
Writing Reusable Code Feedback at Scale with
Mixed-Initiative Program Synthesis

Andrew Head†∗, Elena Glassman†∗, Gustavo Soares†‡∗,
Ryo Suzuki§, Lucas Figueredo‡, Loris D’Antoni‖, Björn Hartmann†

†UC Berkeley, ‡UFCG, §CU Boulder, ‖UW-Madison
{andrewhead,eglassman,bjoern}@berkeley.edu, {gsoares@dsc,lucas.figueredo@ccc}.ufcg.edu.br,

ryo.suzuki@colorado.edu, loris@cs.wisc.edu

See...

Recall...

Recall in
Lecture 7,

MISTAKEBROWSER FIXPROPAGATOR

pow(a,b): pow(a,b):

pow(a,b): pow(a,b):

pow(a,b): pow(a,b):

pow(a,b): pow(a,b):

pow(a,b): pow(a,b):

Mine student
bug fixes

fix

Learn code
transformations

Cluster code by
transformations

Collect
feedback

Deliver
feedback

pow(a,b):

Transformation X

Transformation Y

Match: range(0, __)

Replace: range(1, __)

update 0 → 1

Match: ___ * ___

Replace: ___ * f(___)

insert f(__)

Transformations

?

pow(a,b): pow(a,b):

Teacher fixes student
bug and gives feedback

Propagate
feedback using fix

Teacher accepts
or modifies
suggested fixes
and feedback

T
fix and
describe

Learn code
transformations

pow(a,b):

pow(a,b):

Update learned
transformations

insert f(__)
insert f(__)

Transformation X

Match: ___ * ___

Replace: ___ * f(___)

insert f(__)

!

pow(a,b):

update

T

T

S

S

S

S

S fix

S fix

S fix

S fix

Recall in
Lecture 7,

Check for
off-by-one
error.

T

Recall in
Lecture 7, ...

Figure 1. We contribute two interfaces that help teachers give feedback on incorrect student submissions using program synthesis. MISTAKEBROWSER
learns code transformations from examples of students fixing bugs in their own code. Using these transformations, MISTAKEBROWSER clusters and
fixes current and future incorrect submissions. The teacher adds feedback, one cluster at a time. FIXPROPAGATOR learns code transformations from
examples of teachers fixing bugs in incorrect student submissions. The teacher annotates each fix with feedback. Using these annotated transformations,
FIXPROPAGATOR propagates fixes and feedback to current and future incorrect submissions.

ABSTRACT
In large introductory programming classes, teacher feedback
on individual incorrect student submissions is often infeasible.
Program synthesis techniques are capable of fixing student
bugs and generating hints automatically, but they lack the deep
domain knowledge of a teacher and can generate functionally
correct but stylistically poor fixes. We introduce a mixed-
initiative approach which combines teacher expertise with
data-driven program synthesis techniques.

We demonstrate our novel approach in two systems that use
different interaction mechanisms. Our systems use program
synthesis to learn bug-fixing code transformations and then
cluster incorrect submissions by the transformations that cor-
rect them. The MISTAKEBROWSER system learns transfor-
mations from examples of students fixing bugs in their own
submissions. The FIXPROPAGATOR system learns transfor-
mations from teachers fixing bugs in incorrect student submis-
sions. Teachers can write feedback about a single submission

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
L@S 2017, April 20-21, 2017, Cambridge, MA, USA
ACM 978-1-4503-4450-0/17/04.
http://dx.doi.org/10.1145/3051457.3051467

or a cluster of submissions and propagate the feedback to all
other submissions that can be fixed by the same transformation.
Two studies suggest this approach helps teachers better under-
stand student bugs and write reusable feedback that scales to a
massive introductory programming classroom.

Author Keywords
programming education; program synthesis

INTRODUCTION
One of the most common forms of instantaneous debugging
assistance in Computer Science (CS) classes is the autograder.
Typical autograders display the results of running a teacher-
written test suite on student submissions, or solution attempts
to programming exercises. However, feedback in the form of
test results leaves students with a large gulf of evaluation [16]
between the failed tests and bugs in their own submissions.

Recently developed techniques address this gulf by automati-
cally generating or learning bug fixes, or code edits, for a sub-
mission such that a modified submission passes all tests [11,
19, 22, 20, 13]. From each fix, a personalized hint can be gen-
erated. The hints range from vague pointers, e.g., identifying
the faulty line, to specific instructions about what new expres-
sion should replace the faulty one. Most of these approaches
use program synthesis [7] to generate the fixes and hints.

*. These three authors contributed equally to the work.

L@S 2017· Feedback for Improving Learning April 20–21, 2017, Cambridge, MA, USA

89

http://dx.doi.org/10.1145/3051457.3051467

def accumulate(combiner, base, n, term):
 if n==0:
 return base
 if n==0:
 return term(1)
 else:
 return accumulate(combiner,
 combiner(base, term(n)), n-1, term)

1

2
3
4
5

1
2
3
4
5
6
7

+
+

Figure 2. A functionally correct but stylistically poor bug fix generated
by program synthesis.

These automated techniques suffer from two key flaws. First,
the hints lack the deep domain knowledge of a teacher. They
do not address the underlying misconceptions of students or
point to relevant principles or course materials. Second, the
fixes can be functionally correct but stylistically poor and
therefore potentially misleading when used as the basis of a
hint. For example, Fig. 2 shows a bug fix synthesized with
Refazer [20]. The fix inserts a nearly identical correct base
case immediately before the incorrect base case. This is poor
coding practice, and hints generated from this fix may be
misleading. Specifically, hinting at this fix by its location,
such as Add code before line 2, would be misleading because
the bug is in the return statement on line 3. This is not a one-
time occurrence: in our study, teachers rejected, on average,
19% (σ = 18%) of the fixes synthesized by Refazer.

We introduce a mixed-initiative approach which allows teach-
ers to combine their deep domain knowledge with the results
of data-driven program synthesis techniques. The teacher and
program synthesis back-end take turns applying their relative
strengths in pursuit of the common goal of providing reusable,
teacher-written feedback at scale. We demonstrate and evalu-
ate this approach in two novel systems, MISTAKEBROWSER
and FIXPROPAGATOR, which illustrate two different interac-
tion mechanisms.

