗. Its only child is F = s1s2s3(s4s5(s6 +

131

s7)s3)∗s8s9(s10s9)∗. The children of F are {CB , L1, CM , L2} where CB =
s1s2s3, L1 = (s4s5(s6 + s7)s3)∗, CM = s8s9, and L2 = (s10s9)∗. Of these,
only L1 and L2 are non-leaf nodes having one child each CL1

= s4s5(s6 + s7)s3

and CL2 = s10s9, respectively.

Evaluating LimAvg for HPathBound abstractions induced by HCFGs.
Let H be a HCFG of a special form. We compute the values maxp, minp, Valpba ,
and hasInfPath using the technique of computing loop bounds. We consider a
the domain of abstract bound pairs with elements of the form φ ∧ P as before.

Suppose H is a HCFG with a single node and a self-loop. Further-
more, let φ ∧ P be the corresponding abstract SegmentSet property bound
in C(H), and let {φ1 ∧ P1, . . . , φn ∧ Pn} be its children. Let segment σ be in

γ(φ∧P)∩
⊎∆{γ(φ1 ∧ P1), . . . , γ(φn ∧ Pn)}. Let iters(σ) ⊆ N where n ∈ iters(σ)

if and only if there exist σ0, . . . , σn−1 such that ∀j < n.∃i : σj ∈ γ(φi ∧ Pi).
Let Iters(H) =

⋃
iters(σ) for all such σ. We define the upper loop bound (resp.

lower loop bound), denoted by ulb(H) (resp. llb(H)) as the value sup Iters(H)
(resp. inf Iters(H)). Note that there exists techniques to compute loop bounds
using for example relational abstractions and ranking functions, see for exam-
ple [90], and references therein.

Now, given the values of maxp, minp, Valpba , and hasInfPath of subgraphs
of an HCFG H, we inductively compute the value of the properties for H as
follows:
• If H is a single node with no self-loop, i.e., an abstract state node, we

have maxp(H) = minp(H) = 1, Valpba(H) = v(H), and hasInfPath(H) =
false.

• If H is acyclic, we construct the following graph H† as in Section 7.4.3[Pg.
123], i.e., edges of H correspond to nodes of H†, and every node of H cor-
responds to two edges of weights (resp. lengths) maxp(H ′)·Valpba(H ′) and
maxp(H ′) · Valpba(H ′) (resp. maxp(H ′) and minp(H ′)). Now, maxp(H)
and minp(H) are equal to the length of the longest and shortest paths in
H†. Also, hasInfPath(H) = true if and only if there is a node H ′ in H
with hasInfPath(H ′) = 1. The value Valpba(H) can be evaluated using
Howard’s policy iteration as in Section 7.4.3[Pg. 123].

• If H is a single node with a self-loop, there is only one subgraph of H
(say H ′). We have maxp(H) = ulb(H) · maxp(H ′), llb(H) · minp(H ′),
Valpba(H) = Valpba(H ′), and hasInfPath(H) = hasInfPath(H ′) ∨
ulb(H) =∞.

Thus for such an HCFG, we can evaluate the limit-average value by using the
inductive evaluation scheme from Section 7.5.2[Pg. 128], i.e., using the values
minp, maxp, Valpba and hasInfPath, we can inductively compute the limit-
average values for an HCFG.

Example 7.21. Consider the HCFG in Figure 7.10[Pg. 133] and its in-
ductive cover C from Example 7.20[Pg. 131]. We will illustrate a few
steps of the inductive computation of the properties on C. Fix P =
〈〈minp〉, 〈maxp,Valpba , hasInfPath〉〉.

Let us start for the leaves of C, i.e., CB = s1s2s3, CM = s8s9, CL1 =
s4s5(s6 + s7)s3, and CL2 = s10s9. Now, we can compute minp and maxp
for these as the shortest and longest paths in the corresponding HCFGs. Fur-
thermore, the hasInfPath values for each of these is 0 as all of these CFGs

132

s1

s2

s3

s4

s5 s6

10

s7

[true]

j ← 10

[j > 0]

i← 10
[i > 0]

i−−

[i = 0]

j −−

[j = 0]

Loop1

Loop2

Loop3

Figure 7.9: Nested loop program

s1 s2 s3

CB

s4 s5

s6

s7

s3

CL1

s8 s9

CM

s10 s9

CL2

CL1

L1

CL2

L2

CB L1 CM L2

F

F

H

Figure 7.10: HCFG of a program

133

are acyclic. The Valpba of all the leaves except CL1 is 0 as the weights of all
nodes except s7 are 0. For CL1, the Valpba can be computed to be 10

4 . There-
fore, ReduceBound(CB) = ((3), (3, 0, 0)), ReduceBound(CM) = ((2), (2, 0, 0)),
P1 = ReduceBound(CL1) = ((4), (4, 10

4 , 0)), and P2 = ReduceBound(CL2) =
((2), (2, 0, 0)).

Now, the nodes L1 = C∗L1 and L2 = C∗L2 have the children {CL1} and {CL2}
respectively. The PropComp procedure has to now compute the properties P(L1)
using PL1. However, note that the domain L does not give methods to compute
loop-bounds (see Example 7.23[Pg. 138] for a refinement of the domain L which
can compute loop-bounds). Therefore, assuming ulb and llb for the loops are
0 and ∞ respectively, we get the values P(L1) ≤ PL1 = ((0), (∞, 10

4 , 1)) and
P(L2) ≤ PL2 = ((0), (∞, 0, 1)).

Proceeding similarly, we get the estimates for P(F) ≤ PF = ((5), (∞, 10
4 , 1))

and P(H) ≤ PH = ((0), (∞, 10
4 , 1)). Intuitively, this corresponds to a counterex-

ample that ends with an infinite loop in L1 that contains the costly operation.

Example 7.22. Consider the CFG in Figure 7.9[Pg. 133]. In the figure, the
state labelled 10 (i.e., s7) has weight 10 and all other states have weight 0.
Note that the graph presented in Figure 7.9[Pg. 133] is not the actual UWTS
corresponding to the program, but instead a control flow graph from which the
UWTS can be generated. In the analysis that follows, the transition label of
the control flow graph (which deal with variables i and j) are not used by the
analysis, but are there to help understand the system W . The only information
we need from them is the loop bounds. Intuitively, the loop bounds imply the
the following fact about any trace of the system W . Suppose for 10 consecutive
visits to state s3 in the trace, the transition taken is s3 → s4. Then, the next
time state s3 is visited, the transition taken is s3 → s1. Similarly, for any 10
consecutive visits to state s5 with the transition chosen being s5 → s6, for the
next visit to state s5 the transition chosen will be s5 → s7. This notion of loop
bounds of control flow graphs will be formalized in Section 7.6.2[Pg. 136].

Now, we consider an inductive trace segment cover of the traces of the pro-
gram:
• Π(W) has the segment cover {{σ12}, Loop2} where σ12 = s1s2, and Loop2

is the SegmentSet containing all maximal segments starting and ending at
state s3 with only the states s3, s4, s5, s6 and s7 occurring in it.

• Loop2 has the segment cover {{σ34}, {s7}, Loop1} where σ34 = s3s4 and
Loop1 contains all maximal segments starting and ending at state s5 with
only the states s4 and s5 occurring in it.

• Loop1 has the segment cover {{σ56}} where σ56 = s5s6.
Now, to compute the property set P = 〈Valpba ,maxp,minp, hasInfPath〉 induc-
tively, we have the sequence of inductive steps shown in Figure 7.10[Pg. 133].
We explain the first few steps here:
• Consider the first inductive step, i.e, inducting from the segment-cover
{{σ56}} to the SegmentSet Loop1. Given that maxp({σ56}) = 2 and
minp({σ56}) = 2, to compute maxp(Loop1) and minp(Loop2), we use
the loop bounds for the loop s5 → s6 → s5. Knowing that the loop
bound is 10, we get that maxp(Loop1) = 1 + maxp({σ56}) · 10 = 21 and
minp(Loop1) = 1 + minp({σ56}) · 10 = 21. Similarly, by the loop bounds
analysis, we get that there is no infinite path in Loop1. For the value
Valpba(Loop1), we use the function fpb

∗
defined in Section 7.4.3[Pg. 123],

134

which gives us the value 5.
• For the second inductive step, we have to follow the same procedure,

but instead use the loop bounds for the loop σ34 → Loop1 → σ7 → σ34.
The loop bounds analysis will give us that the maxp and minp values are
1 + 10 · (maxp({σ34}) + maxp(Loop1) + maxp({σ7})) = 241.

7.6 Quantitative refinements

In this section, we present quantitative refinement algorithms for the state-based
and segment-based abstraction schemes.

7.6.1 Algorithmic Refinement of ExistMax abstractions

For the state-based abstraction scheme ExistMax , we give an algorithm for
counterexample-guided abstraction refinement (CEGAR) for quantitative prop-
erties. The algorithm is based on the classical CEGAR algorithm [60], which
we extend to the quantitative case. Here (as in [60]), we assume that the con-
crete system is finite-state, and obtain a sound and complete algorithm. In the
infinite-state case, the algorithm is sound, but incomplete.

Let W = (S,∆, ρ, sι), let f be a (≤p,v)-monotonic quantitative property
that admits memoryless extremal counterexamples (as stated in Section 7.2[Pg.
114], we restrict ourselves to these properties), and let ≈1 be an equivalence
relation on S. Let us further assume that Wα = (Sα,∆α, ρα, sαι) is the result
of applying the ExistMax abstraction parameterized by ≈1 on W . Let ρext be
the memoryless counterexample of Wα which realizes the value f(Wα).

Algorithm 4[Pg. 136] is a refinement procedure for ExistMax abstractions.
Its input consists of the concrete and abstract systems, the equivalence relation
that parameterizes the abstraction, the quantitative property, and the extremal
trace ρext . As the extremal counterexample is memoryless, it is of the shape
H1 . . . Hk(Hk+1 . . . Hn)ω. The output of the algorithm is either a concrete coun-
terexample (if one corresponding to ρext exists), or a refined equivalence relation
(which can be used to produce a new abstract system).

Let us consider a set of traces γ(ρext) of the system W that correspond to
an abstract memoryless trace ρext = H1 . . . Hk(Hk+1 . . . Hn)ω. The first obser-
vation is that checking whether a concrete counterexample exists, i.e., whether
γ(ρext) is non-empty, can be done by checking whether a finite abstract trace
ρu corresponds to a concrete trace. The finite abstract trace ρu can be ob-
tained by unwinding the loop part of ρext m number of times, where m is the
size of the smallest abstract state in the loop part of ρext , or formally, m ←
min{|Hi| | k + 1 ≤ i ≤ n} (line 1[Pg. 136]). This result can easily be adapted
from [60] to the quantitative case.

Lines 3[Pg. 136] to 7[Pg. 136] traverse the finite abstract trace ρu, and at
each step maintain the set of states that are reachable form the initial state
along a path corresponding to ρu. (The post operator in line 6[Pg. 136] takes as
input a set of concrete states L and a weight w, and returns all the successors
of states in L that have weight w.)

If the traversal finishes because at i-th step the set Ri is empty, then the
algorithm refines the equivalence relation ≈1 by splitting the equivalence class
given by Gi−1 into U and Gi−1 \U (line 11[Pg. 136]). The set U contains those

135

Algorithm 4 Refinement for ExistMax

Input: UWTS W = (S,∆, ρ, sι), quant. prop. f , eq. rel. ≈1,
abstract UWTS Wα = (Sα,∆α, ρα, sαι),
abstract counterexample ρext = H1 . . . Hk(Hk+1 . . . Hn)ω

Output: refined eq. rel. ≈2

or a concrete counterex. tecx
1: m← min{|γ(Hi)| | k + 1 ≤ i ≤ n}
2: ρu ← unwind(ρext ,m, k, n)
{we have ρu = G1 . . . Gk+(n−k)·m}

3: R1 ← γ(σ1) ∩ {sι}
4: i← 1
5: while Ri 6= ∅ ∧ i < (k + (n− k) ·m) do
6: Ri+1 ← post(Ri, ρ

α(Gi+1)) ∩ γ(Gi+1)
7: i← i+ 1
8: if Ri−1 6= ∅ then
9: return counterEx(R0, . . . , Ri−1)

10: else
11: U ← {s ∈ γ(Ri−1) | ∃s′ ∈ γ(Gi) : ∆W (s, s′) ∧ ρ(s′) = ρα(Gi)}
12: return refine(≈1,Gi−1,U)

states that have a transition (corresponding to a transition in ρu) to a state
with weight ρα(Gi). The intersection U ∩ Ri−1 is empty, because Ri is empty.
Thus separating U leads to eliminating the counterexample from the abstract
system.

If the traversal finishes a pass over the whole trace ρu, it can construct a
concrete counterexample using sets of states R0, . . . , Ri−1 (line 9[Pg. 136]).

We have thus extended the classical CEGAR algorithm [60] to the quantita-
tive case. The extension is simple, the main difference is in taking into account
the weights in lines 6[Pg. 136] and 11[Pg. 136].

7.6.2 Algorithmic Refinement of HPathBound abstractions

In this subsection, we describe an algorithmic technique for refinement of
segment-based abstractions. We assume that the abstract bound pair domain
is precisely inductive.

We assume that the extremal counter-example from the evaluation of a
HPathBound abstraction is returned as a abstract hierarchical trace ψ =
〈(φ0 ∧P0)(φ1 ∧P1) . . . (φk ∧Pk)((φk+1 ∧Pk+1) . . . (φn ∧Pn))ω, subψ〉. Note that
we can assume a lasso-shaped counter-example due to the memoryless property
of the quantitative properties we consider. Furthermore, without loss of gen-
erality we also assume that every leaf in the abstract trace segment cover is
composed of segments of length 1.

The basic structure of the refinement algorithm is same as in ExistMax .
However, the main difference is in the post operator. For hierarchical traces, we
define a non-deterministic post operator in Algorithm 5[Pg. 137]. Intuitively,
the algorithm non-deterministically chooses a level of the hierarchical trace to
perform the analysis. First, given a hierarchical trace of length 1, post operator
computes (Lines 3[Pg. 137] and 4[Pg. 137]) the set γ(φ0 ∧ P0) ◦∆ = {sσ | σ ∈

136

γ(φ0 ∧ P0) ∧ (s,first(σ)) ∈ ∆}. Then, it computes the top-level post set R∗ of
states reachable from R using the segments from γ(φ0 ∧ P0) ◦ ∆. Now, non-
deterministically (Line 5[Pg. 137]) it chooses whether to descend into the next
level of the hierarchy. If it decides to, the set of post states R† is computed
from the levels below, and then the strengthening of R∗ by R†, i.e., R∗ ∩R† is
returned.

Assume that the post computation is done at a particular level, i.e., the
level below is not used. Intuitively, this means that all the segments in φ0 ∧ P0

are assumed to be valid segments, and the property bounds are assumed to be
tight, i.e., the part of the counter-example corresponding to φ0∧P0 is considered
non-spurious. Note that in the case where the algorithm always descends to the
lowest level, the set returned is exactly the set of states reachable using segments
in γ(ψ) ◦∆. We also remark that nondeterminism in Algorithm 5[Pg. 137] can
be instantiated in a manner suitable for a particular domain.

Algorithm 5 Counterexample analysis for HPathBound

Input: Hierarchical trace ψ = 〈(φ0 ∧ P0) . . . (φk ∧ Pk), subψ〉,
Concrete set of states R,

Output: Over-approximation of states reachable through segments in γ(ψ).
1: if n > 1 then
2: return post((φ1 ∧ P1) . . . (φn ∧ Pn), subψ〉, post(〈φ0 ∧ P0, subψ〉, R))
3: T ← γ(φ0 ∧ P0) ◦∆
4: R∗ ← {s′ | ∃sσs′ ∈ T : s ∈ R}
5: if ∗ then
6: if subψ(0) 6= ⊥ then
7: R† ← post(subψ(0), R)
8: else
9: R† ← R∗

10: return (R∗ ∩R†, R∗, R†)

Let C be the inductive trace segment cover and let ψ = 〈(φ0 ∧ P0)(φ1 ∧
P1) . . . (φk ∧ Pk)((φk+1 ∧ Pk+1) . . . (φn ∧ Pn))ω, subψ〉 be the extremal abstract
trace. The abstraction refinement procedure hAbsRefine(C, ψ,R0) proceeds sim-
ilarly to Algorithm 4[Pg. 136] as follows:
• The abstract hierarchical trace ψ is unwound m number of times, where
m = min{|γ(φi ∧ Pi)| | i ∈ {k + 1, . . . , n}};

• Let R0 be the set of concrete initial states. For each abstract Seg-
mentSet property pair φi ∧ Pi in the unwound trace, we compute
(Ri+1, R

∗, R†) = post(〈φi ∧ Pi, subψ〉, Ri);
• If at any step Ri+1 = ∅, we refine the inductive trace segment cover C

using set Ri and 〈φi, subρ〉 as hRefine(Ri, 〈φi, subρ〉) (explained below).
Otherwise, return any concrete counter-example constructed from the set
{R0, R1, . . .}.

We describe the computation of hRefine(Ri, 〈φi ∧ Pi, subρ〉) when
post(〈φi, subρ〉, Ri) = ∅: during the computation post(〈φi, subρ〉, Ri) (execu-
tion of Algorithm 5[Pg. 137]) we have at least one of the following cases based
on the values of R∗ and R†. First, we define TR = {σ | ∃s ∈ R(r,first(σ)) ∈
∆∧σ ∈ γ(φi∧Pi)} and T belowR = {σ | ∃r ∈ R.(r,first(σ)) ∈ ∆∧σ ∈ γ(subψ(i))}.
Intuitively, TR is the set of concrete segments from R in φi ∧ Pi, and T belowR is

137

the set of concrete segments from R generated from the hierarchical levels under
φi ∧ Pi. We have one of the following options:
• R∗ = ∅ ∧ R† = ∅. In this case, the refinement returned is

hAbsRefine(C, 〈subρ(i), subρ〉, R), i.e., we run the abstraction refinement
procedure on the lower level, starting from the concrete set of states R.

• R∗ = ∅. In this case, we perform a horizontal refinement to separate the
sets TR and T \ TR, i.e., the node labelled φi ∧ Pi is split into φA ∧ PA
and φB ∧ PB where γ(φA ∧ PA) ∪ γ(φB ∧ PB) = γ(φi ∧ Pi) and TR ⊆
γ(φA∧PA)∧TR∩γ(φB∧PB) = ∅. Intuitively, we are separating segments
in φi ∧ Pi that are from R from those that are not from R.

• R∗ 6= ∅ ∧ R∗ ∩ R† = ∅. In this case, we perform multiple simultaneous
refinements. The segment sets which need to be distinguished from each
other are T \ (TR ∪ T belowR), TR and T belowR . Intuitively, we are trying to
separate the segments in γ(φi ∧ Pi) that (a) do not start from R (i.e.,
T \ (TR ∪ T belowR)), (b) those that start from R and are validly generated
from the levels below (i.e., T belowR); and (c) those that do start from R
and are not validly generated from the levels below (i.e., TR). Formally,
let φA ∧ PA, φB ∧ PB , and φC ∧ PC be such that:

– T ⊆ γ(φA ∧ PA) ∪ γ(φB ∧ PB) ∪ γ(φC ∧ PC);
– TR ⊆ γ(φA ∧ PA) ∧ T belowR ∩ γ(φA ∧ PA) = ∅;
– T belowR ⊆ γ(φB ∧ PB) ∧ TR ∩ γ(φB ∧ PB) = ∅; and
– (TR ∪ T belowR) ∩ γ(φC ∧ PC) = ∅.

First, we do a horizontal refinement splitting the node φi∧Pi into φA∧PA,
φB∧PB , and φC∧PC . Second, in the subtree rooted at φA∧PA, the levels
below contains the information that TR is infeasible, but the root does not.
So, we perform upward strengthening refinements till the root contains
the same information. Third, in the subtree rooted at φB ∧ PB , the root
contains the information that T belowR is infeasible, but the levels below
do not. So, we perform either (a) downward strengthening refinements
till the levels below contain the same information; or (b) vertical joining
refinements till there are no levels below. Note that if one of φA ∧ PA,
φB ∧ PB , or φB ∧ PB is empty, we omit it.

Example 7.23. Consider the HCFG H and the corresponding abstract trace
segment cover C from Example 7.21[Pg. 132]. We now show some examples of
hierarchical counter-example guided refinements for computing the limit-average
value.

We work in a more powerful refined domain than in Example 7.21[Pg. 132],
one that allows computation of loop bounds. Let L be the domain of regular ex-
pressions over HCFG’s along with a relation between the values of the variables
in the initial and final states. For example, the expression ((s4s5(s6 +s7)s3, b

′ =
¬b) represents the set of segments which match s4s5(s6+s7)s3 and have the value
of b is the last state is negation of the value of b in the first state.

Let us first start with abstract trace segment cover C from 7.21[Pg. 132].
A part of the abstract extremal trace generated from C will be 〈L1, sub〉 where
(a) sub(1) = 〈(CL1)ω, sub′〉, where (b) sub′(i) = s4s5s7s3 for all i ≥ 1. We will
illustrate two refinement steps that might occur:
• Suppose during the refinement process we are computing
post(〈L1, sub

′〉, R) where R is the set of states at location s3 with
j = 0. Now, we can perform the analysis either at the top level or at the

138

lower level:
– At the top level, we get the post states to be R∗ where the control

location of a state is in s3.
– At the lower level, we get the post states to be R† = ∅ as the transition

from s3 to s4 is disabled due to j being 0.
Therefore, we need to refine the abstract SegmentSet s4s5(s6 + s7)s3.
One possible valid refinement is to strengthen the set s4s5(s6 + s7)s3 to
s4s5(s6 + s7)s3, j > 0 ∧ j′ = j − 1. Using this strengthened set, we can
compute that the upper and lower loop bounds for L1 are 10. This leads
to a improvement in the value of the system as now, there is no infinite
path in the high value segment L1. The new value of the system is 20

9 .
• Suppose during the refinement process we are computing post(〈L1 ∧
P, sub′〉, R) where P bounds the limit-average of segments in L1 to 10

4 ,
R is the set of states at location s3 with b = true. Again, performing
the analysis at top level produces R∗ = {s7}, but the lower level pro-
duces R† where R† = ∅. Therefore, we can to refine the abstract Seg-
mentSet s4s5(s6 + s7)s3 and one possible refinement is a horizontal split
into s4s5s6s3, b = true ∧ b′ = false and s4s5s7s3, b = false ∧ b′ = true.
Performing this refinement reduces the value of L1 to 20

9 and hence, by
upward strengthening the value of the whole system to 20

9 .

7.7 Case study: Cache hit-rate analysis

We present a case study to demonstrate anytime verification, and to evaluate
ExistMax and hierarchical PathBound abstractions. Worst-case execution time
(WCET) estimation is an important part of verifying real-time systems. We
only study one aspect, i.e., cache behavior prediction. In a processor, clock
cycles needed for an instruction can vary by factors of 10-100 based on cache
hits vs misses. Assuming the worst-case for all instructions leads to bad WCET
estimates. Abstract domains for cache behavior prediction are well studied
(e.g., [84, 170]). However, we know of no work on automated refinement for
these abstractions. Note that this case study and the accompanying implemen-
tation is not a complete WCET analysis tool, but a prototype used to illustrate
the quantitative abstraction refinement approach. The prototype returns the
average execution cost of a single instruction. Our intention is just to evaluate
the anytime aspect of our approach.

We estimate the average instruction cost (and hence, the cache-hit rate)
using the limit-average property. Intuitively, we put the whole program in a
nonterminating loop. The limit-average then corresponds to the average cost of
an instruction in the worst-case execution of a loop. (For a terminating program,
it is the execution of the artificial outer loop.) We report limit-average values
of the average instruction cost instead of the cache hit-rate.

Cache behavior and cache abstractions. We first present the structure
of a simplified cache model we will be assuming. The cache model and the
abstract domain used are from [84]. The cache consists of multiple cache sets,
each with A cache-lines (usually, A ≤ 8). The memory is partitioned into blocks
with M being the set of blocks. Each block is cached in a unique cache set
and occupies one cache-line. The replacement policy is LRU, i.e, least recently

139

Exam- Step Value Time Tracked
ple (ms)

Basic
Example

0 14.14 1240
1 6.50 2102 i
2 4.87 2675 a
3 4.75 3275 b
4 1.27 3864 c
5 1.03 4631 v

Binary
search

0 15.77 908
1 11.15 1130 m
2 8.23 1369 r
3 5.0 1707 l
4 3.76 1895 s

5 3.0 2211 a[(N−1)
2]

6 2.97 2527 a[(N−3)
4]

7 2.85 3071 a[(3N−1)
4]

Poly-
nomial
Eval.

0 15.49 524
1 8.13 759 i
2 4.45 1025 val
3 2.95 1237 x

GCD
0 13.76 289
1 9.47 399 inp2
2 6.65 472 inp1
3 6.33 536 temp

Table 7.1: ExistMax abstraction results

used blocks from a cache-set are evicted first. We model a cache-line as a map
age−1 : {1, . . . , A} →M , with i mapping to ith most recent block.

The Must cache abstraction from [84] can be used to compute invariants
about cache contents. Any memory block present in a must-invariant at a
program location must necessarily be present in the cache. The abstract must
cache is a collection of the abstract must cache-sets. An abstract cache-set is
a map age−1

A : {1, . . . , A} → 2M ; and it contains a concrete cache-set (age−1)
iff ∀m : m ∈ age−1(b) =⇒ ∃a ≤ b : age−1(a) = m. Intuitively, m ∈ age−1(b)
bounds m’s age in the concrete cache-set. The join is computed by taking the
maximum age for each block.

Multiple abstract domains are possible based on which cache sets are tracked.
If no set is tracked, every memory access is deemed a cache-miss; whereas the
invariant computation is very expensive in the domain which tracks all cache-
sets. Here, we start from the empty cache and refine by tracking more cache-sets
as necessary. For example, in the run of our tool on the binary search example
from Figure 7.11, the initial abstract cache domain does not track any cache
sets. The refined cache domain after one step tracks the cache set corresponding
to the memory location of the variable m. Using this refined domain, we will
find that most accesses to variable m are cache-hits.

140

7.7.1 Implementation details

We implemented a WCET analyzer based on the presented techniques in a tool
QUART that analyzes x86 binaries.

Static analysis. We analyze the binary and produce the control flow graph.
Instructions in the program may operate on non-constant addresses (for exam-
ple, array indexing leads to variable offsets from a fixed address). However, if
the exact addresses cannot be computed statically, we perform no further anal-
ysis and assume that the memory access is a cache miss. This restriction comes
from the cache abstract domain we use [84].

Instruction cost computation. In the resulting graph, we annotate states
with invariants from the current cache abstract domain. From the invariants, we
compute costs of each transition (we use costs of 1 and 25 cycles for cache-hits
and cache-misses, respectively). We then find the worst-case using techniques
of Section 7.3[Pg. 115] and Section 7.4.3[Pg. 123] to find a the worst-case limit-
average value. Furthermore, we implemented the extension of the algorithm to
graphs with both edge weights and edge lengths [61].

