
Evaluating Feedback Tools in Introductory
Programming Classes

Ruan Reis∗, Gustavo Soares†, Melina Mongiovi∗, Wilkerson L. Andrade∗
∗ Federal University of Campina Grande, † Microsoft

ruanvictor@copin.ufcg.edu.br, gustavo.soares@microsoft.com,
melina@computacao.ufcg.edu.br, wilkerson@computacao.ufcg.edu.br

Abstract—This Research Full Paper presents a study on the
evaluation of feedback tools in introductory programming classes.
Recently, several tools have been proposed in order to provide
guidance and help students overcome conceptual difficulties in
programming education. Some tools leverage clustering algo-
rithms and program repair techniques to automatically generate
personalized hints for students’ incorrect programs. In contrast,
some teachers choose to present students with program visual-
ization tools to help them understand the dynamic execution
of a source code. These tools are used to help students get
correct solutions for programming assignments. However, due
to limitations in assessments, it is still unclear how effective the
feedback provided by these tools is. In this study, we analyzed
the effectiveness of a tool for generating personalized hints and
a tool for visualizing programs. To do so, we conducted a user
study in which students, assisted by these tools, implemented
solutions for three programming problems. Our results show
that personalized hints can significantly reduce student’s effort to
get correct solutions. In addition, personalized hints can provide
students with an understanding of problem solving similar to
when using test cases. However, students who used the program
visualization tool got lower post-test performance than using
other tools.

Index Terms—programming education; feedback generation,
program visualization, study, evaluation.

I. INTRODUCTION

Learning to program is a challenge faced by students in most
introductory programming courses [1]. In online and face-to-
face classroom, students need to put the acquired knowledge
into practice through practical programming assignments. To
assist in these activities, teachers need to provide guidance
and assistance, especially to novice learners who are getting
their first programming experiences and need to overcome
conceptual difficulties [2].

Feedback from teachers can help students get unstuck and
correct their misconceptions [3], [4]. However, personalized
attention does not scale easily, especially in massive program-
ming classrooms [5], [6]. One of the most common practices
used by teachers to provide feedback at scale is to present the
student with a test suite. In this way, students can run their
programs against test cases and receive reports from failing
tests. Although it is a useful feedback, it may be difficult for
a beginner to understand which misconceptions are made only
through test cases results.

Recently, several tools have been proposed to support
programming education. [7]–[15]. These tools use different
approaches to generate, scale and personalize feedback to

help teachers and students in the teaching environment. For
example, Clara [7] can automatically repair incorrect pro-
grams, indicate the location of bugs (e.g., line number), and
provide an exactly textual description of required changes.
The approach used by Clara consists of cluster the existing
solutions for a given assignment; select a target program from
each cluster; and execute a trace-based repair procedure to
repair new incorrect attempts. The Python Tutor [15] allows
users to step forwards and backwards through execution to
visualize the run-time state of a programs data structures. By
using these features, students can debug their programs and,
as a result, they can fix bugs and get correct solutions to pro-
gramming assignments. Given a program as input, the Python
Tutor performs an analysis under supervision of the standard
Python debugger module (bdb), which stops execution after
every executed line and records the program’s run-time state.

These tools can be helpful in reducing teacher effort to
propagate and personalize feedback. However, it is still unclear
how effective these tools are, especially when the user is a
novice programmer. The reason for the lack of clarity on this
subject is due to the limitations in evaluations of these tools.
The most common limitations found in papers are related
to: (1) the lack of user studies, especially with beginners;
(2) fail to get insight into learning improvement or skill
acquisition; (3) the lack of comparative studies with other
existing tools; and (4) focus only on evaluating the tool’s
performance in generating hints, but does not evaluate its
usefulness. Therefore, it is necessary to investigate to what
extent the feedback provided by these tools can be effective.

