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ABSTRACT
Existing review-based recommendation models mainly learn long-
term user and item representations from a set of reviews. Due to the
ignorance of rich side information of reviews, these models su�er
from two drawbacks: 1) they fail to capture short-term changes
of user preferences and item features re�ected in reviews and 2)
they cannot accurately model high-order user-item collaborative
signals from reviews. To overcome these limitations, we propose
a multi-view approach named Set-Sequence-Graph (SSG), to aug-
ment existing single-view (i.e., view of set) methods by introducing
two additional views of exploiting reviews: sequence and graph. In
particular, with reviews organized in forms of set, sequence, and
graph respectively, we design a three-way encoder architecture that
jointly captures long-term (set), short-term (sequence), and collabo-
rative (graph) features of users and items for recommendation. For
the sequence encoder, we propose a short-term priority attention
network that explicitly takes the order and personalized time inter-
vals of reviews into consideration. For the graph encoder, we design
a novel review-aware graph attention network to model high-order
multi-aspect relations in the user-item graph. To combat the poten-
tial redundancy in captured features, our fusion module employs
a cross-view decorrelation mechanism to encourage diverse rep-
resentations from multiple views for integration. Experiments on
public datasets demonstrate that SSG signi�cantly outperforms
state-of-the-art methods.
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1 INTRODUCTION

“…It is an AMAZING feast 
of vegetable deliciousness.
It came with two thick …”

“… I used to love their 
vegetable platter which is 
now off the menu …”

2011/10/12 2014/6/23

Figure 1: Two reviews of a Yelp restaurant at di�erent times.
The latter indicates the change of the vegetable platter and
the former is outdated. Ignoring the temporal information
of reviews leads to inaccurate modeling of the restaurant.

“…actually one of the most relaxing 
albums I've ever heard…”

recommended if reviews are ignored

user-1

user-2

"Pink Moon”

“Feels Like Home”

Figure 2: A toy user-item graph of two Amazon users and al-
bums. Considering their connectivity but ignoring reviews
on edges leads to improper recommendation.

In the era of information explosion, recommender systems play
an important role in helping users sift through massive choices
and �nd suitable items. The key to accurate recommendation is
properly modeling user preferences and item features based on

https://doi.org/10.1145/3340531.3411939
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their historical interactions (e.g., ratings) [15]. Matrix Factorization
(MF) [21, 33] is widely adopted to learn latent factors for users and
items from the rating matrix. However, as a rating only re�ects a
user’s overall satisfaction over an item without further details, MF
methods fail to model users or items with few ratings well [42], i.e.,
they easily su�er from the cold-start problem.

In addition to ratings, there are abundant reviews written and
shared by users on many online platforms such as Amazon and
Yelp. Since reviews contain rich semantics about user preferences
and item features, there has been immense research interest in
exploiting them for recommendation [4, 11], where users and items
are represented by their related reviews. For example, McAuley
and Leskovec [31] extract latent topics from reviews and Zheng et
al. [42] apply a convolutional encoder for review-based representa-
tion learning. Word-level or review-level attention is further used
to highlight informative words or reviews [4, 25]. In these methods,
reviews of a user/item are treated as a set of plain textswhich are
concatenated or attentively combined to capture long-term overall
features. However, a review is actually more than plain text but is
associated with rich side information, including its timestamp, the
user who writes it, and the item which it is written for. Though
existing methods have achieved encouraging performance, they
su�er from two limitations due to merely focusing on the textual
content of reviews and ignoring these side information.

C1: They cannot capture short-term changes of user prefer-
ences and item features, which often evolve instead of always being
static. As shown in Fig. 1, a restaurant may update its menu every
once in a while, thus leading to di�erent user experiences as indi-
cated in reviews. Similarly, a user’s recent focus on various aspects
(e.g., food, price, and service) when rating restaurants may also
di�er from before. Since existing methods ignore timestamps of
reviews and thus fail to utilize their chronological order, they miss
the opportunity to capture such short-term changes.

C2: Existing methods cannot accurately model high-order col-
laborative signals of users and items. As shown in Fig. 2, user-item
interactions can form a bipartite graph where users and items are
regarded as nodes, and historical interactions act as edges. In the
graph, relations of nodes are revealed by high-order paths connect-
ing them (e.g., “Feels Like Home"$user-1$“Pink Moon"$ user-2),
which are useful collaborative signals in recommendation since
similar users tend to exhibit similar preferences on similar items.
However, most review-based methods ignore this point and merely
focus on the target user-item pair. Some pioneering studies model
high-order node relations with graph neural networks (GNNs) on
the user-item graph [40, 41]. But they ignore edge semantics carried
by reviews and only consider whether two nodes are connected
or not, while connectivity does not necessarily mean satisfaction
or matching. For instance, the reviews in Fig. 2 show that both
users enjoy “Pink Moon" while user-1 dislikes “Feels Like Home".
Being unaware of the reviews on edges, existing graph methods
would probably recommend “Feels Like Home" to user-2 as they are
connected in three hops, which turns out improper.