Refinement. We analyze worst-case counter-example ext :
Feasibility analysis. We first check if ext is a valid program execution (ignoring
the cache) using a custom symbolic execution computation. If ext is not a valid
execution, we refine the abstract graph using standard CEGAR techniques.
Cache Analysis. If ext is valid, we compute the concrete cache states for it. If
the concrete value obtained is the same as that of ext , we return the concrete
trace.
Refinement heuristic. Otherwise, of all locations accessed in the loop of ext , we
find the one with most abstract cache misses which are concrete cache hits. The
current cache abstract domain is refined by additionally tracking this location.
Fall-back refinement. If all the locations accessed in ext are already being
tracked, we use Algorithm 4[Pg. 136] and the algorithm given by hAbsRefine to
do the refinement.

7.7.2 Evaluation of ExistMax abstraction

For evaluating the ExistMax abstraction and refinement methods, we consider
binaries for five (small) C programs, including the example from the introduction
(called Basic example in the table). The results are in Table 7.1[Pg. 140]. For
each example program, the table contains lines, with each corresponding to
a refinement step. For each refinement step we report the current estimate
for the limit-average value, the running time for the analysis (cumulative; in
milliseconds) and in case the refinement enlarged the abstract cache, we also
show what new memory locations correspond to the entries in the abstract cache.
In each case, the over-approximated limit-average value decreases monotonically
as the tool is given more time.

Binary search. We analyze a procedure (Figure 7.11[Pg. 142]) that repeat-
edly performs binary search for different inputs on a given array. We start
with the empty abstract cache domain and all behaviors have high values (with

141

while(true)

input(s);

l = 0; r = N - 1;

do {
m = l + r / 2;

if(s > a[m])

l = m + 1;

else

r = m - 1;

} while(l <= r ∧ a[m] != s)

Figure 7.11: Binary Search

worst-case value 15.77). In the ext-trace, variable m, accessed 4 times every
iteration of the inner loop, causes most spurious cache misses.

Using the Refinement heuristic we heuristically choose the location of m is
additionally tracked in the cache abstract domain reducing the value to 11.15.
Indices l, r and the input s are the next most frequently used, and are added
subsequently to the cache abstract domain. More importantly, the most used
array elements are added in order. During binary search, the element at position
N/2 is accessed always, and the elements at N/4 and 3N/4 half the times, and so
on. The refinements obtained add these array elements in order. This illustrates
the anytime aspect: refinement can be stopped at any point to obtain an over-
approximation of the value.

7.7.3 Evaluation of the hierarchical PathBound abstraction

For evaluating the PathBound abstraction refinement procedure, we picked 4
benchmarks from the collection of WCET benchmarks in [91]. These bench-
marks were larger than the ones for the ExistMax evaluation with around 150-
400 lines of code each. The benchmarks we picked included a simple program
which scanned a matrix and counted elements, matrix multiplication, and two
versions of discrete-cosine transformations.

We used the hierarchical PathBound abstraction-refinement algorithm, i.e.,
the algorithm given by hRefine. We note that we do not perform any cache
refinements. Nevertheless, the hierarchical aspect of hierarchical PathBound
abstraction was evaluated, as three of the benchmarks contained a number of
nested loops. The challenge addressed was to obtain good (and monotonically
decreasing) estimates on WCET, as the abstraction is refined.

We summarize the results in Table 7.2[Pg. 143]. For each example pro-
gram, the table contains a number of lines, with each line corresponding to a
refinement step. For each refinement step we show the current estimate for the
limit-average value, and the running time for the analysis (cumulative; in mil-
liseconds). As it can be seen, the limit-average values monotonically decrease
with longer execution time. It should be noted that for most of these programs,
to obtain similar values with the ExistMax approach, one would need to perform
a large number (in thousands) of counter-example guided refinements (as the
nested loops would have to be unrolled).

142

Bench
mark

Step Value
Time
(ms)

cnt

0 8.74 1810
3 8.64 6349
4 4.08 8298

matmult

0 8.73 4669
2 8.71 15660
5 8.71 30408
6 4.17 35676

fdct
0 6.88 2142
1 1.94 4274
2 1.76 6685

jfdctint

0 6.95 3095
1 3.35 5759
2 1.89 8674
3 1.57 11809

Table 7.2: PathBound abstraction results

7.8 Summary

This chapter makes four main contributions. First, we present a general frame-
work for abstraction and refinement with respect to quantitative system prop-
erties. Refinements for quantitative abstractions have not been studied be-
fore.Second, we propose both state-based and segment-based quantitative ab-
straction schemes. Quantitative segment-based abstractions are entirely novel,
to the best of our knowledge. Third, we present algorithms for the auto-
mated refinement of quantitative abstractions, achieving the monotonic over-
approximation property that enables anytime verification. Fourth, we imple-
ment refinement algorithms for WCET analysis of executables, in order to
demonstrate the anytime verification property of our analysis, and to inves-
tigate trade-offs between the proposed abstractions.

Chapter 8

Precision Refinement for
Worst-Case Execution Time
Analysis

The quantitative analysis of program performance has become an important goal
for formal methods. The aim of this chapter is to obtain parametric estimates
for the worst-case execution time (WCET) of programs. Our estimates are given
as symbolic expressions defined in terms of program parameters such as loop
bounds, array sizes, and configuration modes.

There are two novel technical contributions. First, for modeling and estimat-
ing the WCET of programs, we define hierarchical parametric graphs (HPGs)
as a hierarchical form of weighted graphs whose weights are given by sym-
bolic expressions. We then present an algorithm for computing the maximum-
weight length-constrained path in an HPG. Second, we provide an automatic
method for the construction and successive refinement of HPGs, using segment-
based program abstraction and counterexample-guided predicate refinement in-
troduced in the previous chapter (Chapter 7[Pg. 110]). This method can be
used for obtaining increasingly tighter parametric WCET estimates.

We experimentally evaluate our approach on a set of examples from WCET
benchmark suites and open-source linear-algebra packages. Most state-of-the-
art WCET tools provide results for concrete numeric values of parameters. We
show that our analysis, with comparable effort, provides parametric estimates,
which, when instantiated to numeric values, in some cases significantly improve
WCET estimates computed by existing tools.

8.1 Motivation

Worst-case execution time (WCET) analysis [171] is important in many classes
of applications, ranging from the verification of safety-critical real-time embed-
ded systems to the optimization of heavily-used methods in computer algebra
packages. First, real-time embedded systems have to react within a fixed amount
of time, so verifying that the response in the worst-case takes less time than the
imposed limit is critical. Second, computer algebra libraries often provide dif-

144

ferent implementations for the most heavily-used methods. Users then have
to choose the most suitable method for their particular system architecture. In
both cases, a tool that soundly and tightly approximates the WCET of programs
would thus be very helpful.

Most state-of-the-art WCET approaches derive a single number estimating
the WCET of a program [171]. In many cases, this is however a pessimistic
over-estimation. For instance, for a program that transposes a two-dimensional
n × n matrix, estimating its WCET by a single numeric value requires giving
the WCET for the largest possible value of n. On the other hand, a parametric
WCET estimate, that is, a safe estimate given as a symbolic expression in terms
of the program parameters (such as matrix dimensions), is more useful in many
applications. For instance, a user of a computer algebra package might not know
the matrix dimensions in advance, but still needs to choose an implementation
suitable for her system. Note that what is required is not the asymptotic com-
plexity, or simply the bounds on the number of loop iterations, but a parametric
WCET estimate for a particular architecture.

Here, we address the challenge of computing parametric WCET estimates.
To this end, we develop new program analysis techniques. First, we present an
algorithm to maintain a representation of a set of paths deemed feasible as the
abstraction of the program gets refined. The set of paths is represented by hier-
archical parametric graphs (HPGs). The algorithm is based on segment-based
abstract interpretation, and counterexample-guided refinement with interpola-
tion. Second, we propose an algorithm for estimating the WCET of the set of
paths represented by an HPG. This step uses a low-level analyzer to estimate
the WCET of basic blocks of a program, and a novel algorithm to estimate the
WCET of all paths represented by an HPG. The refinement then provides us
with increasingly better estimates of WCET.
HPGs. Hierarchical parametric graphs (HPGs) are a hierarchical form of
weighted graphs with parametric weights on nodes. HPGs are hierarchic as
they are a result of an abstraction that preserves the structure of programs.
HPGs are parametric as the weights of the nodes are symbolic expressions rep-
resenting WCET estimates of sub-programs. We show that in order to find the
WCET, we need to solve a maximum-weight length-constrained problem. This
problem is a hierarchical and parametric variant of a previously-studied prob-
lem [156]. Solving the maximum-weight length-constrained problem gives us a
parametric WCET for the current HPG.
Abstraction. The initial HPG is computed using the hierarchical segment-
based abstraction of [67] for quantitative properties [38]. Worst-case execution
time is not a property of a state, but rather a property of a segment (i.e. a
sequence of instructions). Therefore, segment-based abstraction, where an ab-
stract states corresponds to a set of segments, is more suitable for parametric
WCET calculation than standard state-based abstractions, where an abstract
state corresponds to a set of concrete states. The abstraction is hierarchical in
order to capture the hierarchical nature of traces of structured programs (with
nested loops and procedures). For example, we split the set of traces through
a nested loop into repeated iterations of the outer loop, where each of these
iterations is split into repeated iterations of the inner loop. The hierarchical
abstraction is represented by a tree, called the abstract segment tree. Each node
of the abstract segment tree is an abstract state representing a set of segments.
The children of a node can be combined to produce every segment in the parent

145

node, as in the nested loop case. We show how to construct an HPG from an
abstract segment tree. The weights of nodes of the HPG are obtained by over-
approximating the maximal WCET for segments represented by each abstract
state.
Refinement. After solving the maximum-weight length-constrained problem
of the current HPG representation of feasible paths, we obtain a witness trace
for the program. A witness trace is a path through the state space of the pro-
gram that exhibits the current estimate of the WCET (for concrete values of
parameters), and is feasible under the current abstraction. We next use the
classical abstraction-refinement loop approach, adapted however to HPGs, as
follows. We check whether the witness trace is feasible for the original program,
i.e., check if the abstract trace also exists in the concrete program. If so, the
current parametric WCET is also feasible, we report it and terminate the anal-
ysis. If the witness trace is not feasible in the concrete program, we refine the
abstraction. For doing so, we develop a novel approach for refinement of hier-
archical segment-based abstractions based on interpolation. However, our tech-
niques differ significantly from interpolation for counter-example trace analysis
for standard abstract trace analysis (see, for example, [105]) as our abstractions
are segment-based rather than state-based. Intuitively, for state-based abstrac-
tions, interpolants are used to summarize information about the state obtained
after executing a prefix of the trace, while in our case, interpolants are used to
summarize information about the relation between the initial and final states of
a segment of the trace.

We rely on the method of [100] for computing small interpolants and propose
a new, heuristic-driven method to choose the best interpolant for our abstraction
refinement. Intuitively, a good interpolant for our method is an interpolant
which does not depend on concrete values of program parameters and is small in
the number of its components. The abstraction refinements are monotonic with
respect to WCET estimates: the estimates are monotonically decreasing. We
are not aware of any other approach that combines segment-based abstraction
with interpolation for quantitative program analysis, in particular for WCET
computation.
Experimental Evaluation. We built a new software tool IBART, for para-
metric WCET estimations. We used the CalcWcet167 tool [112] to obtain the
WCET estimates of basic blocks of a program on an Infineon C167 proces-
sor. Our implementation takes C programs as input, and provides parametric
WCET estimates as output. We evaluated IBART on challenging examples
from WCET benchmark suites and open-source linear algebra packages. All
examples were solved under 60 seconds. Most state-of-the-art tools report a
single numeric value as a WCET estimate; the one exception we know of is
SWEET [29], which we describe in the related work section. Our tool provides
a much more informative result, that is, a parametric WCET estimate. The
quality of our results can be compared to other tools only when one chooses
concrete numeric values of parameters for the other tools. We show that in this
case, IBART provides significantly better WCET estimates.
Summary. Our two main technical contributions are: (a) the hierarchical
parametric graphs (HPGs) and the reduction of parametric WCET computa-
tion to a maximum-weight length-constraint optimization problem over paths of
HPGs; and (b) a novel interpolation-based approach for refining segment-based
abstractions. This is used to refine the parametric WCET of the program.

146

8.2 Illustrative Examples

This section illustrates our approach to parametric WCET computation. We
start with a simple example (Example 8.1[Pg. 147]) to present the main steps
of our method: segment-based abstraction, estimation of WCET using HPGs,
and counterexample-guided abstraction refinement with interpolation. We next
show a more complicated example (Example 8.2[Pg. 150]) motivating the need
of solving maximum-weight length-constraints in HPGs.

Example 8.1. Consider the program from Figure 8.1[Pg. 148], which will be
our running example through the chapter. Program blocks op1(), op2(), and
op3() are operations whose executions take 10, 1, and 50 time units, respectively
(these costs are derived from a low-level timing analysis tool). In this example,
we assume that program conditionals and simple assignments take 1 time unit.

It is not hard to see that for small values of the loop bound n, the WCET
path of this program visits the outermost else branch containing op3() – when
n is small, the execution cost of op3() dominates the cost of the loop. However,
for larger values of n, the WCET path visits the then branch of the outermost if
and the for-loop. The WCET of this example thus depends on n. Our approach
discovers this fact, and infers the WCET of the program as a function of n as
follows: if n ≤ 5 then 51 else 3 + 4n + 9bn/2c. The WCET computed by our
method is hence parametric in n. The computation proceeds as follows.
Control-flow graph. We construct the control-flow graph (CFG) of the
program in Figure 8.1[Pg. 148]. First, we rewrite the program in a while-loop
language with assume statements — see the right column of Figure 8.1[Pg. 148].
We have named the assumptions and the transition relations (i.e. transition
predicates) of instructions. For example, (ϕ1) denotes the assumption a < b;
and (ϕ8) represents the transition predicate i′ = i+1 of the assignment i := i+1
(here, i′ refers to the value of i after the assignment). The while-language
representation provides a way to cleanly map statements from the program to
its CFG given in Figure 8.2[Pg. 148]. Nodes in the CFG, written as Ck, denote
locations in the program control flow and edges are annotated by formulae ϕk
over program variables (and their primed versions), describing the control flow.
Hierarchical segment-base abstraction. We next apply segment-based ab-
straction on the CFG of Figure 8.2[Pg. 148]. The initial abstraction is given by
the abstract segment tree (Figure 8.3[Pg. 149]). The tree structure comes from
the hierarchical nature of the CFG. Nodes of the tree (denoted by Ak) represent
a set of execution segments, i.e., a sequence of CFG nodes. Each node stores
a shape predicate (denoted Shape) describing the paths of the segments through
the CFG, and a transition predicate (denoted Trans) characterizing the transi-
tion relation of the set of segments. A shape predicate is an extended regular
expression over either the children of the node, or over the CFG nodes. It is
an extended regular expression, as it may contain symbolic exponents obtained,
for example, from loop bounds. The transition predicate is a formula over the
values of program variables at the beginning and at the end of segments. Note
that in the abstractions defined in this chapter, the shape is stored as a transi-
tion system rather than a regular expression and the nodes store more detailed
information. Here we opted for a regular expression for better readability.

We describe node A2 in more detail – the other nodes are constructed sim-
ilarly. The construction of A2 in the initial abstraction is done syntactically.

147

if (a<b)

for (i:=0;i<n;i++)

if (i<bn/2c)
op1() cost=10

else

op2() cost=1
else

op3() cost=50

Figure 8.1:
Exam-
ple 8.1[Pg.
147] (above);
written in
a while-
language
(right).

if (*)

assume a<b; (ϕ1)
i:=0; (ϕ2)
while (*)

assume (i<n); (ϕ3)
if (*)

assume i<bn/2c; (ϕ4)
op1(); (ϕ5), cost=10

else

assume i≥bn/2c; (ϕ6)
op2(); (ϕ7), cost=1

i:=i+1; (ϕ8)
assume (i≥n); (ϕ9)

else

assume a≥ b; (ϕ10)
op3(); (ϕ11), cost=50

C1C2 C3

C4

C5 C6 C7 C9

C8 C10

C11 C12 C13

C14

C15

ϕ1

ϕ2
ϕ3

ϕ4

ϕ5

ϕ6 ϕ7

ϕ8

ϕ9

ϕ10

ϕ11

Figure 8.2: CFG of Example 8.1[Pg. 147].

Node A2 represents all segments through the CFG nodes corresponding to the
then-branch of the outermost if. It is split into three sets of segments: (a) node
A3 denoting the set of segments before the loop, i.e., that is the set of segments
through the sequence of nodes C1C3C4C5; (b) node A4 denoting the set of seg-
ments given by the loop of the CFG; and (c) node A5 representing the set of
segments after the loop of the CFG. Take n as the bound on the number of loop
iterations in the CFG. For building A4 we use node A6 describing all segments
in one iteration of the loop in the CFG. The segments in A6 can be concatenated
to cover all segments in A4. For computing loop bounds, we use [113]. The loop
bound n is then noted in the shape predicate of A4.
WCET estimate using HPGs. For each node in Figure 8.3[Pg. 149], we
next calculate the cost (i.e., the weight) of the segments represented by this
node. The weight of the abstract node represents its WCET. As each node is
defined in terms of its children, we traverse the tree bottom-up. The root of the
tree contains a WCET estimate of the complete set of segments, and hence of
the program.

To estimate the WCET of a node, we construct a hierarchical parametric
graph (HPG) for each node of Figure 8.3[Pg. 149]. A node in an HPG can also
be an HPG (however, a HPG cannot be recursive; for example, an HPG cannot
be its own node). The construction of an HPG from an abstract segment tree
node is straightforward. We use the shape predicate of the node to construct the

148

Name: A0

Shape: A1 ∨A2

Trans: true

Name: A1

Shape: C1C2C14C15

Trans: true

Name: A2

Shape: A3A4A5

Trans: true

Name: A4

Shape: An6
Trans: true

Name: A3

Shape: C1C3C4C5

Trans: true

Name: A5

Shape: C5C15

Trans: true

Name: A6

Shape: C5C6C7(C8C10 ∨ C9C11)C13C5

Trans: true

Figure 8.3: Initial abstraction for Example 8.1[Pg. 147].

HPG, and use the WCET of the children nodes to estimate the cost of the node.
For example, for node A2 we construct a graph with three nodes (corresponding
to HPGs for A3, A4, A5), with directed edges from A3 to A4 and from A4 to
A5. For node A4, we obtain a graph with one node (A6) that can repeat at most
n times. The costs of the abstract segment tree nodes are calculated as:
• cost(A6) = cost(ϕ3) + max(cost(ϕ4) + cost(ϕ5), cost(ϕ6 + cost(ϕ7)) +

cost(ϕ8) = 13
• cost(A4) = n ·A6 = 13n
• cost(A3) = cost(ϕ1) + cost(ϕ2)
• cost(A5) = cost(ϕ9)
• cost(A2) = cost(A3) + cost(A4) + cost(A5) = 3 + 13n
• cost(A1) = cost(ϕ10) + cost(ϕ11) = 51
• cost(A0) = max(cost(A1), cost(A2)) = max(51, 3 + 13n)

= if n ≤ 3 then 51 else 3 + 13n
The WCET estimate of our running example is given by cost(A0), and de-

pends on the value of n, i.e., when 0 ≤ n ≤ 3 the WCET is different than in
the case when n > 3. To ensure that the computed WCET estimate is precise,
we need to ensure that our abstraction did not use an infeasible program path
to derive the current WCET estimate. We therefore pick a concrete value of
n for each part of the WCET estimate, and check whether the corresponding
witness worst-case path is feasible. If it is, the derived WCET estimate is actu-
ally reached by the program and we are done. Otherwise, we need to refine our
abstract segment tree. In our example, we thus have the following two cases:
• Case 1: n ≤ 3. We pick n = 1. The WCET estimate of A0 is then 51. Here,

the witness trace is C1C2C14C15. This trace is a feasible trace of Fig-
ure 8.1[Pg. 148].

• Case 2: n > 3 We pick n = 4 and the witness trace is C1C3C4

149

(C5C6C7C8C10C12C13)4C5C15. This trace is infeasible in Figure 8.1[Pg.
148], and we proceed to the abstraction refinement step.

Counterexample-guided refinement using interpolation. We refine
the abstract segment tree of Figure 8.3[Pg. 149] using the infeasible trace. We
traverse the tree top-down to refine each node of the counterexample. We refine
the children of the node (through which counterexample passes), with new context
information obtained from the counterexample, via interpolation. We detail our
refinement approach only for A4, the rest of the nodes are refined in a similar
way. By analyzing the predecessor segments of A4 in the counterexample, we
derive i = 0 as a useful property for our refinement. This property is obtained
using the same interpolation-based refinement process that we now describe for
A4.

To refine A4, we analyze its children, that is n repetitions (i.e., iterations)
of A6. In what follows, we denote by ik the value of the variable i after the k-th
iteration of A6, for 0 ≤ k ≤ n. Let i0 denote the value of i before A4. We
compute the property i1 = i0 + 1 summarizing the first iteration of A6, where
the summarization process includes interpolation-based refinement. Similarly,
from the second iteration of A6 we compute i2 = i1 + 1. Hence, at the second
iteration of A6 the formula a i0 = 0∧ i1 = i0 + 1∧ i2 = i1 + 1∧ n = 4 is a valid
property of the witness trace; let us denote this formula by A. However, after the
second iteration of A6 we have (i2 < n)∧ (i2 < bn/2c) as a valid property of the
witness trace; we denote this formula by B. Observe that A∧B is unsatisfiable,
providing hence a counterexample to the feasibility of the current witness trace.
From the proof of unsatisfiability of A ∧ B, we then compute an interpolant I
such that A =⇒ I, I ∧B is unsatisfiable, and I uses only symbols common to
both A and B. We derive i2 ≥ bn/2c as the interpolant of A and B.

We now use the interpolant i2 ≥ bn/2c to refine the segment abstraction of
A6, as follows. The interpolant i2 ≥ bn/2c is mapped to the transition predicate
i ≥ bn/2c over the program variables of Figure 8.1[Pg. 148]. We then split A6

into two nodes: node Af6 denoting the segment where i ≥ bn/2c does not hold,
and node At6 describing the segment on which i ≥ bn/2c holds. The interpolants
i1 = i0 + 1 and i2 = i1 + 1 computed from the first, respectively second iteration
of A6 yield the transition predicate i′ = i + 1 over program variables and their
primed version; this formula holds for every segment in A6, and hence also in
Af6 and At6. The transition predicates of At6 and Af6 are then used to compute the

new shape predicate (Af6)[n/2](At6)n−[n/2] for A4. The resulting (partial) refined
abstract segment tree is given in Figure 8.4[Pg. 151].

After refining the abstract segment tree, we recalculate the WCET estimates
using HPGs. As a result, we obtain: if n ≤ 5 then 51 else 3 + 4n+ 9bn/2c, a
precise WCET estimate for the program in Figure 8.1[Pg. 148].

Example 8.2. We now give a more complex example, explaining the need of
length constraints on the maximum-weight HPG path.

The program in Figure 8.5[Pg. 151] performs an operation work() (of exe-
cution cost 3 time units) within a loop. In addition, every 20 loop iterations,
it logs some program values into a file, by using the operation logValue whose
execution takes 50 time units. Clearly, the logValue() operation is much more
expensive than work(). However, in the initial abstract segment tree of Fig-
ure 8.5[Pg. 151], all loop paths are grouped in one segment. Therefore, the

150

Name: A4

Shape: (Af6)[n/2](At6)n−[n/2]

Trans: i = 0

Name: Af6
Shape: C5C6C7C9C11C12C13

Trans: i′ = i+ 1 ∧ i < [n/2]

Name: At6
Shape: C5C6C7C8C10C12C13

Trans: i′ = i+ 1 ∧ i ≥ [n/2]

Figure 8.4: Partial structure of the refined tree of Figure 8.3[Pg.
149].

for (i=0;i<n;i++)

if ((i mod 20) == 0)

logValues() cost=50
work() cost=3

else

work() cost=3

Figure 8.5: Example 8.2[Pg. 150].

initial WCET estimate of the program considers each loop iteration to incur the
cost of logValue(). Let B1 denote an abstract segment tree node describing all
loop paths, and B2 be an abstract segment tree node that represents all possible
loop iterations. Similarly to Example 8.1[Pg. 147], the shape predicate of B1 is
computed to be Bn2 . The counterexample-guided refinement using interpolation
will then refine the segment abstraction of B2, by splitting B2 into two nodes:
node (Bf2) where the formula (interpolant) ((i mod 20) = 0) holds, and (Bt2)
where the formula ((i mod 20) = 0) does not hold. The shape predicate of B1

will therefore become ((Bt2)1(Bf2)19)∗, and we will keep the global bound n on
the number of loop iterations. The segment B1 is hence refined into 1 iteration
of Bt2, followed by 19 iterations of Bf2 . This information is enough to have a
precise WCET estimate.

8.3 Problem Statement

In this section, we state our counterexample-guided precision refinement prob-
lem for computing parametric WCET estimates.
Instruction and predicate language. We express program instructions,
predicates, and assertions using standard first-order logic with equality. Let
F(X) represent the set of linear integer arithmetic (Boolean-valued) formulae
over integer variables X.

Following standard convention, we represent an instruction in a program
over variables V as a formula from F(V ∪ V ′). Intuitively, V ′ contains primed
versions of all variables in V and represent the values of variables after execution
of the instruction. For example, an instruction i := i + j in a C-like language
would be represented as i′ = i+ j.
Program model. We model programs with assignments, sequencing, condi-

151

tionals and loops, over a finite set of scalar integer variables V . We do not
handle procedure calls. However, all our techniques can be easily generalized to
non-recursive procedure calls.

We represent programs by their control-flow graphs. A control-flow graph
(CFG) is a graph G = 〈C, E, V,∆, ι0, init , F 〉, where (a) C is a set of nodes
(representing control-flow locations); (b) E ⊆ C × C is a set of edges; (c) V
is the set of program variables; (d) ι0 ∈ C is an initial control-flow location;
(e) init ∈ F(V) is an initial condition on variables; (f) F ⊆ C is a set of final
states; and (g) ∆ : E → F(V ∪ V ′) defines a transition relation on variables in
V . Intuitively, the values of the program variables before and after executing
the instruction from l1 to l2 satisfy ∆((l1, l2)).

We refer to pairs of control flow locations and valuations Val(V) of program
variables V as program states. A state is denoted by a pair of the form (l, σ).
Semantics. The semantics of a CFG G, denoted by [[G]], is the set of finite
sequence of program states (called traces) (l0, σ0)(l1, σ1) . . . (lk, σk) such that:
a l0 = ι0 and σ0 |= init , b lk ∈ F , and c for all 0 ≤ i < k, we have (li, li+1) ∈ E
and (σi, σi+1) |= ∆((li, li+1)).
Cost model. We assume a simple execution cost model for the program instruc-
tions (for extensions to more complicated cost models, see Section 8.6[Pg. 161]).
We consider the function cost : E → N and assume that an edge (l1, l2) ∈ E
costs cost((l1, l2)). Intuitively, cost((l1, l2)) represents the maximum execution
time of the instruction from l1 to l2. We refer to edge costs also as weights.