In this study, we evaluated the effectiveness of Clara and
Python Tutor in assisting novice programmers in problem solv-
ing. Our goal is to analyze whether using these tools students
can solve programming assignments better than when using
only test cases. We selected Clara for our evaluation because it
is a state-of-the-art tool for automatic hints generation. On the
other hand, we selected Python Tutor because it is widely used
in programming classes to visualize program execution. In our
evaluation, we recruited 42 undergraduate students and asked
them to implement Python solutions for three classic problems.
For each problem, students were able to use Clara or Python
Tutor, and a test-case suite to help them solve the problems.
Subsequently, in order to evaluate the impact of the tools on
the student’s understanding of how to solve the problems, we
proposed a post-test in which students should review four

978-1-7281-1746-1/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on August 04,2020 at 21:30:39 UTC from IEEE Xplore. Restrictions apply.

solutions for a specific problem and indicate whether each
solution is correct or not.

Specifically, we analyzed the effectiveness of these tools
with respect to three aspects: (i) how fast a student can get
a correct solution; (ii) what is the impact of the tool on the
student’s understanding of how to solve the problem; (iii) how
useful is the tool to help students correct bugs in their pro-
grams. Our results show that, when considering getting correct
solutions faster, Clara can significantly reduce the student’s
effort (i.e. number of attempts) compared to other tools. In
the post-test results, we did not find a significant difference
comparing the performance of students who used Clara to
students performance using only test cases. However, students
who used Python Tutor got lower post-test performance than
using other tools. Finally, students scored Clara as more useful
than test cases to fix bugs in their programs. They mentioned
that finding bugs using only test cases is difficult, but using
Clara, they can figure out where the bugs are and immediately
reflect on the hints provided.

II. RELATED WORK

A. Automated Feedback Generation Tools

There are several feedback generation tools to help students
in introductory programming assignments [7], [8], [11]–[14],
[16], [17]. For example, AutoGrader [17] takes as input an
incorrect student program, along with a reference solution and
an error model consisting of potential corrections to student
errors, and searches for the minimum number of corrections
using a SAT-based program synthesis technique. As feedback,
AutoGrader describes exactly what changes are needed to
repair the program.

Clara [7] can automatically repair incorrect programs, indi-
cate the location of bugs (e.g., line number), and provide an
exact textual description of required changes. Its approach is to
cluster the correct programs for a given assignment and select
a canonical program from each cluster to form the reference
solution set. Then, Clara runs a trace-based repair procedure
against each program in the solution set and selects a minimal
repair from the repair candidates.

Sarfgen [8] leverages the large number of available student
solutions to generate instant, minimal, and semantic fixes to
incorrect student submissions without any instructor effort.
Its approach is to search for reference solutions similar to a
given incorrect program. Then, Sarfgen aligns each statement
in the incorrect program with a corresponding statement in
the reference solutions to identify discrepancies for suggesting
changes. Finally, it points out minimal fixes to patch the
incorrect program.

These tools were subjected to a similar evaluation proce-
dure. Basically, the researchers analyzed the effectiveness of
their tools in generating repairs for incorrect programs. To
do so, they ran their tools in a benchmark set of incorrect
submissions and then computed the percentage of submissions
that were successfully fixed. In addition, Clara and Sarfgen’s
assessments included a user study to evaluate the usefulness
of the feedback provided.

Unlike previous evaluations, our study is focused only on
analyzing the effectiveness of tools from the beginner student’s
perspective. We also developed a post-test to assess the impact
of the tools on students’ understanding of problem solving.

B. Program Visualization Tools

In programming education, most educational tools are fo-
cused on visualizing and animating program aspects based on
its run-time execution [18]. These tools have been proposed to
help students understand the dynamic execution of a program
through a descriptive visualization. Examples of program
visualization tools are Jeliot 3 [19], JIVE [20], VILLE [21],
Whyline [22], Theseus [23], and Python Tutor [15]. These
tools typically execute the program, store a snapshot of internal
states at each execution step, and show a visual representation
of run-time states such as stack frames, heap objects, and
data structures. Recent studies have found that using program
visualization tools can be pedagogically effective if students
actively engage with the tool [24], [25].

Python Tutor [15] allows users to step forwards and back-
wards through execution to visualize the run-time state of a
programs data structures. Karnalim et al. [26] evaluated Python
Tutor based on a questionnaire survey applied in Basic Data
Structure classes. The goal was to evaluate the impact of the
tool to complete assignments, to understand programming as-
pects, and collect information about the students’ experience.