To this end, we are motivated to incorporate these side infor-
mation of reviews (i.e., the temporal information and the role in
connecting users and items) to better exploit them for recommenda-
tion. Despite its necessity, there still exist several challenges. First,
these side attributes of reviews are heterogeneous and accompany

Figure 3: Distribution of time intervals between adjacent re-
views in the Yelp dataset.

the same textual content in di�erent forms (i.e., sequence-structured
and graph-structured). Elaborate model design is required so that
they can be properly utilized in a uni�ed framework to provide
complementary and non-redundant information for recommenda-
tion. Second, reviews are generated with irregular time intervals
(shown in Fig. 3) and even the same interval could mean di�erently
among users/items since some have reviews more frequently while
others do not. Thus it is a non-trivial task to capture short-term
changes with the temporal information. Third, it remains largely
unexplored to incorporate edge information from natural language
(i.e., reviews) into graphs to model node relations. Moreover, review
semantics are complex since a user’s opinion on an item may vary
among di�erent aspects (e.g., "delicious food but too expensive"),
instead of simply positive or negative as indicated by the rating.
Thus it is challenging to incorporate reviews into the user-item
graph for accurate collaborative signals.

To tackle all these challenges, we propose a multi-view ap-
proach named Set-Sequence-Graph (SSG)1, which augments exist-
ing single-view (set) methods by introducing two additional views
of exploiting reviews: sequence and graph. Particularly, we design
a three-way encoder architecture for review-based representation
learning. For the traditional view of set, we adopt the encoder in [4]
for the long-term stable part of user preferences and item features.
For the view of sequence where temporal information is introduced,
we design a short-term priority encoder, which considers the order
and personalized time interval of reviews for short-term repre-
sentation. For the view of graph, we incorporate reviews into the
user-item graph via a novel review-aware graph attention network
(RGAT), which captures high-order multi-aspect relations of users
and items for collaborative signals. To combat the potential redun-
dancy caused by reuse of reviews in multiple views, we further
employ a fusion module with cross-view decorrelation mechanism
to encourage diversity across their representations and integrate
them for �nal prediction.

In summary, this work makes the following key contributions:
• We propose a novel multi-view approach SSG, which em-
ploys a three-way encoder architecture and a fusion-with-
decorrelation module to exploit the textual content as well
as side information of reviews for recommendation. To the
best of our knowledge, it is the �rst attempt to jointly cap-
ture long-term, short-term, and collaborative features by
exploiting reviews from views of set, sequence, and graph.

1The source code of SSG is available at https://github.com/jygao97/SSG

https://github.com/jygao97/SSG
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Figure 4: The framework of SSG, best viewed in color.

• We propose a short-term priority encoder for sequence mod-
eling, which explicitly considers the order and personalized
time intervals of reviews.

• We propose a novel module named RGAT to capture high-
order relations of users and items, which incorporates review
semantics into the process of information propagation over
the user-item graph.

• We conduct extensive experiments on public datasets from
di�erent domains and demonstrate that SSG signi�cantly
outperforms state-of-the-art methods. The e�ectiveness of
each view in SSG is also veri�ed through ablation studies.

2 PROBLEM FORMULATION
In this section, we de�ne our problem as follows:
Input: The input of our approach includes a user set U, an item
set V , and a corpus of user-item interactions D.

• Each user is represented by its ID D 2 U and each item is
represented by the item ID E 2 V .

• Each user-item interaction in D is denoted as a 5-tuple
(D, E,,D,E, AD,E, CD,E), where ,D,E is the textual content of
user D’s review on item E , AD,E is the accompanying rating,
and CD,E is the timestamp of the review. The review corpus
of D is denoted by {,D,E1 ,,D,E2 , ...,,D,E#D

}, where all #D
reviews of D are sorted by timestamp in ascending order.
The review corpus of E is constructed similarly.

Similar to [25, 41, 42], we focus on the task of rating prediction.
Output: Given a user D and an item E , we aim to predict the rating
ÂD,E that re�ects how much D likes E .

3 APPROACH
In this section, we �rst introduce the overview of our SSG approach.
Then we detail the design of major components as well as their

joint optimization, where we will focus on the part for user D since
the roles of user and item are symmetric in this framework.

3.1 Overview
As shown in Fig. 4, SSG �rst embeds each review of the target
user/item. With review embeddings, SSG employs a three-way
encoder architecture to jointly learn user and item representations,
each way corresponding to a speci�c view of exploiting reviews:

• View of Set. It captures long-term stable part of user prefer-
ences and item features. We directly adopt the model in [4]
as our set encoder. It treats reviews as a set (i.e., a collection
that does not specify the order of elements) of plain texts
and evaluates the usefulness of each review independently.
Then all reviews are combined based on their usefulness for
long-term user and item representation pB4CD and qB4CE .

• View of Sequence. It learns short-term representation pB4@D
and qB4@E from the sequence of reviews. It �rst obtains the
sequential representation of each review with Recurrent
Neural Network (RNN). To highlight the focus on short-
term features, it employs a short-term priority attention
network to determine the relatedness of each review se-
mantically and temporally, where the relative order and per-
sonalized time interval of reviews are also considered.

• View of Graph. It captures high-order collaborative fea-
tures p6A0?⌘D and q6A0?⌘E of users and items by incorporating
reviews into the user-item interaction graph. It recursively
propagates node embeddings over the bipartite graph with a
novel review-aware graph attention network (RGAT),
which consists of review-aware information propagation
and multi-aspect information aggregation. In this way, re-
view semantics can be e�ectively leveraged in modeling the
relations among users and items.



With representations learned from three complementary views,
the fusion module in SSG integrates them into hybrid represen-
tations for �nal prediction. To combat the potential redundancy
caused by reuse of reviews, the fusion module is equipped with a
cross-view decorrelation mechanism to further encourage diver-
sity among multiple views.