A weight (or cost) cost(π) of a trace in the CFG, where π =
(l0, σ0)(l1, σ1) . . . (lk, σk) is defined by Σk−1

i=0 cost((li, li+1)).
The worst-case execution time (WCET) of G, denoted by WCET (G), is

defined as: WCET (G) = maxπ∈[[G]] cost(π).
Note that this simple cost model can already capture certain type of cache

hit/miss information provided by the low-level WCET analysis [113]: for each
instruction, if the low-level analysis determines that the it will always be a cache
hit, it can provide the cost accordingly. An extension to a more complicated
cost model is presented in Section 8.6.1[Pg. 162].
Solution language. We use a language of disjunctive expressions E(V) to
represent valuation of expressions in various contexts. An element W of E(V)
is a set of pairs {(Di, Ni)}i with: (a) Di ∈ F(V) where

∨
iDi holds and

Di∧Dj =⇒ ⊥ for all i 6= j; and (b) Ni is either an arithmetic expression over
V or ∞. Intuitively, the value of the disjunctive expression W is Ni when the
condition Di holds. If Val(V) is a valuation of V , we represent by W [Val(V)] the
explicit integer value of evaluating W , i.e., W [Val(V)] = Ni[V] if Di(Val(V))
holds. For example, {(n < 5, n), (n ≥ 5, 5)} represents an expression whose
value is n if n < 5 and 5 otherwise.

Note that it is easy to define standard arithmetic, comparison, and max
operators over E(V). For example, if W 1 = {(Di, Ni)}i and W 2 = {(Dj , Nj)}j ,
then W 1 +W 2 = {(Di ∧Dj , Ni +Nj)}, and max(W 1,W 2) = {(Di ∧Dj ∧Ni >
Nj)} ∪ {(Di ∧Dj ∧Ni ≤ Nj)}.
Parameters. Let P ⊆ V be a subset of program variables, called program
parameters. Let us assume that formulas ∆() require that values of variables
in P do not change along the transitions. Fixing a valuation Val(P) : P → N of
P , we obtain a new CFG GVal(P), by replacing in G the variables in P by their
values given by Val(P). A CFG is called terminating w.r.t. a set of parameters
P , if for all valuations Val(P), the supremum of the length of traces in [[GVal(P)]]

152

is finite.
Problem statement. We are now ready to define a parametric WCET esti-
mate of a CFG G, and our problem statement. A parametric WCET estimate
of a CFG G, denoted by WCET p(G,P), is an expression in E(P), such that
for all valuations Val(P) of variables in P we have WCET p(G,P)[Val(P)] ≥
WCET (GVal(P)). Intuitively, the parametric WCET estimate, WCET p(G,P),
is an over-approximation of the WCET (G) for each valuation of the parameters.

The task of our parametric WCET estimation problem is: Given a CFG
G with program variables V and a set of parameters P ⊆ V such that G is
terminating w.r.t. P , compute WCET p(G,P), the parametric WCET.

The rest of this chapter describes the main steps of our approach to solving
this problem: segment-based abstraction, estimation of WCET using HPGs
(Section 8.4[Pg. 153]), and counterexample-guided refinement with interpolation
(Section 8.5[Pg. 157]). Our algorithm for parametric WCET computation is
summarized in Section 8.6[Pg. 161].

8.4 Max-Weight Length-Constrained Paths

We start by fixing a set of base nodes BN using the CFG edges of a given
program. We further consider E(P) as the set of all linear integer arithmetic
expressions over program parameters P (see Section 8.3[Pg. 151]). The variables
in P are called parameters of the HPG. Let v : BN → E(P) be a function that
assigns integer-valued expression (i.e. weight) to each base node.

A hierarchic parametric graph (HPG) is defined by the tuple
(Nodes,Trans, Init ,Exit , slMin, slMax , gMax , gMin), where:
• Nodes is a finite set such that each h ∈ Nodes is either a base node in BN

or is an HPG;
• Trans ⊆ Nodes ×Nodes is a set of edges;
• Init ⊆ Nodes is a set of initial nodes;
• Exit ⊆ Nodes is a set of exit nodes;
• slMin : Nodes → E(P) is a function that labels each h ∈ Nodes by an

integer expression defining a minimum number of consecutive repetitions
of h in a trace through the HPG;

• slMax : Nodes → E(P) is a function that labels each h ∈ Nodes by an
integer expression defining a maximum number of consecutive repetitions
of h in an trace through the HPG;

• gMax ∈ E(P) is a bound on a maximal number of steps through the HPG.
Furthermore, we require that for a given HPG, gMax , slMin, and slMax

range over E(P) restricted to a single variable p, the same variable for all of
gMax , slMin, and slMax . Note however, that if an HPG H contains a HPG H′
as a node, then the constraints in H′ might be over a different variable.

The HPGs are called hierarchic, as a node of an HPG can be an HPG itself.
HPGs are defined to be non-recursive, i.e., there is no sequence of HPGs H0,
H1, . . . , Hn where H0 = Hn and each Hi is a node in Hi+1. Note that the
set BN of base nodes has been fixed, and hence all HPGs share the same set
of base nodes. In particular, if an HPG H′ is a descendant of an HPG H, they
share the same set of base nodes BN . The semantics of HPGs will further be
defined in terms of sequences of base nodes.

The HPGs are parametric because they are a form of weighted graphs where

153

weights (and lengths) are expressions over a variable p. Using these weights,
we define an optimization problem over HPGs, solving the task of parametric
WCET computation. This optimization problem will be parametric over p.
That is, we do not look for an optimal value of p, but for a solution in terms of
p.

Example 8.3. Consider our running example from Example 8.1[Pg. 147]. The
HPGs we construct are built from abstract segment trees, as illustrated in Sec-
tion 8.2[Pg. 147] (and formally defined in Section 8.5[Pg. 157]). For the abstract
segment tree in Figure 8.3[Pg. 149], each node gives rise to an HPG. Consider
the node A2 in Figure 8.3[Pg. 149]. It yields an HPG with three nodes A3, A4,
A5, each of which is an HPG. There are just two transitions: from A3 to A4

and from A4 to A5. Consider the node A4, which corresponds to an HPG with
just one node, A6. This node has a self-loop. For node A6, both slMax and
slMin are set to n, corresponding to the loop bound for the loop represented by
A4 (the node A6 represents one iteration of the loop).

Semantics of HPGs The semantics of HPGs is defined in terms of sequences
of base nodes and parameters P . We define the semantics with respect to an
arbitrary valuation Val(P) of P . Given an HPG H, we the HPG HVal(P) by
replacing expressions from E(P) with their valuations on Val(P). The semantics
[[HVal(P)]] is a subset of the set BN ∗ of finite sequences of base nodes, as follows.

Let us consider an HPG H = (Nodes,Trans, Init ,Exit , slMin, slMax , gMax).
A one-level path ofH is a sequence h0h1 . . . hn of nodes such that h0 ∈ Init , hn ∈
Exit , and for all i < n, we have (hi, hi+1) ∈ Trans. Further, for each maximal
subsequence t0t1 . . . tv such that t0 = t1 = . . . = tv, we have slMin(t0) ≤ v+1 ≤
slMax (t0).

Let s = b0b1 . . . bk be a sequence of base nodes. Then, the sequence s is in
[[HVal(P)]] if there is a one-level path t = t0t1 . . . tr in H with r+1 ≤ gMax , such
that there exist sequences s0, s1, . . . , sr of base nodes satisfying the following
conditions:
• s = s0s1 . . . sk;
• for each i ≤ r, we have that: (a) if ti is an HPG, then si ∈ [[ti]], and (b) if
ti is a base node b, then si = b.

Let s = b0b1 . . . bk be a sequence of base nodes in [[H]]. The weight of s, that is

v(s), is the sum of the weights of individual nodes. Namely, v(s) =
∑k
i=0 v(bi).

Note that while the weight is computed for the entire path, the length con-
straints, given by gMax for each H, are enforced at each level separately. Based
on the above notations, the problem statement from Section 8.3[Pg. 151] can now
be reformulated in terms of HPGs as follows. To derive a parametric WCET,
we solve the problem of computing the maximum-weight length-constrained
path in a hierarchic parametric graphs. Given an HPG H, we define the
maximum-weight length-constrained path in hierarchic parametric graphs, de-
noted by mwp(H), as an expression in E(P) such that for all valuations Val(P) of
the parameters P , we have that mwp(H)[Val(P)] = max{v(s) | s ∈ [[HVal(P)]]}.

8.4.1 Computation of Maximum-Weight Length-
Constrained Paths

Given an HPG H, we now describe our approach for computing the maximum-
weight length-constrained path for each HPG node.

154

Let H be an HPG which contains H′ as a node. If we find the maximum-
weight length-constrained path for H′, we can use it as a weight of the node
H′ in solving the problem for H. Therefore, it is enough to give an algorithm
for solving the problem for one node — we can assume that each node is a
base node, with a given weight. For ease of presentation, we first present the
algorithm for a special case when for each node k, we have slMin(k) = slMax (k).
Let us first give some definitions that enable us to explain our algorithm.

A set of base nodes L is a loop set, if there is a loop that contains each node
in L exactly once. The weight of L (v(L)) is defined as the sum of the weights
of the node in L, where each node n is counted slMin times.

Let H be an HPG with n base nodes (and no HPG nodes), and with gMax
of H being denoted by N . Let s = b0b1 . . . bk be a finite sequence of base nodes
that starts at an initial node b0 and ends with a final node bk. A loop set
decomposition of a path π is a tuple (spath, (L1, k1), . . . , (Lm, km)), where (a)
the spath is a simple path starting in an initial node and ending in a final node
(its length is at most n); (b) for each 1 ≤ i ≤ k, Li is a loop set, and ki is a
number of times a loop with this loop set was taken in the path; (c) all Li are
distinct. It is straightforward to show that every path can be decomposed to
this form. For a path π, we write LD(π) for its loop set decomposition.

We define an equivalence relation on paths as follows. Two paths π
and π′ are equivalent, denoted by π ≡ π′, if their projections involve the
same loop sets, i.e. if LD(π) = (spath, (L1, k1), . . . , (Lm, km)) and LD(π′) =
(spath ′, (L1, k

′
1), . . . , (Lm, k

′
m)).

A one-heavy-loop (OHL) path is a path where, intuitively, the path “spends
as much time as possible” in the maximum-weight numeric loop it encountered.
Let |L| be the size of a loop set and v(L) the weight of the loop set. A loop set
L is numeric if the weights of the nodes are all numeric expressions, that is not
expressions in E(P). Let π be a path, LD(π) = (spath, (L1, k1), . . . , (Lm, km))
be its decomposition, and let Lq be a loop with maximal weight-average in
{L1, L2, . . . , Lm}. The weight average of a loop L is the ratio of v(L)/|L|. The
path π is an OHL path if, for all i ∈ [1,m], such that i 6= q, we have that for
the ki · |Li| < LCM (|Li|, |Lq|), where LCM denotes the least common multiple
function.

The following key lemma states that the maximum-weight in an equivalence
class is achieved by an OHL path.

Lemma 8.4. Let R be an equivalence class of the equivalence relation ≡. There
exists an OHL path π in R such that for all path π′ in R, we have that v(π) ≥
v(π′).

Proof. Let π be a path, LD(π) = (spath, (L1, k1), . . . , (Lm, km)) be its decom-
position, and Lq a loop with maximal weight-average in {L1, L2, . . . , Lm}. The
main idea of the proof is to show that if a path takes too many iterations of
a numeric loop Li other than Lq, we can obtain a path with greater or equal
weight by “moving” some iterations to Lq. Formally, let us assume that there
is a pair (Li, ki) such that the weight-average v(Li)/|Li| of Li is smaller than
v(Lq)/|Lq|, and ki · |Li| ≥ LCM (|Li|, |Lq|). Then there exists k′i such that
k′i ≤ ki, and k′i · |Li| = LCM (|Li|, |Lq|). Let us consider these k′i iterations of
|Li|. We obtain that for these k′i · |L′i| steps the trace gets k′i · v(Li) weight.
On the other hand, if we iterate over |Lq|, for the same k′i · |L′i| steps, we get

155

r =
k′i·|L

′
i|

|Lq| iterations, and a weight of r · v(Lq). Due to the assumption that

v(Li)/|Li| ≤ v(Lq)/|Lq|, we derive r · v(Lq) ≥ k′i · v(Li).We thus conclude that
given a path in the equivalence path R, we can transform it into an OHL path
in R with equal or greater weight.

Lemma 8.4[Pg. 155] gives us a bound on a number of iterations of numeric
loops that we need to consider. We can obtain also a constant bound on the
number of iterations of symbolic loops. For a symbolic loop L, we can bound
the number of iterations by over-approximating (with a constant) the ratio
gMax/v(L) for a symbolic loop L. This is possible using a (simple) algebraic
solver, as in HPGs both gMax and all weights are linear expressions.
Maximum-weight length-constrained path computation in HPGs. Our
algorithm for computing the maximum-weight length-constrained path through
an HPG H is given in Algorithm 6[Pg. 156]. In line 1, the bounds on the num-
ber of iterations of numeric and symbolic loops are computed. The algorithm
uses the result of Lemma 8.4[Pg. 155]: it first generates structures of the form
(spath, (L1, k1), . . . , (Lm, km)), that are decompositions of paths (line 2). Then,
for each structure that is well-formed (i.e., connected) and bounded for numeric
and symbolic bounds (line 3), we calculate the maximum weight represented by
this decomposition (Line 6). The decomposition dS represents an equivalence
class of paths. The function calculateMaxWeight() constructs an OHL path
by adding as many iterations as possible of the loop with the highest weight-
average such that the total number of steps is less then gMax of the input HPG
H. The function calculateMaxWeight() then returns the length of that path,
and the path itself. The path returned by Algorithm 6[Pg. 156] will be used as
the witness trace to check if we need to refine the segment-based abstraction.

Algorithm 6 MWPforHPG Algorithm.

Input: H : HPG
1: (mxV,pth) ← 0; numB ← NumBnd(H); symB ← SymBnd(H)
2: for all dS ∈ Decomp(H) do
3: if isCon(dS) ∧ isBound(dS,symB,numB) then
4: (m,pth’) ← calculateMaxWeight(dS)
5: if mxV < m then (mxV,pth) ← (m,pth’)
6:

7: return (maxV,path)

In Lemma 8.4[Pg. 155] and Algorithm 6[Pg. 156], we assumed slMin(n) =
slMax (n), for all nodes n. It can be shown that the general problem of finding
the mwp(H) in a HPG H can be reduced to this problem, where the above
assumption holds by a polynomial-time algorithm which is based on a similar
idea as the proof of Lemma 8.4[Pg. 155]. We thus have the following result.

Theorem 8.5. For all HPGs H, MWPforHPG(H) = mwp(H).

This theorem states that Algorithm 6[Pg. 156] finds the maximum-weight
length-constrained path. The key part of the correctness proof of Theo-
rem 8.5[Pg. 156] is provided by Lemma 8.4[Pg. 155]. Note that Algorithm 6[Pg.
156] uses time doubly-exponential in the size of the input HPG. In practice, the
high computational complexity is alleviated by the hierarchical approach of our

156

abstraction, where we can use the structure of the program to obtain graphs
with a very simple shape. One can show that for loops arising from structured
programs, the computational complexity of Algorithm 6[Pg. 156] is (singly) ex-
ponential. Furthermore, we can use the structure of the program to construct
a hierarchical abstraction to obtain graphs that are small enough. Our experi-
ments in Section 8.7[Pg. 163] show that, despite its theoretical high complexity,
Algorithm 6[Pg. 156] scales very well for challenging examples.

8.5 Interpolation for Segment-Based Abstrac-
tion Refinement

We briefly recall the hierarchical segment-based abstraction of Chapter 7. Let
us fix a CFG G = 〈C, E, V,∆, ι0, init , F 〉 with a set of parameters P ⊆ V for
the remainder of this section. A segment is a finite sequence of program states
(recall that a program state is a pair (l, σ), where l is a control-flow location in
C, and σ is a valuation of variables V).
Abstract Segment Trees (ASTs). An abstract segment tree T is a rooted
tree, where each node represents a set of segments. Each node is given by a
tuple (segPred , children, shape), where:
• the set children is such that for internal nodes, children is a subset of nodes

in T , and for leaf nodes, children is a subset of C, the set of control-flow
locations of G;

• shape ⊆ children × children is a transition relation on children;
• the predicate segPred is given by a formula in F(V ∪ V ′).

For an AST T , we define an AST Tval(P) obtained by fixing the valuation Val(P)
of parameters.

Figure 8.3[Pg. 149] illustrates an abstract segment tree as defined above.
Semantics of ASTs. The semantics [[T]] of an AST T is a set of segments.
We will first define [[A]] for a node A in terms of its children. The semantics of
T is then the semantics of the root node.

Let π = (l0, σ0) . . . (lk, σk) be a segment in the CFG G. We will need a
function form(π) that defines a formula representing the path by composition
of formulas ∆((li, li+1)) for 0 ≤ i < k.

We start by defining [[A]] for leaf nodes A. Let A = (children, shape, segPred)
be a leaf node. Recall that the set of children of a leaf node A is a subset of
nodes in the CFG G. A segment s = (l0, σ0) . . . (lk, σk) is in [[A]], iff: (a) for all
i such that 0 ≤ i ≤ k, we have that li is in children, and (b) for all i such that
0 ≤ i < k we have that shape(li, li+1), and (c) form(s) implies segPred .

Let A = (segPred , children, shape) be an internal node in an AST T . A
segment s = (l0, σ0) . . . (lk, σk) is in [[A]], if there are segments s0, s1, . . . sr such
that: (a) s = s0s1 . . . sr, (b) there exist c0, c1, . . . , cr ∈ children such that for
each i such that 0 ≤ i ≤ r, we have that si ∈ [[ci]], and for each i such that
0 ≤ i < r, we have that shape(li, li+1), and (c) form(s) implies segPred .

Example 8.6. Consider the program of Figure 8.1[Pg. 148]. Its CFG is
Figure 8.2[Pg. 148], and its AST is Figure 8.3[Pg. 149]. Given a segment
π = (l0, σ0)(l1, σ1) . . . (lk, σk), we define its projection to CFG locations w(π) =
l0l1 . . . lk. A segment π such that w(π) = C1C3C4C5C6C7C8C10C13C5C15

is in the semantics of the node A2 of the AST, as it can be split into into

157

three segments: (a) π1, such that w(π1) = C1C3C4C5; (b) π2, such that
w(π2) = C5C6C7C8C10C13C5; and (c) π3, such that w(π3) = C5C15. Thus,
π1 is in [[A3]], π2 is in [[A4]], and π3 is in [[A5]].

Reducibility of CFGs. We assume that CFGs are reducible and recursively
reducible. These assumptions hold for CFGs for programs in high-level program-
ming languages. Reducibility means that every maximal strongly connected
component has a single entry and exit point. Recursive reducibility means that
if we remove a maximal strongly connected component form a CFG, the result-
ing graph is still reducible.
Initial abstraction. We describe a function InitAbs(G) that takes a CFG as
an input, and constructs an abstract segment tree T such that [[T]] is a superset
of [[G]]. The function InitAbs uses just the structure of reducible and recursively
reducible CFGs. The idea of the construction is simple: each maximal strongly
connected component (i.e., a loop) will correspond to a node with just one child.
The child will represent the segment in the loop, that is, individual iterations.
An example of this construction is the construction of nodes A4 and A6 in
Figure 8.3[Pg. 149].

The segPred predicate for each node is initially set to true. The leaf nodes
correspond to sequences of instructions in a straight-line code. As an example,
consider again the program in Figure 8.1[Pg. 148], and its initial abstraction
in Figure 8.3[Pg. 149]. Note however that the tree in Figure 8.3[Pg. 149] has
information on loop bounds marked in the extended regular expressions, such as
An6 . For ASTs, the loop bounds can be computed from the predicate segPred .

Proposition 8.7 (Soundness of InitAbs). Let G be a parametric CFG with
parameters P . If T = InitAbs(G), then for all valuations Val(P) of parameters
in P , we have that [[GVal(P)]] ⊆ [[TVal(P)]].

From ASTs to HPGs. We define a function, called astToHPG(T), that
given an AST T constructs the HPG of T . HPGs and ASTs have similar hi-
erarchical structure. The purpose of having two definitions is to cleanly split
the program analysis concerns about discovering predicates in the process of
refinement (which is the goal of ASTs) from the optimization problem (which
is the goal of HPGs).

The mapping from ASTs to HPGs is simple. For each internal AST
node, we create a node of the HPG. We use the transition system defined by
the shape transition relation of each AST node to construct the HPG. Leaf
nodes of the AST will correspond to base nodes of the constructed HPG.
We thus need to compute the weight of the leaf nodes. Let A be a leaf
node of the AST. Recall that a leaf node produced by InitAbs represents seg-
ments corresponding to a straight-line code. We assume there exists a func-
tion WCET (segPredW , shapeW) that over-approximates (with a constant) the
WCET of segments represented by leaf nodes. In practice, we use a low-level
WCET analysis tool for this purpose.

We need to define how the bounds slMax , slMin, gMax associated with a
node of an HPG are computed. This process corresponds to computing loop
bounds In principle, the bounds slMax , slMin, gMax of an HPG node can be
computed using the segPred predicate for the corresponding AST node, its par-
ent, and its siblings. If segPred predicates are not precise enough, the bounds

158

slMax , slMin, gMax can be∞. In practice, we use an external tool to infer loop
bounds [113].

Here, we only illustrate how slMax can be computed using segPred ; the
other bounds are handled similarly. Recall that slMax is the bound on how
many times a node can be repeated. If the node represents the loop body,
slMax corresponds to a loop bound. Consider the following example. Let A
be a node such that its segPred predicate implies i = 0 at the beginning of all
segments in [[A]] and i′ = n at the end. Let A have an only child B, such that
its segPred implies i′ = i+ 1. We can then infer a ranking function that shows
that there can be at most n repetitions of B, which gives us slMax for B.

Summarizing, the function astToHPG(T) constructs the HPG of a given
AST T as detailed above. The corollary shows soundness of the inital abstrac-
tion. It is a consequence of Proposition 8.7[Pg. 158] and Theorem 8.5[Pg. 156].

Corollary 8.8. Let G be a parametric CFG with parameters P , and T an AST
such that T = InitAbs(G). Let H be an HPG such that H = astToHPG(T).
Then MWPforHPG(H) ≥WCET p(G,P).

8.5.1 Interpolation

The choice of interpolants depends on the application in which they are used
– applications may prefer logically strong interpolants [105], interpolants of a
particular shape [3], or minimal with respect to various measures [100]. In our
experiments, we decided to use the method of [100] and compute quantifier-free
interpolants with a minimal number of components and symbols.

Example 8.9. Let A be the formula (i0 = 0)∧(i1 = i0+1)∧(i2 = i1+1)∧(n = 4)
and take B as (i2 < n) ∧ (2 ∗ i2 < n) (these formulae come from the running
Example 8.1[Pg. 147]). Two possible interpolants I of A and B are: (a) I1 =
(n = 4 ∧ i2 = 2); (b) I2 = 2 ∗ i2 ≥ n. However, the interpolant I1 is specific for
the current choice of n and hence will not be useful in our application.

8.5.2 Abstraction Refinement

We now describe our segment-based abstraction refinement algorithm using in-
terpolation for an infeasible witness trace. A witness trace wit is a sequence of
CFG nodes that witnesses the current WCET estimate. It is obtained by HPG
analysis.
AST refinement algorithm. The main idea of the algorithm, given in Al-
gorithm 7[Pg. 160] is to trace the infeasible witness trace (wit) through the
abstract segment tree (AST), and refine the AST nodes touched by the wit .
For each node N , we discover the segment predicates that are important at the
interface of the subtree rooted at N and the rest of the AST. When processing
an AST node, we split each child (visited by the wit) with some new “context”
information, obtained via interpolation. Algorithm 7[Pg. 160] takes four inputs:
(a) an AST T , (b) a node N in T , (c) an infeasible witness trace wit that is a
segment in N , and (d) a formula SumAbove that summarizes the part of the
original witness trace wit outside of the subtree rooted at N . Initially, the algo-
rithm is called with N being the root of the AST, and the formula SumAbove
is set to true.

159

Algorithm 7 Procedure Refine

Input: AST T , node N in T , witness trace wit and formula SumAbove
Output: Refined AST T

1: s ← TraceWit(N ,wit)
2: for all i ∈ {0, . . . , |s|} do
3: context ← SumAbove ∧ SumLR(s,wit ,N) ∧ segPred(N)
4: child ← form(projection(wit ,si))
5: I ← Interpolate(child,context) {context ∧ child unsat}
6: rt ← addToTree(si,I); rf ← addToTree(si,¬I)
7: Refine(T , rt, I∧ segPred(si), projection(wit ,si))

{Recursively refine.}
8: StrengthenDown(rf)
9: RemoveFromTree(T ,si)

10: StrengthenUp(N)

Refinement procedure. We now detail the Refine procedure of Algo-
rithm 7[Pg. 160] and illustrate it on our running example. For a node N , the pro-
cedure Refine obtains a sequence s = s0s1 . . . sk of children of N that the wit-
ness trace wit passes through (line 1 of Algorithm 7[Pg. 160]). Note that a child
can be repeated in s. The wit can be split into segments, where the i-th segment
of wit , denoted as (wit i), belongs to the i-th child si. Recall that the infeasible
wit of Example 8.1[Pg. 147] was wit = C1C3C4 (C5C6C7C8C10C12C13)4C5C15,
obtained for n = 4. The CFG of Example 8.1[Pg. 147] is Figure 8.2[Pg. 148], and
its AST is given in Figure 8.3[Pg. 149]. Consider the node A4 in Figure 8.3[Pg.
149] as the node N . The node A4 represents a loop and the node A6 a single
iteration. The sequence s is then A6A6A6A6 (recall n = 4).

Next, each child si is refined using wit i (loop at line 2). The variable context
stores a formula that summarizes what we know about the trace wit outside of
si (line 3). It is obtained as a conjunction of the formula SumAbove, the seg-
ment predicate of N , and the information computed by the function SumLR().
The function SumLR() computes information about the trace wit as it passes
through the children of N other than si. When refining si, SumLR() returns a
formula ∧k<|s|∧(k 6=i)Jk, where Jk is form(witk) and witk is the part of the wit
going through the node sk. The variable child stores a formula that summarizes
what we know about the wit inside of si (line 4). It is computed as form(wit i),
where wit i was obtained by the projection of wit to the node si. For our running
example, consider the third iteration of A6. In this case, the value of context
is n = 4 ∧ i0 = 0 ∧ i1 = i0 + 1 ∧ i2 = i1 + 1 (we show only the relevant part of
the formula) and the value of child is i2 < n ∧ i2 < bn/2c.

Note that the formula child∧ context is unsatisfiable, as (a) the original wit
is infeasible, and (b) context and child summarize the wit . We hence can use
interpolation to infer a predicate that explains the infeasibility of the wit at the
boundary of the subtree of child si and the rest of the AST. We compute an
interpolant I from the proof of unsatisfiability context∧ child (line 5) such that
context =⇒ I and child ∧ I =⇒ ⊥. In our running example, we obtain the
interpolant i2 ≥ bn/2c.