MISTAKEBROWSER and FIXPROPAGATOR both rely on Re-
fazer, a data-driven program synthesis technique that learns
code transformations from examples of bug fixes. Transfor-
mations are sequences of rewrite rules applied to the abstract
syntax tree (AST) of a program. In our systems, we use trans-
formations to: (1) cluster incorrect submissions, so cluster
members may share a common bug or misconception; (2)
generate bug fixes for each incorrect submission; (3) prop-
agate teacher-written feedback to all incorrect submissions
that are fixed by the same transformation. These learned code
transformations can be reused to apply feedback to students
through autograders or apply rubric items to exam submissions
in current and future semesters.

In the MISTAKEBROWSER system, code transformations are
learned from examples of student-written bug fixes. The his-
tory of student attempts is already available today in many
autograding systems. In the MISTAKEBROWSER workflow,
shown on the left in Figure 1, the teacher reviews the incor-
rect student submissions that were clustered offline by the
code transformations that corrected them. Each submission
is shown as a diff between its incorrect and corrected form.
Even if some synthesized bug fixes are stylistically poor, the
incorrect submissions in any one cluster may all share a mis-
conception because the same code transformation corrected all
of them. When reviewing the cluster, the teacher can infer the

shared misconception and write feedback for the whole clus-
ter that includes explanations, hints, or references to relevant
course materials.

When submission histories are not available, FIXPROPAGA-
TOR can learn code transformations from teachers fixing bugs
in incorrect student submissions. As shown on the right in
Figure 1, the process is cyclic and iterative. First, the teacher
demonstrates a stylistically good fix that corrects a single in-
correct submission. Then they annotate the fix with feedback.
For each bug fix and annotation the teacher enters, a synthesis
back-end learns and propagates these fixes and feedback to
more incorrect submissions in the dataset. The teacher reviews
these propagated fixes and feedback as pending suggestions
and accepts them or modifies them as necessary. Modifications
kick off another round of synthesis to learn and propagate the
updated fix and feedback to more incorrect submissions.

Since MISTAKEBROWSER requires prior student data and the
FIXPROPAGATOR workflow does not, the FIXPROPAGATOR
system is most suitable for newly introduced homework or
exam programming problems. While it is not currently stan-
dard practice for teachers to explicitly fix bugs in incorrect
submissions, doing so with FIXPROPAGATOR allows teachers
to scale their ability to provide manually written feedback —
and grades — by propagating already authored feedback to
current and future incorrect submissions.

We ran two user studies, one for each system. Seventeen
current and former teachers from the staff of a massive intro-
ductory programming class participated. In both studies, the
teachers were using MISTAKEBROWSER or FIXPROPAGA-
TOR to interact with incorrect student submissions collected
from previous semesters of the same class. The study of
MISTAKEBROWSER suggests that the system helps teachers
understand what mistakes and algorithms are common in stu-
dent submissions. Teachers appreciated the generated fixes,
but confirmed that a human in the loop is needed to review
and annotate them with conceptual or high-level feedback. In
the study of FIXPROPAGATOR, teachers wrote fixes and feed-
back for dozens of incorrect submissions, which the system
propagated to hundreds of other submissions. Teachers gener-
ally accepted propagated fixes and feedback, although some
feedback needed to be rewritten to generalize to additional sub-
missions. Together, the studies suggest that our approach helps
teachers better understand student bugs and provide scalable
and reusable feedback.

This paper makes the following contributions:

• A technique for clustering incorrect submissions by the
code transformations that correct them.

• A mixed-initiative approach in which teachers combine
domain knowledge with the results of data-driven program
synthesis.

• Two systems that demonstrate this approach with different
interaction mechanisms.

• Two studies that suggest this approach helps teachers better
understand student bugs and write reusable feedback that
scales to a massive introductory programming classroom.

L@S 2017· Feedback for Improving Learning April 20–21, 2017, Cambridge, MA, USA

90

RELATED WORK
Feedback is critical to the learning experience [1], and teachers
can be excellent sources of personalized, timely feedback [12].
As the class size grows, personal attention becomes infeasible;
however, students in larger groups may share common errors
and misconceptions [5]. Relevant prior work falls into two
general categories: systems that rely on instructors to generate
feedback, but provide better tools to do so; and systems that
compute and display feedback automatically.

Tools that Support Instructor Feedback at Scale. Several
user interfaces and systems empower teachers to manage large
numbers of programming students. CodeOpticon [8] enables
instructors to monitor many students simultaneously and pro-
vide situated help on code-in-progress. OverCode [6] and
Foobaz [4] normalize and cluster correct student submissions
so teachers do not need to read thousands of submissions to
identify common and uncommon student choices about syn-
tax and style. AutoStyle [14] clusters correct submissions
using a metric of code complexity so that teachers can write
hints how the code in a cluster can be written more simply.
Singh et al. [21] define a problem-independent grammar of
features; a supervised learning algorithm trained on teacher-
graded examples can map new student code submissions to
grades. However, these systems cannot give a teacher a high-
level overview of the different, common misconceptions and
bugs their own students have, like MISTAKEBROWSER can.

Clustering Student Submissions and Bugs. Identifying and
clustering semantically similar student code submissions in
a robust, general way is a challenge. Nguyen et al. [15] de-
fine probabilistic semantic equivalence to cluster functionally
equivalent but syntactically distinct code phrases within sub-
missions. Piech et al. [17] use neural networks to learn pro-
gram embeddings and cluster submissions. Kaleeswaran et
al. [11] cluster dynamic programming (DP) submissions by
‘solution strategy,’ using static analysis to detect how students
manipulate arrays that store the results of subproblems in a DP
solution. Earlier work relies on clustering student submissions
using various distance metrics, like AST tree edit distance [10].
Instead of clustering code, Glassman et al.’s “learnersourcing”
workflow [5] and HelpMeOut [9] cluster bug fixes by failed
test cases, compiler errors, or runtime exceptions. Rather
than clustering based on behaviorial or syntactic similiarity,
our approach is to cluster incorrect submissions based on the
transformation that corrects them.

Algorithmically Generating Debugging Feedback. Intelli-
gent Tutoring Systems (ITS) seek to emulate one-on-one tu-
toring and provide personalized feedback by using rule-based
or constraint-based methods [23]. However, traditional rule-
based feedback requires much time and expert knowledge to
construct [19]; it does not scale well for programming exer-
cises, which have large and complex solution spaces.

