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Two ways to construct computer systems
(Supervised) Learning

Given a set of training examples (input-
output pairs) learn a model that 
generalizes and learns the transformation 
from input to output

Programming 

Given a specification over input 
and output, construct a 
program that satisfies the 
specification

Sort a sequence 
of numbers in 

ascending order

QuickSort(A,p,q):
if p < q then

r  := Partition(A, p, q)
QuickSort(A, p, r-1)
QuickSort(A, r+1, q)

Initial call:
QuickSort(A, 0, n-1)



Two ways to construct computer systems

Programming 

Given a specification 
𝜑 𝑥, 𝑦 over input and output, 
construct a program 𝑃 such 
that ∀ 𝑥. 𝜑(𝑥, 𝑃 𝑥 )

Sort a sequence 
of numbers in 

ascending order

(Supervised) Learning

Given a set of training examples  

𝑇 = 𝑥𝑖, 𝑦𝑖 𝑖 = 1…𝑁}

learn a model 𝑀 that minimizes the loss   
Σ1≤𝑖≤𝑁(𝐿( 𝑀(𝑥𝑖), 𝑦𝑖))

QuickSort(A,p,q):
if p < q then

r  := Partition(A, p, q)
QuickSort(A, p, r-1)
QuickSort(A, r+1, q)

Initial call:
QuickSort(A, 0, n-1)



When programming, and when learning?

Programming makes sense 
when there exists

• precise requirements

• a provably correct program 
to satisfy the requirements

Even if we don’t write these 
down formally!

E.g. Database, operating 
system, device driver, payroll 
processing, tax calculations

Learning makes sense when it is hard 
to write

• precise requirements 

• or provably correct implementation

Even if we were to spend time and 
energy to write these down formally!

E.g. Image classification, NLP, 
sentiment understanding, language 
translation, search



Is there value in combining Programs and 
Models?

Why bother?



Programs and Models: Serving Each Other

• We can instrument the software development process (coding, code 
reviews, testing, deployment,  debugging, etc) collect data, and use 
ML models to make the process more efficient.

• We can use programming tools to make learning more efficient.



Programs and Models: Serving Each Other

• Large scale Programming 
(Software Engineering) can 
benefit from using ML to 
provide recommendations 
during software life cycle 



• Large scale Programming 
(Software Engineering) can 
benefit from using ML to 
provide recommendations 
during software life cycle 

sankie

[OSDI 18 (best paper), ICSE 19, FSE19, NSDI 20]
Widely deployed and used inside Microsoft 
More information:
https://www.microsoft.com/en-us/research/project/sankie/

Programs and Models: Serving Each Other

https://www.microsoft.com/en-us/research/project/sankie/
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• Large scale Programming 
(Software Engineering) can 
benefit from using ML to 
provide recommendations 
during software life cycle 

• Programming language and 
compiler techniques play a 
key role in making ML 
systems flexible and 
efficient

Programs and Models: Serving Each Other



Is there value in combining programs and 
models more deeply?



When programming, and when learning?

Programming makes sense 
when there exists

• precise requirements

• a provably correct program 
to satisfy the requirements

Even if we don’t write these 
down formally!

E.g. Database, operating 
system, device driver, payroll 
processing, tax calculations

Learning makes sense when it is hard 
to write

• precise requirements 

• or provably correct implementation

Even if we were to spend time and 
energy to write these down formally!

E.g. Image classification, NLP, 
sentiment understanding, language 
translation, search



Characteristics of programs and models

Programs are intended to work for 
all inputs satisfying a precondition

If the specification or environment 
changes, programs typically fail!

Programs are succinct ways to 
specify domain knowledge

Learning works well “on average” 
when the test distribution is similar 
to training distribution

ML models can generalize and work 
on unforeseen inputs

ML models can be opaque sets of 
floating-point numbers, and hard to 
interpret



What if we want programs to be adaptive?