Whyline [22] and Theseus [23] provide an overview of exe-
cution behavior and let a user find the cause of a bug through
interactive question-answering or retroactive logging. In the
evaluation of both tools, the authors asked the participants
to identify the causes of bugs in given programs, using the
respective tool to assist in the task.

In this paper, besides evaluating the usefulness of each
tool from the student perspective, we also compared the
effectiveness of using a program visualization tool (Python
Tutor) with the use of an automatic feedback tool (Clara).

III. STUDY DESIGN

In this study, we evaluated the effectiveness of Clara and
Python Tutor in assisting novice programmers in problem solv-
ing. To do so, we conducted a controlled experiment to analyze
whether using these tools students can solve programming
problems better than when using only test cases.

A. Research Questions

• RQ1: Do students using Clara or Python Tutor can solve
problems faster than using only test case suites? We are
interested in analyzing whether Clara or Python Tutor
can reduce the number of submissions needed to get a
correct solution. This can be an indicator that the student
is actually being helped by the tool.

• RQ2: Do students using Clara or Python Tutor under-
stand problem solving in the same level as when using test
case suites? We are interested in analyzing whether Clara
or Python Tutor can impact the student’s understanding

Authorized licensed use limited to: MICROSOFT. Downloaded on August 04,2020 at 21:30:39 UTC from IEEE Xplore. Restrictions apply.

of how to solve the problem. It is important to investigate
whether the tool is harming or benefiting student learning.

• RQ3: Do students find Clara or Python Tutor more useful
to fix bugs than test case suites? Given the purposes of
each tool, we are interested in finding out which approach
students find most useful in bug fixing.

B. Tools

Test Cases: It is one of the most common practices used by
teachers to provide feedback in programming classes. Gener-
ally, the teacher provides a set of test cases that describe the
expected behavior of student programs for a given assignment.
Thus, students can run their programs against the test suite and
verify that their submissions are returning the expected result.

The feedback generated by test cases consists of indicating
to which inputs a given program does not return the expected
result. For example, consider a student program that should
indicate whether a number is prime or not, however, the
program does not return the expected result when the input
value equals seven. The feedback provided to the student
indicates which is the failed test, the expected result, and the
result obtained.

GENERATED FEEDBACK

Testing: Prime Numbers of (7)
Expected: True
But got: False

Clara [7]: It is a fully automated program repair tool
for introductory programming assignments. This tool can
automatically repair incorrect programs, indicate the location
of bugs (e.g., line number), and provide an exact textual
description of required changes. The key idea of Clara is
to use the existing correct student solutions to repair new
incorrect student attempts. Their approach consists of clusters
the correct programs for a given assignment and selects a
canonical program from each cluster to form the reference
solution set. Given an incorrect student attempt, it runs a
trace-based repair procedure against each program in the
solution set, and then selects a minimal repair from the repair
candidates.

For example, consider the following incorrect student at-
tempt for the Prime Numbers problem:

1 def i s p r ime number (n) :
2 n d iv = 0
3 f o r i in range (1 , n) :
4 i f n % i == 0 :
5 n d iv += 1
6 re turn n d iv

In this example, Clara was able to identify two bugs in
the given program as input. The first bug is found in the
parameters of the range iterative expression (line 3). The

Fig. 1. The Python Tutor shows the state of variables and data structure in
each line of the source code. Thus, students can visualize the execution of a
program step-by-step.

second bug is in the return statement at the end of the function
(line 6). As a result, the following corrections are suggested
for the student program:

GENERATED FEEDBACK

• In iterator expression at line 3, change range(1, n)
to range(1, n+1).

• In return statement at line 6, change return n div to
return n div == 2.

Python Tutor [15]: It is a web-based program visualization
tool for Python. This tool allows students to step forwards and
backwards through execution to view the run-time state of a
program’s data structures. Students can use these features to
debug their programs. As a consequence, they can fix bugs,
and get correct solutions to programming assignments.

Given a program as input, the Python Tutor performs an
analysis under supervision of the standard Python debugger
module (bdb), which stops execution after every executed
line and records the program’s run-time state. As a result,
an ordered list of execution points is produced, where each
point contains the state right before a line of code is about to
execute.

The Python Tutor GUI (shown in Figure 1) presents a source
code panel that shows the program that is being visualized, the
currently-executing line highlighted, a visual representation
of run-time state (e.g., stack frame contents, heap objects),
and control widgets to allow the user to step forwards and
backwards over executed lines.

