
Models and Programs:
Better Together

Sriram Rajamani

Microsoft Research, India

November 2020

Two ways to construct computer systems
(Supervised) Learning

Given a set of training examples (input-
output pairs) learn a model that
generalizes and learns the transformation
from input to output

Programming

Given a specification over input
and output, construct a
program that satisfies the
specification

Sort a sequence
of numbers in

ascending order

QuickSort(A,p,q):
if p < q then

r := Partition(A, p, q)
QuickSort(A, p, r-1)
QuickSort(A, r+1, q)

Initial call:
QuickSort(A, 0, n-1)

Two ways to construct computer systems

Programming

Given a specification
𝜑 𝑥, 𝑦 over input and output,
construct a program 𝑃 such
that ∀ 𝑥. 𝜑(𝑥, 𝑃 𝑥)

Sort a sequence
of numbers in

ascending order

(Supervised) Learning

Given a set of training examples

𝑇 = 𝑥𝑖, 𝑦𝑖 𝑖 = 1…𝑁}

learn a model 𝑀 that minimizes the loss
Σ1≤𝑖≤𝑁(𝐿(𝑀(𝑥𝑖), 𝑦𝑖))

QuickSort(A,p,q):
if p < q then

r := Partition(A, p, q)
QuickSort(A, p, r-1)
QuickSort(A, r+1, q)

Initial call:
QuickSort(A, 0, n-1)

When programming, and when learning?

Programming makes sense
when there exists

• precise requirements

• a provably correct program
to satisfy the requirements

Even if we don’t write these
down formally!

E.g. Database, operating
system, device driver, payroll
processing, tax calculations

Learning makes sense when it is hard
to write

• precise requirements

• or provably correct implementation

Even if we were to spend time and
energy to write these down formally!

E.g. Image classification, NLP,
sentiment understanding, language
translation, search

Is there value in combining Programs and
Models?

Why bother?

Programs and Models: Serving Each Other

• We can instrument the software development process (coding, code
reviews, testing, deployment, debugging, etc) collect data, and use
ML models to make the process more efficient.

• We can use programming tools to make learning more efficient.

Programs and Models: Serving Each Other

• Large scale Programming
(Software Engineering) can
benefit from using ML to
provide recommendations
during software life cycle

• Large scale Programming
(Software Engineering) can
benefit from using ML to
provide recommendations
during software life cycle

sankie

[OSDI 18 (best paper), ICSE 19, FSE19, NSDI 20]
Widely deployed and used inside Microsoft
More information:
https://www.microsoft.com/en-us/research/project/sankie/

Programs and Models: Serving Each Other

https://www.microsoft.com/en-us/research/project/sankie/

• Large scale Programming
(Software Engineering) can
benefit from using ML to
provide recommendations
during software life cycle

Programs and Models: Serving Each Other

• Large scale Programming
(Software Engineering) can
benefit from using ML to
provide recommendations
during software life cycle

Programs and Models: Serving Each Other

• Large scale Programming
(Software Engineering) can
benefit from using ML to
provide recommendations
during software life cycle

• Programming language and
compiler techniques play a
key role in making ML
systems flexible and
efficient

Programs and Models:
Serving Each Other

• Large scale Programming
(Software Engineering) can
benefit from using ML to
provide recommendations
during software life cycle

• Programming language and
compiler techniques play a
key role in making ML
systems flexible and
efficient

Programs and Models: Serving Each Other

Is there value in combining programs and
models more deeply?

When programming, and when learning?

Programming makes sense
when there exists

• precise requirements

• a provably correct program
to satisfy the requirements

Even if we don’t write these
down formally!

E.g. Database, operating
system, device driver, payroll
processing, tax calculations

Learning makes sense when it is hard
to write

• precise requirements

• or provably correct implementation

Even if we were to spend time and
energy to write these down formally!