Using the computed interpolant I, we next replace the node si by two nodes
rt and rf (line 6). The node rt is like si (in terms of its children in the AST),

160

Algorithm 8 Counterexample-Guided Precision Refinement for Parametric
WCET Estimates

1: Input: Program P with a set of parameters P
2: Output: Parametric WCET of P
3: Build the CFG G of P;
4: Construct the AST T corresponding to G; // Abstraction
5: for all nodes A in T do
6: construct the HPG GA of A;
7: compute cost(A)←WCET (A) of A; (Algorithm 6[Pg. 156]).
8: set WCETP (G,P)← cost(A0); // WCET estimates
9: for all each θ ∈ F(P) in the parametric WCETP (G,P) do

10: let wi be the witness trace provided by Algorithm 6[Pg. 156]
11: instantiate parameters P by concrete values satisfying θ
12: check feasibility of w′i for θ;
13: if wi is infeasible then
14: Refine(T ,wi,root(T),true) (Alg. 7[Pg. 160]) // Refinement
15: go to line 5[Pg. 161];
16:

17: return the parametric WCETP (G,P).

but has a transition predicate equal to segPred(si)∧ I. Similarly, for rf we take
its transition predicate segPred(rf) as segPred(si) ∧ ¬I. In this way, each of
these nodes has more information about its context than si had. We can further
refine these two nodes and use them in the AST T instead of si.

Observe that for rt we added the predicate I to its transition predicate. As
child ∧ I is unsatisfiable, the trace wit is not represented in rt. The node rt
can thus be refined by a recursive call to the Refine procedure (line 8). As
child ∧ ¬I is satisfiable, for rf there is nothing more to learn from the wit . We
simply need to strengthen the node, that is, propagate the new predicate, ¬I,
to the children of rf . This is done by calling the StrengthenDown() function
(line 10), which propagates the new information ¬I to the children t of the
node rf . To this end, it checks whether it finds a segment in the node t which is
excluded from the node by ¬I, and then calls the Refine procedure to perform
refinement with the discovered segment used as a witness trace. In our running
example rf corresponds to Af6 and rt is At6.

Finally, the function StrengthenUp() uses the information discovered during
the refinement process for the children of a node N , and strengthens the segPred
predicate of N (line 11).

8.6 Parametric WCET Computation

Algorithm 8[Pg. 161] describes our approach to computing precise paramet-
ric WCET estimates. Given a program P, we first construct its CFG (line 3[Pg.
161]), and build the corresponding initial AST (line 4[Pg. 161]). From the AST,
we construct an HPG and derive the WCET (lines 5[Pg. 161]-7[Pg. 161]), using
Algorithm 6[Pg. 156]. The WCET is precise if a feasible program path exhibits
the WCET. We therefore check if the witness trace exhibiting the WCET is
indeed feasible (lines 9[Pg. 161]-15[Pg. 161]). If not, we refine our current AST

161

using Algorithm 7[Pg. 160]. Our method iteratively refines the AST and returns
more precise parametric WCET estimates.

8.6.1 Improvements and Extensions

We now describe some improvements to Algorithm 8[Pg. 161].
Dependent loops. In the HPG evaluation algorithm (Algorithm 6[Pg. 156]),
while computing the cost for a node, we always assume the worst-case cost of
inner nodes. However, there is a common case where this gives bad estimates
of the actual worst-case cost of the node, namely in the case of the dependent
loops.

For example, consider the program from Figure 8.7[Pg. 163]. Now, the
worst-case cost of an iteration of the outer loop is n ·k (where k is the cost of an
iteration of the inner loop). Using this worst-case cost, we get that the worst-
case cost of the outer loop is n2 · k; note the non-linear expression! However,
the cost of the inner-loop is only k · i in the ith iteration and the estimated
cost is imprecise. In this case, we can incorporate the precise cost of the child
node while computing the cost of the parent node, i.e., the cost of the outer
loop is

∑n−1
i=0 i · k, leading to a more precise estimate. Intuitively, using this

method, when the cost of the child node in the ith repetition is a polynomial
in i (say p(i)) we can compute the more precise estimates as

∑n
i=1 p(i). We

implemented this optimization, resulting in improvements of WCET estimates
in the presence of nested loops. Note that this approach leads to non-linear
expressions. The problem of checking whether an expression is always greater
than another becomes undecidable for non-linear expressions. However, in all
our experiments, the non-linear solver we use (Z3) handled these expressions.
Cost model. The simple cost model described Section 8.3[Pg. 151] is restrictive
in regards to incorporating various timing features of processors, as it can incor-
porate only the must-hit/may-miss cache information. State-of-the-art WCET
analysis techniques can however incorporate also other information like cache-
persistence [171] (i.e., an instruction may cause a cache-miss the first time it is
executed, but will successively be cache-hits). The common high-level technique
to used to incorporate such information into WCET analysis is the implicit-path
enumeration technique (IPET) [171]. In this technique, an integer linear pro-
gram (ILP) is built containing the execution frequencies fi and cache-hit fhi and
cache-miss fmi frequencies of each instruction i. The ILP contains constraints
fi = fhi + fmi and additional constraints fhi = 0, fmi = 0, or fmi ≤ based on
whether the instruction is always-miss, always-hit or persistent.

Note that the structure of the HPG generated by our method incorporates
all of the above constraints except for the persistence constraint. Persistence
constraints can be handled by splitting the HPG node containing the corre-
sponding instruction into two – where in one node, the instruction has cost of a
cache-miss and in the other, it has cost of a cache-hit. The former node will be
given slMin and slMax values 1. In this way, we can incorporate more complex
cost-models into our algorithm. In fact, one can show that theoretically, the
HPG can encode every cost model encodable through IPET.
Low-level timing refinement. Computing the instruction costs is usually
done through abstract interpretation. For example, in [171], invariants from an
abstract domain are used to compute cache-hit/miss information. A standard
problem with such analyses is that they are, by default, context-insensitive.

162

n:=0;

while(n < iters)

if(health==round0)

HighVoltageCurrent(health)

UpdatePeriod(temp, 5)

if(hit trigger flag==0)

ResetPeakDetector()

if(health==round1)

...

if(health==round4)

LowVoltageCurrent()

. . .
if(health!=0)

health--

else

health=9

n++

Figure 8.6: part of ex2
from Debie suite.

for (i=0; i<n; i++){
for (j=i+1; j<n; j++){

B.re[j][i] = B.re[i][j];

B.im[j][i] = -B.im[i][j];}
B.im[i][i] = 0.0;}

Figure 8.7: part of ex7
from Jampack.

Example 8.10. Consider the program in Figure 8.5[Pg. 151]. Suppose that
execution of the then- and else-branches move i out of and into the cache re-
spectively. When performing flow-insensitive cache analysis of the loop as a
whole, the variable i is not persistent in the cache and the analysis assumes
cache-misses for each iteration. However, suppose we refine the set of iterations
of the loop into sets containing iterations taking the then branch (At) and else
branch (Af). When computing costs of n continuous iterations of (Af)∗, one
can see that i is persistent in (Af)∗. Incorporating this persistence information
into our method, we can see that a cache-miss occurs for i only once every
20 iterations. This is a significant improvement over the initial estimate of a
cache-miss every iteration.

Example 8.10[Pg. 163] shows that an added advantage of segment-based
abstraction is that one can refine low-level timing information for instructions
in a segment using the context of the segment. This provides a systematic way
of incorporating context information into low-level WCET analysis – avoiding
common heuristics like loop-peeling, context-bounding, etc.

8.7 Experimental Evaluation

We implemented our approach in a tool called IBART. It takes C programs
(with no procedure calls) as inputs, and returns a parametric WCET estimate
for the program as output.
CFG construction. Our implementation analyzes the WCET of programs
run on an Infineon C167 processor, and uses the CalcWcet167 low-level WCET
analyzer [112] to compute instruction costs at the binary level. By exploiting
the architecture-aware framework of r-TuBound, IBART is cache-aware.

163

Abstraction and Refinement. IBART implements new methods for con-
structing the ASTs from CFGs, building HPGs from ASTs, computing WCET
estimates using HPGs, and refining the segment-based abstraction using inter-
polation, as detailed in Sections 8.4[Pg. 153]-8.5[Pg. 157].
Interpolation. For computing interpolants, IBART relies on Vampire [115].
IBART implements a heuristic on top of the interpolant minimization [100]. Our
interpolants are minimal both in the number of their components and symbols,
are quantifier-free, and contain a minimal number of disjunctions. We prefer
conjunctive interpolants instead of disjunctive ones,
WCET estimates. For solving HPG constraints over WCET, we implemented
a new algebraic solver in IBART, and derive the parametric WCET as a solution
of max-expressions over linear integer arithmetic formulas. Our solver returns
relational properties among program variables, and not a concrete assignment to
program variables, for which the maximum-weight length-constrained problem
of WCET computation is satisfied.
Benchmarks. We evaluated IBART on 10 examples (examples 2 to 11 in
Table 8.1[Pg. 165]) taken from WCET benchmark suites and open-source linear
algebra packages. We used small, but challenging examples. Of the 10 examples,
3 are small functions with less than 30 lines of code; the remaining 7 have
between 34 and 109 lines of code. The examples were chosen to be challenging
for WCET analysis, due to two features: (a) branching statements within loops,
leading to branches with different execution times, and (b) nested loops, whose
inner loops linearly depend on the outer loops.
WCET benchmark suites. We used the Debie and the Mälardalen bench-
mark suite from the WCET community [171], which are commonly used for
evaluating WCET tools. We analyzed one larger example (109 lines) from the
Debie examples (ex2 in Table 8.1[Pg. 165]) and 4 programs from the Mälardalen
suite. The parametric timing behavior of these examples comes from the pres-
ence of symbolic loop bounds. An excerpt from the Debie example is shown in
Figure 8.6[Pg. 163].

Note that in Figure 8.6[Pg. 163], different paths in the loop body have dif-
ferent execution times. Moreover, every conditional branch is revisited at every
tenth iteration of the loop. Computing the WCET of the program by taking
the most expensive conditional branch at every loop iteration would thus yield
a pessimistic overestimate of the actual WCET. Our approach derives a tight
parametric WCET by identifying the set of feasible program paths at each loop
iteration.
Linear algebra packages. We used 5 examples from the open-source linear
algebra libraries JAMA and Jampack. These packages provide user-level classes
for constructing and implement non-trivial mathematical operations, including
inverse calculation (ex7), singular value decomposition (ex8), triangularization
(ex9), and eigenvalue decomposition (ex10, ex11) of matrices in Java. We
manually translated them to C. The control flow of these benchmarks contains
nested loops, sometimes with conditionals, where inner loops linearly depend
on outer loops. Figure 8.7[Pg. 163] gives a partial and simplified version of a
Jampack class implementing matrix inverse operations. Observe that the inner
loop of this example linearly depends on the outer loop, and the WCET of the
program depends on the (matrix) dimension n. IBART computes the WCET
of the program as a symbolic expression in this parameter (Table 8.1[Pg. 165]).
Results. We first evaluated IBART for parametric WCET computation. Next,

164

we compared IBART with a state-of-the-art WCET analyzer. All results were
performed on a 64-bit 2.2 GHz Intel Core i7 CPU with 8 GB RAM and obtained
in less than 60 seconds.

Ex Source/File Parametric WCET
ex1 Section 8.2[Pg. 147] {(n ≤ 5, 24940),

(n ≥ 6, 5040 + 2800bn/2c+ 1900n)}
ex2 Debie/ {(n ≤ 0, 2620),

health (n > 0, 2620 + bn/10c59100+
(n− bn/10c × 10) ∗ 6800)}

ex3 Mälardalen/ {(dlt 6= 0, 4180 + 5060n),
adpcm (dlt = 0, 4260 + 2500n)}

ex4 Mälardalen/ {(jrev > 0, 5560 + 3860len),
crc (jrev ≤ 0, 4320 + 3380len)}

ex5 Mälardalen/ {(len ≥ −1 ∧ init = 0, 7800 + 3840len),
crc (init 6= 0, 3060)}

ex6 Mälardalen/ {(n ≥ 0, 1740 + 2460n),
lcdnum (n < 0, 1740)}

ex7 Jampack/ {(2 > n ∧ n ≥ 0, 13540 + 6420n),
Inv (0 > n, 13380),

(n > 2, 13380− 3100n+ 9480n2)}
ex8 Jampack/ {(nc ≤ nr ∧ r ≥ c, 3840),

Zsvd (nc > nr ∧ c > r > b, 18260 + 18820(r − b)),
(nc ≤ nr ∧ c < r, 3920)}

...

ex9 JAMA/ {(1 = n, 14260 + 27420n+ 3200n2),
Cholesky- (1 > n, 14260),
Decomposition (n > 1, 14260 + 15447n+ 13419n2 + 1754n3)}

ex10 JAMA/ {(1 > n, 11780),
Eigenvalue- (n ≥ 1,−11784 + 17602n− 5146n2 + 11108n3)}

ex11 Jampack / {(n < 0, 25460),
Eigenvalue (n ≥ 0, 25460 + 28400n+ 9500n2+
Decomposition +11220n3)}

Table 8.1: Parametric WCET computation using IBART.

IBART results. Our results are summarized in Table 8.1[Pg. 165]. Column
2 lists the source of the example. We denote by ex1 our running example
from Figure 8.1[Pg. 148]. Column 3 shows the parametric WCET calculated by
IBART, using the solution language of Section 8.3[Pg. 151]. In all cases, the
number of refinements needed to obtain the WCET result was between 2 and
6.
Comparison with WCET tools. We compared the precision of IBART
to r-TuBound [113] supporting the Infineon C167 processor. This was the only
possible direct comparison, as the other tools do not support that processor. We
chose C167 as the target platform, due to its comparably simple architecture,
while it is still deployed in real-world applications. Note that r-TuBound can
only report a single numeric value as a WCET estimate. Therefore, to allow
a fair comparison of the WCET results, symbolic parameters in the flow facts
need to be instantiated with concrete values when analyzing the WCET with r-
TuBound. When comparing IBART with r-TuBound, we hence instantiated our
parametric WCET (from Table 8.1[Pg. 165]) with the values used in r-TuBound.

Our results, summarized in Table 8.2[Pg. 166], show that IBART provides
significantly better WCET estimates. For larger values of parameters, these
differences increase rapidly, as shown by ex2. This is because r-Tubound over-
approximates each iteration much more than IBART, so if the number of itera-
tions increases, the difference grows. The first two columns of Table 8.2[Pg. 166]
describe the source of the examples, similarly to Table 8.1[Pg. 165]. Column 3

165

Ex Source/File Parameter assignments IBART r-TuBound
ex1 Section 2 n = 5 22300 26060

n = 100 388040 480160
ex2 Debie/ n = 10 62020 124920

health n = 50 298420 612920
n = 200 1184920 2442920

ex3 Mälardalen/ n = 6, dlt = 0 19260 345040
adpcm n = 0, dlt 6= 0 4180 4260

n = 0, dlt = 0 4260 4260
ex4 Mälardalen/ len = 5, jrev < 0 24860 24860

crc len = 5, jrev ≥ 0 21220 24860
len = 0, jrev ≥ 0 4320 5560

ex5 Mälardalen/ init = 0, len = 255 987000 987000
crc init = 1, len = 255 2920 987000

ex6 Mälardalen/ n = 10 21660 26340
lcdnum n = 5 13960 13960

ex7 Jampack/ n = 5 243880 519280
Inv n = 1 19760 19960

ex8 Jampack/ r = 4, c = 5, 93540 100480
Zsvd nr < nc, b = 0

ex9 Jampack/ n = 5 646220 1545760
Cholesky- n = 1 44880 44880

ex10 JAMA/ n = 5 1335920 2606180
Eigenvalue n = 0 11620 11620

ex11 Jampack/ n = 5 1799620 1799620
Eigen-Decomp. n = 1 74580 74580

Table 8.2: WCET comparisons.

lists the value assignments of parameters. Columns 4 and 5 show respectively
the WCET computed by IBART and r-TuBound.

Summary. We addressed the problem of computing precise parametric
WCET estimates of programs. The two main technical contributions are: (a)
the hierarchical parametric graphs (HPGs) and and the reduction of the prob-
lem of parametric WCET computation to a maximum-weight length-constraint
optimization problem over paths of HPGs; and (b) a novel interpolation-based
approach for refining of segment-based abstractions. This is used to refine the
parametric WCET of the program. We evaluated our method on On the prac-
tical side, the contribution of the chapter comes with the implementation and
evaluation of our method on examples taken from WCET benchmark suites and
open-source linear algebra packages. When compared to existing WCET tools,
our experiments show that our method improves the state-of-the-art in WCET
computation.

166

Chapter 9

Battery Transition Systems

The analysis of the energy consumption of software is an important goal for
quantitative formal methods. Current methods, using weighted transition sys-
tems or energy games, model the energy source as an ideal resource whose
status is characterized by one number, namely the amount of remaining energy.
Real batteries, however, exhibit behaviors that can deviate substantially from
an ideal energy resource. Based on a discretization of a standard continuous
battery model, we introduce battery transition systems. In this model, a battery
is viewed as consisting of two parts – the available-charge tank and the bound-
charge tank. Any charge or discharge is applied to the available-charge tank.
Over time, the energy from each tank diffuses to the other tank.

Battery transition systems are infinite state systems that, being not well-
structured, fall into no decidable class that is known to us. Nonetheless, we
are able to prove that the ω-regular model-checking problem is decidable for
battery transition systems. We also present a case study on the verification of
control programs for energy-constrained semi-autonomous robots.

9.1 Motivation

Systems with limited energy resources, such as mobile devices or electric cars,
have become ubiquitous in everyday life. In accordance, there is a growing
attention to the formal modeling of such systems and the analysis of their be-
havior. These systems are commonly modeled as weighted transition systems,
where the states of the transition system represent the system configurations,
the transitions represent the possible operations, and the weights on the tran-
sitions correspond to the energy consumed (negative value) or added (positive
value) during the operation. In recent literature (for example, [44, 47, 118]),
weighted transition systems have been analyzed with respect to various prob-
lems, such as finite-automaton emptiness problem (starting from a given initial
energy, can a specific configuration be reached while keeping the energy pos-
itive in all intermediate steps?), and Büchi emptiness problem (can a specific
configuration be visited repeatedly, while keeping the energy positive?).

In all these works, the energy-resource is idealized. In particular, it is as-
sumed that its status can be completely characterized by one number, namely
the amount of remaining energy. However, physical systems with energy re-

168

strictions often use batteries, which are far from an ideal-energy source. One
such non-ideal behavior of a battery behavior is the “recovery effect”, where
the available energy at certain times is smaller than the sum of energies con-
sumed and charged. Intuitively, the recovery effect is a result of the fact that
energy is consumed from the edge of the battery, while the total charge is spread
across the entire battery. When the consumption is high, additional time may
be required until the charge diffuses from the inside of the battery to its edge,
during which period there is no available energy, possibly failing the required
operation.

The recovery effect is often noticed in our daily usage of battery-powered
systems, for example mobile phones – a phone might shutdown due to an “out
of power” condition, but then become live again after an idle period.

We aim to formally model such energy systems with non-ideal resources.
We define a “battery transition system” (BTS), where the system is viewed
as a weighted transition system, as is standard. However, the semantics of
its possible traces is specified differently, to capture non-ideal behaviors. The
semantics we specify for BTSs correspond to a discretization of a well-known
battery model – the kinetic battery model (KiBaM) [123]. There are various
battery models in the literature, admitting various accuracies and complexities,
among which the KiBaM model is a good choice for the purpose of properly
analyzing systems with the recovery effect [107]. We elaborate, in Section 9.2[Pg.
171], on various battery models, and explain the derivation of BTS semantics
from the KiBaM model.

Semantics. The status of the battery in a BTS is a pair (x, y), where x
represents the available charge (available for immediate usage) and y the bound
charge (internal charge in a battery that is not immediately available). During
each transition, some amount of charge diffuses between x and y. The weight
of the transition (say w) affects only x in the current step. The diffusion rate
depends on the difference between x and y, and on two constants of the battery:
a width constant c ∈ R with 0 < c < 1, and a diffusion constant k ∈ R with
0 < k < c(1−c). Formally, taking a transition of weight w from a battery status
(x, y) results in the battery status (x′, y′), where x′ = x− k · (xc −

y
1−c) +w and

y′ = y + k · (xc −
y

1−c). The value k · (xc −
y

1−c) represents the amount of charge
diffused between x and y. The above transition is legal if the available charge
x remains positive after the transition.

The mathematical properties of a BTS are shown to be inherently different
from those of a simple-energy transition system (where only the value of x+ y
is considered), as illustrated in Fig. 9.1[Pg. 170]: Considering the system B1

as a simple-energy system, where only the total energy should remain positive,
s1 is directly reachable from s0, and the cycle s0 → s2 → s3 → s0 cannot aid
in any way as it has a negative total weight. On the other hand, viewing B1

as a BTS, in order to go from state s0 to s1, counter-intuitively, a legal trace
must first take the cycle through s2 and s3. Though decreasing the total energy,
the cycle temporarily increases the available energy, allowing the transition to
s1. Furthermore, it is known that a simple-energy system (even with multi-
dimension energies) admits an illegal trace if and only if it admits a memoryless
illegal trace (always making the same choice at each state) [47]. However, an
illegal trace in the system B2 of Fig. 9.1[Pg. 170] must make different choices at

169

s0

(16, 16)

s1 s2 s3
−12 −1

+12

−17

+1

B1

s0

(16, 16)

s1 s2 s3
+12 +1

−12

−15

+1

B2

Figure 9.1: In the battery system B1, a trace reaching the state
s1 must make a cycle with total negative energy. In B2, an illegal
trace must make different choices at different visits in s0. Here, we
have the diffusion constant k = 1

8 and the width constant c = 1
2 .

different visits in state s0 (Theorem 9.3[Pg. 177]).

Model checking. We consider the finite-automaton, Büchi, and Streett
emptiness problems for a BTS; these problems are central to the model checking
of systems with no fairness constraints, weak fairness constraints, and strong
fairness constraints, respectively.

As BTSs are infinite-state systems, it is natural to ask if they fall into a
known, tractable, class of infinite state systems. For example, standard model-
checking algorithms exist for well-structured transition systems (e.g., lossy chan-
nel systems, timed automata [6], etc), where a well-quasi ordering can be de-
fined on the states of the infinite systems, and this ordering is compatible with
the transition relation of the system. However, for BTSs, we can show that
the infinite sequence (1, 1), (3

4 , 1
1
4), (11

16 , 1
5
16), (43

64 , 1
21
64), . . . of battery statuses is

monotonically decreasing with respect to any ordering that is compatible with
transitions. Intuitively, this sequence contains battery statuses that have equal
total charge, but strictly decreasing available charge. This implies that model-
checking algorithms from the domain of well-structured transitions systems do
not apply directly to BTS.

We solve the finite-automaton emptiness problem by building a forward
reachability tree, along the lines of the Karp-Miller tree for Petri nets [110].
There, using the well-structured properties of Petri-nets, the Karp-Miller tree
is shown to be a finite summarization of all reachable states, despite there be-
ing infinitely-many reachable states. A BTS is not well-structured, yet we are
able to generate a finite “summary tree”, having all the reachability data, by
proving the following key observations: 1. Once the total energy in a battery
status is high-enough, the problem can be reduced to simple-energy reachability;
2. Considering some characteristic properties of battery statuses allows us to
define a simulation-compatible total ordering between statuses having the same
total energy; and 3. Repeating a cycle whose total energy sums to 0 makes the
battery status converge monotonically to a limit value independent of the initial
status. Despite the fact that the above ordering is not well-founded, i.e., there
may be infinite chains, the last observation lets us take limits of infinite chains

170

while constructing the reachability tree.
In simple-energy systems, extending the finite automaton emptiness algo-

rithm to a Büchi emptiness algorithm is straightforward – checking whether
there is a reachable Büchi state that has a cycle back to itself, such that the
sum of weights on the cycle is non-negative. In a BTS, such a simple solu-
tion does not work – a cycle that does not decrease the total energy might
still fail the process after finitely many iterations, as the available charge can
slightly decreases on every iteration. A simple modification, seeking cycles that
do not decrease both the total and the available energies is too restrictive, as
the available charge may still converge to a positive value. We solve the Büchi
emptiness problem by showing that if there exists an accepted trace, there also
exists a lasso-shaped accepted trace having one of two special forms. These
forms concern the way that the available charge changes along the cycle. By a
delicate analysis of the reachability tree, we then solve the question of whether
the transition system allows for a trace in one of these special forms. The Streett
emptiness problem is solved similarly, by using a small extension of the Büchi
emptiness algorithm.

We show that our algorithms for the finite-automaton, Büchi, and Streett
emptiness problems are in PSPACE with respect to the number of states in
the transition system and a unary representation of the weights. If weights
are represented in binary, or if the battery constants are arbitrarily small and
represented in binary, the space complexity grows exponentially.

Case study: Robot control. We examine a semi-autonomous robot con-
trol in an energy-constrained environment. We present a small programming
language for robot-controllers and define quantitative battery-based semantics
for controllers written in that language. We solve the ω-regular model-checking
problem for programs written in this language, using our results on battery
transition systems. We demonstrate the inadequacy of standard quantitative
verification techniques, where the battery is viewed as an ideal energy resource
– they might affirm, for example, that the robot can reach some target locations,
while taking into account the non-ideal behavior of its battery, it cannot.

9.2 Battery Models

We provide a short description of how batteries are modeled in the literature,
and explain how we derive our formal model of a battery.

A battery consists of one or more electro-chemical cells, each of which con-
tain a negative electrode (anode), a positive electrode (cathode), and a separator
between them. During discharge and recharge, electrons move through the ex-
ternal circuit, while chemical reaction produces or consumes chemical energy
inside the battery. For example, during discharge in lithium-ion (Li-ion) batter-
ies, positive lithium ions move from the anode to the cathode, while the reverse
occurs during recharge (see Fig. 9.2[Pg. 172]).

Batteries of all types have a “recovery effect”, meaning that the chemical
reaction inside the battery does not keep up with the rate of the external activity.
Internally, in Li-ion batteries, the concentration of the electro-active species near
the electrodes becomes smaller than their concentration in the interior of the
battery. When the battery has low load for some time, the ions have enough

171

Discharge

Charge

Seperator (+)Cathode(−) Anode

V

Lithium ions (Li+)

Figure 9.2: Schematic of a lithium-ion (Li-ion) battery.

Center of
battery

Cathode

Initial state Discharge After full recovery

battery

C
o
n

ce
n

tr
ar

io
n

Center of Cathode Center of
battery

Cathode

Figure 9.3: Concentration of electro-active species along the bat-
tery, following a discharge and a recovery phase.

time to diffuse to the electrodes, and charge recovery takes place (see Fig. 9.3[Pg.
172]). The well-known symptom of this is that a battery might be “empty” after
some usage, but then becomes “charged” after an idle period.

There are many battery models modeling various aspects of a real bat-
tery. The most accurate ones model the electro-chemical reactions in detail
[27, 76, 87, 137]. Though highly accurate, they require configuration of many
(usually around 50) parameters, making them difficult to analyze. Another
approach taken is to model the electrical properties of the battery using volt-
age sources, resistors, and other elements [89, 92]. These approximate battery
voltage behavior well, but their modeling of the available battery capacity is
inaccurate. A third class consists of the analytical models that describe the
battery at a high abstraction level, modeling only its major properties by means
of a few equations. The dominant models of this class are the kinetic battery
model [123], and the diffusion model [141]. A detailed description of the various
models can be found in [106, 107].

Current

Bound charge Available charge

hy

1 − c

p

x

y
hx

c

Figure 9.4: Kinetic battery model (KiBaM).

The possibly simplest, yet useful, model that handles the recovery effect is

172

the kinetic battery model (KiBaM) [123]. While being originally developed for
Lead-Acid batteries to model both battery capacity and battery voltage, its
capacity modeling was found to be a good approximation even for more modern
batteries such as the Li-ion battery. In [106, 107], it was theoretically shown
that KiBaM is a first order approximation of the diffusion model, which was
designed for Li-ion batteries. In addition, their experimental results show that
it has up to 7 percent deviation from the accurate electro-chemical models.