C. Participants

We recruited 42 undergraduate students from introductory
programming classes. All participants are from Computer

Authorized licensed use limited to: MICROSOFT. Downloaded on August 04,2020 at 21:30:39 UTC from IEEE Xplore. Restrictions apply.

Science or Engineering courses and are getting their first
programming experiences with the Python language. They
have knowledge in assigning variables, mathematical and
boolean expressions, conditional structures (if / elif / else) and
iteration using loops (for / while). In order to enable interaction
with the tools, we developed an integration platform where
participants can write their programs and get feedback for
incorrect attempts. Our platform includes a panel to describe
the programming assignment, a text box to write the program
code, a section to show test case results, and a section to
present the feedback provided by the tools.

D. Method
At the start of each study session, we provided an 8-

minute tutorial on Test Cases, Clara and Python Tutor for
all participants to familiarize them with each tool. We then
asked them to implement solutions for three programming
problems: Sum of Squares, Prime Numbers and Fibonacci.
Participants were able to choose the order in which problems
would be solved, however, we recommend that they begin
with the problem that they find easiest. For each problem,
participants should use one of the following conditions to get
a correct solution:

• Condition 1 - They could use only the Test Cases as
assistant.

• Condition 2 - They could use Clara and Test Cases as
assistants.

• Condition 3 - They could use Python Tutor and Test
Cases as assistants.

All conditions were randomly assigned to the problems. In
addition, the same condition can not be attributed to different
problems of the same participant.

We presented the participants with a description of each
problem and asked them to solve everything within the class
time. Whenever the participant submits an incorrect attempt
to the problem, the assigned tool will provide some feedback
to help with the solution. Participants were able to submit as
many times as needed until a correct solution was reached. We
also do not allow participants to run their programs on other
platforms beyond our tool integration platform. To verify that
a solution is correct, our platform runs the code against a test
suite related to the problem.

Once the participants get a correct solution, they should do
a post-test related to the problem solved. The post-test consists
of four solutions to the same problem. The participant needs
to review the solutions and indicate whether each solution
is correct or not. Finally, we conducted a post-survey where
participants could rate which tools they find most useful for
fixing bugs.

E. Problems
The following programming problems were proposed to the

participants in this study:
• Sum of Squares: write a program that receives a positive

integer n as input and returns the sum of the squares of
the first n terms in a sequence: 12 + 22 + 32 + ...+ n2.

• Prime Numbers: write a program that receives a positive
integer n as input and returns True if n is a prime number,
or False otherwise.

• Fibonacci Sequence: write a program that receives a
positive integer n as input and returns the nth element
of the Fibonacci sequence.

The programming problems used in this study were selected
from exercise repositories of Computer Science courses. We
chose to select problems that are common in introductory
programming classes.

F. Post-test

We proposed a post-test to evaluate the impact of the tools
on the student’s understanding of how to solve the problem.
The post-test is presented immediately after the student has
reached a correct solution to a problem. For each problem, we
collected a set of correct and incorrect programs, and then we
created a data source from them. The programs were obtained
from a pilot study session and also from storage bases of
programming assignments.

A post-test for a specific problem contains four different
solutions for it, which may be correct or incorrect solutions.
The proportion of correct/incorrect and selection of solutions
are randomly defined by our platform. The participant needs
to review the solutions and indicate whether each solution
is correct or not. We did not allow participants to run the
solutions presented in the post-test. For each correct statement
in the post-test, one point is accumulated in the participant’s
score on the problem addressed. As a result of the post-test,
a range score of zero to four is generated to represent the
student’s understanding of how to solve a given problem. This
score is associated with the tool the participant used to help
solve the problem.

IV. RESULTS

Overall, 42 undergraduate student from introductory pro-
gramming classes participated in this study. In total, all par-
ticipants produced 876 submissions. Our integration platform
was able to provide feedback for 387 incorrect submissions.
However, among other submissions, 9 failed in generation, 114
were correct and 366 had syntax errors. The tools evaluated in
this study are not able to produce feedback when a submission
contains syntax errors.