• What if a mathematical 
specification exists, but it keeps 
changing and evolving over time? 
Can we have the system evolve 
and “adapt” without programmer 
intervention?

• What if the environment of the 
program changes, and we want 
the program to “self-tune” itself in 
response to the environment 
changes? 



Examples of changing 
specifications
Changing data formats:  
shopping web pages, 
machine generated 
formats

Customization by each 
entity in an industry: 
health data formats, 
financial data formats,….



Extracting Structure from  Machine Generated E-mail

Extract from machine-to-human (M2H) emails

Millions of emails/day

Heterogeneity: 100s of ever evolving formats

Some rare formats with very few emails

10s of data annotators write 100s of hard-crafted templates

Every breakage fixed manually



Two approaches to entity extraction from emails

• Train ML models using 
labeled data

• Write or automatically 
synthesize programs 
from labeled data 
(using systems such as 
PROSE) AA

AA

…
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…

DL

DL

DL

…

F9

F9

F9

…

AC

AC

AC

DNN training
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…
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DL

DL

DL

…
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F9
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…
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AC
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PROSE

Programs in a 
Domain

Specific Language



What if the input format changes?

• Programs work well when formats are stable, but just fall flat when 
format’s change

• ML Models generalize somewhat, but don’t get to 100%

• Combining both produces better results than either one in isolation!



Models for Generalization, Programs for Predictability
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…
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…

DL

DL
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…
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≈ 103

each

DNN Model



Models for Generalization, Programs for Predictability

YX YX YX YX YX YX

✓ ✓ ✓✘ ✘

Programs are regular
(usually, all right or all wrong)

New airline or changed format
~70% precision

Program Synthesis
(PROSE)

YX YX YX YX YX YX

✓ ✓ ✓✓ ✓ ✓

YX YX YX YX YX YX

✓



Heterogeneous Data Extraction Framework

Different strategies for feedback
High ranked program outputs can be directly fed in

NDSYn
Program 

Synthesizer
ML Model

Model 
Training

Labelled 
Inputs

Semi-automated 
annotator

Noisy 
labels

Disjunctive program 
(Covering Sequence of 
programs)

Runtime

Mails + Rule- based 
Extractions

LSTM-CRF

Email HTML + Noisy label 
output pairs

PROSE + Web DSL + 
Field constraints

Additional
annotations

Unlabelled Inputs



Models for Generalization, Programs for Predictability

• Design of “Domain Specific Language” (DSL) is key for useful functioning of the combined system

• With a well-designed DSL, program synthesis can act as a “regularizer” and make the system predictable, 
whereas ML models enable the system to be generalizable and robust to format changes



Synthesis and Machine Learning for Heterogeneous Extraction, Arun Iyer, Manohar Jonnalagedda,
Suresh Parthasarathy,  Arjun Radhakrishna, Sriram Rajamani, PLDI 2019

Deployment results: 

”saves us nearly 100-120 Hrs of flight 
model maintenance time from data 
annotation per week … 50% of data 
annotator bandwidth”

Programs are cheaper to execute, so 
they are used at runtime. ML models 
are used offline for self-healing and 
robustness when formats change

https://www.microsoft.com/en-us/research/publication/synthesis-and-machine-learning-for-heterogeneous-extraction/


Related work

“Programmatically Interpretable Reinforcement Learning”, Abhinav 
Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and 
Swarat Chaudhuri, In ICML 2018

“Verifiable reinforcement learning via policy extraction”, Osbert 
Bastani, Yewen Pu, Armando Solar-Lezama, NIPS 2019

“An Inductive Synthesis Framework for Verifiable Reinforcement 
Learning”, He Zhu, Zikang Xiong, Stephen Magill, Suresh Jagannathan, 
PLDI 2019



What if we want programs to be adaptive?

• What if a mathematical 
specification exists, but it keeps 
changing and evolving over time? 
Can we have the system evolve 
and “adapt” without programmer 
intervention?