E.g. Image classification, NLP,
sentiment understanding, language
translation, search

Characteristics of programs and models

Programs are intended to work for
all inputs satisfying a precondition

If the specification or environment
changes, programs typically fail!

Programs are succinct ways to
specify domain knowledge

Learning works well “on average”
when the test distribution is similar
to training distribution

ML models can generalize and work
on unforeseen inputs

ML models can be opaque sets of
floating-point numbers, and hard to
interpret

What if we want programs to be adaptive?

• What if a mathematical
specification exists, but it keeps
changing and evolving over time?
Can we have the system evolve
and “adapt” without programmer
intervention?

• What if the environment of the
program changes, and we want
the program to “self-tune” itself in
response to the environment
changes?

Examples of changing
specifications
Changing data formats:
shopping web pages,
machine generated
formats

Customization by each
entity in an industry:
health data formats,
financial data formats,….

Extracting Structure from Machine Generated E-mail

Extract from machine-to-human (M2H) emails

Millions of emails/day

Heterogeneity: 100s of ever evolving formats

Some rare formats with very few emails

10s of data annotators write 100s of hard-crafted templates

Every breakage fixed manually

Two approaches to entity extraction from emails

• Train ML models using
labeled data

• Write or automatically
synthesize programs
from labeled data
(using systems such as
PROSE) AA

AA

…

AA

…

DL

DL

DL

…

F9

F9

F9

…

AC

AC

AC

DNN training

AA

AA

…

AA

…

DL

DL

DL

…

F9

F9

F9

…

AC

AC

AC

PROSE

Programs in a
Domain

Specific Language

What if the input format changes?

• Programs work well when formats are stable, but just fall flat when
format’s change

• ML Models generalize somewhat, but don’t get to 100%

• Combining both produces better results than either one in isolation!

Models for Generalization, Programs for Predictability

AA

AA

…

AA

…

DL

DL

DL

…

F9

F9

F9

…

AC

AC

AC

≈ 103

each

DNN Model

Models for Generalization, Programs for Predictability

YX YX YX YX YX YX

✓ ✓ ✓✘ ✘

Programs are regular
(usually, all right or all wrong)

New airline or changed format
~70% precision

Program Synthesis
(PROSE)

YX YX YX YX YX YX

✓ ✓ ✓✓ ✓ ✓

YX YX YX YX YX YX

✓

Heterogeneous Data Extraction Framework

Different strategies for feedback
High ranked program outputs can be directly fed in

NDSYn
Program

Synthesizer
ML Model

Model
Training

Labelled
Inputs

Semi-automated
annotator

Noisy
labels

Disjunctive program
(Covering Sequence of
programs)

Runtime

Mails + Rule- based
Extractions

LSTM-CRF

Email HTML + Noisy label
output pairs

PROSE + Web DSL +
Field constraints

Additional
annotations

Unlabelled Inputs

Models for Generalization, Programs for Predictability

• Design of “Domain Specific Language” (DSL) is key for useful functioning of the combined system

• With a well-designed DSL, program synthesis can act as a “regularizer” and make the system predictable,
whereas ML models enable the system to be generalizable and robust to format changes

Synthesis and Machine Learning for Heterogeneous Extraction, Arun Iyer, Manohar Jonnalagedda,
Suresh Parthasarathy, Arjun Radhakrishna, Sriram Rajamani, PLDI 2019

Deployment results:

”saves us nearly 100-120 Hrs of flight
model maintenance time from data
annotation per week … 50% of data
annotator bandwidth”

Programs are cheaper to execute, so
they are used at runtime. ML models
are used offline for self-healing and
robustness when formats change

https://www.microsoft.com/en-us/research/publication/synthesis-and-machine-learning-for-heterogeneous-extraction/

Related work

“Programmatically Interpretable Reinforcement Learning”, Abhinav
Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and
Swarat Chaudhuri, In ICML 2018

“Verifiable reinforcement learning via policy extraction”, Osbert
Bastani, Yewen Pu, Armando Solar-Lezama, NIPS 2019

“An Inductive Synthesis Framework for Verifiable Reinforcement
Learning”, He Zhu, Zikang Xiong, Stephen Magill, Suresh Jagannathan,
PLDI 2019

What if we want programs to be adaptive?