For purposes of analysis, we considered only correct student
solutions that received some feedback in at least one of
the submissions. Therefore, submission data from 42 correct
student solutions were discarded. In total, we analyzed 72
correct student solutions, of which 23 were obtained using
only Test Cases (TC), 21 were obtained working with Clara
(CL) and 28 were obtained by interacting with Python Tutor
(PT). In order to better understand the effect of the tools on
student performance, we segmented our data into the following
datasets:

• general: includes student solutions to all programming
problems addressed in this study.

Authorized licensed use limited to: MICROSOFT. Downloaded on August 04,2020 at 21:30:39 UTC from IEEE Xplore. Restrictions apply.

• simplest: includes only student solutions to Sum of
Squares problem. Participants found this problem the
easiest to solve.

• complex: includes student solutions to Prime Numbers
and Fibonacci problems. Participants found these two
problems the most difficult to solve.

RQ1: Do students using Clara or Python Tutor can solve
problems faster than using only test case suites? In general
dataset, students who used only Test Cases required an av-
erage of 8.3 attempts to get a correct solution. This number
decreased when students used Clara (4.05) or Python Tutor
(6.68) as shown in Table I. These differences are statistically
significant when comparing Clara with Test Cases (Z = -2.5, p
< 0.02) and also when compared Clara with Python Tutor (Z
= -2.65, p < 0.01) by Wilcoxon-Mann-Whitney test. However,
we did not find a statistically significant difference comparing
Test Cases with Python Tutor (Z = -0.66, p > 0.5).

We also consider getting results for the simplest and com-
plex datasets separately. In the simplest dataset, we did not
observe any significant difference in number of attempts.
Possibly because students rely less on feedback tools to solve
simple problems. The results for complex dataset confirm that
Clara is able to reduce the number of attempts to get a correct
solution when compared to other tools (Clara vs Test Cases:
Z = -3.19, p < 0.002; Clara vs Python Tutor: Z = -2.14, p
< 0.03). Finally, we did not observe a significant difference
when comparing Python Tutor and Test Cases even in complex
dataset.

TABLE I
SUMMARY OF RESULTS FOR THE NUMBER OF ATTEMPTS REQUIRED TO

GET CORRECT SOLUTIONS.

NUMBER OF ATTEMPTS

TC CL PT
general 8.3 (7.2) 4.0 (2.5) 6.7 (5.3)
simplest 3.4 (1.9) 3.0 (1.4) 5.3 (2.5)
complex 10.4 (7.7) 4.3 (2.7) 7.3 (6.1)

on average (SD)

RQ2: Do students using Clara or Python Tutor understand
problem solving in the same level as when using test case
suites? We analyzed the results of the post-test as an indicator
of the student’s understanding of how to solve the problems
addressed. Table II shows an overview of the scores obtained
in our post-test. Our general analysis shows that there is no
significant difference when comparing the post-test scores of
students who used Test Cases (2.39) with students who used
Clara (2.43). However, we found significant differences in
scores obtained using Python Tutor (1.79), when compared
to Test Cases (Z = -1.88, p < 0.05) and when compared to
Clara (Z = 2.01, p < 0.05) by Wilcoxon-Mann-Whitney test.

In analyzing the simplest and complex datasets separately,
we did not observe any significant differences. However, in
trying to understand where the difference found in the general
analysis came from, we found that the combination of data
from Sum of Squares and Prime Numbers problems are major

TABLE II
SUMMARY OF RESULTS FOR THE POST-TEST SCORE.

POST-TEST SCORE

TC CL PT
general 2.4 (1.2) 2.4 (1.1) 1.8 (0.8)
simplest 2.3 (1.1) 2.7 (0.9) 1.9 (0.8)
complex 2.4 (1.2) 2.3 (1.2) 1.7 (0.8)

on average (SD)

responsible for these significant differences. In this dataset,
students who used Python Tutor got an average score of
1.68, while students who used Test Cases and Clara got an
average of 2.47 and 2.54, respectively. These differences are
statistically significant when Python Tutor is compared to Test
Cases (Z = -2.23, p < 0.03) and also when compared to Clara
(Z = 2.11, p < 0.04).