• What if the environment of the 
program changes, and we want 
the program to “self-tune” itself in 
response to the environment 
changes? 



Configuration settings are ubiquitous in software!

Can we learn such “structured” decision 
functions automatically?



Decision function 
structure

Rewards  from 
executions

PBR 
engine

Learned
Decision 
Function

Programming By Rewards (PBR)



Programming By Rewards (PBR)

int[2] counts = getCounts(contents);       
…
if 

(PBR.DecisionFunction(PBRID_IsLikelyDataRatio, 
count[0], count[1]))  

preProcess(fileName); 

…
PBR 

engine

…     
double reward =                

(success/Config.Benchmarks.Length) –
(sw.ElapsedMilliseconds/1000);

PBR.AssignReward(reward);

Learned
Decision 
Function



int[2] counts = getCounts(contents);       
…
if 

(PBR.DecisionFunction(PBRID_IsLikelyDataRatio, 
count[0], count[1]))  

preProcess(fileName); 

…
PBR 

engine

…     
double reward =                

(success/Config.Benchmarks.Length) –
(sw.ElapsedMilliseconds/1000);

PBR.AssignReward(reward);

bool IsLikelyDataRatio
(int dataCount, int totalCount) {       

if (totalCount < 10)
return dataCount >= 6;        

if  (totalCount < 20) 
return dataCount >= 15; 

if (totalCount < 50) 
return dataCount >= 30;        

return (dataCount /totalCount >= 0.6);
}

Programming By Rewards (PBR)



For a given unknown (black-box) reward function r, and a known code 
template for the decision (e.g., linear), the goal is to solve:

Learning with black-box rewards

𝑚𝑎𝑥
𝑤∈ℝ𝑑

෍

𝑖

𝑟𝑖 𝑤
𝑇𝑥𝑖

r w

blackbox 
reward

parameters

d

RL, online learning, black-box 
optimizers are expensive in 
terms of #reward calls needed 
(prop. to d) 

𝑤1 * latency +
𝑤2 * load +
𝑤3 * min + 𝑤4



For a given unknown (black-box) reward function r, and a known code 
template for the decision (e.g., linear), the goal is to solve:

𝑚𝑎𝑥
𝑤∈ℝ𝑑

෍

𝑖

𝑟𝑖 𝑤
𝑇𝑥𝑖

r(a) a w

blackbox 
reward

decision(s)

parameters

m d

Gradient-descent style algorithms, 
with #rewards needed proportional to 
#decisions m (typically, m = 1 )

𝑤1 * latency +
𝑤2 * load +
𝑤3 * min + 𝑤4

Learning with black-box rewards



Case study: PROSE codebase
- We applied Self-Tune to simultaneously learn~70 ranking heuristics in PROSE
- Reward: # tasks where PROSE synthesizes a correct program
- Each reward query is expensive (~20 minutes) 
- In ~100 hours of training, PBR improves over state-of-the-art ML-ranker by ~8% 

in terms of accuracy
- Competitive with the manually-tuned heuristics that took 2+ years of effort

Ranker Accuracy

ML-PROSE [2019**] 606/740

PROSE + SelfTune [2020*] 668/740

** Learning natural programs from a few examples in real-time. N., Dany Simmons, Naren Datha, Prateek Jain, Sumit 
Gulwani. AISTATS, 2019.