3.2 Review Embedding
We calculate review embeddings with Kim CNN [17], which has
shown excellent performance in capturing sentence semantics and
meanwhile enables e�cient computation [10, 23].

Given review,D,E = {F1,F2, ...,F=} with = words, we project
it into an embedding matrix D 2 R3F⇥= , where 3F is the word
embedding size. Then a convolution operation with �lter f 2 R3F⇥B

(B is the windows size) followed by a max pooling operation is
applied to obtain a scalar feature from D:

2 5 = max({f ⇤ D8:8+B�1}=�B+18=1 ) 2 R, (1)

where ⇤ denotes the convolution operator. Features 2 5 from all 32
�lters are concatenated together as the review embedding eD,E =
[2 51 , 2 52 , ..., 2 532 ] 2 R32 for,D,E .

From section 3.3 to section 3.5, we focus on modeling D from
his/her reviews. For simplicity, we drop the subscript D in eD,E (as
well as its timestamp CD,E and rating AD,E ) when it is unambiguous.

3.3 View of Set
Given the set {eE1 , eE2 , ..., eE# } of D’s embedded reviews, we aim
to learn representation that captures D’s preferences over the long
term. Here we adopt the encoder proposed by [4]. Based on the
intuition that di�erent reviews are not equally important in char-
acterizing D, it attentively combines all reviews as the long-term
representation pB4CD =

Õ#
9=1 UE9 eE9 . The the attention weight UE9 of

the 9-th review is calculated as follows:
U⇤E9 = w>

1 ReLU(WU [eE9 , iE9 ] + b1) + 12,

UE9 =
exp(U⇤E9 )Õ#
9=1 exp(U⇤E9 )

,
(2)

where WU ,w1, b1 and 12 are parameters to learn. iE9 is the ID
embedding of item E 9 (i.e., the target of this review), which helps
identify items whose reviews are usually more informative.

Note that the set encoder here can be replaced by many existing
single-view methods. Since it is not the focus of this paper, we leave
other possible choices of the set encoder for future exploration.

3.4 View of Sequence
In this view, we propose to learn short-term preferences of D from
the review sequence [eE1 , eE2 , ..., eE# ]. It mainly consists of two
parts: 1) the Recurrent Neural Network (RNN) and 2) the short-
term priority attention network.
RNN.We �rst obtain sequential representations of reviews via RNN,
which has been proven e�ective in sequence modeling. We choose
Gated Recurrent Unit (GRU) [7], a variant of RNN that handles the
problem of vanishing gradient. Let 36 denote the hidden size in
GRU, the hidden state h9 2 R36 of GRU is computed recursively:

h9 = GRU(h9�1, eE9 ;Ω), (3)

Where GRU(·) denotes the GRU unit and Ω denotes all its parame-
ters. Thus a sequence of hidden states {h1, h2 ..., h# } are generated,
where h9 is the sequential representation for 9-th review by char-
acterizing the user preference up to it.
Short-term Priority Attention Network. Due to the forgetful-
ness and limited representation power [12] of RNN, the latest state
h# may not capture short-term features completely but only part
of them, where previous states can serve as complements.

To this end, we propose a short-term priority attention network
to determine how much a hidden state h9 contributes to the short-
term features of u. Particularly, with h# as query, h9 as key and
value, it learns following two score functions:

The �rst measures the semantical compatibility between h9
and h# :

SC( 9) =
(W&h# )>W h9p

36
, (4)

where W& ,W 2 R36⇥36 are projection matrices for query and
key. To avoid large values of inner product when the dimension is
high, we use

p
36 as the scaling factor.

The second functionmeasures the temporal closeness between
h9 and h# . As they correspond to the 9-th review (with timestamp
CE9 ) and the latest review (with timestamp CE# ), the relative posi-
tion (i.e., order) distance of h9 to h# is ?3 9 = # � 9 and relative
time interval is C8 9 = CE# � CE9 . Due to the interval irregularity in
the review sequence, ?3 9 and C8 9 can have di�erent in�uence on
measuring closeness and we propose to model them both:

• For ?3 9 , since precisely modeling it over a certain thresh-
old may result in little gain, we clip it to <8=(?3 9 , I) and
represent it with a I-dim one-hot encoding pd9 , where the
threshold I is manually speci�ed.

• For C8 9 , since some users have reviews more frequently while
others are not, a personalized time interval representation is
required for alignment. We �rst calculate the ?-th percentile
of time intervals {CE9 �CE9�1 }#9=2 between adjacent reviews of
D, which is denoted as his/her base time interval C810B4 . Then
we discretize C8 9 in a personalized manner similar to [24],
i.e., b C8 9

C810B4
c, followed by the operation of clip and one-hot

encoding for time interval representation ti9 .
With pd9 and ti9 , we design the second score function as:

)⇠ ( 9) = w>
?3pd9 +w>

C8 ti9 , (5)

wherew?3 ,wC8 are learnable parameters. Based on the duplex score
functions, the short-term priority attention layer works as:

V⇤E9 = (⇠ ( 9) + _C4<?>A0;)⇠ ( 9),

VE9 =
exp(V⇤E9 )Õ#
9=1 exp(V⇤E9 )

,

pB4@D =
#’
9=1

VE9 h9 ,

(6)

where _C4<?>A0; controls the weight of two score functions. In this
way, when determining the contribution of each hidden state to
the short-term representation, we give priority to 1) the latest one
(h# is used as query) and 2) previous states which are semantically
(the �rst score function) and temporally (the second score function)



related to the latest state, which helps e�ectively capture short-term
features from the review sequence.