Data-driven methods have recently been introduced to aug-
ment existing techniques. Rivers et al. [19] use student data to
incrementally improve ITS feedback for Python assignments.
Codewebs [15] and Codex [3] use machine learning to analyze
large volumes of code, extract patterns, flag anomalies as pos-
sible errors, and, if deployed in an educational context, could

deliver feedback. These techniques can leverage the statistical
properties of large numbers of student submissions, but they
suffer from the cold-start problem. FIXPROPAGATOR enables
teachers to provide examples to bootstrap hint generation.

Program Synthesis for Feedback Generation. Recent ad-
vances in program synthesis can help programming teachers
and students in verifiably correct ways that statistical or rule-
based techniques cannot. AutomataTutor [2] uses program
synthesis to generate conceptual hints in the domain of au-
tomata constructions. Synthesized bug fixes have also been
used to generate personalized hints for introductory-level pro-
gramming assignments [11, 22]. AutoGrader [22] can find
a minimal sequence of “repairs” that transforms a student’s
incorrect solution into a correct one; however, it requires that
the teacher manually write down an error model of possible
local modifications ahead of time. Instead of requiring a hard-
coded error model, Lazar et al. [13] mine textual line edits
from student interactions with a Prolog tutor, and synthesize
code fixes by combining these edits. Rolim et al. [20] take an
example-based approach to learn code fixes as abstract syntax
tree transformations from pairs of incorrect and correct student
submissions. We build on this technique in this paper.

WRITING REUSABLE CODE FEEDBACK WITH
MIXED-INITIATIVE INTERFACES
We established the following design goals based on our liter-
ature review and our understanding of current pain points in
large programming courses: (1) Help teachers better under-
stand the distribution of common student bugs in introductory
programming assignments. (2) Help teachers understand the
nature of those bugs and ways to fix them. (3) Help teachers
scale teacher-authored feedback to large numbers of students
in a way that is reusable across semesters. We first briefly
review how program synthesis enables MISTAKEBROWSER
and FIXPROPAGATOR, then describe both systems.

Using Program Synthesis To Cluster Submissions
To reduce teacher burden, our systems automatically find
groups of student submissions that exhibit the same under-
lying problem. We extract code transformations from pairs of
incorrect and correct student submissions. We then check if a
transformation can be successfully applied to other incorrect
student submissions. Success is defined relative to an assign-
ment’s test suite: a transformation is successful if applying the
transformation makes the corrected solution pass all tests.

In MISTAKEBROWSER, the pairs of incorrect and correct code
come from histories of student submissions to an autograder
that culminate in a correct submission. In FIXPROPAGATOR,
the pairs of incorrect and correct code come from the small
subset of incorrect student submissions that teachers choose
to manually correct (see Figure 1).

Naı̈ve extraction of code transformations through simple text
differencing or abstract syntax tree differencing does not work
well. Consider the two incorrect submissions in Figure 3, cen-
ter column: while they are conceptually similar, and indeed ex-
hibit the same underlying problem, they differ both in variable
names and in code structure — one uses a loop with an index
variable, and the other uses list iteration. Thus, it is important

L@S 2017· Feedback for Improving Learning April 20–21, 2017, Cambridge, MA, USA

91

Figure 3. MISTAKEBROWSER interface: On the left panel, teachers can find information about the current cluster, such as an example of the synthesized
fix (A); the total number of submissions in the cluster (B); the failing test case input, the expected output, and the actual output produced by the incorrect
submissions (C). The center column shows the incorrect submissions before and after the synthesized fix (D). Finally, on the right panel, instructors can
add explanations about student mistakes (E).

to find abstract transformations that capture edits at a level that
can be reused across different students. In our example, the
abstract transformation expresses that a student replaced the 0
on the right-hand-side of an assignment with function param-
eter base; and the function call inside the return statement
should be replaced with the second argument inside that call
(e.g., replace return combiner(base, total) to total).

We generate abstract code transformations using Refazer [20],
which in turn builds on the PROSE synthesis framework [18].
Refazer uses a Domain-Specific Language (DSL) to specify
transformations, and synthesizes transformations as programs
in that DSL that map from incorrect to correct submissions.
The language allows abstracting nodes in the Abstract Syntax
Tree (AST) of a submission using a tree pattern matching
language. It then offers common tree edit operations to modify
nodes in the AST, such as Insert, Delete, Update, and Move.
Returning to our example, the transformation synthesized by
Refazer to fix submissions 10 and 11 in Figure 3 has 3 AST
operations: (i) Update a constant value to base; (ii) Delete
a function call with two name arguments located in a return
statement and (iii) Move the second argument of this call to
the beginning of the return statement.

Browsing Student Bugs
Consider the teaching staff of a massive introductory program-
ming class, CS1, that have been using the same programming
assignments for weekly ‘finger exercises’ every semester for
years. These exercises are intended to reinforce new concepts
introduced in class each week. Since teaching staff are not
present when students attempt these exercises, they do not
know what bugs and misconceptions are most common in
student code, except through student forum posts.

Before the semester starts, Jamie, the lead teaching assistant
(TA), loads student code snapshots from the prior semester
from the class autograder into MISTAKEBROWSER, shown

in Figure 3. The back-end learns reusable abstract transfor-
mations from the bug fixes made by students in previous
semesters. The MISTAKEBROWSER interface displays, one
at a time, clusters of incorrect submissions that are corrected
by the same transformation, along with their synthesized fixes.
The center pane lists all incorrect submissions in that cluster,
showing incorrect code fragments in red, and fixes in green in
a common code difference view (Figure 3D). Jamie reviews
each cluster and writes down conceptual feedback for each
cluster. To explain the cluster’s contents, the interface shows a
compact representation of the fix for the cluster (Figure 3A),
how many incorrect submissions comprise the cluster (Fig-
ure 3B), and the return value or exception of a representative
submission for the first test case it fails to pass (Figure 3C).
There are two clustering variants we consider in the user study
that follows. Figure 3 shows the CLUSTERBYFIXANDTEST-
CASE variant, in which incorrect submissions are clustered
both by the transformation that fix them and by the return value
of the first failed test case. In the CLUSTERBYFIX variant,
incorrect submissions are clustered only by transformation.

After reviewing a cluster, Jamie composes high-level feedback
in free-form text that applies to all submissions in the cluster
(Figure 3E). For the cluster shown in Figure 3, she might write
the hint, Assign the correct initial value to your accumulat-
ing total, and make sure you return that value on completion.
When Jamie is satisfied that the most common and interest-
ing clusters have been annotated with explanations, hints, or
references to relevant course materials, MISTAKEBROWSER
can be left running as part of the course autograder’s back-end,
where it can deliver the TAs’ feedback to students during cur-
rent and future semesters, along with the test case successes
and failures, whenever an incorrect submission falls into an
annotated cluster in MISTAKEBROWSER.