* Programming by Rewards, 2020. N., Ajaykrishna Karthikeyan, Prateek Jain, Ivan Radicek, Sriram Rajamani, Sumit 
Gulwani, Johannes Gehrke.  https://arxiv.org/pdf/2007.06835.pdf



Learning algorithms can exploit 
the structure of the decision 
function to get better sample 
complexity



Story so far: Programs + Models

Using ML to provide 
recommendations during the 
software life cycle 

Using compilers and runtimes 
to make ML systems flexible 
and efficient

Having programs adapt when 
specifications (eg, formats) 
change

Having programs “self-tune” 
when environments change

Unified framework to express 
logic +  probability,
domain knowledge + examples,
rules + statistics

Probabilistic 
Programming



[Science 2015]

Bayesian programming language 
framework (BPL)

• Capable of learning visual 
concepts from a single example

• Programmer specifies primitives, 
parts and subparts as domain 
knowledge

• System infers knowledge 
representation as probabilistic 
programs using Bayesian 
inference



Tutorial on probabilistic programs (1)

bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
return(c1,c2);

𝑐1 𝑐2 𝑃(𝑐1, 𝑐2)

false false 1/4

false true 1/4

true false 1/4

true true 1/4



bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
observe(c1 || c2);
return(c1,c2);

𝑐1 𝑐2 𝑃(𝑐1, 𝑐2)

false false 0

false true 1/3

true false 1/3

true true 1/3

Tutorial on probabilistic programs (2)



float skillA, skillB, skillC;
float perfA1, perfB1, perfB2,

perfC2, perfA3, perfC3;
skillA = Gaussian(100, 10);
skillB = Gaussian(100, 10);
skillC = Gaussian(100, 10);

// first game: A vs B, A won
perfA1 = Gaussian(skillA, 15);
perfB1 = Gaussian(skillB, 15);
observe(perfA1 > perfB1);

// second game: B vs C, B won
perfB2 = Gaussian(skillA, 15);
perfC2 = Gaussian(skillB, 15);
observe(perfB2 > perfC2);

// third game: A vs C, A won
perfA3 = Gaussian(skillA, 15);
perfC3 = Gaussian(skillB, 15);
observe(perfA3 > perfC3);

return(skillA, skillB, skillC);

 Sample 𝑝𝑒𝑟𝑓𝐴 from a 

noisy 𝑠𝑘𝑖𝑙𝑙𝐴 distribution

 Sample 𝑝𝑒𝑟𝑓𝐵 from a 

noisy 𝑠𝑘𝑖𝑙𝑙𝐵 distribution

 if 𝑝𝑒𝑟𝑓𝐴 > 𝑝𝑒𝑟𝑓𝐵 then 

A wins else B wins

𝑠𝑘𝑖𝑙𝑙𝐴 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(102.1,7.8)
𝑠𝑘𝑖𝑙𝑙𝐵 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 100.0,7.6
𝑠𝑘𝑖𝑙𝑙𝐶 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(97.9, 7.8)

Tutorial on probabilistic programs (3)

“TrueSkill”  from Infer.Net
@MSR Cambridge

• Player A  beats Player B,
if A performs better than B 
during the game

• Performance is a stochastic 
function of skill



Kidney Disease Estimation

S. Sankaranarayanan, A. Chakarov, and S. Gulwani. 
Static analysis of probabilistic programs: Inferring 
whole program properties from finitely many 
executions. In Programming Languages Design and 
Implementation (PLDI), 2013.



Lotka, Elements of physical 
biology. Williams & Wilkins 
company, Baltimore, 1925. 

V. Volterra. Fluctuations in the 
abundance of a species 
considered mathematically. 
Nature, 118:558–560, 1926.

Lotka-Volterra Population Model



Several more applications that can be 
modeled as probabilistic programs

• Hidden Markov Models (eg. for speech recognition)

• Kalman Filters (eg. In computer vision)

• Markov Random Fields (eg. In image processing)

• Markov Chains 

• Bayesian Networks

• And more applications:
• Ecology & Biology (Carbon modeling, Evolutionary Genetics,…)

• Security (quantitative information flow, inference attacks)



Probabilistic Inference

Alchemy

Church

Infer.NET

BLOG

FACTORIE
BUGS

HBC Hansei

PRISM
Figaro

Stan

R2

TensorFlow Probability

• Infer the distribution specified 
by a probabilistic program. 
• Generate samples to test a 

machine learning algorithm

• Calculate the expected value of 
a function wrt the distribution 
specified by the program