3.5 View of Graph
Next, we capture high-order collaborative features by recursively
propagating node embeddings over the user-item graph with a
novel review-aware graph attention network (RGAT).
Review-Aware Information Propagation. Since items that D
has interacted with (i.e., D’s neighbors) are of di�erent informative-
ness in revealing D’s preferences, we exploit the idea of GAT [39]
to enrich D’s embedding by attentively propagating information
from neighbors to D. Let g;�1D , g;�1E 2 R3;�1 denote the embedding
of D and E after ; � 1 propagation layers. We �rst project them to
a hidden space as: g̃;�1D , g̃;�1E 2 R3̃;�1 with a projection matrixW? .
The neighborhood information of D is then calculated as:

o;�1D =
#’
9=1

cE9 g̃
;�1
E9 , (7)

where cE9 is the attention weight indicating the proximity of E 9
to D. The vanilla GAT determines cE9 merely based on the node
embeddings of D and E 9 . To accurately model relations between D
and E 9 , the �rst extension is to consider the rating AE9 . However,
AE9 only indicates the overall polarity and hides detailed opinions
on various aspects (e.g., a user may mention “delicious food but
too expensive" in the review on a restaurant and just give a neutral
rating). Thus we further incorporate rich review semantics into the
attention layer:

c⇤E9 = w>
2 [g̃;�1D , g̃;�1E9 ,WA4eE9 ,WA0rE9 ],

cE9 =
exp(LeakyReLU(c⇤E9 ))Õ#
9=1 exp(LeakyReLU(c⇤E9 ))

,
(8)

where LeakyReLU(·) is the activation function as used in the vanilla
GAT,WA4 ,WA0 and w2 are model parameters, and rE9 is the one-
hot encoding for the accompanying rating AE9 . In this way, semantic
relations between D and its neighbours are fully leveraged in the
attentive information propagation process.
Multi-Aspect Information Aggregation.We derive new embed-
ding of D by aggregating itself and its neighborhood information.
We choose the sum aggregator as it balances between e�ectiveness
and e�ciency, i.e., g;D = o;�1D + g̃;�1D .

However,D’s opinions on di�erent aspects of E 9 could be various,
which are hard to model with a single attention network. To capture
complex semantic relations from multiple aspects, we further ex-
tend RGAT to a multi-head version. Let Θ denote all parameters in
the above process (i.e., the single-head version), we can reformulate
the output g;D as:

g;D = � (g;�1D , {g;�1E9 , eE9 , AE9 }#9=1;Θ) 2 R3̃;�1 . (9)

Then output of the RGAT layer with  heads is written as:

g;D =
 
| |
:=1

� (g;�1D , {g;�1E9 , eE9 , AE9 }#9=1;Θ: ) 2 R3; , (10)

where Θ: denotes parameters of :-th head, | | denotes the concate-
nation operation, and 3; =  3̃;�1.

By stacking ! RGAT layers over the initial node embeddings
(which are also treated as model parameters following [40]), we use
the output g!D of the last layer as the high-order collaborative user
representation p6A0?⌘D .

3.6 Fusion Module
View Integration.With pB4CD 2 R32 , pB4@D 2 '36 , and p6A0?⌘D 2 '3!
of D captured from three views, we integrate them by feeding their
concatenation into a fully-connected layer:

pD = W5 [pB4CD , pB4@D , p6A0?⌘D ] 2 R35 , (11)

whereW5 are parameters of this layer. In this way, we obtain the
hybrid user representation pD that jointly captures long-term, short-
term, and collaborative features. The item representation qE of E
are obtained similarly.
Cross-View Decorrelation. Although three views of SSG exploit
reviews in di�erent forms for di�erent purposes, there could still
exist the redundancy in their representations since they are based
on the same review corpus. As redundant representations easily
lead to over-�tting and bad generalizability [9], we propose to
mitigate this issue via decorrelating these views.

Similar to [8, 29], we measure the correlation of two features
based on their covariance. Let (G,~) denote a pair of scalar features.
Their correlation can be computed as:

2>A (G,~) = ( 1
⌫

⌫’
1=1

(G1 � G) (~1 � ~))2, (12)

where ⌫ is the batch size, G1 ,~1 denote their values in 1-th sample,
and G,~ denote their mean value in this batch. Taking the view of
set and sequence as an example, the correlation of two views is
thus modeled by correlations of all cross-view feature pairs:

2>AB4C ,B4@ =
1
2

32’
8=1

36’
9=1

(2>A (pB4C (8), pB4@ ( 9))+2>A (qB4C (8), qB4@ ( 9))),

(13)
where pB4C (8) denote the 8-th feature in pB4C . To decorrelate all three
views, we impose the following loss-term:

L342>A =
’

8, 9 2{B4C ,B4@,6A0?⌘}
2>A8, 9 . (14)

3.7 Joint Learning
Prediction. To predict D’s preference on E , we �rst model the
feature proximity between their representations as:

lD,E = (pD + xD ) � (qE + yE), (15)

where xD and yE are learnable vectors added to model their rating-
related latent features that are not covered by the review-based pD
and qE . Given the interaction vector lD,E , SSG predicts ÂD,E as:

ÂD,E = w>
3 lD,E + 1D + 1E + `, (16)

where w3 is the weight of edges in the prediction layer. 1D , 1E , and
` are user bias, item bias, and global bias respectively.
Optimization.The objective function of SSG consists of the squared
loss of prediction and the cross-view decorrelation loss:

L =
’
D,E

(AD,E � ÂD,E)2 + _342>AL342>A , (17)



where AD,E is the ground-truth and _342>A is the weight for decorre-
lation loss. By minimizing L, all components in SSG can be jointly
optimized in an end-to-end way.