• What if a mathematical
specification exists, but it keeps
changing and evolving over time?
Can we have the system evolve
and “adapt” without programmer
intervention?

• What if the environment of the
program changes, and we want
the program to “self-tune” itself in
response to the environment
changes?

Configuration settings are ubiquitous in software!

Can we learn such “structured” decision
functions automatically?

Decision function
structure

Rewards from
executions

PBR
engine

Learned
Decision
Function

Programming By Rewards (PBR)

Programming By Rewards (PBR)

int[2] counts = getCounts(contents);
…
if

(PBR.DecisionFunction(PBRID_IsLikelyDataRatio,
count[0], count[1]))

preProcess(fileName);

…
PBR

engine

…
double reward =

(success/Config.Benchmarks.Length) –
(sw.ElapsedMilliseconds/1000);

PBR.AssignReward(reward);

Learned
Decision
Function

int[2] counts = getCounts(contents);
…
if

(PBR.DecisionFunction(PBRID_IsLikelyDataRatio,
count[0], count[1]))

preProcess(fileName);

…
PBR

engine

…
double reward =

(success/Config.Benchmarks.Length) –
(sw.ElapsedMilliseconds/1000);

PBR.AssignReward(reward);

bool IsLikelyDataRatio
(int dataCount, int totalCount) {

if (totalCount < 10)
return dataCount >= 6;

if (totalCount < 20)
return dataCount >= 15;

if (totalCount < 50)
return dataCount >= 30;

return (dataCount /totalCount >= 0.6);
}

Programming By Rewards (PBR)

For a given unknown (black-box) reward function r, and a known code
template for the decision (e.g., linear), the goal is to solve:

Learning with black-box rewards

𝑚𝑎𝑥
𝑤∈ℝ𝑑

෍

𝑖

𝑟𝑖 𝑤
𝑇𝑥𝑖

r w

blackbox
reward

parameters

d

RL, online learning, black-box
optimizers are expensive in
terms of #reward calls needed
(prop. to d)

𝑤1 * latency +
𝑤2 * load +
𝑤3 * min + 𝑤4

For a given unknown (black-box) reward function r, and a known code
template for the decision (e.g., linear), the goal is to solve:

𝑚𝑎𝑥
𝑤∈ℝ𝑑

෍

𝑖

𝑟𝑖 𝑤
𝑇𝑥𝑖

r(a) a w

blackbox
reward

decision(s)

parameters

m d

Gradient-descent style algorithms,
with #rewards needed proportional to
#decisions m (typically, m = 1)

𝑤1 * latency +
𝑤2 * load +
𝑤3 * min + 𝑤4

Learning with black-box rewards

Case study: PROSE codebase
- We applied Self-Tune to simultaneously learn~70 ranking heuristics in PROSE
- Reward: # tasks where PROSE synthesizes a correct program
- Each reward query is expensive (~20 minutes)
- In ~100 hours of training, PBR improves over state-of-the-art ML-ranker by ~8%

in terms of accuracy
- Competitive with the manually-tuned heuristics that took 2+ years of effort

Ranker Accuracy

ML-PROSE [2019**] 606/740

PROSE + SelfTune [2020*] 668/740

** Learning natural programs from a few examples in real-time. N., Dany Simmons, Naren Datha, Prateek Jain, Sumit
Gulwani. AISTATS, 2019.