MISTAKEBROWSER clusters are based on program transforma-
tions synthesized by Refazer. For each homework assignment,
the back-end keeps a list of Refazer transformations and the

L@S 2017· Feedback for Improving Learning April 20–21, 2017, Cambridge, MA, USA

92

Figure 4. FIXPROPAGATOR interface: The left panel shows all of the incorrect submissions (A). When the teacher selects one, the submission is loaded
into the Python code editor in the center of the interface (B). Then the teacher can edit the code, re-run tests, and inspect results. The bottom of the
center panel shows the list of tests and console output (C). Once the teacher has fixed the submission, they add some hint that will be shown to current
and future students fixed by the same transformation. The bottom of the left panel shows submissions for which the system is suggesting a fix. When
the teacher selects a suggested fix, it is shown as a diff in the right panel (D). The teacher can reuse the previously written hint or create a new one (E).

assignment’s test suite. Given an incorrect submission, the
system iterates over the list of transformations, and for each
transformation, tries to apply it and checks whether the code
is fixed according to the test suite. As soon as the system
finds a transformation that fixes the submission, it adds the
submission to the cluster associated with this transformation.
In the CLUSTERBYFIXANDTESTCASE, the system uses ad-
ditional information provided by the tests related to the actual
and expected outputs to create clusters.

Propagating a Teacher’s Bug Fixes
Sam, the lead TA of a massive introductory programming class
at another school, wants to deploy the same kind of high-level
feedback on incorrect submissions that MISTAKEBROWSER
enables. However, their course infrastructure only saves the
most recent submission from each student, so there is no his-
tory of student bug fixes from which MISTAKEBROWSER
could learn transformations. Instead, Sam uploads the incor-
rect submissions he has to FIXPROPAGATOR. Figure 4 shows
the FIXPROPAGATOR user interface.

In the FIXPROPAGATOR interface, Sam looks at incorrect sub-
missions by selecting them (Figure 4A), iteratively edits and
executes the submission in an interactive code editor (Fig-
ure 4B) against the teacher’s test suite (Figure 4C), and adds
some high-level feedback for the student, such as explanations,
hints, or pointers to relevant course materials. Ideally, this
feedback should be worded so that future students in need of
a similar fix would also find it beneficial (Figure 4E).

When Sam submits feedback, the system uploads the orig-
inal incorrect submission, fixed submission, and high-level
feedback to a synthesis back-end to learn generalized trans-
formations from Sam’s correction. FIXPROPAGATOR applies
each transformation to the incorrect submissions that do not
yet have feedback. Transformations that fix incorrect submis-
sions turn into suggested fixes–along with the corresponding
feedback–in the FIXPROPAGATOR interface (bottom of Fig-
ure 4A) that can be accepted with a single click (Figure 4D).

If accepted, the tests are run automatically and Sam sees that,
indeed, this fix is just what the student needs to correct their
submission. Sam clicks on a button to reuse the feedback
from the submission that generated the fix (Figure 4E). If Sam
judges the fix or the feedback as not appropriate, it can be mod-
ified in place. Changes to synthesized fixes become new bug
fix examples that spur the generation of new transformations in
the back-end. Sam alternates between reviewing suggestions
and manually correcting more incorrect submissions. After a
while, most submissions have suggestions.

Given the high cost of debugging student code, a teacher
should be able to fix few incorrect submissions and see feed-
back propagate to many other students. We modified Refazer
to synthesize generalizable fixes from just one fix. To improve
generalization, Refazer produces multiple transformations of
varying generality for each submitted fix. All generated rules
are applied to all submissions that have not yet been fixed.

Furthermore, FIXPROPAGATOR needs to support online fix
generation at interactive speeds. However, effectively search-
ing a space of code transformations can be time-consuming;
with the current synthesis back-end, it can take minutes to
synthesize and apply fixes to other submissions. The user
interface was decoupled from Refazer so that teachers can
continue to fix and test code, produce feedback, and move on
to other submissions while the back-end discovers fixes. All
communication with the synthesis back-end aside from initial-
ization is asynchronous: fixes are uploaded to and retrieved
from Refazer using background threads.

Our implementation anticipates future modifications to sup-
port collaborative production of fixes and feedback. Commu-
nications with Refazer are moderated as “sessions” sharing a
common set of submissions and synthesized transformations.
We have made the code for both the web server and front end
available under an open source license1.

1. https://github.com/ace-lab/refazer4CSteachers

L@S 2017· Feedback for Improving Learning April 20–21, 2017, Cambridge, MA, USA

93

https://github.com/ace-lab/refazer4CSteachers

USER STUDIES
We ran two in-lab user studies with the teaching staff of a
massive programming class, with one study per system. The
studies evaluate how effective the interfaces are at helping
teachers understand common bugs and write feedback to help
students overcome them.

Participants
We recruited 17 teachers from the pool of current and former
CS61a teaching staff members. CS61a is a massive introduc-
tory programming class at UC Berkeley with as many as 1,500
students enrolled per semester. All the teachers in our study
are over 18 years old (average: 19.76 years old, σ =1.39). 16
of the 17 teachers are currently serving on the class teaching
staff, and the remaining participant was previously a class
teaching assistant for many semesters.

We split the pool of teachers into two groups of size 9 and 8.
The first group (SS1-9) tested MISTAKEBROWSER, while the
second group (ST1-8) tested FIXPROPAGATOR. The identi-
fiers SS and ST reference the fact that bug fixes in MISTAKE-
BROWSER and FIXPROPAGATOR are student and teacher-
generated, respectively. All teachers were qualified to try both
tools, but we limited each teacher to one system due to the
length of time required to thoroughly evaluate a system.

Dataset
Whenever a CS61a student submits code to be tested by the
course autograder against the teacher-written test suite, the
system logs the code, student ID, and test results. From one
homework assigned in Spring 2015, we selected the three
programming exercises below.

Product (data from 549 students): takes as parameters a
positive integer n and a unary function term, and returns
the product of the first n terms in a sequence: term(1) ∗
term(2)∗ ...∗ term(n).

Accumulate (668 students): takes as parameters the same
n and term as Product as well as a binary function
combiner for accumulating terms, and an initial value
base. For example, accumulate(add,11,3,square) returns
11+ square(1)+ square(2)+ square(3).