4 EXPERIMENTS

Table 1: Statistics of four public datasets.

Dataset #Users #Items #Reviews Density

Instruments 1,429 900 10,261 0.798%
Digital Music 5,541 3,568 64,706 0.327%
Toys & Games 19,412 11,924 167,597 0.072%

Yelp 28,082 9,626 374,217 0.138%

To comprehensively evaluate our proposed SSG, we conduct
experiments to answer the following research questions:
RQ1 Howdoes SSG perform comparedwith state-of-the-art review-

based recommendation models?
RQ2 What is the in�uence of each view in SSG?
RQ3 How do key hyper-parameters a�ect the performance of

SSG, such as the dimension of representations, the number
of RGAT’s heads, and theweight of cross-view decorrelation?

RQ4 Is the RGAT useful in capturing collaborative signals from
the view of graph that complements the view of set?

4.1 Experimental Settings
Datasets.We evaluate our approach on four public datasets with
di�erent characteristics, including three Amazon datasets2 [14]
(i.e., Instruments, Digital Music, Toys & Games) and the Yelp
dataset from Yelp Challenge 20193 where we select restaurants
located in the Phoenix city. Following [25], we use the 5-core version
where all users and items have at least 5 reviews. Detailed statistics
of these four datasets are summarized in Table 1.
Baselines. Eight baselines are selected for comparison, which are
divided into three groups according to the type of data they use.

The �rst group (G1) consists of threemethods that predict ratings
only based on the observed rating matrix, including:

• NMF [22] applies Non-negative Matrix Factorization on the
observed rating matrix to predict missing ratings.

• PMF [33] factorizes the rating matrix with a probabilistic
linear model with Gaussian observation noise.

• SVD++ [20] extends Singular Value Decomposition on the
rating matrix with item similarities.

The second group (G2) exploits reviews in addition to ratings for
recommendation, including:

• HFT [31] extracts latent topics from reviews and align them
with latent factors of users and items.

• DeepCoNN [42] learns representations from the concate-
nated review document with convolutional neural networks.

• NARRE [4] employs the review-level attention mechanism
to focus on reviews which are more useful.

• DAML [25] adopts local and mutual attention layers to fur-
ther model the interaction of the target user and item.

2http://jmcauley.ucsd.edu/data/amazon
3https://www.yelp.com/dataset

The third group (G3) contains a graph-aware method, which consid-
ers the user-item interaction graph in addition to textual reviews:

• RMG [41] adopts graph neural networks to learn represen-
tations from the user-item graph for enhancement. But they
fail to model reviews as edges in the graph.

Evaluation Metric. Following [25], we adopt the widely-used
Mean Absolute Error (MAE) as the evaluation metric, which is
calculated as:

"�⇢ =
1
#

’
D,E

|AD,E � ÂD,E |, (18)

where AD,E and ÂD,E denote the actual and predicted rating respec-
tively and # is the total number of test instances. A lower MAE
indicates a better performance.
Implementation Details. Our SSG model is implemented in Py-
torch4. We randomly split the dataset into training (80%), validation
(10%), and test (10%) sets. We tune the hyper-parameters on the
validation set and evaluate the performance on the test set. The
hyper-parameters of baselines are reused if reported by their au-
thors. Otherwise, we carefully tune them to ensure that they achieve
the best performance. We use the Adam optimizer [18] with an ini-
tial learning rate of 0.002 and the batch size is �xed to 100. The
number of latent factors 35 is tuned in [4, 8, 16, 32, 64, 128] and
we set it to 8 for SSG on all datasets. For the review embedding
module, we reuse the settings in the NARRE model for fair com-
parison, where the word embedding size is 300 and the pre-trained
embedding from Google News [32] is used for initialization. The
number 32 of �lters in CNN is 100 and the window size is set to 3.
In the view of sequence, the hidden size 36 of GRU is tuned in [4,
8, 16, 32, 64, 128]. The clip threshold I and the percentile ? for the
base interval are set to 100 and 10. In the view of graph, we set the
number of layers and heads in RGAT to 2 and 8. _342>A is tuned in
[0.001, 0.01, 0.1, 1]. Each experiment is repeated ten times and we
report the average and standard deviation of MAE as the result.

4.2 Overall Performance (RQ1)
The performance of our approach and baselines is shown in Table 2,
from which we have the following observations.

First, methods that leverage reviews for recommendation (G2,
G3, and SSG) generally perform better than those only based on
ratings (G1), achieving 19.4%, 16.5%, 14.4%, and 5.4% lower MAE on
average across four datasets. This is ascribed to the fact that rich
semantics carried by reviews usually reveal user preferences and
item features in detail and help better model users and items, while
a few ratings usually fail to do so. This observation validates the
necessity of exploiting reviews for recommendation.