We concentrate on a battery’s available capacity, and hence, adopt the
KiBaM model. In this model, the battery charge is distributed over two tanks:
the available-charge tank, denoted x, of width c ∈ (0, 1), and the bound-charge
tank, denoted y, of width 1 − c (see Fig. 9.4[Pg. 172]). The external current
gets electrons only from the available-charge tank, whereas electrons from the
bound-charge tank flow to the available-charge tank. When recharging, the re-
verse process occurs, electrons are added directly to the available-charge tank,
from there they flows to the bound-charge tank. The charge flows between the
tanks through a “valve” with a fixed conductance p. The parameter p has the
dimension 1/time and influences the rate at which the charge can flow between
the two tanks. This rate is also proportional to the height difference between
the two tanks. If the heights are given by hx = x/c and hy = y/(1− c), and the
current load by w(t), the charge in the tank over time behaves according to the
following system of differential equations [123]:

dx

dt
= −w(t)− p(hx − hy);

dy

dt
= p(hx − hy) (9.1)

with initial conditions x(0) = c · C and y(0) = (1− c) · C, where C is the total
battery capacity. The battery cannot supply charge when there is no charge left
in the available-charge tank.

We are interested in calculating the battery status along a discrete-time
transition system, thus consider the equations (9.1[Pg. 173]) for fixed time steps.
We get the following equations:

xi+1 = xi − wi − k(hxi − hyi); yi+1 = yi + k(hxi − hyi) (9.2)

where xi and yi are the values of x and y before the time step i, respectively, wi is
the total load on the battery at time step i, and k = p× (length of a time step).
The smaller the time steps are, the smaller k is, and the more accurate the
discretization is.

We further need to ensure that the discretization does not introduce unde-
sirable behaviours. In Eq. 9.1[Pg. 173] if hx > hy and w(t) is 0, the relation
hx > hy keeps holding. We should ensure this in the discrete model, i.e., if
hxi > hyi and wi = 0, then it cannot be that hxi+1 ≤ hyi+1 .

Formalizing the above requirement, we have

hxi+1
=
xi+1

c
=
xi − 0− k(hxi − hyi)

c
= hxi −

k(hxi − hyi)
c

;

hyi+1
=

yi+1

1− c
=
yi + k(hxi − hyi)

1− c
= hyi +

k(hxi − hyi)
1− c

.

Hence, hxi+1
− hyi+1

= (hxi − hyi)(1− k(
1

c(1− c)
)).

173

Therefore, the parameter k is acceptable if k(1
c(1−c)) < 1, leading to the

conclusion that
k < c(1− c) (9.3)

9.3 Battery Transition Systems

We incorporate the discrete battery model from Equation 9.2[Pg. 173] into a
weighted transition system. The system consists of finitely many control-states
and weighted transitions between them, where the weights denote the amount
of energy recharged/consumed at each operation.

9.3.1 Weighted Transition Systems and Battery Seman-
tics

A unlabelled transition system is a tuple 〈S,∆, sι〉 where S and sι are a set of
states and an initial state as in a labelled transitions system. The set ∆ ⊆ S×S
is a set of transitions with no labels. Similarly, a unlabelled weighted transition
system (UWTS) is a tuple S = 〈S,∆, sι, v〉 where 〈S,∆, sι〉 is an unlabelled
transition system, and v : ∆→ Z is a weight function labeling transitions with
integer weights1.

A battery transition system (BTS or battery system, for short) is a tuple
B = 〈〈S,∆, sι, v〉, c, k〉 where 〈S,∆, sι, v〉 is a UWTS with a finite number of
control states (i.e., |S| < ∞), c ∈ R is a width constant with 0 < c < 1, and
k ∈ R is a diffusion constant with 0 < k < c(1− c).

Semantics. Given a BTS B = 〈S, c, k〉, a battery status (x, y) ∈ R2
>0 repre-

sents the current configuration of the battery. Intuitively, the values x and y
represent the charge in the available-charge tank and the bound-charge tank of
the battery, respectively (see Figure 9.4[Pg. 172]).

If the current battery status is (x, y), on a transition of weight w, we define
the change in the battery status using a function Post : R2 × Z → R2, letting
the battery status after the transition (x′, y′) = Post((x, y), w). Here, we follow
the standard convention of energy transition systems and consider a positive
(resp. negative) weight as adding (resp. drawing) a charge to (resp. from) the
battery. In matrix notation, we have the following.

Post((x, y), w) =

[
AB ·

(
x
y

)]>
+

(
w
0

)>
, where

AB =

(
1− k

c
k

1−c
k
c 1− k

1−c

)
The matrixAB is called the diffusion matrix. Note that the Post function indeed
follows Equation 9.2[Pg. 173] except for the change in the sign of w. The values
k
c ·x and k

1−c ·y denote the heights hx and hy of the two tanks, and hence, we get
that x′ = x− k · (hx−hy) +w and y′ = y+ k · (hx−hy). We abuse notation by

1 All of our results equally hold for rational weights, by simply multiplying all weights by
the product of all denominators.

174

defining Post(t, w1w2 . . . wm) inductively as Post(Post(t, w1), w2 . . . wm) where
each wi ∈ Z.

Given an initial battery status tι ∈ R2
>0, the semantics of a BTS B =

〈〈S,∆, sι, v〉, c, k〉 is given by a (possibly infinite) transition system 〈E,→, eι〉
where E = S × R2

>0 is the set of states, →⊆ E × E is the transition relation,
and eι = (sι, tι) is the initial state.
• We call each (s, t) ∈ E an extended state with s ∈ S being its control

state, and t ∈ R2
>0 being its battery status 2.

• We have ((s, t), (s′, t′)) ∈→ if and only if Post(t, w) = t′ and (s, s′) ∈
∆∧v((s, s′)) = w. We write (s, t)→ (s′, t′) instead of ((s, t), (s′, t′)) ∈→.

A weight w (and by extension, a transition with weight w) is feasible from
battery status t if Post(t, w) ∈ R2

>0, namely if Post(t, w) is a valid battery
status. Similarly, a sequence of weights w0w1 . . . wn is feasible from t iff w0 is
feasible from t and each wi is feasible from Post(t, w0 . . . wi−1). Extending the
nomenclature, we call every t ∈ R2 \ R2

>0 infeasible.
The traces of a BTS B, denoted Π(B), are given by (infinite or finite) paths

of the form π = (s0, t0)(s1, t1) . . . where s0 = sι and t0 = tι and for every i ≥ 1,
we have (si−1, ti−1)→ (si, ti). The corresponding control trace is given by θ =
control(π) = s0s1 . . ., and the set of control traces by Θ(B) = {control(π) |
π ∈ Π(B)}. We say that a (finite or infinite) sequence of control states s0s1 . . .
is feasible from a battery status t iff the weight sequence w0w1 . . . is feasible
from t, where (si, si+1) ∈ ∆ ∧ v((si, si+1)) = wi.

Energy feasibility. We define an alternate set of semantics corresponding to
the classical notion of ideal-energy systems. We say that (x, y) ∈ R2 is energy-
feasible if x+ y > 0. As for the term “feasible”, we further extend the notion of
energy-feasible as follows: 1. A sequence of weights w0 . . . wn is energy-feasible
from (x, y) iff Post((x, y), w0 . . . wi) is energy-feasible for all 0 ≤ i ≤ n; and
2. A sequence of control states s0s1 . . . is energy-feasible from (x, y) iff w0w1 . . .
is energy-feasible from (x, y) where wi = v(si, si+1).

Characteristic functions. For mathematical simplicity, we follow the ap-
proach taken in [123] and use an alternate representation for battery statuses.
We represent (x, y) using two other numbers, denoting it [e; d], where e and d

are defined by the following energy and deviation functions.
• e = energy((x, y)) = x+ y; and

• d = deviation((x, y)) = x− y · c

1− c
.

Intuitively, e is the total energy in the battery and d is the difference between
the heights of the two tanks multiplied by the factor c. The mathematical
simplicity in using energy and deviation stems from the fact that they cor-
respond to the eigenvectors of the diffusion matrix. Given e = energy(t)
and d = deviation(t), the battery status t = (x, y) is uniquely determined:
x = ce + (1 − c)d and y = e − x. Hence, we use the notations [e; d] and (x, y)
interchangeably.

Proposition 9.1. For any battery status [e; d] and w ∈ N, we have that
Post([e; d], w) = [e + w;λ · d + w] where λ = 1− k

1−c −
k
c .

2All of our results equally hold for the case that the element values should be non-negative,
rather than strictly positive, but the proofs are marginally simpler in the strictly positive case.

175

The above proposition is a translation of the Post function to the [e; d]
notation. Intuitively, the energy is increased by the weight w as expected, while
the difference in the tank heights is first reduced by a constant factor of λ and
then increased due to the charge w added to the first column. The factor λ turns
out to be the central parameter of the battery, playing a key role in how BTSs
behaves. The following lemma formalizes the intuition that the bound-charge
tank (y) cannot get empty before the available-charge tank (x) does.

Lemma 9.2. Suppose battery status (x, y) is feasible, and let Post((x, y), w) =
(x′, y′). We have [e′; d′] = (x′, y′) is feasible iff x′ > 0, and, equivalently, if and
only if ce′ + (1− c)d′ > 0.

Proof. The only if implication is obvious. As for the if, we have x′ = (1− k
c)x+

k
1−cy+w and y′ = k

cx+ (1− k
1−c)y. Assuming x > 0 and y > 0, it easily follows

that y′ > 0. Hence, (x′, y′) is infeasible if and only if x′ ≤ 0 or equivalently, if
x′ = ce′ + (1− c)d′ ≤ 0

Model checking. The problems we consider ask for the existence of a control
trace θ in the semantics of a BTS B with control states S given an initial battery
status t, such that θ ∈ Φ for some given objective set Φ ⊆ S∗ ∪Sω. Specifically,
we consider the following objective sets Φ:
• Finite-automaton emptiness. Asking if there exists a feasible trace to

a set of target control states. Formally, given target control states T ⊆ S,
we have Φ = Reach(T) = {s0s1 . . . | ∃i : si ∈ T}, i.e., Φ is the set of
control traces which visit T at least once.

• Büchi emptiness. Asking if there exists a feasible trace which visits a
set of target Büchi states infinitely often. Formally, given Büchi control
states L ⊆ S, we have Φ = Büchi(L) = {s0s1 . . . | ∀j∃i > j : si ∈ L}.

• Streett emptiness. The objective is specified by a set of request-grant
pairs 〈Ri, Gi〉 (where each pair consists of a set Ri ⊆ S of request control
states and a set Gi of grant control states). The objective asks if there
exists a feasible trace in the system such that for every request-grant pair,
either Gi is visited infinitely often or Ri is visited finitely often. Formally,
given a set of Streett pairs P = {〈R0, G0〉, 〈R1, G1〉, . . . , 〈Rm, Gm〉}, we
have Φ = Streett(P) = {s0s1 . . . | ∀0 ≤ i ≤ m : [(∀p∃q > p : sq ∈
Gi) ∨ (∃p∀q > p : sq 6∈ Ri)]}.

We call the traces which satisfy the finite-automaton, Büchi, and Streett condi-
tions, accepting, Büchi, and Streett traces, respectively.

9.3.2 (Battery VS. Ideal-Energy) Transition Systems

Due to the recovery effect, BTSs behave qualitatively differently from a simple-
energy transition systems. Nevertheless, in the domain where the energy in the
battery is high, they do behave similarly. This lets us solve problems related
to unlimited initial credit (referred to as “unknown initial credit”) by reducing
them to the simple-energy system problems.

Different Behavior. The BTS B1 of Fig. 9.1[Pg. 170] demonstrates a key
difference from a simple-energy system – the total energy in the initial state
is 32, while a transition of weight (−17) cannot be taken, since the available

176

energy is only 16. Yet, taking the cycle through states s2 and s3 reduces the
total energy, but allows the (−17)-transition. After the cycle, the battery status
is (19 3

4 , 11 1
4), which becomes (5

8 , 13 3
8) following a (−17)-transition.

We formalize the difference in the theorem below. It is known that if an ideal-
energy system contains an infeasible trace, it contains a memoryless infeasible
trace [47]. A memoryless trace is one where a control state is always followed
by the same control state. However, an infeasible trace in the system B2 of
Fig. 9.1[Pg. 170] must make different choices at different visits in state s0.

Theorem 9.3. A battery transition system may have feasible (resp. infeasible)
traces without having any memoryless feasible (resp. infeasible) traces.

Proof. Consider the BTS B1 in Figure 9.1[Pg. 170]. There is a trace for reaching
s1, as well as an infinite trace, however both traces make non-uniform choices
at different visits in s0. Analogously, an infeasible trace in the system B2 of
Figure 9.1[Pg. 170] must make different choices at s0. We prove below the claim
for B2. Analogous arguments and calculations can be made with respect to B1.

The only nondeterminism in B2 is in state s0, allowing transitions to states
s1 and s2. A trace that first chooses s1 is legal, since the (−15)-transition
is feasible from the initial status, after which there are only positive-weight
transitions. The other memoryless option, of always choosing s2, is also legal:
Let (x, y) be the battery status when first reaching s2. It can be shown that the
first few cycles s2 → s3 → s0 → s2 are feasible, after which the battery status
will be (x′, y′), such that x′ > x and y′ > y. By the monotonicity of the Post

function, it follows that the cycle can be repeated forever.
On the other hand, first choosing s2 and then choosing s1 makes an illegal

trace: The battery status when returning to s0 is (12 3
4 , 20 1

4), which changes to
(− 5

8 , 18 3
8) after the (−15)-transition.

High energy domain and unknown initial credit problems. In energy
systems, one often considers “unknown-initial-credit problems”, asking if there
is some initial energy that allows accomplishing a task. It is clear that every
control state of a battery system can be reached, at least once, if there is a
path leading to it and enough initial energy to start with. This is formalized in
the following lemma (which will also serve us in Theorem 9.5[Pg. 178] and in
Section 9.4[Pg. 179]).

Lemma 9.4. Consider a BTS B = 〈〈S,∆, sι, v〉, k, c〉. There exist constants
HighEnergyConstant(B, i) for every i ∈ N such that for every feasible extended
state (s0, [e; d]) with e > HighEnergyConstant(B, i), every weight sequence
w0w1 . . . wi−1 of length i is feasible from (s0, [e; d]).

Proof. We define the constants inductively as follows:
(a) HighEnergyConstant(B, 0) = 0 if i = 0; and
(b) HighEnergyConstant(B, i) =

max
(
HighEnergyConstant(B, i− 1) +W, W

c(1−λ)

)
otherwise. Here, W =

max(s,s′)∈∆ |v((s, s′))|.
We prove the theorem by induction. When i = 0, the weight sequence is empty
and there is nothing to prove.

For the induction case, assume that we have shown the result up to i−1. Let
Post([e; d], w) = [e′; d′]. From Proposition 9.1[Pg. 175], we get that e′ = e + w

177

and d′ = λd + w. If [e′; d′] is feasible and e′ ≥ HighEnergyConstant(B, i − 1),
we can apply the induction hypothesis on the weight sequence w1 . . . wi−1 to
prove the result. We show these facts below.
• We have e′ = e + w > HighEnergyConstant(B, i) + w ≥
HighEnergyConstant(B, i − 1) + W + w. As w ≥ −W , we have that
e′ > HighEnergyConstant(B, i− 1) ≥ 0.

• Further, we have that ce′ + (1 − c)d′ = ce + cw + (1 − c)λd + (1 − c)w
or, equivalently, ce′ + (1 − c)d′ = (1 − λ)ce + w + λ(ce + (1 − c)d). As
[e; d] is feasible, by Proposition 9.1[Pg. 175], ce + (1 − c)d > 0. Further,
e > HighEnergyConstant(B, i) ≥ W

c(1−λ) . Using these, we get ce′ + (1 −
c)d′ > −W+w ≥ 0. By Lemma 9.2[Pg. 176], [e′; d′] is feasible, completing
the proof.

The following theorem states that the emptiness problems for battery sys-
tems reduce to the corresponding problems for energy systems if the initial
energy is large enough.

Theorem 9.5. Let B = 〈〈S,∆, sι, v〉, k, c〉 be a BTS, W =
max(s,s′)∈∆ |v((s, s′))|, and T , L and {〈R0, G0〉, . . . , 〈Rn, Gn〉} be a set
of target states, a set of Büchi states, and a set of Streett pairs, re-
spectively. There exist constants MR = HighEnergyConstant(B, |S|)
, MB = HighEnergyConstant(B, 3|S| + 2W |S|2), and MS =
HighEnergyConstant(B, |S| + |S|2 + W |S|2 + W |S|3) such that for any
extended state (s, [e; d]): if e > MR (resp. e > MB and e > MS), a feasible
accepting (resp. Büchi and Streett) trace starting from (s, [e; d]) exists iff an
energy-feasible accepting (resp. Büchi and Streett) trace exists.

Proof. In all three parts, the existence of an energy feasible trace is directly
implied by the existence of a feasible trace. Therefore, we only deal with showing
that the existence of an energy feasible trace implies the existence of a feasible
trace.

The first part (finite-automaton emptiness) follows directly from
Lemma 9.4[Pg. 177]. If there exists a path from s to the target set T , there
exists a path of length at most |S|. Taking MR = HighEnergyConstant(B, |S|)
is sufficient to give us the result.

For the second part (Büchi emptiness), the existence of an energy feasible
trace implies that there exists a reachable cycle which visits a Büchi state and
has non-negative total weight. We show below that the length of such a cycle
can be bounded by 2|S| + 2W |S|2. Now, if e > HighEnergyConstant(B, |S| +
2|S| + 2W |S|2), we can show, using Lemma 9.4[Pg. 177], that there is a fea-
sible path from (s, [e; d]) to some (s′, [e′; d′]) where s′ is on the cycle and
e′ > HighEnergyConstant(B, 2|S| + 2W |S|2). Now, the cycle is feasible from
(s′, [e′; d′]) and further, on returning to s′, the energy is at least e′ (as the
total weight of the cycle is non-negative). Using such reasoning, it is easy to
see that the cycle is repeatedly feasible from (s′, [e′; d′]). Hence, a value of
MB = HighEnergyConstant(B, |S|+ 2|S|+ 2W |S|2) is sufficient.

Now, we show that the length of such a cycle can be bounded by 2|S| +
2W |S|2. Let s0s1 . . . sns0 be any such cycle of non-negative total weight and
visiting a Büchi state. Assume that the cycle has positive weight. The case
with the cycle having 0 weight is similar. It is easy to see that in the part of

178

the UWTS defined by control states of this cycle, there exists a non-negative
simple cycle (say θl). If the Büchi node is on θl, we are done (as the length of a
simple cycle is bounded by |S|). Otherwise, we can find a path from a control
trace on θl to the Büchi state in s0s1 . . . sn and back of length at most 2|S|.
Now, the maximum negative weight that can be accumulated on this path is
2W |S|. Therefore, combining this path with 2W |S| iterations of the positive
cycle θl will give us a positive cycle visiting a Büchi state. Since the length of
θl is bounded by |S|, we get that the length of the whole cycle is bounded by
2|S|+ 2W |S|2.

The proof for the third part is very similar to the proof of the second part
except for the bound on the length of the cycle.

A straightforward consequence of the above theorem is that the unknown
initial credit problems for BTSs are decidable. Furthermore, using the above
theorem, it is easy to show that these BTS problems are equivalent to the
corresponding energy-systems problems, which can be solved in polynomial time
[41].

Corollary 9.6. Given a BTS B and a finite-automaton, Büchi, or Streett con-
dition, the problem of whether there is an initial battery status [e; d], such that
there exists a feasible trace in B satisfying the condition is decidable in polyno-
mial time.

9.4 The Bounded-Energy Reachability Tree

Our algorithms for solving the emptiness problems are based on representing the
infinite tree of all the possible traces in the BTS in a finite tree that summarizes
all required information. The construction of the tree uses a “high-energy con-
stant” – exploration from states whose energy is above the constant is stopped,
as they can be further handled by a reduction to a simple-energy system using
Theorem 9.5[Pg. 178]. Hence, the tree summarizes bounded-energy reachability,
and we denote it BERT. As in Theorem 9.5[Pg. 178], the value of the high-energy
constant depends on the problem to be solved. We describe how we construct the
tree, taking the high-energy constant as a parameter. We start with some basic
lemmata about a total order among battery statuses of equal energy. Then,
we present the 0-cycle saturation lemma, which helps summarize unbounded
iterations of cycles in a finite manner.

Feasibility order for battery statuses. The following lemma shows that
there exists a total order on the set of battery statuses with the same energy
such that every weight sequence feasible from a lower battery status is also
feasible from a higher battery status.

Lemma 9.7. Given two battery statuses [e; d] and [e; d′] with d >
d′, every weight sequence w0w1 . . . wn−1 feasible from [e; d′] is also feasi-
ble from [e; d]. Furthermore, if Post([e; d], w0 . . . wn−1) = [e′′; d′′] and
Post([e; d′], w0 . . . wn−1) = [e′′; d′′′], we have d′′ > d′′′.

Proof. We prove the result by induction. For the base case, we let the weight
sequence be of length 1, i.e., w0. From Proposition 9.1[Pg. 175], we know that

179

Post([e, d], w0) = [e + w0, λd + w0] and Post([e, d′], w0) = [e + w0, λd
′ + w0].

Hence, d′′ = λd+w0 and d′′′ = λd′+w0. As d > d′, we get that λd+w0 > λd′+w0

and d′′ > d′′′.
Now, assume that [e +w0;λd′ +w0] is feasible. By Lemma 9.2[Pg. 176], we

get that c(e+w0) + (1− c)(λd′ +w0) > 0. As d > d′, we have c(e+w0) + (1−
c)(λd + w0) > 0 and c(e + w0) + (1− c)d′′ > 0. This gives us that [e + w0; d′′]
is feasible, hence completing the proof for the base case.

Now, assume that the required result holds for every weight sequence of
length n − 1. Applying the induction hypothesis on the battery statuses [e +
w0;λd + w0] and [e + w0;λd′ + w0] and the weight sequence w1 . . . wn−1 gives
us the required result.

Guided by Lemma 9.7[Pg. 179] above, we define a partial order on the set of
battery statuses as follows: [e′; d′] v [e; d] if e = e′ and d′ ≤ d, in which case we
say that [e; d] subsumes [e′; d′]. We extend the partial order v to extended states
(with both control states and battery statuses) by letting (s′, [e′; d′]) v (s, [e; d])
if s = s′ and [e′; d′] v [e; d]. Lemma 9.7[Pg. 179] can now be restated as follows:
If (s′, [e′; d′]) v (s, [e; d]), every control path feasible from (s′, [e′; d′]) is also
feasible from (s, [e; d]).

Zero-cycle saturation. We formalize below the key observation that 0-
energy cycles can be finitely summarized: an infinite run along such a cycle
monotonically converges to a fixed battery status. Moreover, the deviation in
the limit is independent of the initial status.

Lemma 9.8 (Zero-cycle saturation). Let w0 . . . wn−1 be a sequence of weights

such that
∑n−1
i=0 wi = 0 and let t0, t1, . . . be a sequence of tuples in R2, such

that ti+1 = Post(ti,w0 . . .wn−1). We have the following:
1. The sequence t0, t1, . . . converges (say to t∗ = [e∗; d∗]). In other words,
∀ε ≥ 0.∃m ∈ N : |t∗ − tm|1 ≤ ε where |.|1 denotes the maximum absolute
component in a vector.

2. We have ∀i ∈ N : t∗ v ti v t0 or ∀i ∈ N : t0 v ti v t∗. In the latter
case, if w0 . . . wn−1 is feasible from t0 it is feasible from each ti.

Proof. Let ti = [ei; di]. Obviously, ∀i.ei = e∗. By repeated application of
Proposition 9.1[Pg. 175] on the weights w0w1 . . . wn−1, starting with ti, we have

di+1 = di ·λn+
∑n−1
p=0 wp ·λn−1−p. Hence, for all i ∈ N, di = d0 ·λi·n+

∑i−1
q=0 L ·

λn·q, where L =
∑n−1
p=0 wp · λn−1−p. From this, it follows that the sequence di

converges to d∗ =
∑∞
q=0 L · λq·n = L · 1

1−λn . Further,

d(i+1) = d0 · λi·n+n + L ·
i∑

q=0

λn·q

= d0 · λi·n + L ·
i−1∑
q=0

λn·q + d0 · [λi·n+n − λi·n] + L · λi·n

= di + d0 · [λi·n+n − λi·n] + L · λi·n

= di + λi·n(1− λn) · [L

1− λn
− d0]

= di + λi·n(1− λn) · [d∗ − d0]

180

Since ∀i.λi·n(1 − λn) is positive, it follows that di+1 is bigger, or not, than di
based on whether d∗ < d0 or not. If d∗ < d0, we get d0 > d1 > . . . > d∗, or,
equivalently, t0 w t1 w . . . w t∗. Similarly, if d∗ ≥ d0, we get d0 ≤ d1 ≤ . . . ≤
d∗, or, equivalently, t0 v t1 v . . . v t∗. The feasibility of w0 . . . wn from each
ti follows from Lemma 9.7[Pg. 179] and ti w t0.

We denote the limit deviation d∗ as Saturate(w0w1 . . . wn−1), i.e.,

Saturate(w0w1 . . . wn−1) = 1
1−λn ·

(∑n−1
p=0 wp · λn−1−p

)
. Note that this

deviation does not depend on the initial battery status t0. Accordingly,
we extend the definition of the function Saturate to battery statuses as
Saturate([e; d], w0w1 . . . wn−1) = [e; Saturate(w0w1 . . . wn)].

Constructing the tree. For generating a finite tree with all the relevant
bounded energy reachability information, we explore the feasible states and
transitions starting from the initial state. However,

1. Extended states with high-enough energies are not explored further, and
2. If an extended state q that has an ancestor q′ with the same control

state and the same energy (but possibly a different deviation) is reached,
we check the feasibility order, i.e., if q v q′ or q′ v q. If q v q′ we stop
exploration from q; otherwise, we saturate this 0-energy cycle from q′ to
q, i.e., calculate the fixed battery status t∗ to which an infinite run on
that cycle will monotonically converge to (see Lemma 9.8[Pg. 180]). Then,
we replace the battery status in q′ with the maximum between battery
status in q and t∗.

The procedure ComputeBERT (Algorithm 9[Pg. 182]) computes the bounded-
energy reachability tree BERT, given a BTS B, an initial battery status t, and
an energy bound M . It is a rooted tree where each node is labelled with an
extended state. During the procedure’s execution, each node in the tree is either
open (in OpenNodes) or closed, and exploration will only continue from open
nodes. In addition, each node contains a Boolean field star, marking whether
its label is a result of saturation. Initially, the root of BERT is labelled with the
initial extended state (sι, t) and the root node is added to the set of OpenNodes.

In each step, one open node (currNode) is picked and removed from the
set of OpenNodes. Let currNode.label = (s, [e; d]). By default, we append to
currNode children labelled by all feasible successors of (s, [e; d]) (we call this
an exploration step). If one of the following holds, we do not perform the
exploration step.
• In case the energy (i.e., e) of currNode is greater than the given bound
M , we stop exploration from it.