Repeated (720 students): takes as parameters a unary func-
tion f and a number n, and returns the nth applica-
tion of f . For example, repeated(square,2)(5) returns
square(square(5)), which evaluates to 625.

For each exercise, the interfaces were populated with incor-
rect submissions using a two-step process. First, we extracted
each student’s final correct solution and preceding incorrect
submission. Using these submission pairs as examples, we
trained Refazer to synthesize code transformations to fix com-
mon bugs. Second, for each student, we identified the earliest
incorrect submission that the transformations could fix. These
early, fixed submissions were shown to teachers in clusters
of fixed submissions in MISTAKEBROWSER, or as incorrect
submissions in FIXPROPAGATOR.

When pre-populating MISTAKEBROWSER, Refazer generated
mostly small synthesized fixes for the dataset: on average, the

tree edit distance between the abstract syntax trees of incorrect
and fixed submissions was 4.9 (σ = 5.1).

Shared Protocol: Setup and Training
Teachers were invited to an on-campus lab for one hour and
offered 20 US dollars in exchange for their time and expertise.
The experimenter walked the teacher through the features of
the interface they would see, demonstrating actions on one of
the incorrect submissions that the teacher would be working
on. This walk-through included a few minutes of explanation
about the synthesis back-end. We chose to give this brief
explanation because, during pilot studies, teachers who did
not receive an explanation were distracted from the task by
their own curiosity and theories about the back-end’s inner
workings. The tutorial took no more than five minutes. Finally,
the experimenter walked the teacher through a brief descrip-
tion of the first programming exercise for which the teacher
will see incorrect submissions: the purpose of the program-
ming exercise, the test cases used to check the correctness of
submissions, and the expected test case return values.

STUDY 1: MISTAKEBROWSER
The purpose of this user study was to evaluate the MISTAKE-
BROWSER system. We asked the following research questions:
(1) How do teachers perceive the quality of synthesized fixes?
(2) Do synthesis-based clusters help teachers write feedback?
(3) How reusable is the cluster-based feedback?

Study Protocol
Teachers had 40 minutes to review clusters of incorrect sub-
missions and write feedback for each cluster. They viewed two
clustering interface variants, CLUSTERBYFIX and CLUSTER-
BYFIXANDTESTCASE, for 20 minutes each. The order of in-
terface variants and choice of programming exercise from the
three exercises were counterbalanced across teachers. Teach-
ers were assigned an interface variant, problem, and cluster
to start with. For each cluster, they marked all of the poor
synthesized fixes to student submissions. They then answered
a few questions about the semantic coherence of the cluster,
e.g., “Do these incorrect submissions share the same miscon-
ception?” They were asked to “write the most precise short
description [they] can of the fix [they] would suggest,” which
need not match the synthesized fix. The teacher also answered
Likert scale questions about their confidence in their descrip-
tions and the depth of domain knowledge they added in the
process. As soon as they finished these tasks for a cluster, they
could advance to the next of the largest three clusters in their
assigned programming exercise and interface. After the sec-
ond 20-minute period, teachers reflected on their experiences
in a final survey.

Results
Refazer, our synthesis back-end, generated fixes for 87% of
the students in our dataset, resulting in an average of 549
fixes across all three problems. On average, these fixes were
grouped into 134 clusters in the CLUSTERBYFIX condition
and 198 clusters in the CLUSTERBYFIXANDTESTCASE con-
dition. Within the top three clusters for all programming
exercises, the largest cluster contained, on average, 109 sub-
missions and the smallest cluster contained 32 submissions.

L@S 2017· Feedback for Improving Learning April 20–21, 2017, Cambridge, MA, USA

94

Teachers saw an average of 3 (σ = 1.4) clusters containing
145 (σ = 80.9) incorrect submissions per hour-long session,
where they spent 20 min in each clustering condition. They
saw, on average, 72.9 (σ = 53.4) incorrect submissions in the
CLUSTERBYFIX condition and 78.7 (σ = 43.9) incorrect sub-
missions in the CLUSTERBYFIXANDTESTCASE condition.

Perceived quality of synthesized fixes. On average, 19%
(σ = 18) of the synthesized fixes were considered poor by the
teachers, and all teachers reported at least one poor fix. This
corroborates our initial intuition that synthesis alone is not
enough to generate high-quality hints.

For instance, SS2 and SS7 noticed a synthesized fix that did
not match the approach teachers explicitly taught for coding
recursive solutions. SS2 called the suggested fix “dangerous.”
SS2 also called some fixes “hot fixes” because, after applica-
tion, the student submission returned the expected values but
still had logical failures. In one example, the system suggested
a fix that compensated for, rather than corrected, an incorrect
variable initialization. Some fixes were not full fixes, even
though the fixed code passed all the teacher-written test cases.
For example, some incorrect submissions computed the prod-
uct of term(i) for i = 1..n−1, instead of 1..n. A synthesized
“hot fix” changed the range of the loop to i = 2..n. However,
this incorrect logic was not caught by the teacher’s test suite:
term(1) returned 1 for all term functions in the test cases, so it
was impossible to detect if the student failed to call term when
i = 1. This result revealed limitations in the teacher-written
test suite. SS8 noticed this and marked the entire cluster of
fixes as poor.

The value of clustering by code transformation. While not
all synthesized fixes were appropriate for students, teachers
did appreciate seeing them. When completing free response
questions about what they liked in the interfaces, two-thirds of
teachers (six of nine) specifically named clustering by trans-
formation as a feature they appreciated and two-thirds named
the synthesized fixes directly. All nine teachers named at least
one of those two features as what they appreciated most.

Teachers described how the synthesized fixes, shown as high-
lighted diffs, helped during their task: “highlight[ing] the
part of the code that was incorrect ... made it much easier
to quickly learn what was wrong with the code and how to
fix it” (SS7). These diffs were “fast and easy to review” and
“familiar” (SS3).

Subject SS1 wrote, “I thought it was interesting how grouping
student answers by their common mistakes actually revealed
something about the misconceptions they shared!” The util-
ity of this clustering was apparent to SS3: “Seeing all of the
similar instances of the same (or nearly the same) misconcep-
tion was very useful, because it suggested ways to address
common issues shared by many students.” They agreed with
the statement “These interfaces gave me insight into student
mistakes and misconceptions” at the level of 6.2 (σ = 0.44)
on a scale from 1 (strongly disagree) to 7 (strongly agree); no
teacher rated their agreement as lower than a 6.