RQ3: Do students find Clara or Python Tutor more useful
to fix bugs than test case suites? We asked participants how
much each tool was useful for fixing bugs in their programs.
The results for this research question are shown in Table III. In
general dataset, students scored Clara as more useful than Test
Cases for bug fixes (Z = 2.10, p < 0.04) by Wilcoxon-Mann-
Whitney test. However, we did not observe any significant
differences when comparing the Python Tutor with Test Cases
(Z = 0.45, p > 0.6) and Python Tutor with Clara (Z = 1.36,
p > 0.1).

In the complex dataset, we also observed that Clara’s score
on utility for bug fixes was significantly higher than the score
of Test Cases (Z = 1.90, p < 0.05). When we compared the
Python Tutor with the other tools, no significant differences
were found. In addition, no significant difference was found
when analyzing the simplest dataset.

TABLE III
7-POINT LIKERT SCALE QUESTION - USEFULNESS IN FIXING BUGS.

HELP TO FIX BUGS

TC CL PT
general 5.3 (1.4) 5.9 (1.8) 5.4 (1.7)
simplest 6.2 (0.7) 6.7 (0.5) 6.0 (1.1)
complex 4.8 (1.5) 5.7 (1.9) 5.0 (1.9)

on average (SD)

V. DISCUSSION

Through the results we found that Clara can significantly
reduce student effort, in number of attempts, to get correct
solutions (RQ1). Using Clara students required an average
of 4.05 attempts to get correct solutions, while using Python
Tutor and Test Cases were required an average of 6.68 and
8.30 attempts, respectively. This result was already expected,
since Clara provides specific hints on how to get a correct
solution to programming problems. However, we also expected
that the Python Tutor could reduce the number of attempts to
get correct solutions. This was not observed in any of our
analyzes. We thought that by debugging the code with Python

Authorized licensed use limited to: MICROSOFT. Downloaded on August 04,2020 at 21:30:39 UTC from IEEE Xplore. Restrictions apply.

Tutor, students would solve problems faster than using Test
Cases. We believe that there are two possible explanations
for this result: (i) although we have provided a tutorial on
Python Tutor, students may need more practice with the
tool for better results; and (ii) as our study was conducted
in introductory programming classes, students may not have
enough experience for debugging activities.

In the post-test results, we found that students who used
Clara and those who used only Test Cases got approximate
scores (RQ2). This may mean that although Clara provides
specific hints on how to solve program bugs, the student’s
understanding is not impaired. We noticed that, most of the
time, the students were trying to understand why they should
apply the hints given by Clara. This behavior may have led
students to better understand how to solve problems, resulting
in better performance in our post-test. This result is supported
by recent studies that have found that specific hints, such as
those provided by Clara, may be good for learning [27], [28].

In contrast, students who used Python Tutor got lower post-
test performance than other tools. This is an unexpected result.
We thought that by debugging the code, students would have
an better overview of how to solve the problem. This result
may be due to the unexpectedness of students with debugging
activities. Another possible reason for this result would be
that, when debugging their code, students focus only on a
particular way of solving a problem. However, our post-test
consists of analyzing different solutions to the same problem.
In addition, recent studies have found that for more effective
pedagogical results using program visualization tools, such as
Python Tutor, students need to be actively engaged with the
tool [24], [25].

Finally, students scored Clara as more useful than Test Cases
to fix bugs in their programs (RQ3). They mentioned that
finding bugs in their programs using only Test Cases was
difficult, but using Clara, they could easily find out where
the bugs were.

VI. THREATS TO VALIDITY

In this section, we discuss possible threats to validity of our
study. Our evaluation design sought to minimize the threats
discussed whenever possible.

A. Construct validity

This study proposes a post-test to evaluate the student’s
understanding of the problem solution. However, the post-
test score may not fully represent the student’s understanding.
There are many social aspects that can partially or totally affect
the measurement of this construct. In addition, although we
have observed a significant effect of the tools on the metrics,
it is possible that the results found may not be entirely due to
the tools used.

B. Internal validity

Since the study involves the active participation of hu-
mans, it is subject to internal threats. It is possible that the
results were affected due to the moment and place where

the experiments were conducted. Some of our study sessions
happened in the classroom during class time. Participants
were not previously advised that they would participate in
this experiment. However, we let students know that their
participation was not mandatory and that they could participate
in the study in a private session. It is important to consider that
students were solving programming problems, so it is possible
that at some moment they are too tired or bored to perform
their activities with involvement.