• In case an ancestor ancestor (with label (s, [e; d′])) of currNode has the
same control state and energy as currNode:

– If [e; d] v [e; d′] we stop exploration from currNode.
– If [e; d′] @ [e; d] we i) delete all the descendants of ancestor; and

ii) replace the battery status in the label of ancestor with the @-
maximum between [e; d] and the zero-cycle saturation of [e; d′], where
d′ is the 0-cycle saturation of the the weight sequence from ancestor

to currNode. Note that if the weight sequence from ancestor to
currNode is infeasible from [e; d′] (which can happen if there is a
saturation of another cycle between the ancestor and currNode),

181

we replace [e; d′] by [e; d] and not the maximum.
When no open nodes are left, the procedure stops and returns BERT. We prove
in a series of lemmata the properties of the procedure ComputeBERT and of the
returned tree.

Algorithm 9 ComputeBERT: Computing the bounded-energy reachability tree

Input: Battery system B = 〈〈S,∆, sι, v〉, k, c〉, initial battery status t, energy
bound M
BERT← EmptyTree

BERT.root.label← (sι, t); BERT.root.star ← false

OpenNodes← {BERT.root}
while OpenNodes 6= ∅ do

Pick and remove currNode from OpenNodes

(s0, [e; d])← currNode.label
// If we found a good cycle, saturate that cycle
if currNode has an ancestor ancestor with label (s0, [e; d′]) then

if d > d′ then
s0 . . . sns0 ← control state sequence in node labels from ancestor to
currNode

w0 . . . wn ← v((s0, s1))v((s1, s2)) . . . v((sn, s0))
if w0w1 . . . wn is feasible from [e; d′] and Saturate(w0 . . . wn) > d

then
ancestor.label←(s0, [e; Saturate(w0 . . . wn)]);
ancestor.star ← true

else {There was another cycle saturation between ancestor and
currNode}
ancestor.label← [e; d]

BERT.delete(all descendants of ancestor)
OpenNodes← OpenNodes ∪ {ancestor} \ all descendants of ancestor

continue; // If d < d′ there is no further exploration from the current
node

else {Explore one step further}
for all (s0, s

′) ∈ ∆ do
if Post([e; d], v(s0, s

′)) is feasible then
newNode← new child of currNode
newNode.label← (s′, Post([e; d], v(s0, s

′)));
newNode.star ← false

if energy(Post([e; d], v(s0, s
′))) ≤M then

OpenNodes← OpenNodes ∪ newNode
return BERT

Termination. We prove that Algorithm 9[Pg. 182] terminates for every input,
by showing a bound on both the number of possible nodes in BERT and the
number of node deletions in an execution. The latter bound follows from (i)
every deletion event strictly increases a deviation value; and (ii) the number of
possible values that a deviation can get in a deletion event is bounded. Note
that this is in contradiction to the unbounded number of deviations that may
occur in a trace of the BTS B.

182

Lemma 9.9. Algorithm 9[Pg. 182] terminates on all inputs.

Proof. Termination follows from a bound on both the number of possible nodes
in BERT and the number of node deletions in an execution.

The number of nodes in a tree depends on the fanout of the nodes and the
length of the branches. The fanout of every node in BERT is bounded by the
number of states in the BTS B. As for the branches, the control state and
energy of each node in a path is unique, except for the leaf, giving a bound of
|S| ×M + 1 to the length of a path.

The bound on the number of deletions follows from (i) every deletion event
strictly increases a deviation value; and (ii) the number of possible values that
a deviation can get in a deletion event is bounded. Note that this is in contra-
diction to the unbounded number of deviations that may occur in a trace of the
BTS B.

Consider a node-deletion event in the execution of Algorithm 9[Pg. 182], and
a new deviation value set to ancestor.label.
(i) The new value is either Saturate(w0 . . . wn) or d, set in Line 14[Pg. 182] or
Line 16[Pg. 182], which are in the scope of “if Saturate(w0 . . . wn) > d > d′”
or “if d > d′”, respectively, while the old value is d′.
(ii) The new value is uniquely determined by the following:
• The value of Saturate(w0 . . . wn), where w0 . . . wn is the sequence of

weights from ancestor to currNode; or
• The label of the last saturated (i.e., starred) node between ancestor

and currNode, and the suffix wi . . . wn of w0 . . . wn corresponding to the
segment from the last starred node to currNode, otherwise.

In the first case, resulting from Line 14[Pg. 182], the new value only depends
on w0 . . . wn, which in turn is determined by s0s1 . . . sns0. In the second case,
resulting from Line 16[Pg. 182], let (si, [e

(i); d(i)]) be the label of the last starred
node. By Lemma 9.8[Pg. 180], [e(i); d(i)] only depends on the sequence of weights
in a simple cycle of the BTS B, thus may take a bounded number of possible
values. The new value is then calculated by Post([e(i); d(i)], wi . . . wn), which
only depends on [e(i); d(i)] and the sequence wi . . . wn.

Correctness. We now prove that BERT is a summarization of all extended
states reachable through states of low-energy. Let Reach(M) be the set of
extended states reachable from the initial state of the BTS B through paths
containing only extended states of energy less than M . In the lemmata below,
we prove the following:
• Soundness. For every node node in BERT and for all ε > 0, there is an

extended state q ∈ Reach(M) such that q v node.label and the difference
between the deviations of q and node.label is smaller than ε.

• Completeness. For every extended state q ∈ Reach(M), there exists a
node node in BERT such that q v node.label.

Lemma 9.10 (Soundness). For every node node with label (s, [e; d]) encoun-
tered in an execution of Algorithm 9[Pg. 182] and ε > 0, there exists an extended
state (s, [e; d− δ]) reachable from (sι, t) with 0 ≤ δ < ε.

Proof. The claim can be proved by looking at all the points in the algorithm
where a new label is created (lines 10[Pg. 182], 14[Pg. 182], and 25[Pg. 182]).
The claim is trivially true for the initial label of the root. Assume as induction

183

hypothesis that the claim holds for every label encountered upto the current
point of the execution. Fix ε ≥ 0.
Saturation. Let the new label be created during a deletion event, in line 10[Pg.
182] or line 14[Pg. 182]. In the case the label of currNode is copied to the label
of ancestor, the proof follows immediately as we are just copying an existing
label. Otherwise, we are taking the Saturate value, and the proof is based
on Lemma 9.8[Pg. 180]. By iterating the path from ancestor to currNode a
sufficient number of times, we can get as close as necessary (i.e., within ε) to
the limit of the zero-weight cycle saturation. Lemma 9.8[Pg. 180] also gives us
that every iteration is feasible.
Exploration. Let (s′, [e′; d′]) be a new node label created in line 25[Pg. 182].
Choosing ε′ < min(ελ , ce

′ + (1 − c)d′), by the induction hypothesis, there is a
feasible path from (sι, t) to (s, [e; d− δ′]) with 0 ≤ δ′ < ε′.

Now, we have [e′; d′] = Post([e; d], w) = [e + w;λd + w] and Post([e; d −
δ′], w) = [e′; d′ − λ · δ′]. Letting δ = λδ′, we get 0 ≤ δ = λδ′ < λε′ ≤ ε. If we
prove that [e′; d′ − δ] is feasible, we are done as we have shown that the path
from (sι, t) to (s, [e; d−δ′]) followed by the feasible transition from (s, [e; d−δ′])
to (s′, [e′; d′ − δ]) is a path from (sι, t) to (s′, [e′; d′ − δ]).

As [e′; d′] is feasible, we get that ce′ + (1 − c)d′ > 0. As we chose that
ε′ < ce′ + (1 − c)d′, we get that ce′ + (1 − c)d′ − δ = ce′ + (1 − c)d′ − λδ′ >
ce′+ (1− c)d′−λε′ > ce′+ (1− c)d′−λ(ce′+ d′) > (1−λ)(ce′+ (1− c)d′) > 0.
This completes the proof for this case.

Lemma 9.11 (Completeness). Let (s, [e; d]) be an extended state with e < M
that is reachable from (sι, t) through extended states with energy less than M .
Then, there exists a node with label (s, [e; d′]) in BERT with d′ ≥ d.

Proof. We prove the lemma by induction on the length of the path from (sι, t)
to (s, [e; d]). For paths of length 0, it is trivial as (sι, t) is the initial label of the
root. Suppose we have proven the claim for paths upto the length n− 1.

It is easy to induct to length n. Suppose the path of length n − 1 ending
with (s, [e; d]) is extended to length n by adding (s], [e]; d]]). The proof has two
cases:
• If the node labelled with (s, [e; d′]) is a non-leaf node, then it has a

successor labelled (s], [e]; d]
′
]), with d]

′
> d], which is the required node.

This follows from lines 21[Pg. 182]–27[Pg. 182] of Algo. 9[Pg. 182].
• If the BERT node labelled with (s, [e; d′]) is a leaf node, it will have an

ancestor labelled (s, [e; d′′]) with d′′ ≥ d. This follows from line 19[Pg. 182]
of Algorithm 9[Pg. 182]. Since the latter node is not a leaf, we comply
with the previous case, and we are done.

9.5 Model Checking

We are now ready to tackle the finite-automaton, Büchi, and Streett emptiness
problems for BTSs. We show that the problems are decidable and give suitable
algorithms. The algorithms are based on Theorem 9.5[Pg. 178] and analysis of
the bounded-energy reachability tree, as constructed in Section 9.4[Pg. 179].

184

Algorithm 10 Algorithm for the reachability problem

Input: Battery system B = 〈〈S,W, T, sι〉, k, c〉
Input: Target control states T ⊆ S
Input: Initial battery status t
Output: Reachable((sι, t), T)

1: M ← HighEnergyConstant(B, |S|)
2: BERT← ComputeBERT(B, (sι, t),M)
3: if ∃node ∈ BERT : [node.label = (s, [e; d]) ∧ s ∈ T]∨

[node.label = (s, [e; d]) ∧ e > M ∧ GraphReachability(B, s, T)]
then

4: return true

5: return false

9.5.1 Finite-Automaton Emptiness

Combining the results from the previous section on bounded energy reachability
tree and Theorem 9.5[Pg. 178], we can obtain a complete algorithm for the finite-
automaton emptiness problem in a battery system. Algorithm 10[Pg. 185] solves
the reachability problem for a given BTS B with initial battery status t and
target set T . Given a BTS B with states S, an initial battery status t, the
algorithm works as follows:
• Build a bounded-energy reachability tree
BERT = ComputeBERT(B, (sι, t),M), where
M = HighEnergyConstant(B, |S|));

• If there is a node label (s, [e; d]) in BERT where s is in the target set T ,
return true;

• If there is a node label (s, [e; d]) in BERT where e > M , and some node in
the target set is reachable from (s, [e; d]) through an energy-feasible path,
return true;

• Otherwise, return false.
The correctness proof of the algorithm follows from Lemma 9.4[Pg. 177] and
the soundness and completeness of the bounded-energy reachability tree (Lem-
mas 9.10[Pg. 183]–9.11[Pg. 184]). The following theorem states that this algo-
rithm can be implemented in polynomial space in the inputs.

Theorem 9.12. The finite-automaton emptiness problem for BTSs is decidable
in polynomial space with respect to the number of control states in the BTS and
a unary encoding of weights.

Proof. The major part of the algorithm is the construction of the bounded-
energy reachability tree. For a given energy bound M , this tree can contain
an exponential number of nodes in M . However, using standard on-the-fly
techniques, we can reduce the space complexity, only storing the current branch
of the tree being explored. The corresponding space is the product of the number
of nodes in each branch and the bits required for storing a node’s label.

By the proof of Lemma 9.9[Pg. 183], the length of each branch in the tree is
bounded by |S|×M+1, where S are the states of the given BTS B. For the finite-
automaton emptiness algorithm, we use M = HighEnergyConstant(B, |S|) and
by the proof of Lemma 9.4[Pg. 177], we have M ≤ |S|W+ W

c(1−λ) , where W is the

maximal negative weight in the BTS. With a unary encoding of the constants,

185

M is polynomial in the size of the input.
To complete the proof, we need to show that all the labels created in BERT

can be represented in polynomial space in the energy bound M .
A label contains a control state, an energy, and a deviation. There are

|S| < M control states and up to M different energies.
As for the deviations, they are generated by a sequence of operations, involv-

ing two functions: Post (defined in Section 9.3[Pg. 174]) and Saturate (defined
in Lemma 9.8[Pg. 180]). By Lemma 9.8[Pg. 180], the value of Saturate is in-
dependent of the deviation value before saturation. Hence, the deviation at
each node in BERT is a result of the last Saturate operation in the branch of
BERT leading to the node, followed by some Post operations. By the proof
of Lemma 9.9[Pg. 183], the length of each branch in the tree is polynomial in
M , implying up to M applications of Post. Hence, it is left to show that the
Saturate function generates a deviation that can be stored in space polynomial
in M , and that each application of the Post function adds up to b bits, where
b is polynomial in M .

By Lemma 9.8[Pg. 180], given a sequence w0w1 . . . wn−1 of weights,

Saturate(w0w1 . . . wn−1) = 1
1−λn ·

(∑n−1
p=0 wp · λn−1−p

)
. The space required

to store this value is polynomial in the constant λ and n, where n ≤ |S| < M .
In each application of Post on a battery status [e; d] and weight w, we have,
by Proposition 9.1[Pg. 175], that Post([e; d], w) = [e′; d′], with d′ = λ · d + w.
Hence, storing d′ requires up to b bits more than storing d, where b is polynomial
in the constant λ and |w| < M .

9.5.2 Büchi and Streett Emptiness

Suppose we are given a BTS B = 〈〈S,∆, sι, v〉, k, c〉 and a Büchi condition given
by a set of Büchi states B ⊆ S. Our approach to Büchi emptiness consists of
two major parts. If there exists a Büchi trace containing an extended state with
energy more than MB = 3|S| + 2W |S|2, the problem can be reduced to the
Büchi problem for simple-energy systems (Theorem 9.5[Pg. 178]). Therefore,
we concentrate on the case where the energy of states is bounded by MB . Here,
the key idea is that if the energies of the extended states are bounded, then a
BTS has a Büchi trace if and only if it has a Büchi trace of a special form.

First, we define the notion of an energy-unique path: we call a control trace
s0s1 . . . sn energy-unique if we have

∑p
i=0 v((si, si+1)) 6=

∑q
i=0 v((si, si+1)) ∨

sp 6= sq for p 6= q. Intuitively, s0s1 . . . sn is energy-unique if no trace whose
corresponding control trace is s0 . . . sn has two extended states with the same
control state and equal energy. Similarly, s0s1 . . . sn is an energy-unique 0-energy
cycle if s0s1 . . . sn is energy-unique and

∑n−1
i=0 v((si, si+1)) + v((sn, s0)) = 0.

The following theorem intuitively states that if there exists a bounded-energy
Büchi trace in B, then there exists a lasso-shaped bounded-energy Büchi trace
where the first state of the cycle in the lasso is a Büchi state and the cycle in
the lasso has one of the two following forms:
• the cycle is an energy-unique 0-energy cycle sl0 . . . s

l
ns
l
0, such that

the sequence sl0s
l
1 . . . s

l
ns
l
0 is feasible from sl0 with the battery status

Saturate(w0w1 . . . wn), where wi = v((sli, s
l
i+1)) for i < n and wn =

v((sln, s
l
0)); or

• the cycle is an energy-unique 0-energy cycle composed of an alternating

186

sequence of energy-unique paths and energy-unique 0-energy cycles. Here,
every energy-unique 0-energy cycle in the sequence is unique.

Theorem 9.13. Suppose a BTS B has a Büchi trace such that every extended
state has energy less than some constant M . Then, B has a Büchi trace π such
that the corresponding control trace θ has one of the following two forms:
Form 1 θ = θh(sl0s

l
1 . . . s

l
n)ω where sl0 is a Büchi state, and sl0s

l
1 . . . s

l
ns
l
0 is an

energy-unique 0-energy cycle.
Form 2 θ = θh(θl)

ω, where θh, θl ∈ S∗ and θl =
(s0

0 . . . s
0
k0

)(θl0)r0 . . . (sn0 . . . s
n
k1

) . . . (θln)rn(sn+1
0 . . . sn+1

kn+1
) and (a) each

θli is a distinct energy-unique 0-energy cycle; (b) each si0 . . . s
i
ki

is a
energy-unique path; (c) θl is a 0-energy cycle; and (d) s0

0 is a Büchi state.

Intuitively, the above forms say the following:
Form 1 There is a reachable 0-energy cycle containing a Büchi node which is

feasible from its Saturate value; or
Form 2 There exist 0-loop cycles θli’s where each θl(i+1) is feasibly reachable

from the Saturate value of θl(i), and θl0 is feasibly reachable from the
Saturate value of θln. Further, the paths (si0 . . . s

i
ki

) from each θli to the
next form a 0-energy cycle.

The proof proceeds by taking a witness Büchi trace and reducing it to one of
the two forms by deleting parts of the trace where the initial and final energies
and control states are the same, while the final deviation is less than the initial
deviation.

Proof of Theorem 9.13[Pg. 187]. We do not prove the lemma formally, but in-
stead provide a procedure that can take any bounded-energy Büchi trace and
transform it into a Büchi trace in one of the two forms.

Suppose B = 〈〈S, v,∆〉, k, c〉 is a BTS, (sι, [e; d]) be the initial extended
state, and B ⊆ S a set of Büchi states. Suppose the BTS contains a Büchi trace
π = (s0, [e0; d0])(s1, [e1; d1])(s2, [e2; d2]) . . . where the energy of each extended
state is bounded by M .

As π is a Büchi trace and the number of values ei can take is bounded,
there exists some s and e such that s ∈ B and there exist infinitely
many indices i such that si = s and ei = e. Let i0, i1, . . . be the
increasing sequence of all such indices. For every p ∈ N, define πp
to be (sip , [eip ; dip]) . . . (sip+1−1, [eip+1−1; dip+1−1]). Further, define πh =
(s0, [e0; d0]) . . . (si0−1, [ei0−1; di0−1]). Let θp be the control trace correspond-
ing to πp and let θh be the control trace corresponding to πh.

Our strategy for proving the theorem is as follows: (a) we categorize the
infinite set of πp into a finite number of classes; (b) therefore, we will have at
least one class having an infinite number of πp; and (c) we pick a representative
from this class and construct a lasso-shaped Büchi trace using it.

We first define the Simplify function which simplifies each πp. The key
purpose of this simplification is to replace each πp by an alternate control
trace which satisfies the conditions for either Form 1’s or Form 2’s lasso. The
Simplify function takes an initial battery status (say [e; d]) and a finite control
trace (say u0u1 . . . un), and produces an alternate control trace. It works as
follows:
• If u0u1 . . . un is energy-unique, we return u0u1 . . . un.

187

• If u0u1 . . . un is not energy-unique, we first check for energy-unique 0-
energy cycles (say ui . . . uj). Now, we check if Post([e; d], u0 . . . ui) ≥
Post([e; d], u0 . . . uj). If so, we delete the segment ui+1 . . . uj from the
control trace and start over with the simplification procedure.

• If there exist two energy-unique 0-energy cycles (say ui . . . uj and
up . . . uq and p > j) which are the same, i.e., ui . . . uj = up . . . uq,
we replace ui . . . uq with (ui . . . uj)

m where m is large enough such
that Post([e; d], u0 . . . ui−1(ui . . . uj)

m) ≥ Post([e; d], u0 . . . uq) and start
over. Such an m exists because of the zero-cycle saturation lemma.
Since we have that the deviation increases on taking the up . . . uq cy-
cle (as up . . . uq was not eliminated in the previous step), we have that
Post([e; d], u0 . . . uq) is less that the Saturate value of the cycle. Hence,
by taking a large enough m, we can get the deviation close as possible to
the Saturate value of up . . . uq and hence, the deviation will become more
than Post([e; d], u0 . . . uq).

• If none of the above apply, we return the control trace.
The Simplify function satisfies two key properties:
• The control traces that satisfy conditions imposed by either Form 1 and

Form 2 on the cycle of the lasso, i.e., they are either energy-unique cycles
or are made of alternating energy-unique segments and energy-unique 0-
energy cycles.

• If the returned control trace is θ\, Post([e; d], u0 . . . un) v Post([e; d], θ\).
Now, we iteratively transform the Büchi trace into a Büchi trace in Form 1

or Form 2 as follows:
• First, let θ∗0 = θh. We define θ∗i = θ∗i−1 ·Simplify(θi, Post([e0; d0], θ∗i−1)).

The simpler Büchi trace is the one corresponding to the limit of all θ∗n.
It can be shown to be feasible using the second property of the Simplify

function.
• Now, the previous trace is made up of segments returned by the
Simplify function. Each of these segments satisfy the conditions
for either Form 1’s or Form 2’s lasso. For a Form 1 lasso segment
sl0s

l
1 . . . s

l
n, we say its class is itself. For a Form 2 lasso segment

(s0
0 . . . s

0
k0

)(θl0)r0 . . . (sn0 . . . s
n
k1

)(θln)rn(sn+1
0 . . . sn+1

kn+1
), we say its class is

(s0
0 . . . s

0
k0

)(θl0)∗ . . . (sn0 . . . s
n
k1

)(θln)∗(sn+1
0 . . . sn+1

kn+1
), i.e., we ignore the

ri’s. Note that there are only a finite number of possible classes. As
there are only a finite number of classes, there is at least one class having
an infinite number of segments in it.

– If there are more than one such class, we define a new control trace
with only the segments from one class with an infinite number of
segments, and start over with the simplification procedure.

– If there is only one such class, we define the final Form 1 or Form 2
trace based on it. If the class corresponds to Form 1, i.e., the class
is defined by a single energy-unique 0-energy cycle (say θl), we re-
turn θh · θ∗0 . . . θ∗m−1(θl)

ω where mth segment is the first segment
in the infinite class. If the class corresponds to Form 2, i.e., the
class is of the form s0

0s
0
1 . . . s

0
k0(θl0)∗ . . . sn0 . . . s

n
k1

(θln)∗sn+1
0 . . . sn+1

kn+1
,

we need to pick the constants r0, r1, . . . to replace the ∗’s
in the lasso. Here, we pick each ri high enough so that
the trace si+1

0 . . . si+1
ki+1

· θl(i+1) is feasible from any feasible state

188

reached after θrili . Using the proof of the zero-cycle satura-
tion lemma, it can be shown that such ri’s exist. We return
θh·θ∗0 . . . θ∗m−1(s0

0s
0
1 . . . s

0
k0(θl0)r0 . . . sn0 . . . s

n
k1

(θln)rnsn+1
0 . . . sn+1

kn+1
θl)

ω

where the mth segment is the first segment in the infinite class.

The algorithm. The Büchi-emptiness algorithm intuitively consists of two
separate parts: (a) searching for high energy Büchi traces (where some ex-
tended state has energy more than MB = HighEnergyConstant(B, 3|S| +
2W |S|2)); and (b) searching for low energy fair traces (where every extended
state has energy less than MB). The algorithm first constructs BERT =
ComputeBERT(B, (sι, t),MB).
High energy. For every node label (s, [e; d]) in the BERT where e > MB , we

check (using techniques of [41]) whether there exists an energy-feasible
fair trace from it.

Form 1 low energy. For every node label (s, [e; d]) in BERT with e ≤ MB and
s ∈ B, we check if there exists a fair trace of Form 1 starting from (s, [e; d]).
Performing this check entails constructing energy-unique 0-energy cycles θl
starting from s and examining if θl is feasible from Saturate((s, [e; d]), θl).

Form 2 low energy. For every s ∈ B and e < MB , we run Algorithm 11[Pg.
189] with initial state s and initial battery status [e; d] to check if there
exists a fair trace of Form 2. Here, d is the maximum deviation of a node
label which has control state s and energy e.

Algorithm 11 Finding form 2 low energy fair traces

Input: Battery system B = 〈〈S,∆, sι, v〉, k, c〉, Energy bound M ∈ N, Control
state s, Initial battery status [e; d]

1: d∗ ← d

2: while true do
3: BERT← ComputeBERT(〈〈S,∆, s, v〉, k, c〉, [e; d∗],M)
4: P ← {leaf.label | BERT leaf leaf has label (s, [e; d′]) ∧

leaf has a starred ancestor }
5: if P = ∅ then
6: return false

7: else if d∗ = max{d′ | (s, [e; d′]) ∈ P} then
8: return true

9: else
10: d∗ ← max{d′ | (s, [e; d′]) ∈ P}

Lemma 9.14. Algorithm 11[Pg. 189] returns true if B contains a Büchi trace
of Form 2, and false otherwise.

Intuitively, Algorithm 11[Pg. 189] works by finding some deviation d∗ such
that (s, [e; d∗]) is feasibly reachable from itself through some number of 0-energy
cycle saturations (represented by starred nodes). In every iteration of the while-
loop, it decreases the possible value for d∗ to the largest deviation for control-
state s and energy e reachable from the previous value of d∗ through some
starred nodes. If d∗ becomes so low that we are not able to saturate any 0-
energy cycle starting from (s, [e; d∗]), then we return false.

189

Proof of Lemma 9.14[Pg. 189]. We start with showing that Algorithm 2 termi-
nates on all inputs. First, if the value of d∗ does not decrease in a particular
iteration, the execution of the loop stops. Hence, suppose the value of d∗ de-
creases in each iteration of the loop. Now, in every call to ComputeBERT, the
value of d∗ is less than in the previous call. As the value of the initial deviation
d∗ decreases in each iteration, the set of feasible traces is a subset of the set of
feasible traces in the previous iteration. In particular, the set P in an iteration
is a (not necessarily strict) subset of the set P for the previous iteration. If the
set is equal to the previous one, termination is guaranteed due to line 8[Pg. 189].
Otherwise, we have a strictly decreasing set P . As P starts out being finite, it
finally becomes empty in some iteration. Then, termination is guaranteed due
to line 6[Pg. 189].

The correctness proof consists of two parts. First, we need to show that if
the algorithm returns true, then there exists a Büchi trace of Form 2. This part
follows easily from the correctness properties of ComputeBERT. Considering the
last BERT constructed, we know that there exists a feasible path from (s, [e; d∗])
to some (s, [e; d∗ − ε]) for every ε > 0. We can show that by taking ε small
enough, the same path is feasible repeatedly. We do not show this here as the
proof is straight-forward but tedious. Once we show this, it can be seen the
trace made up of repetitions of this path is of Form 2 and that it is feasible.

Second, we need to show that if the algorithm returns false, then there
does not exist a Büchi trace of Form 2. Suppose B contains a Büchi trace
π = (s0, [e0; d0]) . . . of Form 2 and let (s, e) be such that s ∈ B and si = s∧ei = e

for infinitely many i. Let i0, i1, . . . be the sequence of such i’s. Now, consider
the call to Algorithm 2 with the initial extended state (s, [e; d]). From the
properties of the ComputeBERT algorithm, we have the following:
• As Algorithm 11[Pg. 189] is called with the maximum deviation possible

for each of control state and energy pair, at the end of initial part of the
trace (before the cycle), the deviation is less than d, i.e., di0 ≤ d.

• After each iteration of the lasso in the trace, the deviation becomes less
than the next value of d∗ in the execution of the algorithm, i.e., dik is at
most the value of d∗ in the kth iteration of the while-loop.