Several teachers’ responses support the hypothesis that MIS-
TAKEBROWSER gives a high-level view of the misconceptions

%
 o

f c
lu

st
er

s

0%
10%
20%
30%
40%
50%

% of items in cluster that share common misconception
50% 75% Almost 100% 100%

Fix Only
Fix And Test Case

Figure 5. Distribution of clusters with respect to % of solutions that
shared common misconceptions.

and bugs students labor under while solving the problem, like
an OverCode [6] for incorrect submissions. SS9 liked that “it
had a wide variety of student responses to the same problem.”
SS1 wrote, “I felt that being able to compare many different
solutions (i.e. iterative, recursive, tail-recursive) was insightful
as to how the students approached the problem.”

Reusability of the feedback. To evaluate the reusability of
feedback assigned to synthesis-based clusters, we asked teach-
ers to report how many submissions in each cluster actually
shared the same misconception. Figure 5 shows teachers’ an-
swers for the two cluster conditions, CLUSTERBYFIX and
CLUSTERBYFIXANDTESTCASE. In both conditions, they
reported that most submissions share the same misconceptions.
However, they reported a greater proportion of CLUSTERBY-
FIXANDTESTCASE clusters as “100%” or “100% with a few
exceptions” compared to CLUSTERBYFIX clusters. Seven
out of nine teachers also mentioned in the final survey they
preferred CLUSTERBYFIXANDTESTCASE cluster because
the combination of fixes and test cases made it easier to check
if the incorrect submissions share the same misconception.

One of the clusters for the CLUSTERBYFIXANDTESTCASE
condition was reported to be less internally consistent than the
others, with only “50%” of submissions sharing a common
misconception. As we learned from teachers in the study, the
provided test cases failed to reveal a bug that caused a subset of
submissions to behave differently than the other submissions.
Submissions with this bug required a different fix.

STUDY 2: FIXPROPAGATOR
The purpose of this user study was to evaluate FIXPROPAGA-
TOR. Specifically, we had the following research questions:
(1) Can FIXPROPAGATOR propagate a small number of
teacher-written fixes and feedback to many incorrect submis-
sions?
(2) Can FIXPROPAGATOR’s back-end perform fast enough to
support real-time interaction?
(3) Do teachers accept propagated fixes and hints?

Study protocol
Each teacher was assigned to review student submissions for
one of the three programming exercises. After a five-minute
tutorial with the FIXPROPAGATOR interface, they were given
thirty minutes to interact with the system to teach the system to
fix and provide feedback on student code. This thirty-minute
period was broken up into alternating five-minute tasks. In the
first five-minute task, the teacher was asked to fix as many bugs
as possible, to maximize the number of generated fixes. The
experimenter told the teacher that simpler bug fixes may yield
more suggested fixes. During the second five-minutes task, the

L@S 2017· Feedback for Improving Learning April 20–21, 2017, Cambridge, MA, USA

95

accumulate (ST7)product (ST5) repeated (ST8)

reused propagated feedback

modified propagated feedback

ignored propagated feedback

wrote feedback from scratch

feedback propagated to
another submission; each
shade of grey is caused by a
distinct teacher correction.

Time (min) Time (min) Time (min)

15 30 15 3015 30

Figure 6. Top row: The number of incorrect submissions for which teachers provided feedback, shown for three teachers (ST5, ST7, ST8). Bottom row:
The number of incorrect submissions that received propagated feedback, using a teacher’s hand-written fixes and feedback (ST5, ST7, ST8).

teacher reviewed pending fixes and then accepted or modified
them, so that they could check whether the system had learned
acceptable transformations for fixing incorrect submissions
they had not yet seen. After the thirty-minute period, teachers
were asked to fill out a post-study reflection survey, including
Likert-scale and free response questions about their experience
with FIXPROPAGATOR.

Results
During this study, due to unforeseen circumstances, our syn-
thesis back-end was disabled for part of two teachers’ sessions
(ST1, ST4). Data described here was collected for the remain-
ing six teachers.

Bug fix propagation. Teachers provided examples of bug
fixes in two ways: fixing incorrect submissions from scratch,
and editing suggested fixes. They fixed a median of 10 (σ =
2.7) submissions from scratch and fixed 3 (σ = 2.9) more
after editing suggested fixes. During the time of the study
session and up to 40 minutes after the study, our synthesis back-
end was able to fix a median of 201 submissions (σ = 47.7).
Figure 6 shows the propagation of fixes over time. By the
end of the study, a large portion of the submissions (average =
34.7%, σ = 10.19%) had either been corrected by the teacher
or fixed by a synthesized transformation.

Performance. It took a median of 2 minutes and 20 sec-
onds (σ = 7m34s) to successfully propagate a fix to another
submission after a teacher corrected an incorrect submission.
Although the current system does not immediately show teach-
ers suggestions based on their corrections, teachers were able
to work on other submissions while waiting for synthesized
fixes. Figure 7 shows the interaction of one of the teachers
with FIXPROPAGATOR. Teachers alternated between fixing
and reviewing, but the effort invested in manual fixes allowed
them to accept a large number of auto-propagated fixes.

The value of synthesized fixes. Transformations learned
from teachers’ manual corrections fixed new incorrect sub-
missions in unexpected ways. They helped teachers better
understand the space of bug fixes and approaches to imple-
menting the solution. For example, ST3 came across an incor-
rect submission which was very close to being correct. She
did not see the simple fix and instead wrote an elaborate fix
that was fundamentally different from the student’s approach.
Later, a simpler synthesized fix to a similar incorrect submis-
sion was suggested, and she realized the submissions were

20 minutes 40 minutesStart

Teacher submits a correction

Teacher accepts a suggested fix
Teacher modifies, re-submits a suggested fix

Refazer fixes a submission using teacher correction

Figure 7. Timeline of the corrections a teacher (ST8) made to incorrect
submissions, and the subsequent synthesized fixes that were generated
from each correction.

using a different but valid approach to solving the problem.
After accepting the suggested fix, she reported she had learned
something about the space of solutions for the exercise.