* Programming by Rewards, 2020. N., Ajaykrishna Karthikeyan, Prateek Jain, Ivan Radicek, Sriram Rajamani, Sumit
Gulwani, Johannes Gehrke. https://arxiv.org/pdf/2007.06835.pdf

Learning algorithms can exploit
the structure of the decision
function to get better sample
complexity

Story so far: Programs + Models

Using ML to provide
recommendations during the
software life cycle

Using compilers and runtimes
to make ML systems flexible
and efficient

Having programs adapt when
specifications (eg, formats)
change

Having programs “self-tune”
when environments change

Unified framework to express
logic + probability,
domain knowledge + examples,
rules + statistics

Probabilistic
Programming

[Science 2015]

Bayesian programming language
framework (BPL)

• Capable of learning visual
concepts from a single example

• Programmer specifies primitives,
parts and subparts as domain
knowledge

• System infers knowledge
representation as probabilistic
programs using Bayesian
inference

Tutorial on probabilistic programs (1)

bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
return(c1,c2);

𝑐1 𝑐2 𝑃(𝑐1, 𝑐2)

false false 1/4

false true 1/4

true false 1/4

true true 1/4

bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
observe(c1 || c2);
return(c1,c2);

𝑐1 𝑐2 𝑃(𝑐1, 𝑐2)

false false 0

false true 1/3

true false 1/3

true true 1/3

Tutorial on probabilistic programs (2)

float skillA, skillB, skillC;
float perfA1, perfB1, perfB2,

perfC2, perfA3, perfC3;
skillA = Gaussian(100, 10);
skillB = Gaussian(100, 10);
skillC = Gaussian(100, 10);

// first game: A vs B, A won
perfA1 = Gaussian(skillA, 15);
perfB1 = Gaussian(skillB, 15);
observe(perfA1 > perfB1);

// second game: B vs C, B won
perfB2 = Gaussian(skillA, 15);
perfC2 = Gaussian(skillB, 15);
observe(perfB2 > perfC2);

// third game: A vs C, A won
perfA3 = Gaussian(skillA, 15);
perfC3 = Gaussian(skillB, 15);
observe(perfA3 > perfC3);

return(skillA, skillB, skillC);

 Sample 𝑝𝑒𝑟𝑓𝐴 from a

noisy 𝑠𝑘𝑖𝑙𝑙𝐴 distribution

 Sample 𝑝𝑒𝑟𝑓𝐵 from a

noisy 𝑠𝑘𝑖𝑙𝑙𝐵 distribution

 if 𝑝𝑒𝑟𝑓𝐴 > 𝑝𝑒𝑟𝑓𝐵 then

A wins else B wins

𝑠𝑘𝑖𝑙𝑙𝐴 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(102.1,7.8)
𝑠𝑘𝑖𝑙𝑙𝐵 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 100.0,7.6
𝑠𝑘𝑖𝑙𝑙𝐶 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(97.9, 7.8)

Tutorial on probabilistic programs (3)

“TrueSkill” from Infer.Net
@MSR Cambridge

• Player A beats Player B,
if A performs better than B
during the game

• Performance is a stochastic
function of skill

Kidney Disease Estimation

S. Sankaranarayanan, A. Chakarov, and S. Gulwani.
Static analysis of probabilistic programs: Inferring
whole program properties from finitely many
executions. In Programming Languages Design and
Implementation (PLDI), 2013.

Lotka, Elements of physical
biology. Williams & Wilkins
company, Baltimore, 1925.

V. Volterra. Fluctuations in the
abundance of a species
considered mathematically.
Nature, 118:558–560, 1926.

Lotka-Volterra Population Model

Several more applications that can be
modeled as probabilistic programs

• Hidden Markov Models (eg. for speech recognition)

• Kalman Filters (eg. In computer vision)

• Markov Random Fields (eg. In image processing)

• Markov Chains

• Bayesian Networks

• And more applications:
• Ecology & Biology (Carbon modeling, Evolutionary Genetics,…)

• Security (quantitative information flow, inference attacks)