• In the last iteration (say qth) of the while-loop, the d∗ value is too low,
i.e., the lasso of the trace is infeasible from it. As the diq is less than d∗

in this iteration, the lasso is infeasible from diq .
Hence, the cycle of the Büchi trace will become infeasible from some (s, [e; dik])
and hence, the trace is infeasible. This gives us a contradiction, completing the
proof of the required lemma.

Theorem 9.15. Büchi emptiness for battery transition systems is decidable in
polynomial space with respect to the number of states and a unary encoding of
weights and constants.

Equipped with Theorem 9.13[Pg. 187], the proof of Theorem 9.15[Pg. 190]
follows in a similar fashion as in Theorem 9.12[Pg. 185].

Using similar techniques, we can construct an algorithm for Streett empti-
ness. In this case, also keeping track of the set of states visited along each
branch of the reachability tree.

Theorem 9.16. Street emptiness for battery transition systems is decidable in
polynomial space with respect to the number of states and a unary encoding of

190

weights and constants.

9.5.3 ω-Regular Model Checking

Equipped with a procedure for checking Büchi emptiness (Theorem 9.15[Pg.
190]), one can check whether a given BTS B satisfies any ω-regular constraint ϕ
that is defined with respect to B’s states. Such a constraint can be formalized, for
example, by a linear temporal logic (LTL) formula, whose atomic propositions
are the names of the states in B. Indeed, any ω-regular constraint ϕ can be
translated to a Büchi automaton A, such that A’s language is equivalent to the
language of ϕ (or to the language of its negation, as is the common practice in
the case of an LTL formula) [167]. Now, one can take the product of A and B,
defined in the usual way, getting a BTS C with a Büchi emptiness problem.

As Streett emptiness is a special case of ω-regular model checking, one may
wonder why we bothered to have Theorem 9.16[Pg. 190]. The reason lies in
the complexity – In Theorem 9.16[Pg. 190], we show that Streett emptiness
can be solved in the same complexity class as the one for Büchi emptiness,
while translating a Streett automaton into a Büchi automaton might involve an
exponential state blowup [147].

9.6 Case Study

We conclude this chapter with a case study relating to controlling an energy-
constrained robot. We first define a toy language for programming the robot
controller, inspired by various real languages for programming robots, and define
how the different constructs interact with the environment.

The setting. We model a semi-autonomous robot that operates in an arena
DL where each l ∈ DL is a possible location of the robot. For example, a
location can be an (x, y) vector, providing the position of the robot in a plane
of 1, 000× 1, 000 squares.

We model the environment of the robot as a function that gives attributes
to each location in the arena. Formally, the environment is E : DL →
〈DE1 , DE2 , . . . , DEm〉 where each DEi is a finite domain of some property. For
example, the environment may define the terrain of each location and whether it
lies in the sun or in the shade, in which case E(3, 5) = 〈“smooth terrain”, “sun”〉
means that the location (3, 5) is a sunny place with a smooth terrain. Note that,
in this case study, the environment is time invariant.

The actions of the robot are governed by its control program. In each time
step, denoted by a ‘tick’, the control program computes output actions based
on some external inputs, sensor values, and the values of the robot’s internal
variables.

The external input is given by input variables 〈I1, . . . , Ik〉, each over a finite
domain DIi , and it comes from an external independent agent. The sensor val-
ues, given by sensor variables 〈s1, . . . , sr〉, over the finite domains Ds1 , . . . , Dsr ,
are computed automatically based on the environment of the robot and its
current location. Formally, for each sensor variable si there is a function
ξi : E × DL → Dsi . The robot also has some internal variables, 〈N1, . . . , Ng〉,
over the finite domains DN1

, . . . , DNg , used for putting a logic in its behavior.

191

program := statements

statements := statement | statement; statements

statement := (label : tick) | action_var = expr

| internal_var = expr | skip

| if (expr == 0) statements else statements

| while (expr == 0) statements

expr := sensor_var | input_var | internal_var

| expr + expr | constant | expr * expr

| (expr == 0) ? expr : expr

Figure 9.5: Syntax of the robot-control language

The output actions are given by output variables 〈A1, . . . , Al〉, over the finite do-
mains DA1 , . . . , DAl . Upon performing the actions, the current location, given
in the variable L, is automatically computed based on the previous location and
the actions; formally, by a function η : DL ×DA1

× . . .×DAl → DL.
The state of the robot, V, encapsulates the values of all the above variables.

There is a cost function Energy which gives the energy gain (positive) or con-
sumption (negative) of actions in the given environment, i.e., Energy is of type
DE1 × . . .×DEm ×DA1 × . . .×DAl → Z. For the functions η, ξi, and Energy,
we use the short-hand of applying the function to the whole state instead of the
relevant variables. For example, instead of writing “ξi(l) = v and value of L in
state σ is l”, we write “ξi(σ) = v”.

The controller language. The language of the robot-control program is de-
fined by the syntax shown in Figure 9.5[Pg. 192]. Most of the constructs in
this language are standard, and will not be explained in detail. Note that the
program cannot directly write to the location variables and sensor variables,
but can only write to the internal variables and action variables. The most
interesting construct in the syntax is the tick statement. Intuitively, the tick

statement performs the actions described by the output variables (i.e., changes
the location using the η function) and reads new values into the sensor variables
(based on the environment and the current state, using the ξi functions) and
into the input variables (non-deterministically). The formal semantics of the
tick statement is described in the next paragraph.

We provide in Example 9.17[Pg. 192] a simple setting of an environment, a
control program, and the finite domains of the various variables.

Example 9.17.

The environment (arena).

x�y 1 2 3 4

1 - - × -
2 × / × -
3 - / / /
4 - × / /

192

Legends.

: Sun ; : Shade

- : hard ; / : soft ; ×:
obstacle

The robot variables.

Location. DL = {(1, 1), (1, 2), . . . , (4, 4)}
Inputs. DI1 = {Move,None}

DI2 = {Front ,Back ,Left ,Right}
Sensors. Ds1 = {InTheSun, InTheShade}

Ds2 = {SunOnFront ,NoSunOnFront}
. . . Sensors for sun and obstacles all around

Ds9 = {ObstacleOnRight ,NoObstacleOnRight}
Actions. DA1

= {Move,None}
DA2 = {Front ,Back ,Left ,Right}

Internal. DN1 = {InTheSun, InTheShade}
DN2

= {WasInTheSun,WasInTheShade}
DN3

= {Was2 InTheSun,Was2 InTheShade}

The cost function. (The direction does not matter.)
Energy(Sun,Hard/Soft ,None) = +12
Energy(Sun,Hard ,Move) = +1
Energy(Sun,Soft ,Move) = −1
Energy(Shade,Hard/Soft ,None) = −5
Energy(Shade,Hard ,Move) = −12
Energy(Shade,Soft ,Move) = −15

The robot-control program. The program, intuitively, defines the following
behavior.

• Obey the external input, whenever it is legal. Otherwise, do nothing, if
legal, or else check for a legal action.

• The constraints for a legal action:

– Do not go into an obstacle. (A location out of the arena is considered
as an obstacle.)

– Do not stay in the sun for more than two consecutive steps.

– Whenever staying for two consecutive steps in the sun, avoid the sun
for at least two consecutive steps.

The code is straightforward; we give below some of its fragments.

while(1) {
// Check if the input is legal

// Moving into an obstacle?

if (I1 = Move &&

(I2 = Front && S6 = ObstacleOnFront

|| I2 = Back && S7 = ObstacleOnBack

|| I2 = Left && S8 = ObstacleOnLeft

193

|| I2 = Right && S9 = ObstacleOnRight)

)

A1 := None

// Too much in the sun?

if (N2 = WasInTheSun

&& (N1 = InTheSun || N3 = Was2InTheSun) && ...

)

// Choose a legal action

if (N1 = InTheShadow)

A1 := None

else if (S2=NoSunOnFront && S6=NoObstacleOnFront)

A1 := Move; A2 := Front

...

label1 : tick;

N3 := (N2=WasInTheSun)? Was2InTheSun:Was2InTheShade

N2 := (N1=InTheSun)? WasInTheSun : WasInTheShade

N1 := S1

}

Semantics. Consider a robot-control program P , and fix diffusion constant
k and a width constant c for a battery. We define the semantics of P in the
standard small-step operational style. We summarize the state of the program
as (σ, t) where σ is a valuation of the variables, and t is a battery status.
Therefore, the small-step semantics is given by a relation ⇒ where intuitively,
(P, (σ, t)) ⇒ (P ′, (σ′, t′)) holds if executing the first step from the program
fragment P at state (σ, t) leads to (σ′, t′) and the remaining program fragment
is P ′.

We assume that all the constructs except tick are executed instantaneously,
and without any consumption of power; hence, the only construct that updates
the battery status in the summary is the tick. Therefore, for all the other
constructs, we do not explicitly present the semantics, but point out that the
semantics are similar to a standard while-language. For the tick construct, we
define the semantics using the proof rules from Figure 9.6[Pg. 195].

Intuitively, on executing a tick, the effects of the output actions are per-
formed, the sensor variables are updated based on the new location and envi-
ronment, the next valuation of the input variables is given, and then the battery
status is updated based on the cost of the actions in the current environment.

Problem statement. We consider model-checking problems; that is, asking
whether a given model satisfies a given specification. The model, in our case,
is a robot and its environment; namely, a robot-control program, battery con-
stants, an initial battery status, an environment with locations DL, and an
initial location. The specification is a regular or ω-regular language over the
(finite or infinite) sequences of locations in DL. The model-checking problem is
affirmatively answered if the robot has a path, in the given setting, such that the
sequence of locations along the path belongs to the language of the specification.

Consider, for example, the setting of Example 9.17[Pg. 192] together with an
initial location (1, 1), a battery width constant 1

2 , a battery diffusion constant
1
8 , and an initial battery status (16, 16). A regular specification can ask, for

194

(label : tick, (σ, t))⇒ (effects; sensors; inputs; battery, (σ, t))
Tick

cost(σ) = w Post(t, w) = t′

(battery, (σ, t))⇒ (skip, (σ, t′))
Battery

v1 ∈ DI1 . . . vl ∈ DIl

(inputs, (σ, t))⇒ (skip, (σ[∀k : Ik := vk], t′))
Inputs

v1 = ξ1(σ) . . . vr = ξr(σ)

(sensors, (σ, t))⇒ (skip, (σ[∀k : sk := vk], t′))
Sensors

v = η(σ)

(effects, (σ, t))⇒ (skip, (σ[∀k : L := v], t′))
Effects

Figure 9.6: Semantics of tick

instance, whether the robot has a finite path reaching the location (3, 2). An ω-
regular specification can ask, say, whether the robot has an infinite path visiting
the location (1, 4) infinitely often, while avoiding the locations (3, 1) and (4, 4).

Model-checking algorithm. Given a control-program P , an environment
E , a battery width constant c, a battery diffusion constant k, an initial battery
status tι, and an initial variable valuation σι, we define the equivalent battery
transition system BTS[[P, E , c, k, tι, σι]] = 〈〈S,∆, sι, v〉, c, k〉 as follows.

Let L be the set of labels of the tick statements in the program.
• A state in the BTS is a pair (l, σ) where l ∈ L is a label, and σ is a

valuation of all the variables in the program.
• There exists a transition from (l1, σ1) to (l2, σ2) on weight w if for some

program fragments P1 and P2:
– there exist battery statuses t1 and t2 and a proof that

((l1 : tick);P1, (t1, σ1)) ⇒ ((l2 : tick);P2, (t2, σ2)) where the Tick
rule is applied exactly once; and

– there exist battery statuses t1 and t2, such that there is a proof
(P, (σι, t1))⇒ ((l1 : tick);P1, (σ1, t2)).

• The cost of a transition from (l, σ) is w if applying the cost function on
the valuation of the environment and action variables in σ is w.

• The initial state sι is given by (l, σ) such that there exists a pro-
gram fragment P1 and a battery status t such that there is a proof of
(P, (σι, t)) ⇒ (((l : tick);P1), (σ, t)) containing no applications of the
Tick rule. Due to the determinism of our language, it is guaranteed that
there exists only one such (l, σ).

A part of the BTS corresponding to Example 9.17[Pg. 192] is given in Fig-
ure 9.7[Pg. 196].

We have the following theorem.

Theorem 9.18. Consider a robot model-checking problem consisting of a
control-program P , an environment E with locations DL, a battery width con-
stant c, a battery diffusion constant k, an initial battery status tι, an initial
variable valuation σι, and a regular or ω-regular language φ over the sequences

195

Was2Sun
WasShade

Shade

(1, 2)

Was2Sun
WasSun

WasShade
Was2Shade

WasSun

(1, 1)

WasShade
Sun

(3, 2)

Was2Shade
WasShade

Sun
(2, 2)

Was2Shade

Shade

Shade

(1, 2)

Was2Shade
WasSun

(1, 1)
Shade

Was2Shade

Sun

(1, 2)

Was2Sun
WasShade

Shade
(2, 2)

...

(16, 16)

The battery diffusion constant k = 1
8

and its width constant c = 1
2

.

−5

−5

−5

−12

−15

+1

...

−12

−12

−12

+12

... +1

−15

Figure 9.7: A part of the BTS that corresponds to the robot and its
environment, as described in Example 9.17[Pg. 192]. The best path
to location (3, 2) appears in boldface blue. This path is infeasible
by the BTS semantics, while feasible by models that are based on
an ideal-energy resource.

of locations in DL.
Let B = BTS[[P, E , c, k, tι, σι]]. For a control state b ∈ B, let Location(b)

be the valuation of the robot location variable in b. Let φ′ be a regular or ω-
regular language over sequences of control locations in B, such that a sequence
b0, b1, . . . ∈ Φ′ iff Location(b0), Location(b1), . . . ∈ Φ.

Then, the robot model-checking problem is equivalent to the BTS model-
checking of B and φ′.

Battery vs. ideal energy. Model-checking the robot behavior, taking into
account the non-ideal aspects of the energy resource, is inherently different
from considering the battery as an ideal energy resource, as demonstrated in
Example 9.17[Pg. 192]. There, the robot cannot go with an initial battery status
of (16, 16) from location (1, 1) to (3, 2) (cf., Theorem 9.3[Pg. 177].) On the other
hand, it is possible to go from location (4, 4) to (3, 4), starting with the same
initial battery status. Note that such a situation is impossible with a model
that is based on an ideal-energy resource, as the energy loss going from location
(4, 4) to (3, 4) is 15, while from location (1, 1) to (3, 2) it is only 14! (The reason,
as elaborated on in Sections 9.2[Pg. 171]–9.3[Pg. 174], lies in the influence of
the energy changes along the path on the available charge of the battery.)

196

9.7 Summary

We presented the first discrete formal model of battery systems and showed
that the standard automaton emptiness problems for this model are decidable.
Further, these battery transition systems do not fall into the large class of well-
structured transition systems. We also applied these model checking algorithms
in a case study on energy-constrained robots.

Chapter 10

Discussion

We finish this part with a short discussion on the related work and possible
directions of future work.

10.1 Future Work

Quantitative Synthesis for Concurrency. The approach presented in
Chapter 6[Pg. 90] examines every correct strategy. There is thus the ques-
tion whether there exists a practical algorithm that overcomes this limitation
by eliminating partial strategies based on performance considerations. Also, we
did not consider the question which solution(s) to present to the programmer
in case there is a number of correct strategies with the same (or similar) perfor-
mance. Furthermore, one could perhaps incorporate some information on the
expected workload to the performance model as a usage model. One possible
extension is to consider the synthesis of programs that access concurrent data
structures rather than just finite state concurrent program, and another is to
create benchmarks from which performance models can be obtained automati-
cally.

Quantitative Abstraction Refinement. We intend to use quantitative ab-
straction to aid partial-program synthesis, as quantitative reasoning is necessary
if the goal is not to synthesize any program, but rather the best performing pro-
gram according to quantitative measures such as performance or robustness (as
in Chapter 6[Pg. 90]). Furthermore, the anytime verification property of the re-
finements we proposed can lead to anytime synthesis methods, that is, methods
that would synthesize correct programs, and refine these into more optimized
versions if given more time. Further, our improvements to WCET estimation
algorithms could also be used in synthesis of optimal programs.

On the practical side, extending our method with interpolation in first-
order theories (e.g., the theory of arrays) could yield transition predicates over
data structures, allowing us to analyze heap-accessing programs. Further, our
segment-based abstraction refinement framework can be extended with other
cost information, for example for analyzing the energy usage of programs.

198

Battery Transition Systems. In terms of future work, a natural direction
is to explore standard program analysis and program synthesis questions for
systems that use batteries. For example, to begin with, one could define an
extension to standard imperative languages to allow programs to branch based
on the status of the battery. For programs written in such a language, one
could attempt to compute invariants about the combined program- and battery-
state through abstract interpretation. Also, one could attempt battery-aware
partial-program synthesis for such a language. This would be a generalization
of the battery-aware scheduling problem studied in [108]. Another direction
to explore is the possibility of solving two-player games for battery transition
system, leading to battery-aware algorithms for synthesis of reactive systems.

10.2 Related Work

Performance-Aware Synthesis. Synthesis from specifications is a classical
problem [57, 59, 133]. More recently, sketching, a technique where a partial
implementation of a program is given and a correct program is generated au-
tomatically, was introduced [154] and was extended to concurrent programs
in [153]. Synthesis for synchronization constructs is also an old problem and
the celebrated paper [59] presented an algorithm for synthesis of synchronization
skeletons. Recent study in this field includes topics like lock placement [53, 80]
and fence insertion [160, 82]. However, none of the above approaches consider
performance-aware algorithms for sketching; they focus on qualitative synthesis
without any performance measure.

In [168, 53] fixed optimization criteria (such as preferring short atomic sec-
tions or fine-grained locks) are considered. Optimizing these measures may
not lead to optimal performance on all architectures, and none of these works
consider parametric performance models. Further, the synthesis problem for
concurrent programs in general is equivalent to imperfect information games.
However, none of the above works consider the general framework of games for
synthesis, or the parametric performance model.

Recent works have considered quantitative synthesis [22, 49]; however the
focus of these works has been the synthesis of sequential systems from tempo-
ral logic specifications. Moreover, all these works consider perfect information
games. Neither imperfect information games nor quantitative objectives were
considered before for synthesis for concurrent programs. We require imperfect
information due to concurrency and quantitative objectives for performance
measures.

Recently, another approach that has become popular for synthesis of efficient
programs is stochastic super-optimization [149]. Here, the input is a small piece
of straight-line assembly code and the optimizer searches through a large number
of other equivalent programs to find the most efficient one. The optimizer is
specific to each architecture and uses deep knowledge about the architecture to
evaluate the performance of different versions of the program.

Quantitative Abstraction Refinement The theory of abstractions for pro-
grams was introduced in [65]. We build on the transition predicates of [136] and
segment covers of [67] to construct our quantitative abstractions. The CEGAR
algorithm was introduced in [60] and is widely used. Automated abstraction

199

refinement for transition predicates was presented in [62]. To the best of our
knowledge, CEGAR-like algorithms for quantitative properties have not yet
been studied.

However, quantitative abstractions and refinements have been introduced
for stochastic systems [72, 111, 99, 104, 128], where the need for quantitative
reasoning arises because of stochasticity. They are mainly directed towards
the estimation of expected values, and the algorithms reflect this fact. The
probabilistic work does not aim at handling accumulative properties like the
limit-average property.

Abstractions (but not CEGAR-like algorithms) have been proposed for cer-
tain quantitative properties of non-probabilistic systems, such as cache abstrac-
tions for WCET analysis [84]. WCET analysis using interval abstraction was
performed in [139, 138]. The power consumption analysis of software based
on the costs of single instructions was presented in [158, 159], with improved
models built subsequently (e.g., the model in [150] accounts for asynchronously
consumed energy for peripheral devices). Our WCET analysis of executables
based on quantitative abstraction refinement could be adapted for power con-
sumption analysis using these models.

Worst-case Execution Time Analysis. In [135], transition invariants for
proving program termination are derived. Following this framework, in [64]
ranking functions as transition predicates are iteratively inferred and refined as
lexicographic termination argument. The method relies on constraint constraint
solving and exploiting the abstraction refinement approach of [62]. A method
for computing loop bounds from loop invariants expressing transition predicates
is described in [90]. This work uses templates for two-state invariants, whereas
we infer segment predicates by interpolation. Furthermore, the approach uses
patterns in conjunction with abstract interpretation to drive the invariant gen-
eration, and infers symbolic bounds on the number of loop iterations. While we
also use loop bounds as symbolic parameters in our abstraction framework, our
work is conceptually different from [90]. We rely on segment-based abstraction
to reason about the time complexity of instruction sequences, and iteratively
compute interpolants describing program properties under the current abstrac-
tions. Our interpolants are not necessarily inductive invariants, however they
are derived automatically without using patterns or templates.

Most state-of-the-art static WCET approaches, see e.g. [113, 14], compute
a constant WCET by using concrete inputs to the program and relying on
numeric loop bounds. Unlike these methods, our WCET estimates are para-
metric, describing symbolic expressions over the program parameters. When
using [113, 14] on different values of parameters, a new WCET analysis needs
to be made for each set of values. This is not the case with our method, Our
parametric WCET is computed only once and replacing parameters with their
values yields the precise WCET for each set of concrete values, without rerun-
ning the WCET analysis as in [113, 14].

Parametric WCET calculation is also described in [29, 102], where
polyhedra-based abstract interpretation is used to derive integer constraints on
program executions. Solving these constraints is done using parametric integer
linear programming problem, and a parametric WCET is obtained. In [102]
various heuristics are applied in order to approximate program paths by small

200

linear expressions over execution frequencies of program blocks. When com-
pared to [29, 102], our segment-based abstraction allows us to reason about the
WCET as a property of a sequence of instructions rather than a state property.
To the best of our knowledge, interpolation-based algorithms and segment-based
abstraction have not yet been studied for the WCET analysis of programs.

Battery Transition Systems. Batteries are involved devices, exhibiting var-
ious different physical phenomena. Accordingly, there are many different works
considering these aspects, for example scheduling the load among several bat-
teries [18, 54, 106, 108], optimizing the lifetime of a battery with respect to the
“cycle aging effect” [2] and analyzing the thermal effects.

To the best of our knowledge, this is the first work to formally analyze
an energy system with a non-ideal energy source. Previous work has either
considered ideal energy sources (for example, [47]) or provides approximations
for the battery life-time with respect to various discharge scenarios (for exam-
ple, [106, 107]).

Our model checking algorithms follows the approach taken in the Karp-
Miller tree [110] which can be used in general for well-structured transition
systems [86]. However, our systems are not well-structured and a naive ap-
plication of this technique does not entail termination of algorithms. We use
ideas from flattable systems [15] and additional analysis of BTSs to produce a
terminating version of these algorithms. In particular, we also use an intricate
analysis of BTSs to get an algorithm for deciding Büchi and Streett properties.
This kind of analysis is not possible for general flattable systems.

10.3 Summary

We extended three well-known verification and synthesis techniques to different
quantitative specifications. While each of the extensions are similar to the origi-
nal techniques at a high level, there are significant differences that are necessary
to handle quantitative specifications. In Chapter 6[Pg. 90], new techniques were
required for efficient evaluation of strategies and elimination of partial strategies.
In Chapter 7[Pg. 110] and Chapter 8[Pg. 144], segment-based abstractions were
required rather than standard state-based abstractions. In Chapter 9[Pg. 168],
the infinite state systems that arose from modelling batteries were not a part
of any previously known decidable class — several techniques were combined to
prove that the model checking problems are decidable.

Chapter 11

Conclusion

The main aim of this dissertation was to explore the use of quantitative specifi-
cations in verification and synthesis of systems. We summarize our contributions
towards this goal, present some ongoing work and possible directions of future
work. Here, we present just a few directions of future work as it has already
been in the discussed extensively in the discussion sections concluding each part.

Summary. In the first part, our focus was on reactive systems. We presented
the simulation distances framework for specifying reactive systems. The basic
concept in this framework is a simulation distance, which is an extension of the
classical simulation relation. The simulation distances are measured using a
quantitative extension of the simulation game where the simulating player may
simulate actions using mis-matching actions, but pays a penalty for such mis-
matches. We showed how simulation distances can be used to capture quantita-
tive versions of various relations between an implementation and specification
such as correctness, coverage, and robustness. Further, we showed how simula-
tion distances can be used to solve the synthesis from incompatible specifications
problem where the goal is to synthesize an implementation that comes closest to
being correct with respect to a number of possibly incompatible specifications.
We presented a number of case studies showing how simulation distances can be
used at various points during system development, such as test-case generation
and robustness analysis. Further, we also proved properties of simulation dis-
tances that enable various verification techniques such as compositional analysis
and analysis through abstractions.

In the second part, we focussed on extending some classical techniques in
verification and synthesis to quantitative specifications. We presented an algo-
rithm for counter-example guided inductive synthesis for synthesizing concur-
rent programs that are not only correct, but also perform optimally. We showed
that our algorithm can synthesize optimal programs in cases such as optimistic
concurrency where previous techniques based on heuristics such as minimiz-
ing critical sections do not apply. We also presented two kinds of abstraction
and abstraction refinement techniques for quantitative properties — state-based
and segment-based. We applied these techniques to the analysis of worst-case
execution time of programs and showed that our abstraction-based techniques
return tighter bounds on the worst-case execution than standard tools. Fi-
nally, we presented a formal model for systems that interact with a battery.

202

We discussed briefly the short-comings of the classical models (such as energy
transition systems and energy games), showed how our model overcomes these,
and presented novel model checking algorithms for battery transition systems
for ω-regular properties.

Ongoing work. Work on a number of different aspects of the work presented
in this thesis is ongoing. Related to the simulation distances framework, one
direction being explored is the use of the coverage distance for test-case gen-
eration. This was briefly described in the example from Chapter 3[Pg. 30].
Another work currently ongoing is the rewriting of a large classical specifica-
tion in the simulation distances framework to examine the practical advantages
and disadvantages of the framework. The specification chosen is of the Ad-
vances High-Performance Bus (AHB) from the Advanced Micro-controller Bus
Architecture (AMBA) [88, 23].

Related to the second part, work that grew out directly from the problem of
synthesis of efficient programs was presented in [39] and [40]. In [39] and [40],
the aim is not to synthesize the most efficient program in the given solution
space, but instead to repair a given faulty concurrent program while avoiding
expensive synchronization constructs such as locks and atomic sections.

Another line of work that is ongoing is the extension of the battery tran-
sition systems from Chapter 9[Pg. 168] to 2-player games. While the battery
systems are not well structured transition systems, the model checking algo-
rithms were possible as cycles in battery transitions systems can be accelerated
precisely. However, we know of no game solving algorithm based on accelera-
tion. Therefore, novel techniques will be required to augment standard game
solving algorithms with acceleration-based methods. Game solving algorithms
for 2-player battery games will enable solving schedulability problems (without
any approximation) with energy sources [108].

Future work. In the long term, there are many possible directions of work
based on the techniques presented in this thesis.

Related to simulation distances framework, one interesting direction is to
see if it is possible to define a high-level specification language based on the
framework. In practice, specifications are rarely written directly in a formal
framework (such as automata or temporal logics), but are instead written in a
convenient high-level language (such as Lustre [31], Scade, etc) whose semantics
are defined in terms of a low-level formal framework. Defining such a high-level
language for specifications and error models in the simulation distances frame-
work would bring us closer to practical adoption of quantitative frameworks.