Reusability. After contributing fixes and feedback for incor-
rect student submissions, teachers generally accepted the fixes
and feedback propagated to other submissions. Teachers were
more likely to reuse propagated fixes to the code verbatim
(median = 17 times, σ = 8.9) than to reuse feedback verbatim
(median = 11, σ = 6.3). Fixes were likely propagated cor-
rectly more often than feedback, as fixes were only propagated
if they allowed a submission to pass test cases that it failed
before. However, teachers’ feedback did not always general-
ize to new submissions. Some feedback referred to arbitrary
implementation choices not present in other submissions. For
example, one teacher referenced a specific variable name when
writing, “Your starting value of z should be a function, not
an int.” When proposed fixes and feedback were not enough,
teachers made modifications after applying suggested fixes
(median = 3, σ = 2.9), and modified the feedback (median =
6, σ = 2.7).

Survey responses confirmed our observations about the ac-
ceptability of fixes and feedback. Most teachers reported that
pending fixes were acceptable “100% of the time, with a few
exceptions.” The proportion of acceptable feedback was one
category worse: teachers rated the suggested feedback as ac-
curate “75%” of the time.

L@S 2017· Feedback for Improving Learning April 20–21, 2017, Cambridge, MA, USA

96

DISCUSSION
Our first design goal is to help teachers better understand the
distribution of common student bugs in introductory program-
ming exercises. MISTAKEBROWSER achieved this goal by
clustering incorrect submissions by the transformation that
corrects them. Given that the teachers in our studies had no
comparable view of incorrect submissions, this added signif-
icant value. FIXPROPAGATOR achieved this goal indirectly,
by helping teachers discover how many different incorrect
submissions could be fixed with the same transformation.

Our second design goal is to help teachers understand the
nature of student bugs and ways to fix them. Both MISTAKE-
BROWSER and FIXPROPAGATOR achieve this goal by visualiz-
ing the synthesized fix as a diff for every incorrect submission
in each cluster. By seeing the variety of submissions fixed by
a common transformation, teachers begin to understand the
essence of the underlying misconception, as well as the variety
of submissions it can appear in.

Our third design goal is to give teachers a tool for composing
high-level feedback and hints that scale to large numbers of
students and can be reused in future semesters. Teachers can
achieve this goal with either system, depending on the avail-
ability and quality of archives of student debugging activity.
As seen in the first study, the existence of poor synthesized
fixes within a cluster does not prevent teachers from com-
posing high-level feedback that can be propagated to current
and future incorrect submissions in that cluster. Clustering by
transformation and test cases reduced cluster size but increased
cluster purity, as in, there was more likely to be a single bug
shared across all incorrect submissions in the cluster. Despite
the smaller size of clusters in the CLUSTERBYFIXANDTEST-
CASE variant of MISTAKEBROWSER, teachers still reviewed
as many or more incorrect submissions. In the FIXPROPAGA-
TOR system, after only a few minutes of manually fixing and
providing feedback on a few incorrect submissions, teachers
received bug fix and feedback suggestions for tens or hundreds
of additional incorrect submissions. Even if only a large minor-
ity of students receive high-level feedback in which teachers
can remind the student of relevant principles and course con-
tent, it is still a major advance over the status quo of feedback
for students in massive programming classes.

One participant (SS3) mentioned that they used to hand-grade
homework submissions, giving feedback as well as grades,
until their class became too large. Now they only evaluate
student homework based on a proxy for student effort, test
cases passed, and spot-checks for composition. He thought
that MISTAKEBROWSER could help the staff grade their mas-
sive class the same way they used to grade homework when
the class was smaller. The FIXPROPAGATOR system can also
be used for grading-through-debugging. Debugging a student
exam submission is not a trivial activity, but FIXPROPAGA-
TOR can potentially learn reusable transformations from every
successful correction, simplifying adjustments to the grading
rubric and point deductions during the grading process. If the
exam problem is reused, the problem-specific rubric and point
deduction for that problem can be reused and added to during

future exam grading sessions, bringing the staff closer to fully
automatic submission grading.

Limitations. Our studies do not evaluate the impact of these
systems on student learning outcomes. The study results show
that teachers had some confidence that the transformations
and feedback were appropriate for unseen current and future
incorrect submissions in the cluster. However, we have not
shown whether students find the feedback relevant to them
or whether it improves their learning outcomes. There may
be a trade-off between the generality and the relevance of the
feedback teachers provide. Future studies can shed light onto
how propagated feedback impacts student learning and inform
how the systems could best help teachers to write feedback
that is both general and pedagogically useful.

So far, our systems have only been shown to propagate feed-
back for small fixes. For MISTAKEBROWSER, this is due
to the constraints of the training data: to build the training
examples, we used a correct solution paired with the last in-
correct submission from each student. It may be possible to
synthesize larger fixes by learning transformations from cor-
rect solutions paired with incorrect submissions selected from
earlier attempts in a student’s submission history. While larger
fixes may allow teachers to give feedback on more problems,
there is an inherent tradeoff: larger fixes may be harder for
teachers to understand and provide feedback for.

Our datasets have thus far only focused on fixing short func-
tions typical of early exercises in an introductory programming
class. The student solutions usually consist of just one main
function, sometimes including a few helper functions. We
have not tested how the systems’ real-time performance will
scale with more complex programs. Intuitively, the time to
synthesize a fix for a given incorrect submission will depend
on transformation size, the size of the incorrect submission,
and the runtime of the test cases. The synthesis back-end is
capable of learning and applying transformations for complex
code bases (150K-1500K lines of code) [20], but tuning may
be necessary to synthesize fixes for complex programs.

CONCLUSIONS AND FUTURE WORK
We presented two mixed-initiative systems for providing
reusable feedback at scale with program synthesis. MIS-
TAKEBROWSER learns transformations to fix incorrect sub-
missions from examples of student-written bug fixes. MIS-
TAKEBROWSER uses these transformations to cluster incorrect
student submissions. Teachers can then review these clusters
and write reusable feedback for current and future incorrect
submissions. When examples of student fixes are not available,
FIXPROPAGATOR allows teachers to write example bug fixes
themselves. The system then learns from such fixes in real-
time. We conducted two user studies with teaching assistants
to evaluate our systems. Our results suggest that synthesized
fixes, either from teachers’ examples or previous students’ bug
fixes, can be useful for providing reusable feedback at scale.