• Calculate the mode of the 
distribution specified by the 
program

• Punchline:
• Inference is program analysis of 

probabilistic programs



Pearl’s Burglar alarm example
int alarm() {

char earthquake = Bernoulli(0.001);

char burglary = Bernoulli(0.01);

char alarm = earthquake || burglary;

char phoneWorking = 

(earthquake)? Bernoulli(0.6) : Bernoulli(0.99);

char maryWakes;

if (alarm && earthquake)

maryWakes = Bernoulli(0.8);

else if (alarm)

maryWakes = Bernoulli(0.6);

else maryWakes = Bernoulli(0.2);

char called = maryWakes && phoneWorking;

observe(called);

return burglary;

}

“called” is a low probability 
event, and causes  large 

number of rejections 
during sampling 



Pre transformation

• Let P be any program

• Let Pre(P) denote the program 
obtained by propagating observe 
statements immediately after 
sample statements

Theorem:   P = Pre(P)

int alarm() {

bool earthquake, burglary, alarm, phoneWorking,

maryWakes,called;

earthquake = Bernoulli(0.001);

burglary = Bernoulli(0.01);

alarm = earthquake || burglary;

if (earthquake) {

phoneWorking = Bernoulli(0.6);

observe(phoneWorking);

}

else {

phoneWorking = Bernoulli(0.99);

observe(phoneWorking);

}

if (alarm && earthquake){

maryWakes = Bernoulli(0.8);

observe(maryWakes && phoneWorking);

}

else if (alarm){

maryWakes = Bernoulli(0.6);

observe(maryWakes && phoneWorking);

}

else {

maryWakes = Bernoulli(0.2);

observe(maryWakes && phoneWorking);

}

called = maryWakes && phoneWorking;

return burglary;

}

int alarm() {

char earthquake = Bernoulli(0.001);

char burglary = Bernoulli(0.01);

char alarm = earthquake || burglary;

char phoneWorking = 
(earthquake)?Bernoulli(0.6) :Bernoulli(0.99);

char maryWakes;

if (alarm && earthquake)

maryWakes = Bernoulli(0.8);

else if (alarm)

maryWakes = Bernoulli(0.6);

else maryWakes = Bernoulli(0.2);

char called = maryWakes && phoneWorking;

observe(called);

return burglary;

}



Background: Sampling

Problem. Estimate expectation of ϕ 𝑥 wrt to the  distribution 
𝑃∗ 𝑥 : 𝑥𝑃׬

∗ 𝑥 × ϕ 𝑥 𝑑𝑥

If we can sample from 𝑃∗ 𝑥 we can estimate the expectation as:
1

N
× (𝜙 𝑥1 + 𝜙 𝑥2 ⋯+ 𝜙 𝑥𝑁 )

Figure from  D J Mackay,  Introduction to Monte Carlo Methods



Background: MH sampling

1. Draw samples for  𝑥′ from  a proposal 𝑄 𝑥; 𝑥′

2. Compute 𝑎 =
𝑃∗ 𝑥′ ×𝑄 𝑥;𝑥′

𝑃∗ 𝑥 ×𝑄 𝑥′;𝑥

3. If 𝑎 ≥ 1 , accept 𝑥′ else accept with probability 𝑎

Figure from  D J Mackay,  Introduction to Monte Carlo Methods

𝑥

𝑄 𝑥; 𝑥′



MH  without rejections
For each statement of the form:

𝑥𝑖 = 𝐷𝑖𝑠𝑡 𝐸 ; 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝜙

Calculate

𝛽𝑖 =
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐷𝑖𝑠𝑡 𝐸 𝑥′ × 𝑄

|𝜙 𝑥(𝑡); 𝑥′

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐷𝑖𝑠𝑡 𝐸 𝑥(𝑡) × 𝑄
|𝜙 𝑥′; 𝑥(𝑡)