Second, baselines that explicitly model relations of users and
items (SVD++ and RMG) outperform their corresponding competi-
tors. For example, the mean improvement of SVD++ over NMF is
13.3%. RMG also outperforms deep-learning-based methods in G2
(i.e., DeepCoNN, NARRE, and DAML) by 1.5% on average. It shows
the bene�t of explicitly capturing collaborative signals instead of
just focusing on the target user-item pair, since users with simi-
lar preferences tend to behave similarly towards similar items. By
looking at related users and items, representations of the target
user/item are enriched for improvement.
4https://pytorch.org/

http://jmcauley.ucsd.edu/data/amazon
https://www.yelp.com/dataset
https://pytorch.org/


Table 2: Comparison among di�erent methods. The best results are highlighted by boldface. The columns of "Impv." show the
improvements of SSG over each baseline in terms of MAE. The symbol * means that the improvements over all baselines are
signi�cant with p-value < 0.01 by t-test.

Dataset Instruments Digital Music Toys & Games Yelp
MAE Impv. MAE Impv. MAE Impv. MAE Impv.

G1
NMF 0.8399 ± 0.015 +32.0% 0.7962 ± 0.006 +23.9% 0.7546 ± 0.003 +22.1% 0.9716 ± 0.002 +7.5%
PMF 0.8179 ± 0.015 +30.1% 0.8487 ± 0.004 +28.6% 0.7953 ± 0.004 +26.0% 0.9884 ± 0.002 +9.0%

SVD++ 0.6609 ± 0.010 +13.5% 0.6649 ± 0.003 +8.9% 0.6570 ± 0.002 +10.5% 0.9478 ± 0.001 +5.1%

G2

HFT 0.6821 ± 0.010 +16.2% 0.7194 ± 0.004 +15.8% 0.6848 ± 0.002 +14.1% 0.9504 ± 0.001 +5.4%
DeepCoNN 0.6431 ± 0.010 +11.2% 0.6407 ± 0.005 +5.4% 0.6458 ± 0.002 +8.9% 0.9130 ± 0.001 +1.5%
NARRE 0.6225 ± 0.011 +8.2% 0.6290 ± 0.005 +3.7% 0.6226 ± 0.002 +5.5% 0.9142 ± 0.002 +1.7%
DAML 0.6063 ± 0.001 +5.8% 0.6407 ± 0.004 +5.4% 0.6171 ± 0.002 +4.7% 0.9178 ± 0.001 +2.0%

G3 RMG 0.6132 ± 0.011 +6.8% 0.6234 ± 0.004 +2.8% 0.6190 ± 0.002 +5.0% 0.9091 ± 0.002 +1.1%

Ours SSG 0.5713 ± 0.011* - 0.6058 ± 0.005* - 0.5881 ± 0.002* - 0.8990 ± 0.001* -

Third, our proposed SSG achieves the best performance on all
datasets, outperforming the second-best method by 5.8%, 2.8%, 4.7%,
and 1.1% respectively. Its improvements over baselines are all sta-
tistically signi�cant. This demonstrates the e�ectiveness of our
approach, which fully exploits reviews (including textual content
and valuable side information) for recommendation from three com-
plementary views: set, sequence, and graph. The superiority of SSG
mainly stems from two aspects: 1) it employs a short-term priority
attention model in the view of sequence to capture short-term user
preferences and item features from reviews, which are ignored by
all baselines and 2) it models high-order relations between users
and items while all methods except RMG fail to do so. Compared
with RMG which only models the connectivity of nodes in the user-
item graph, SSG achieves 3.9% lower MAE on average. We attribute
it to the design that SSG further considers edge semantics revealed
by reviews and thus models user-item relations more accurately.

4.3 Ablation Study (RQ2)
We analyze the in�uence of each view in SSG by comparing the
default version with the following variants:

• SSG without the view of set (V1) removes the set encoder that
is responsible for long-term representation.

• SSG without the view of sequence (V2) removes the sequence
encoder that learns short-term representation.

• SSGwithout the view of graph (V3) removes the graph encoder
that captures user-item collaborative signals.

• SSG without temporal information (V4) removes the score
function of temporal closeness.

• SSG without incorporating reviews into graph (V5) removes
reviews from the attention calculation of RGAT.

We make the following conclusions from results in Table 3.
E�ectiveness of the view of set. The mean improvement of SSG
over V1 on four datasets is 4.9%, which shows that the view of set
is still an indispensable component in SSG. Even with short-term
and collaborative features, long-term modeling of users and items
plays an important role in review-based recommendation.

Table 3: Comparison among SSG and its variants. The best re-
sult on each dataset is highlighted by boldface. The symbol
* means that the improvements over all variants are signi�-
cant with p-value < 0.01 by t-test.

Instruments Digital Music Toys & Games Yelp

V1 0.6119 ± 0.010 0.6459 ± 0.004 0.6184 ± 0.003 0.9156 ± 0.001
V2 0.5745 ± 0.010 0.6199 ± 0.005 0.6257 ± 0.002 0.9075 ± 0.001
V3 0.6157 ± 0.011 0.6156 ± 0.005 0.6068 ± 0.002 0.9075 ± 0.002
V4 0.5713 ± 0.011 0.6099 ± 0.004 0.5916 ± 0.002 0.9052 ± 0.001
V5 0.6132 ± 0.009 0.6338 ± 0.004 0.6104 ± 0.002 0.9145 ± 0.001

SSG 0.5713 ± 0.011 0.6058 ±0.005 0.5881 ± 0.002* 0.8990 ± 0.001*

E�ectiveness of the view of sequence. Compared with V2, SSG
achieves 2.4% lower MAE on average. It demonstrates the e�ective-
ness of modeling the sequence of reviews for short-term dynamic
user preferences and item features. Without the sequence encoder,
it would be di�cult to distinguish information re�ected in recent
reviews from others, which results in the performance decay of V2.