Probabilistic Inference

Alchemy

Church

Infer.NET

BLOG

FACTORIE
BUGS

HBC Hansei

PRISM
Figaro

Stan

R2

TensorFlow Probability

• Infer the distribution specified
by a probabilistic program.
• Generate samples to test a

machine learning algorithm

• Calculate the expected value of
a function wrt the distribution
specified by the program

• Calculate the mode of the
distribution specified by the
program

• Punchline:
• Inference is program analysis of

probabilistic programs

Pearl’s Burglar alarm example
int alarm() {

char earthquake = Bernoulli(0.001);

char burglary = Bernoulli(0.01);

char alarm = earthquake || burglary;

char phoneWorking =

(earthquake)? Bernoulli(0.6) : Bernoulli(0.99);

char maryWakes;

if (alarm && earthquake)

maryWakes = Bernoulli(0.8);

else if (alarm)

maryWakes = Bernoulli(0.6);

else maryWakes = Bernoulli(0.2);

char called = maryWakes && phoneWorking;

observe(called);

return burglary;

}

“called” is a low probability
event, and causes large

number of rejections
during sampling

Pre transformation

• Let P be any program

• Let Pre(P) denote the program
obtained by propagating observe
statements immediately after
sample statements

Theorem: P = Pre(P)

int alarm() {

bool earthquake, burglary, alarm, phoneWorking,

maryWakes,called;

earthquake = Bernoulli(0.001);

burglary = Bernoulli(0.01);

alarm = earthquake || burglary;

if (earthquake) {

phoneWorking = Bernoulli(0.6);

observe(phoneWorking);

}

else {

phoneWorking = Bernoulli(0.99);

observe(phoneWorking);

}

if (alarm && earthquake){

maryWakes = Bernoulli(0.8);

observe(maryWakes && phoneWorking);

}

else if (alarm){

maryWakes = Bernoulli(0.6);

observe(maryWakes && phoneWorking);

}

else {

maryWakes = Bernoulli(0.2);

observe(maryWakes && phoneWorking);

}

called = maryWakes && phoneWorking;

return burglary;

}

int alarm() {

char earthquake = Bernoulli(0.001);

char burglary = Bernoulli(0.01);

char alarm = earthquake || burglary;

char phoneWorking =
(earthquake)?Bernoulli(0.6) :Bernoulli(0.99);

char maryWakes;

if (alarm && earthquake)

maryWakes = Bernoulli(0.8);

else if (alarm)

maryWakes = Bernoulli(0.6);

else maryWakes = Bernoulli(0.2);

char called = maryWakes && phoneWorking;

observe(called);

return burglary;

}

Background: Sampling

Problem. Estimate expectation of ϕ 𝑥 wrt to the distribution
𝑃∗ 𝑥 : 𝑥𝑃׬

∗ 𝑥 × ϕ 𝑥 𝑑𝑥

If we can sample from 𝑃∗ 𝑥 we can estimate the expectation as:
1

N
× (𝜙 𝑥1 + 𝜙 𝑥2 ⋯+ 𝜙 𝑥𝑁)

Figure from D J Mackay, Introduction to Monte Carlo Methods

Background: MH sampling

1. Draw samples for 𝑥′ from a proposal 𝑄 𝑥; 𝑥′

2. Compute 𝑎 =
𝑃∗ 𝑥′ ×𝑄 𝑥;𝑥′

𝑃∗ 𝑥 ×𝑄 𝑥′;𝑥

3. If 𝑎 ≥ 1 , accept 𝑥′ else accept with probability 𝑎

Figure from D J Mackay, Introduction to Monte Carlo Methods

𝑥

𝑄 𝑥; 𝑥′

MH without rejections
For each statement of the form:

𝑥𝑖 = 𝐷𝑖𝑠𝑡 𝐸 ; 𝑜𝑏𝑠𝑒𝑟𝑣𝑒 𝜙

Calculate

𝛽𝑖 =
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐷𝑖𝑠𝑡 𝐸 𝑥′ × 𝑄

|𝜙 𝑥(𝑡); 𝑥′

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐷𝑖𝑠𝑡 𝐸 𝑥(𝑡) × 𝑄
|𝜙 𝑥′; 𝑥(𝑡)