As future work, we plan to deploy these systems in a mas-
sive programming course and evaluate the effectiveness of the
generated feedback on helping students during programming
assignments. To increase flexibility, we plan to combine work-

L@S 2017· Feedback for Improving Learning April 20–21, 2017, Cambridge, MA, USA

97

flows of FIXPROPAGATOR and MISTAKEBROWSER, allowing
teachers to edit transformations learned from students’ fixes by
providing additional examples. To improve the interpretability
of learned transformations, we plan to explore alternate visual
and natural language interfaces to help teachers understand and
modify synthesized code transformations. Finally, we have
not yet investigated how to effectively combine both teacher-
authored feedback and automatically synthesized hints in a
student-facing interface. In future work, we plan to explore
this design space of hybrid hints.

ACKNOWLEDGMENTS
We would like to thank the CS61a teaching staff for their
time and perspective. This research was supported by the
NSF Expeditions in Computing award CCF 1138996, NSF
CAREER award IIS 1149799, CAPES 8114/15-3, an NDSEG
fellowship, and a Google CS Capacity Award.

REFERENCES
1. Susan A. Ambrose, Michael W. Bridges, Michele

DiPietro, Marsha C. Lovett, and Marie K. Norman. 2010.
How learning works: Seven research-based principles for
smart teaching. John Wiley & Sons.

2. Loris D’Antoni, Dileep Kini, Rajeev Alur, Sumit
Gulwani, Mahesh Viswanathan, and Björn Hartmann.
2015. How can automatic feedback help students
construct automata? ACM-TOCHI 22, 2 (2015), 1–24.

3. Ethan Fast, Daniel Steffee, Lucy Wang, Joel R. Brandt,
and Michael S. Bernstein. 2014. Emergent, crowd-scale
programming practice in the IDE. In Proceedings of CHI.
ACM, 2491–2500.

4. Elena L. Glassman, Lyla Fischer, Jeremy Scott, and
Robert C. Miller. 2015. Foobaz: Variable Name Feedback
for Student Code at Scale. In Proceedings of UIST. ACM,
609–617.

5. Elena L. Glassman, Aaron Lin, Carrie J. Cai, and
Robert C. Miller. 2016. Learnersourcing Personalized
Hints. In Proceedings of CSCW. ACM, 1626–1636.

6. Elena L. Glassman, Jeremy Scott, Rishabh Singh,
Philip J. Guo, and Robert C. Miller. 2015. OverCode:
Visualizing variation in student solutions to programming
problems at scale. ACM-TOCHI 22, 2 (2015), 1–35.

7. Sumit Gulwani. 2010. Dimensions in program synthesis.
In Proceedings of the Symposium on Principles and
Practice of Declarative Programming. ACM, 13–24.

8. Philip J. Guo. 2015. Codeopticon: Real-Time,
One-To-Many Human Tutoring for Computer
Programming. In Proceedings of UIST. ACM, 599–608.

9. Björn Hartmann, Daniel MacDougall, Joel Brandt, and
Scott R. Klemmer. 2010. What would other programmers
do: suggesting solutions to error messages. In
Proceedings of the CHI. ACM, 1019–1028.

10. Jonathan Huang, Chris Piech, Andy Nguyen, and
Leonidas Guibas. 2013. Syntactic and functional
variability of a million code submissions in a machine

learning MOOC. In Proceedings of the First Annual
Workshop on Massive Open Online Courses. 25–32.

11. Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade,
and Sumit Gulwani. 2016. Semi-Supervised Verified
Feedback Generation. In Proceedings of FSE. ACM,
739–750.

12. Chinmay E Kulkarni, Michael S Bernstein, and Scott R
Klemmer. 2015. PeerStudio: rapid peer feedback
emphasizes revision and improves performance. In
Proceedings of L@S. ACM, 75–84.

13. Timotej Lazar and Ivan Bratko. 2014. Data-driven
program synthesis for hint generation in programming
tutors. In International Conference on Intelligent
Tutoring Systems. Springer, 306–311.

14. Joseph Bahman Moghadam, Rohan Roy Choudhury,
HeZheng Yin, and Armando Fox. 2015. AutoStyle:
Toward Coding Style Feedback at Scale. In Proceedings
of L@S. ACM, 261–266.

15. Andy Nguyen, Christopher Piech, Jonathan Huang, and
Leonidas Guibas. 2014. Codewebs: scalable homework
search for massive open online programming courses. In
Proceedings of WWW. ACM, 491–502.

16. Donald A. Norman and Stephen W. Draper. 1986. User
Centered System Design; New Perspectives on
Human-Computer Interaction. L. Erlbaum Associates,
Inc.

17. Chris Piech, Jonathan Huang, Andy Nguyen, Mike
Phulsuksombati, Mehran Sahami, and Leonidas J. Guibas.
2015. Learning Program Embeddings to Propagate
Feedback on Student Code. In Proceedings of ICML.
IMLS, 1093–1102.

18. Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta:
A Framework for Inductive Program Synthesis. In
Proceedings of OOPSLA. ACM, 107–126.

19. Kelly Rivers and Kenneth R. Koedinger. 2015.
Data-driven hint generation in vast solution spaces: a
self-improving Python programming tutor. IJAIED
(2015), 1–28.

20. Reudismam Rolim, Gustavo Soares, Loris D’Antoni,
Oleksandr Polozov, Sumit Gulwani, Rohit Gheyi, Ryo
Suzuki, and Björn Hartmann. 2017. Learning Syntactic
Program Transformations from Examples. In
Proceedings of ICSE. IEEE, in press.

21. Gursimran Singh, Shashank Srikant, and Varun Aggarwal.
2016. Question Independent Grading Using Machine
Learning: The Case of Computer Program Grading. In
Proceedings of KDD. ACM, 263–272.

22. Rishabh Singh, Sumit Gulwani, and Armando
Solar-Lezama. 2013. Automated feedback generation for
introductory programming assignments. ACM SIGPLAN
Notices 48, 6 (2013), 15–26.

23. Kurt Vanlehn. 2006. The behavior of tutoring systems.
IJAIED 16, 3 (2006), 227–265.

L@S 2017· Feedback for Improving Learning April 20–21, 2017, Cambridge, MA, USA

98

	Introduction
	Related Work
	Writing reusable code feedback with mixed-initiative interfaces
	Using Program Synthesis To Cluster Submissions
	Browsing Student Bugs
	Propagating a Teacher's Bug Fixes

	User studies
	Participants
	Dataset
	Shared Protocol: Setup and Training

	Study 1: MistakeBrowser
	Study Protocol
	Results

	Study 2: FixPropagator
	Study protocol
	Results

	Discussion
	Conclusions and Future Work
	acknowledgments
	REFERENCES