Compared with V4 which discards the temporal information
in the short-term priority attention layer, SSG also outperforms
it on three of four datasets. It validates the necessity of explicitly
considering the order and personalized time interval of reviews. We
also observe that the performance gain of SSG over V2 and V4 is
more signi�cant on the last 3 datasets than Instrument. We think it
is because the length and time span of sequences in the Instrument
dataset are shorter than others (e.g., the average lengths of items’
review sequences in the Instrument and Yelp dataset is 11 and 33,
respectively), where short-term features are similar to long-term
ones and make little di�erence to results.
E�ectiveness of the view of graph. The mean improvement of
SSG over V3 is 3.2% (all statistically signi�cant with p-value < 0.01
by t-test), which validates the importance of capturing collabora-
tive features from the user-item interaction graph. By additionally
considering semantic relations of users and items, SSG enhances
user and item representations and achieves better recommendation



Figure 5: Performance w.r.t number of latent factors.

Figure 6: Performance w.r.t number of heads in RGAT.

performance. By contrast, V3 only utilizes reviews of the target user-
item pair, which hurts the performance when there lack su�cient
reviews for representation learning.

After removing reviews from the RGAT layer (V5), we further
observe that the recommendation performance degrades consis-
tently on all datasets. It veri�es that merely considering the overall
rating of the interaction as the edge information is not enough. It is
necessary to harness review semantics to model user-item relations
more accurately. Another interesting �nding is that V5 sometimes
even performs worse than V3 which removes the graph encoder
completely. It shows that improperly modeling of the graph may
introduce noisy features that impair the performance instead of
bringing any bene�t. All these observations show the e�ectiveness
of our elaborately-designed RGAT for the view of graph, which
achieves stable performance gain on all datasets.

4.4 Parameter Sensitivity Analysis (RQ3)
In this section, we study the e�ect of key hyper-parameters on
model performance, including the 1) number 35 of latent factors in
�nal user/item representation, 2) the number  of heads in RGAT,
and 3) the weight _342>A of the cross-view decorrelation lossL342>A .
Due to the space limitation, we only show sensitivity results on
the Instrument dataset and Toys & Games dataset, observations on
other datasets are similar.

4.4.1 Varying the number of latent factors. We vary the number of
latent factors 35 in [4,8,16,32,64] and show the performance of SSG
in Fig. 5. Since 35 is also a key hyper-parameter for baselines, we
select the most competitive three (i.e., NARRE, DAML, and RMG)
for comparison. Note that 35 is not directly adjustable in RMG, thus
its performance remains the same. From Fig. 5, we �nd that SSG
consistently outperforms baselines with varying 35 . This demon-
strates the robustness of our approach. We also observe that SSG

Figure 7: Performance w.r.t weight of cross-view decorrela-
tion loss L342>A .

Figure 8: Performance with/without cross-view decorrela-
tion. We show their MAE on the training (left) and test
(right) set of the Toys & Games dataset during training.

achieves the best performance when35 is set to 8 and increasing the
number of latent factors does not necessarily lead to improvement.
We think it is because the model capacity of SSG is usually large
enough due to the three-way encoder architecture, which allows it
to predict accurately with concise hybrid representation.

4.4.2 Varying the number of heads in RGAT. In the view of graph,
our proposed RGAT employs multiple heads to model user-item
relations from multiple aspects. To study its e�ect, we vary the
number of heads  in [1,2,4,8,16] and show the results in Fig. 6,
from which we draw two conclusions. First, the performance of
SSG decreases signi�cantly when  = 1 (i.e., the model degenerates
to a single-head version), which validates the e�ectiveness of the
multi-head mechanism in RGAT since user-item relations re-
vealed by reviews are usually too complex to be characterized with
a single attention score. Second, the MAE of  = 16 is consistently
higher than that of  = 8, which indicates that too many heads
may cause the problem of over-�tting. We empirically �nd that 4 to
8 heads would be su�cient, which is also consistent with settings
of researches that focus on extracting aspects from reviews [5, 6].

4.4.3 Varying the weight of cross-view decorrelation loss. In the
fusion module, we impose a cross-view decorrelation loss to reduce
redundancy in representations from multiple views. Here we vary
its weight in [0, 0.001, 0.01, 0.1, 1.0] and show results in Fig. 7. We
�nd that with _342>A set to 0.01, SSG achieves stable performance
gain compared with the setting where _342>A = 0 (i.e., the cross-
view decorrelation mechanism is disabled), which validates the
e�ectiveness of cross-view decorrelation. We further compare
the behavior of SSG with/without the decorrelation loss during the
training phase until convergence, which is shown in Fig. 8: with



the decorrelation loss, the training MAE decreases slower but the
performance on test instances are better than the vanilla version.
This observation validates our design that reducing redundancy
across multiple views via decorrelation helps mitigate over-�tting
and improve model generalizability.

4.5 Case Study (RQ4)

View%of%Graph View%of%Set

Figure 9: t-SNE visualization of representations learned by
the RGAT from the view of graph (left) and by the set en-
coder from the view of set (right) in the Toys & Games
dataset. Red points denote pairs of closely related items.

In this section, we conduct case study to investigate whether
RGAT e�ectively captures collaborative signals so that the view
of graph can complement the traditional view of set. As shown in
Fig. 9, we use t-SNE [30] to visualize q6A0?⌘E learned by the RGAT for
items in the Toys & Games dataset, compared with representations
learned by the single set encoder.