During each run of  𝜋𝑖 , for each 
sample statement:
• Sample from proposal sub-

distribution 𝑄 conditioned by 𝜙
• 𝛽 = 𝛽1 × 𝛽2 ×⋯× 𝛽𝑛

If𝛽 ≥ 1 , accept 𝑥′ else accept with 
probability 𝛽

Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel. 
R2:  An Efficient MCMC Sampler for Probabilistic Programs,
In AAAI '14: AAAI Conference on Artificial Intelligence, July 2014

http://research.microsoft.com/apps/pubs/?id=211941


Program Slicing

[Mark Wiser, 1981]

Reduce a program to a 
smaller program “slice” 
when interested in only 
some values of interest at 
a program point

Many applications:

• Debugging

• Optimization

• Maintenance



Dependences used by Slicing

S1:   A :=   B * C

S2:    C  :=  A * E + 1

S2 is “Data Dependent” 
on S

S1:    if  (A) then

S2:        B = C + D

S2 is “Control Dependent” on S1



Probabilistic Programs have new dependences

• Figure represents 
𝑝 𝑥, 𝑦, 𝑧 = 𝑝 𝑧 𝑥, 𝑦 . 𝑝 𝑥 . 𝑝(𝑦)

• There is no dependence between 𝑥 and 𝑦

•On the other hand, if 𝑧 (or some 
descendant of 𝑧) is observed, then 𝑥
depends on 𝑦 and vice versa

• This is called “observe dependence”

𝑥 𝑦

𝑧

Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, Selva Samuel.
Slicing Probabilistic Programs, In PLDI '14: Programming Language Design and 
Implementation, June 2014

http://research.microsoft.com/apps/pubs/default.aspx?id=208584


Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, Selva Samuel.
Slicing Probabilistic Programs, In PLDI '14: Programming Language Design 
and Implementation,
Jue 2014

http://research.microsoft.com/apps/pubs/default.aspx?id=208584


Andrew D. Gordon, Thomas A. Henzinger,
Aditya V. Nori, Sriram K. Rajamani,
Probabilistic programming,  ICSE-FoSE 2014



Programs + Models

Using ML to provide 
recommendations during the 
software life cycle 

Using compilers and runtimes 
to make ML systems flexible 
and efficient

Having programs adapt when 
specifications (eg, formats) 
change

Having programs “self-tune” 
when environments change

Probabilistic programs: General framework to 
express rules and examples

Deep combinations of program analysis ideas with 
ML ideas have the potential to scale probabilistic 
inference



Challenges and Opportunities (1)

Adaptive specifications and environments
• Need baselines and benchmarks, that 

capture evolution over time

• Need metrics to measure manual effort in 
updating annotations as well as precision 
and recall over time

• Need new user interaction models for 
involving annotators and users when the 
system needs human help

Possibility to develop a new field: “model 
and program engineering”, on how models 
and programs evolve over time.



Challenges and Opportunities (2)

Assurance of ML/AI systems using verified monitoring
• Can we write partial specifications for safety critical ML/AI systems?

• Can we synthesize monitors to “safeguard” such systems even if the ML/AI 
algorithms are hard to verify?

• How do we evolve the specifications over time?

“An Inductive Synthesis Framework for Verifiable Reinforcement Learning”, He Zhu, Zikang Xiong, Stephen Magill, 
Suresh Jagannathan, PLDI 2019



Challenges and Opportunities (3)

Practical and usable frameworks to combine domain knowledge (rules) 
with empirical knowledge (examples and data)

• Technical challenge:  
• Scaling probabilistic inference

• Usable programming languages and notation

• Industrial challenge: Development life cycle and tools for probabilistic 
programs

• Educational challenge:
• Developing educational material and pedagogy for modeling rules and 

empirical knowledge together