Related to segment-based abstractions presented in Chapter 7[Pg. 110] and
interpolation for segment-based abstractions from Chapter 8[Pg. 144], one possi-
ble direction is to apply these techniques to termination analysis. While the the-
oretical aspects has been explored in [67], the practical issues have not addressed
yet. If successful, the segment-based abstraction techniques for termination will
subsume techniques based on summarization [63] and trace abstraction [124].

Another possible application of quantitative abstractions is in the domain
of partial-program synthesis. The technique of abstraction-guided synthesis
(presented in [168]) was introduced to make synthesis feasible for large partial-
programs. In abstraction-guided synthesis certain specializations of the partial-

203

program are preemptively eliminated based on abstract counter-examples, i.e.,
errors in an abstract program (which might not be present in the concrete
program). Using quantitative abstractions for this technique would entail the
same for “performance errors”, i.e., some programs may be eliminated as they
potentially have bad performance even if they might be correct.

The material presented in Chapter 9[Pg. 168] is a small step in the study of
physics-based formal models for systems interacting with energy sources. There
are several other, more complex, physical models for batteries [141, 142]. It is
to be seen whether these models can be discretized and formalized, and whether
they have decidable model checking properties. Applying the model presented
in Chapter 9[Pg. 168] to practical schedulability problems is another important
goal for future work.

204

Bibliography

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings.
In LICS, pages 165–175, 1988.

[2] Ron Adany and Tami Tamir. Online algorithm for battery utilization in
electric vehicles. In FedCSIS, pages 349–356, 2012.

[3] Aws Albarghouthi and Kenneth L. McMillan. Beautiful interpolants. In
CAV, pages 313–329, 2013.

[4] Shaull Almagor, Udi Boker, and Orna Kupferman. Discounting in LTL.
In TACAS, pages 424–439, 2014.

[5] Shaull Almagor and Orna Kupferman. Max and sum semantics for alter-
nating weighted automata. In ATVA, pages 13–27, 2011.

[6] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking for
real-time systems. In LICS, pages 414–425, 1990.

[7] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin
Ho. Hybrid automata: An algorithmic approach to the specification and
verification of hybrid systems. In Hybrid Systems, pages 209–229, 1992.

[8] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund
Raghothaman, and Yifei Yuan. Regular functions and cost register au-
tomata. In LICS, pages 13–22, 2013.

[9] Rajeev Alur and David L. Dill. The theory of timed automata. In REX
Workshop, pages 45–73, 1991.

[10] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. In FOCS,
pages 164–169, 1989.

[11] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-
time temporal logic. In COMPOS, pages 23–60, 1997.

[12] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.
Vardi. Alternating refinement relations. In CONCUR, pages 163–178,
1998.

[13] Guy Avni and Orna Kupferman. Parameterized weighted containment.
In FoSSaCS, pages 369–384, 2013.

205

[14] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sain-
rat. OTAWA: An open toolbox for adaptive WCET analysis. In SEUS,
pages 35–46, 2010.

[15] Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Ph. Schnoebelen.
Flat acceleration in symbolic model checking. In ATVA, pages 474–488,
2005.

[16] Sebastian S. Bauer, Uli Fahrenberg, Line Juhl, Kim G. Larsen, Axel Legay,
and Claus R. Thrane. Weighted modal transition systems. Formal Meth-
ods in System Design, 42(2):193–220, 2013.

[17] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Petters-
son, and Wang Yi. Uppaal - a tool suite for automatic verification of
real-time systems. In Hybrid Systems, pages 232–243, 1995.

[18] Luca Benini, Giuliano Castelli, Alberto Macii, Enrico Macii, Massimo
Poncino, and Riccardo Scarsi. Extending lifetime of portable systems by
battery scheduling. In DATE, pages 197–203, 2001.

[19] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and
Program Development, Coq’Art:the Calculus of Inductive Constructions.
Springer-Verlag, 2004.

[20] Henrik Björklund, Sven Sandberg, and Sergei G. Vorobyov. A discrete
subexponential algorithm for parity games. In STACS, pages 663–674,
2003.

[21] Roderick Bloem, Roberto Cavada, Ingo Pill, Marco Roveri, and Andrei
Tchaltsev. RAT: A tool for the formal analysis of requirements. In CAV,
pages 263–267, 2007.

[22] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Bar-
bara Jobstmann. Better quality in synthesis through quantitative objec-
tives. In CAV, pages 140–156, 2009.

[23] Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman,
Amir Pnueli, and Martin Weiglhofer. Specify, compile, run: Hardware
from psl. Electr. Notes Theor. Comput. Sci., 190(4):3–16, 2007.

[24] Bard Bloom. Ready simulation, bisimulation, and the semantics of CCS-
like languages. PhD thesis, MIT, 1989.

[25] Mark S. Boddy. Anytime problem solving using dynamic programming.
In AAAI, pages 738–743, 1991.

[26] Udi Boker, Thomas A. Henzinger, and Arjun Radhakrishna. Battery
transition systems. In POPL, pages 595–606, 2014.

[27] Gerardine G. Botte, Venkat R. Subramanian, and Ralph E. White. Math-
ematical modeling of secondary lithium batteries. Electrochimica Acta,
45(15-16):2595 – 2609, 2000.

[28] J. Richard Büchi and Lawrence H. Landweber. Definability in the monadic
second-order theory of successor. J. Symb. Log., 34(2):166–170, 1969.

206

[29] Stefan Bygde and Björn Lisper. Towards an automatic parametric wcet
analysis. In WCET, 2008.

[30] Paul Caspi and Albert Benveniste. Toward an approximation theory for
computerised control. In EMSOFT, pages 294–304, 2002.

[31] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre:
A declarative language for programming synchronous systems. In POPL,
pages 178–188, 1987.

[32] Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Rad-
hakrishna, and Rohit Singh. Quantitative synthesis for concurrent pro-
grams. In CAV, pages 243–259, 2011.

[33] Pavol Cerný, Martin Chmelik, Thomas A. Henzinger, and Arjun Rad-
hakrishna. Interface simulation distances. In GandALF, pages 29–42,
2012.

[34] Pavol Cerný, Sivakanth Gopi, Thomas A. Henzinger, Arjun Radhakrishna,
and Nishant Totla. Synthesis from incompatible specifications. In EM-
SOFT, pages 53–62, 2012.

[35] Pavol Cerný, Thomas A. Henzinger, and Arjun Radhakrishna. Quantita-
tive simulation games. In Essays in Memory of Amir Pnueli, pages 42–60,
2010.

[36] Pavol Cerný, Thomas A. Henzinger, and Arjun Radhakrishna. Simulation
distances. In CONCUR, pages 253–268, 2010.

[37] Pavol Cerný, Thomas A. Henzinger, and Arjun Radhakrishna. Simulation
distances. Theor. Comput. Sci., 413(1):21–35, 2012.

[38] Pavol Cerný, Thomas A. Henzinger, and Arjun Radhakrishna. Quantita-
tive abstraction refinement. In POPL, pages 115–128, 2013.

[39] Pavol Cerný, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk,
and Thorsten Tarrach. Efficient synthesis for concurrency by semantics-
preserving transformations. In CAV, pages 951–967, 2013.

[40] Pavol Cerný, Thomas A. Henzinger, Arjun Radhakrishna, Leonid Ryzhyk,
and Thorsten Tarrach. Regression-free synthesis for concurrency. In CAV
(to appear), 2014.

[41] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and
Mariëlle Stoelinga. Resource interfaces. In EMSOFT, pages 117–133,
2003.

[42] Krishnendu Chatterjee. Stochastic Omega-Regular Games. PhD thesis,
EECS Department, University of California, Berkeley, October 2007.

[43] Krishnendu Chatterjee, Luca de Alfaro, Rupak Majumdar, and Vish-
wanath Raman. Algorithms for game metrics. In FSTTCS, pages 107–118,
2008.

207

[44] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor.
Comput. Sci., 458:49–60, 2012.

[45] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quan-
titative languages. In CSL, pages 385–400, 2008.

[46] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Ex-
pressiveness and closure properties for quantitative languages. In LICS,
pages 199–208, 2009.

[47] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. Generalized mean-payoff and energy games. In FSTTCS,
pages 505–516, 2010.

[48] Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
Environment assumptions for synthesis. In CONCUR, pages 147–161,
2008.

[49] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann, and
Rohit Singh. Measuring and synthesizing systems in probabilistic envi-
ronments. In CAV, pages 380–395, 2010.

[50] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski.
Mean-payoff parity games. In LICS, pages 178–187, 2005.

[51] Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger.
Simple stochastic parity games. In CSL, pages 100–113, 2003.

[52] Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin.
Strategy synthesis for multi-dimensional quantitative objectives. Acta Inf.,
51(3-4):129–163, 2014.

[53] Sigmund Cherem, Trishul M. Chilimbi, and Sumit Gulwani. Inferring
locks for atomic sections. In PLDI, pages 304–315, 2008.

[54] Carla-Fabiana Chiasserini and Ramesh R. Rao. Energy efficient bat-
tery management. IEEE Journal on Selected Areas in Communications,
19(7):1235–1245, 2001.

[55] Hana Chockler, Orna Kupferman, and Moshe Y. Vardi. Coverage metrics
for formal verification. STTT, 8(4-5):373–386, 2006.

[56] Hana Chockler, Orna Kupferman, and Moshe Y. Vardi. Coverage metrics

for temporal logic model checking*. Formal Methods in System Design,
28(3):189–212, 2006.

[57] Alonzo Church. Logic, arithmetic, and automata. In Proceedings of the
International Congress of Mathematicians, 1962.

[58] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. Nusmv 2: An opensource tool for symbolic model check-
ing. In CAV, pages 359–364, 2002.

208

[59] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching-time temporal logic. In Logic of
Programs, pages 52–71, 1981.

[60] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, 2003.

[61] J. Cochet-Terrasson, G. Cohen, S. Gaubert, M. McGettrick, and J.-P.
Quadrat. Numerical computation of spectral elements in max-plus alge-
bra, 1998.

[62] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction
refinement for termination. In SAS, pages 87–101, 2005.

[63] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Summarization
for termination: no return! Formal Methods in System Design, 35(3):369–
387, 2009.

[64] Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic
termination proving. In TACAS, pages 47–61, 2013.

[65] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In POPL, pages 238–252, 1977.

[66] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In POPL, pages 269–282, 1979.

[67] Patrick Cousot and Radhia Cousot. An abstract interpretation framework
for termination. In POPL, pages 245–258, 2012.

[68] Siddhartha R. Dalal, Ashish Jain, Nachimuthu Karunanithi, J. M. Leaton,
Christopher M. Lott, Gardner C. Patton, and Bruce M. Horowitz. Model-
based testing in practice. In ICSE, pages 285–294, 1999.

[69] Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branch-
ing system metrics. IEEE Trans. Software Eng., 35(2):258–273, 2009.

[70] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Discount-
ing the future in systems theory. In ICALP, pages 1022–1037, 2003.

[71] Luca de Alfaro, Rupak Majumdar, Vishwanath Raman, and Mariëlle
Stoelinga. Game refinement relations and metrics. Logical Methods in
Computer Science, 4(3), 2008.

[72] Luca de Alfaro and Pritam Roy. Magnifying-lens abstraction for markov
decision processes. In CAV, pages 325–338, 2007.

[73] Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin,
and Szymon Torunczyk. Energy and mean-payoff games with imperfect
information. In CSL, pages 260–274, 2010.

[74] Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panan-
gaden. Metrics for labelled markov processes. Theor. Comput. Sci.,
318(3):323–354, 2004.

209

[75] Sumesh Divakaran, Deepak D’Souza, and Raj Mohan Matteplackel.
Conflict-tolerant specifications in temporal logic. In ISEC, pages 103–
110, 2010.

[76] Marc Doyle, Thomas F Fuller, and John Newman. Modeling of galvanos-
tatic charge and discharge of the lithium/polymer/insertion cell. Journal
of the Electrochemical Society, 140(6):1526–1533, 1993.

[77] Manfred Droste and Paul Gastin. Weighted automata and weighted logics.
Theor. Comput. Sci., 380(1-2):69–86, 2007.

[78] Deepak D’Souza and Madhu Gopinathan. Conflict-tolerant features. In
CAV, pages 227–239, 2008.

[79] Calvin C. Elgot and Michael O. Rabin. Decidability and undecidability
of extensions of second (first) order theory of (generalized) successor. J.
Symb. Log., 31(2):169–181, 1966.

[80] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar.
Lock allocation. In POPL, pages 291–296, 2007.

[81] Uli Fahrenberg, Axel Legay, and Claus R. Thrane. The quantitative linear-
time–branching-time spectrum. In FSTTCS, pages 103–114, 2011.

[82] Xing Fang, Jaejin Lee, and Samuel P. Midkiff. Automatic fence insertion
for shared memory multiprocessing. In ICS, pages 285–294, 2003.

[83] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rig-
orous and Practical Approach, Revised (Paperback). Course Technology,
1998.

[84] Christian Ferdinand, Florian Martin, Reinhard Wilhelm, and Martin Alt.
Cache behavior prediction by abstract interpretation. Sci. Comput. Pro-
gram., 35(2):163–189, 1999.

[85] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes.
Springer-Verlag New York, Inc., New York, NY, USA, 1996.

[86] Alain Finkel and Ph. Schnoebelen. Well-structured transition systems
everywhere! Theor. Comput. Sci., 256(1-2):63–92, 2001.

[87] Thomas F Fuller, Marc Doyle, and John Newman. Relaxation phenom-
ena in lithium-ion-insertion cells. Journal of the Electrochemical Society,
141(4):982–990, 1994.

[88] Yashdeep Godhal, Krishnendu Chatterjee, and Thomas A. Henzinger.
Synthesis of amba ahb from formal specification: a case study. STTT,
15(5-6):585–601, 2013.

[89] Sean Gold. A pspice macromodel for lithium-ion batteries. In Battery
Conference on Applications and Advances, pages 215–222, 1997.

[90] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In
PLDI, pages 292–304, 2010.

210

[91] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The
mälardalen wcet benchmarks: Past, present and future. In WCET, pages
136–146, 2010.

[92] Steven C Hageman. Simple PSPICE models let you simulate common
battery types. EDN, 38(22):117, 1993.

[93] Richard W Hamming. Error detecting and error correcting codes. Bell
System technical journal, 29(2):147–160, 1950.

[94] Constance L. Heitmeyer, Myla Archer, Ramesh Bharadwaj, and Ralph D.
Jeffords. Tools for constructing requirements specifications: the scr toolset
at the age of nine. Comput. Syst. Sci. Eng., 20(1), 2005.

[95] Thomas A. Henzinger, Orna Kupferman, and Sriram K. Rajamani. Fair
simulation. In CONCUR, pages 273–287, 1997.

[96] Thomas A. Henzinger, Rupak Majumdar, and Vinayak S. Prabhu. Quan-
tifying similarities between timed systems. In FORMATS, pages 226–241,
2005.

[97] Thomas A. Henzinger, Jan Otop, and Roopsha Samanta. Lipschitz ro-
bustness of finite-state transducers. CoRR, abs/1404.6452, 2014.

[98] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Elsevier Inc., 2008.

[99] Holger Hermanns, Björn Wachter, and Lijun Zhang. Probabilistic CE-
GAR. In CAV, pages 162–175, 2008.

[100] Krystof Hoder, Laura Kovács, and Andrei Voronkov. Playing in the grey
area of proofs. In POPL, pages 259–272, 2012.

[101] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, 2003.

[102] Benedikt Huber, Daniel Prokesch, and Peter P. Puschner. A formal frame-
work for precise parametric wcet formulas. In WCET, pages 91–102, 2012.

[103] Milka Hutagalung, Martin Lange, and Étienne Lozes. Revealing vs. con-
cealing: More simulation games for büchi inclusion. In LATA, pages 347–
358, 2013.

[104] Michael Huth. On finite-state approximants for probabilistic computation
tree logic. Theor. Comput. Sci., 346(1):113–134, 2005.

[105] Ranjit Jhala and Kenneth L. McMillan. A practical and complete ap-
proach to predicate refinement. In TACAS, pages 459–473, 2006.

[106] Marijn R. Jongerden. Model-based energy analysis of battery powered sys-
tems. PhD thesis, University of Twente, 2010.

[107] Marijn R. Jongerden and Boudewijn R. Haverkort. Which battery model
to use? IET Software, 3(6):445–457, 2009.

211

[108] Marijn R. Jongerden, Alexandru Mereacre, Henrik C. Bohnenkamp,
Boudewijn R. Haverkort, and Joost-Pieter Katoen. Computing optimal
schedules for battery usage in embedded systems. IEEE Trans. Industrial
Informatics, 6(3):276–286, 2010.

[109] Richard M. Karp. A characterization of the minimum cycle mean in a
digraph. Discrete Mathematics, 23(3):309 – 311, 1978.

[110] Richard M. Karp and Raymond E. Miller. Parallel program schemata. J.
Comput. Syst. Sci., 3(2):147–195, 1969.

[111] Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. Abstraction refinement for probabilistic software. In VMCAI,
pages 182–197, 2009.

[112] Raimund Kirner. The wcet analysis tool calcwcet167. In ISoLA (2), pages
158–172, 2012.

[113] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. r-tubound: Loop
bounds for wcet analysis (tool paper). In LPAR, pages 435–444, 2012.

[114] Robert Könighofer, Georg Hofferek, and Roderick Bloem. Debugging for-
mal specifications using simple counterstrategies. In FMCAD, pages 152–
159, 2009.

[115] Laura Kovács and Andrei Voronkov. First-order theorem proving and
vampire. In CAV, pages 1–35, 2013.

[116] Lawrence H. Landweber. Synthesis algorithms for sequential machines. In
IFIP Congress (1), pages 300–304, 1968.

[117] Kim G. Larsen. Priced timed automata: Theory and tools. In FSTTCS,
pages 417–425, 2009.

[118] Kim G. Larsen, Simon Laursen, and Jiŕı Srba. Action investment energy
games. In MEMICS, pages 155–167, 2012.

[119] Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilis-
tic testing. In POPL, pages 344–352, 1989.

[120] Rüdiger Lincke, Jonas Lundberg, and Welf Löwe. Comparing software
metrics tools. In ISSTA, pages 131–142, 2008.

[121] R. E. Lyons and W. Vanderkulk. The use of triple-modular redundancy
to improve computer reliability. IBM J. Res. Dev., 6(2):200–209, 1962.

[122] Rupak Majumdar and Indranil Saha. Symbolic robustness analysis. In
RTSS, pages 355–363, 2009.

[123] James F Manwell and Jon G McGowan. Lead acid battery storage model
for hybrid energy systems. Solar Energy, 50(5):399–405, 1993.

[124] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract inter-
pretation based static analyzers. In M. Sagiv, editor, European Symposium
on Programming (ESOP’05), volume 3444 of Lecture Notes in Computer
Science, pages 5–20. Springer-Verlag, 2005.

212

[125] Richard Mayr and Lorenzo Clemente. Advanced automata minimization.
In POPL, pages 63–74, 2013.

[126] Robert McNaughton. Infinite games played on finite graphs. Ann. Pure
Appl. Logic, 65(2):149–184, 1993.

[127] Robin Milner. An algebraic definition of simulation between programs. In
IJCAI, pages 481–489, 1971.

[128] David Monniaux. Abstract interpretation of programs as markov decision
processes. Sci. Comput. Program., 58(1-2):179–205, 2005.

[129] Lawrence C. Paulson. The foundation of a generic theorem prover. J.
Autom. Reasoning, 5(3):363–397, 1989.

[130] Ingo Pill, Simone Semprini, Roberto Cavada, Marco Roveri, Roderick
Bloem, and Alessandro Cimatti. Formal analysis of hardware require-
ments. In DAC, pages 821–826, 2006.

[131] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1)
designs. In VMCAI, pages 364–380, 2006.

[132] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57,
1977.

[133] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
POPL, pages 179–190, 1989.

[134] Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reac-
tive module. In ICALP, pages 652–671, 1989.

[135] Andreas Podelski and Andrey Rybalchenko. Transition invariants. In
LICS, pages 32–41, 2004.

[136] Andreas Podelski and Andrey Rybalchenko. Transition predicate abstrac-
tion and fair termination. In POPL, pages 132–144, 2005.

[137] EJ Podlaha and HY Cheh. Modeling of cylindrical alkaline cells. Journal
of the Electrochemical Society, 141(1):28–35, 1994.

[138] Adrian Prantl, Jens Knoop, Markus Schordan, and Markus Triska. Con-
straint solving for high-level wcet analysis. CoRR, abs/0903.2251, 2009.

[139] Adrian Prantl, Markus Schordan, and Jens Knoop. TuBound - a concep-
tually new tool for worst-case execution time analysis. In WCET, 2008.

[140] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of
concurrent systems in cesar. In Symposium on Programming, pages 337–
351, 1982.

[141] Daler N. Rakhmatov and Sarma B. K. Vrudhula. An analytical high-
level battery model for use in energy management of portable electronic
systems. In ICCAD, pages 488–493, 2001.

[142] Venkat Rao, Gaurav Singhal, Anshul Kumar, and Nicolas Navet. Battery
model for embedded systems. In VLSI Design, pages 105–110, 2005.

213

[143] John H. Reif. The complexity of two-player games of incomplete informa-
tion. J. Comput. Syst. Sci., 29(2):274–301, 1984.

[144] David Romero-Hernández and David de Frutos-Escrig. Defining distances
for all process semantics. In FMOODS/FORTE, pages 169–185, 2012.

[145] David Romero-Hernández and David de Frutos-Escrig. Distances between
processes: A pure algebraic approach. In WADT, pages 265–282, 2012.

[146] David Romero-Hernández and David de Frutos-Escrig. Coinductive defi-
nition of distances between processes: Beyond bisimulation distances. In
FORTE, pages 249–265, 2014.

[147] Shmuel Safra and Moshe Y. Vardi. On omega-automata and temporal
logic (preliminary report). In STOC, pages 127–137, 1989.

[148] Roopsha Samanta, Jyotirmoy V. Deshmukh, and Swarat Chaudhuri. Ro-
bustness analysis of string transducers. In ATVA, pages 427–441, 2013.

[149] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimiza-
tion. In ASPLOS, pages 305–316, 2013.

[150] Simon Schubert, Dejan Kostic, Willy Zwaenepoel, and Kang G. Shin.
Profiling software for energy consumption. In GreenCom, pages 515–522,
2012.

[151] Natarajan Shankar. A tool bus for anytime verification. Usable Verifica-
tion, 2010.

[152] Aravinda Prasad Sistla. Theoretical Issues in the Design and Verification
of Distributed Systems. PhD thesis, Harvard University, Cambridge, MA,
USA, 1983. AAI8403047.

[153] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bod́ık.
Sketching concurrent data structures. In PLDI, pages 136–148, 2008.

[154] Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bod́ık, and Ke-
mal Ebcioglu. Programming by sketching for bit-streaming programs. In
PLDI, pages 281–294, 2005.

[155] Armando Solar-Lezama, Liviu Tancau, Rastislav Bod́ık, Sanjit A. Seshia,
and Vijay A. Saraswat. Combinatorial sketching for finite programs. In
ASPLOS, pages 404–415, 2006.

[156] Hsin-Hao Su, Chin Lung Lu, and Chuan Yi Tang. An improved algorithm
for finding a length-constrained maximum-density subtree in a tree. Inf.
Process. Lett., 109(2):161–164, 2008.

[157] Paulo Tabuada, Ayca Balkan, Sina Y. Caliskan, Yasser Shoukry, and Ru-
pak Majumdar. Input-output robustness for discrete systems. In EM-
SOFT, pages 217–226, 2012.

[158] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of em-
bedded software: a first step towards software power minimization. In
ICCAD, pages 384–390, 1994.

214

[159] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee.
Instruction level power analysis and optimization of software. VLSI Signal
Processing, 13(2-3):223–238, 1996.

[160] Viktor Vafeiadis and Francesco Zappa Nardelli. Verifying fence elimination
optimisations. In SAS, pages 146–162, 2011.

[161] Franck van Breugel. An introduction to metric semantics: operational and
denotational models for programming and specification languages. Theor.
Comput. Sci., 258(1-2):1–98, 2001.

[162] Franck van Breugel and James Worrell. An algorithm for quantitative
verification of probabilistic transition systems. In CONCUR, pages 336–
350, 2001.

[163] Franck van Breugel and James Worrell. A behavioural pseudometric for
probabilistic transition systems. Theor. Comput. Sci., 331(1):115–142,
2005.

[164] Franck van Breugel and James Worrell. Approximating and computing
behavioural distances in probabilistic transition systems. Theor. Comput.
Sci., 360(1-3):373–385, 2006.

[165] Rob J. van Glabbeek. The linear time-branching time spectrum (extended
abstract). In CONCUR, pages 278–297, 1990.

[166] Rob J. van Glabbeek. The linear time - branching time spectrum II. In
CONCUR, pages 66–81, 1993.

[167] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Banff Higher Order Workshop, pages 238–266, 1995.

[168] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Abstraction-guided
synthesis of synchronization. In POPL, pages 327–338, 2010.

[169] Sigal Weiner, Matan Hasson, Orna Kupferman, Eyal Pery, and Zohar
Shevach. Weighted safety. In ATVA, pages 133–147, 2013.

[170] Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguière, Daniel Grund,
Jörg Herter, Jan Reineke, Björn Wachter, and Stephan Wilhelm. Static
timing analysis for hard real-time systems. In VMCAI, pages 3–22, 2010.

[171] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David B. Whalley, Guillem Bernat, Christian Ferdi-
nand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut,
Peter P. Puschner, Jan Staschulat, and Per Stenström. The worst-case
execution-time problem - overview of methods and survey of tools. ACM
Trans. Embedded Comput. Syst., 7(3), 2008.

[172] Uri Zwick and Mike Paterson. The complexity of mean payoff games on
graphs. Theor. Comput. Sci., 158(1&2):343–359, 1996.

215

	Introduction
	Motivation
	Paradigms of Quantitative Analysis
	Outline

	Preliminaries: Systems and Specifications
	Modelling Discrete Computational Systems
	Automata over Infinite Words
	212-Player Games

	I Quantities as Preference
	Simulation Distances
	Motivation
	Simulation Relations, Simulation Games, and Quantitative Simulation Games
	Simulation Distances
	Properties of Simulation Distances
	Applications of Simulation Distances

	Synthesis from Incompatible Specifications
	Motivation
	The Incompatible Specifications Problem
	Case studies

	Discussion
	Extensions and Future Work
	Related Work
	Conclusion

	II Quantities as Measurement
	Quantitative Synthesis for Concurrency
	Motivation
	The Quantitative Synthesis Problem
	Quantitative Games on Graphs
	Practical Solutions for Partial-Program Resolution
	Experiments
	Summary

	Quantitative Abstraction Refinement
	Motivation
	Quantitative properties
	State-based quantitative abstractions
	Segment-based quantitative abstractions
	Generalizations of PathBound abstractions
	Quantitative refinements
	Case study: Cache hit-rate analysis
	Summary

	Precision Refinement for Worst-Case Execution Time Analysis
	Motivation
	Illustrative Examples
	Problem Statement
	Max-Weight Length-Constrained Paths
	Interpolation for Segment-Based Abstraction Refinement
	Parametric WCET Computation
	Experimental Evaluation

	Battery Transition Systems
	Motivation
	Battery Models
	Battery Transition Systems
	The Bounded-Energy Reachability Tree
	Model Checking
	Case Study
	Summary

	Discussion
	Future Work
	Related Work
	Summary

	Conclusion