Participants in this study were recruited from Computer
Science and Engineering courses. Although they are all en-
rolled in introductory programming classes, they may have
different motivations and knowledge. Therefore, it is possible
that some students were more experienced than others. To
minimize this threat, we considered only in our analyzes
the solutions that were correct, this ensures that the student
was experienced enough to solve the problem. In addition,
we discarded solutions from students who did not need any
feedback to solve the problems, they were considered more
experienced.

C. External validity

The participants of this study are representative only for
the context of introductory programming subjects of local
universities where the study was conducted. In addition, in
our experiment only three programming problems and three
tools were addressed. Therefore, we may not be able to
generalize the results of this experiment to other contexts. For
more general results, this study should be replicated in other
introductory programming subjects.

VII. CONCLUSIONS AND FUTURE WORK

In this article, we conducted user studies in introductory
programming classes to evaluate the effectiveness of a tool
for generating personalized hints (Clara) and a program vi-
sualization tool (Python Tutor). Specifically, we analyzed the
effectiveness of these tools with respect to three aspects: (i)
how fast a student can get a correct solution; (ii) what is
the impact of the tool on the student’s understanding of how
to solve the problem; (iii) how useful is the tool to help
students correct bugs in their programs. Participants solved
three classic programming problems. For each problem, we
provided a feedback tool and a test-case suite to assist in the
resolution process. Once the participants get a correct solution,
they should do a post-test related to the problem solved.

Our results show that, when considering getting correct
solutions faster, Clara can significantly reduce the student’s
effort, in number of attempts, compared to other tools. We
observed that students who used Clara and those who used
only Test Cases got approximate scores. However, students
using Python Tutor got lower post-test performance than using
other tools.

As future work, we intend to: (i) evaluate other feedback
tools used in programming education; (ii) establish guidelines
for the use of feedback tools at each stage of programming
learning; and (iii) develop a new post-test capable of assessing

Authorized licensed use limited to: MICROSOFT. Downloaded on August 04,2020 at 21:30:39 UTC from IEEE Xplore. Restrictions apply.

other aspects of learning outcomes. Feedback has an important
role in cognitive learning and is essential for improving
knowledge and skills acquisition [29]. This article contributes
to studies about the effect of feedback tools in programming
learning. However, studies still need to be done to assess the
quality of feedback provided by tools.

VIII. ACKNOWLEDGMENTS

This work was partially supported by CNPq and CAPES
grants.

REFERENCES

[1] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-
D. Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz, “A multi-
national, multi-institutional study of assessment of programming skills
of first-year cs students,” in Working Group Reports from ITiCSE on
Innovation and Technology in Computer Science Education, ser. ITiCSE-
WGR ’01, 2001.

[2] M. Butler and M. Morgan, “Learning challenges faced by novice
programming students studying high level and low feedback concepts,”
in Proceedings of ASCILITE - Australian Society for Computers in
Learning in Tertiary Education Annual Conference 2007, 2007.

[3] A. T. Corbett and J. R. Anderson, “Locus of feedback control in
computer-based tutoring: Impact on learning rate, achievement and
attitudes,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’01, 2001.

[4] P. J. Guo, “Codeopticon: Real-time, one-to-many human tutoring for
computer programming,” in Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology, ser. UIST
’15, 2015.

[5] L. D’antoni, D. Kini, R. Alur, S. Gulwani, M. Viswanathan, and
B. Hartmann, “How can automatic feedback help students construct
automata?” ACM Trans. Comput.-Hum. Interact., 2015.

[6] E. L. Glassman, J. Scott, R. Singh, P. J. Guo, and R. C. Miller,
“Overcode: Visualizing variation in student solutions to programming
problems at scale,” ACM Trans. Comput.-Hum. Interact., 2015.

[7] S. Gulwani, I. Radiček, and F. Zuleger, “Automated clustering and pro-
gram repair for introductory programming assignments,” in Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2018, 2018.

[8] K. Wang, R. Singh, and Z. Su, “Search, align, and repair: Data-
driven feedback generation for introductory programming exercises,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018, 2018.