In the left part, data points that represent two related toy prod-
ucts (Pullback Car and Collectible Figure Set, which are both about
the theme of Super Mario Brothers-Nintendo) are close to each other.
It shows that our RGAT learns similar collaborative features for
them based on the user-item interaction graph. After checking the
related Amazon record �le, we �nd that many users who bought
the �rst toy also bought the second one. That is, these two toys are
similar to each other from the perspective of collaborative �ltering.
It further veri�es the reasonability of the learned representations
from the view of graph. By contrast, two corresponding points in
the right part are distant from each other, which means that the set
encoder fails to recognize their similarity. We ascribe it to the fact
that the view of set characterizes items only based on their own re-
views, which is vulnerable to data insu�ciency. Through the above
qualitative study, we can see that the RGAT can e�ectively learn
collaborative signals and the view of graph can well complement
the existing view of set for accurate representation learning.

5 RELATEDWORK
5.1 Review-based recommendation
There has been much research e�ort in exploiting reviews for rec-
ommendation, which mainly falls into following two categories:

Topic-Based Methods. Some works adopt topic models to ex-
tract latent topics from reviews [2, 31, 37]. For example, McAuley
and Leskovec [31] propose to align latent topics extracted by Latent
Dirichlet Allocation (LDA) and latent factors learned from ratings

via a transform function. Bao et al. [2] derive latent topics with non-
negative matrix factorization (NMF) [22] on review-word matrices.
Tan et al. [37] linearly combine latent factors and latent topics to
represent users and items. However, these methods organize re-
views in the bag-of-words representation, which ignores the word
order and fails to e�ectively capture semantics of reviews.

Deep-Learning-Based Methods. Recently many methods em-
ploy deep learning techniques to incorporate reviews for recom-
mendation. For example, Zheng et al. [42] propose DeepCoNN that
learns representations from the concatenated user (item) document
with convolutional neural networks (CNNs) [17]. Chin et al. and Li
et al. [6, 23] propose to learn aspect informationwith aspect-speci�c
projection layers. Attention mechanism [1, 38] is also widely used
to select informative parts of reviews to learn better representa-
tions [4, 35? ]. For instance, [35] applied local and global attention
layers to select important words from reviews. Similarly, review-
level attention is designed to highlight reviews or review pairs
that are more useful in rating prediction [4, 26]. More recently, Liu
et al. propose DAML [25] that models interactions between user
reviews and item reviews with co-attention layers. Wu et al.[41]
propose RMG to enhance the representations learned from reviews
with GNN on the user-item graph but it does not take reviews into
consideration when constructing the graph.

All the above methods treat historical reviews of a single user
(item) as a set of plain texts. Our proposed SSG marks a signi�cant
departure from them by introducing two novel views of organizing
and exploiting reviews: sequence and graph, which enables it to
additionally capture short-term and collaborative features.

5.2 Sequence Modeling with Time Intervals
Many methods for sequence modeling such as the vanilla RNN [16]
implicitly assume an even distribution pattern between adjacent
elements in a sequence, which often fail to handle sequences with
irregular time intervals. Recently, some pioneering studies [28, 34]
propose variants of RNN that are sensitive to time intervals. For
example, Neil et al. [34] propose Phased LSTM that extends LSTM
by adding the time gate. Baytas et al. [3] propose Time-aware
LSTM that generates discounted memory according to the interval.
However, these RNNmethods only model time-intervals in memory
�ow between adjacent elements and still su�ers from the problem
of forgetfulness and limited representation power. In addition, Li et
al. [24] extend the self-attention mechanism so that time-intervals
between any two elements are modeled to capture dependencies
in sequences. However, these methods are not designed to capture
short-term features from sequences. Our sequence encoder di�ers
from them in explicitly giving priority to the latest element and
previous highly-related ones, where position distance and time
interval to the latest element are considered in the attention layer.

5.3 Graph Neural Network
Recent years have witnessed a growing interest in modeling graph-
structured data with graph neural networks (GNNs) [13, 19, 27,
36, 39]. Speci�cally, Kipf and Welling [19] �rst propose GCN that
approximates a smooth �lter in the spectral domain in the �rst
order. William et al. [13] propose GraphSAGE that extends GCN
from the transductive setting to inductive. To allow nodes to focus



on the most relevant neighbors for aggregation, graph attention
network (GAT) [39] is proposed to calculate weights among nodes
with attention mechanism. In addition to homogeneous graphs,
di�erent types of edges and nodes in heterogeneous graphs are
also considered by [27, 36]. For example, Shang et al. [36] model
each type of edge with its own attention layer. In this paper, we
consider the user-item interaction graph, where edges indicate
textual reviews instead of categorical relations. Thus we propose
review-aware graph attention network (RGAT) to capture complex
review semantics and learn collaborative features of users/items.

6 CONCLUSION
In this paper, we propose amulti-view approach named Set-Sequence-
Graph for review-based recommendation, which augments existing
single-view (set) methods by introducing two additional views of
exploiting reviews: sequence and graph. In this way, long-term,
short-term, and collaborative features of users and items can be
jointly captured. For the view of sequence, we design a short-term
priority encoder that explicitly considers the order and personal-
ized time interval of reviews. For the view of graph, we propose a
novel review-aware graph attention network to model high-order
relations of users and items. A fusion module is further employed
to decorrelate and integrate multiple views for recommendation.
Extensive experiments on public datasets validate its e�ectiveness.
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