During each run of 𝜋𝑖 , for each
sample statement:
• Sample from proposal sub-

distribution 𝑄 conditioned by 𝜙
• 𝛽 = 𝛽1 × 𝛽2 ×⋯× 𝛽𝑛

If𝛽 ≥ 1 , accept 𝑥′ else accept with
probability 𝛽

Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel.
R2: An Efficient MCMC Sampler for Probabilistic Programs,
In AAAI '14: AAAI Conference on Artificial Intelligence, July 2014

http://research.microsoft.com/apps/pubs/?id=211941

Program Slicing

[Mark Wiser, 1981]

Reduce a program to a
smaller program “slice”
when interested in only
some values of interest at
a program point

Many applications:

• Debugging

• Optimization

• Maintenance

Dependences used by Slicing

S1: A := B * C

S2: C := A * E + 1

S2 is “Data Dependent”
on S

S1: if (A) then

S2: B = C + D

S2 is “Control Dependent” on S1

Probabilistic Programs have new dependences

• Figure represents
𝑝 𝑥, 𝑦, 𝑧 = 𝑝 𝑧 𝑥, 𝑦 . 𝑝 𝑥 . 𝑝(𝑦)

• There is no dependence between 𝑥 and 𝑦

•On the other hand, if 𝑧 (or some
descendant of 𝑧) is observed, then 𝑥
depends on 𝑦 and vice versa

• This is called “observe dependence”

𝑥 𝑦

𝑧

Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, Selva Samuel.
Slicing Probabilistic Programs, In PLDI '14: Programming Language Design and
Implementation, June 2014

http://research.microsoft.com/apps/pubs/default.aspx?id=208584

Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, Selva Samuel.
Slicing Probabilistic Programs, In PLDI '14: Programming Language Design
and Implementation,
Jue 2014

http://research.microsoft.com/apps/pubs/default.aspx?id=208584

Andrew D. Gordon, Thomas A. Henzinger,
Aditya V. Nori, Sriram K. Rajamani,
Probabilistic programming, ICSE-FoSE 2014

Programs + Models

Using ML to provide
recommendations during the
software life cycle

Using compilers and runtimes
to make ML systems flexible
and efficient

Having programs adapt when
specifications (eg, formats)
change

Having programs “self-tune”
when environments change

Probabilistic programs: General framework to
express rules and examples

Deep combinations of program analysis ideas with
ML ideas have the potential to scale probabilistic
inference

Challenges and Opportunities (1)

Adaptive specifications and environments
• Need baselines and benchmarks, that

capture evolution over time

• Need metrics to measure manual effort in
updating annotations as well as precision
and recall over time

• Need new user interaction models for
involving annotators and users when the
system needs human help

Possibility to develop a new field: “model
and program engineering”, on how models
and programs evolve over time.

Challenges and Opportunities (2)

Assurance of ML/AI systems using verified monitoring
• Can we write partial specifications for safety critical ML/AI systems?

• Can we synthesize monitors to “safeguard” such systems even if the ML/AI
algorithms are hard to verify?

• How do we evolve the specifications over time?

“An Inductive Synthesis Framework for Verifiable Reinforcement Learning”, He Zhu, Zikang Xiong, Stephen Magill,
Suresh Jagannathan, PLDI 2019

Challenges and Opportunities (3)

Practical and usable frameworks to combine domain knowledge (rules)
with empirical knowledge (examples and data)

• Technical challenge:
• Scaling probabilistic inference

• Usable programming languages and notation

• Industrial challenge: Development life cycle and tools for probabilistic
programs

• Educational challenge:
• Developing educational material and pedagogy for modeling rules and

empirical knowledge together