[9] R. Suzuki, G. Soares, A. Head, E. Glassman, R. Reis, M. Mongiovi,
L. D’Antoni, and B. Hartmann, “Tracediff: Debugging unexpected code
behavior using trace divergences,” 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2017.

[10] A. Head, E. Glassman, G. Soares, R. Suzuki, L. Figueredo, L. D’Antoni,
and B. Hartmann, “Writing reusable code feedback at scale with mixed-
initiative program synthesis,” in Proceedings of the Fourth (2017) ACM
Conference on Learning @ Scale, ser. L@S ’17, 2017.

[11] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,
R. Suzuki, and B. Hartmann, “Learning syntactic program transfor-
mations from examples,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17, 2017.

[12] S. Kaleeswaran, A. Santhiar, A. Kanade, and S. Gulwani, “Semi-
supervised verified feedback generation,” in Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, ser. FSE 2016, 2016.

[13] L. D’Antoni, R. Samanta, and R. Singh, “Qlose: Program repair with
quantitative objectives,” in Computer Aided Verification, S. Chaudhuri
and A. Farzan, Eds., 2016.

[14] Y. Pu, K. Narasimhan, A. Solar-Lezama, and R. Barzilay, “Sk-p: A
neural program corrector for moocs,” in Companion Proceedings of
the 2016 ACM SIGPLAN International Conference on Systems, Pro-
gramming, Languages and Applications: Software for Humanity, ser.
SPLASH Companion 2016, 2016.

[15] P. J. Guo, “Online python tutor: Embeddable web-based program visu-
alization for cs education,” in Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’13, 2013.

[16] K. Rivers and K. R. Koedinger, “Data-driven hint generation in vast
solution spaces: a self-improving python programming tutor,” Interna-
tional Journal of Artificial Intelligence in Education, 2017.

[17] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’13, 2013.

[18] S. BENTRAD and D. Meslati, “Visual programming and program
visualization towards an ideal visual software engineering system ,”
ACEEE International Journal on Information Technology, 2011.

[19] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visualizing
programs with jeliot 3,” in Proceedings of the Working Conference on
Advanced Visual Interfaces, ser. AVI ’04, 2004.

[20] P. Gestwicki and B. Jayaraman, “Interactive visualization of java
programs,” in Proceedings IEEE 2002 Symposia on Human Centric
Computing Languages and Environments, 2002.

[21] T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski, “Ville: A language-
independent program visualization tool,” in Proceedings of the Seventh
Baltic Sea Conference on Computing Education Research - Volume 88,
ser. Koli Calling ’07, 2007.

[22] A. J. Ko and B. A. Myers, “Debugging reinvented: Asking and answer-
ing why and why not questions about program behavior,” in Proceedings
of the 30th International Conference on Software Engineering, ser. ICSE
’08, 2008.

[23] T. Lieber, J. R. Brandt, and R. C. Miller, “Addressing misconceptions
about code with always-on programming visualizations,” in Proceedings
of the 32Nd Annual ACM Conference on Human Factors in Computing
Systems, ser. CHI ’14, 2014.

[24] C. D. HUNDHAUSEN, S. A. DOUGLAS, and J. T. STASKO, “A
meta-study of algorithm visualization effectiveness,” Journal of Visual
Languages & Computing, 2002.

[25] J. Sorva, V. Karavirta, and L. Malmi, “A review of generic program
visualization systems for introductory programming education,” Trans.
Comput. Educ., 2013.

[26] O. Karnalim and M. Ayub, “The use of python tutor on programming
laboratory session: Student perspectives,” Kinetik: Game Technology,
Information System, Computer Network, Computing, Electronics, and
Control, 2017.

[27] B. Shih, K. Koedinger, and R. Scheines, “A response-time model for
bottom-out hints as worked examples,” 2008.

[28] M. Muir and C. Conati, “An analysis of attention to student – adaptive
hints in an educational game,” in Intelligent Tutoring Systems. Springer
Berlin Heidelberg, 2012.

[29] V. J. Shute, “Focus on formative feedback,” Review of Educational
Research, 2008.

Authorized licensed use limited to: MICROSOFT. Downloaded on August 04,2020 at 21:30:39 UTC from IEEE Xplore. Restrictions apply.

