Models and Programs:
Better Together

Sriram Rajamani
Microsoft Research, India

November 2020

Two ways to construct computer systems

Programming (Supervised) Learning

Given a specification over input Given a set of training examples (input-
and output, construct a output pairs) learn a model that

program that satisfies the generalizes and learns the transformation
specification from input to output

QuickSort(A,p,q):

if p< gthen
r :=Partition(A, p, q) CAT "
SO:‘ d Sesuehce QuickSort(A, p, r-1) " o -
T numpbersin - QuickSort(A, r+1, q) e |
ascending order (LABELED) J out
PHOTOS PP . f
Initial call: e §
g "l
\\;

W
QuickSort(A, 0, n-1) DOG Z" y

.
P S

Two ways 1o construct computer systems

Programming (Supervised) Learning
Given a specification Given a set of training examples
@ (x,y) over input and output, T = {(x,y)]i = 1..N}

construct a program P such

that V x. ¢(x, P(x)) learn a model M that minimizes the loss

21<i<n (LCM(x;),y:))

QuickSort(A,p,q):

if p < qthen
r .= Partition(A, p, q) CAT .*
0T @ seduence QuickSort(A, p, r-1) - ,
stz || 2 QuickSort(A, r+1, q) - |
ascending order (LassLen) |
PHOTOS . 4l
Initial call: ;
o] |
\

W
QuickSort(A, 0, n-1) DOG Z" y

When programming, and when learning?

Programming makes sense
when there exists

* precise requirements

e a provably correct program
to satisfy the requirements

Even if we don’t write these
down formally!

E.g. Database, operating
system, device driver, payroll
processing, tax calculations

Learning makes sense when it is hard
to write

* precise requirements
e or provably correct implementation

Even if we were to spend time and
energy to write these down formally!

E.g. Image classification, NLP,
sentiment understanding, language
translation, search

s there value in combining Programs and
Models?

Why bother?

Programs and Models: Serving Each Other

* We can instrument the software development process (coding, code
reviews, testing, deployment, debugging, etc) collect data, and use
ML models to make the process more efficient.

* We can use programming tools to make learning more efficient.

Programs and Models: Serving Each Other

e Large scale Programming
(Software Engineering) can
benefit from using ML to
provide recommendations
during software life cycle

Programs and Models: Serving Each Other

- sankie
ngscale Programming o I I ‘ ‘ o
(SOftV\,Iare Engln.eerlng) can Development Test & Build Deployment Post
benefit from using ML to Deployment
provide recommendations
uring software life cycl
Office Azure Bing Windows Dynamics

[OSDI 18 (best paper), ICSE 19, FSE19, NSDI 20]

Widely deployed and used inside Microsoft

More information:
https://www.microsoft.com/en-us/research/project/sankie/

https://www.microsoft.com/en-us/research/project/sankie/

Programs and Models: Serving Each Other

ngscale Programming
(Software Engineering) can

benefit from using ML to

provide recommendations
uring software life cycl

Getafix: How Facebook tools learn to fix bugs automatically

{
dog.drink(ho);

| errorVar: dog

if (dog == null)

return;

dog.drink(ho);

dog.drink(milk);

{

errorVar: dog

if (dog == null)
return;
dog.drink(milk);

1 {
bowl.fill();
dog.drink(water);

| errorVar: dog

bowl.fill();

if (dog == null)
return;

dog.drink(water);

By Satish Chandra, Johannes Bader, Eric Lippert, Andrew Scott

Merge edits which check dog for null before calling
dog.drink() (eithermilk orwater)

Programs and Models: Serving Each Other

DeepCode learns from GitHub project
data to give developers Al-powered code

* Large scale Programming
(Software Engineering) can
benefit from using ML to

provide recommendations
uring software life cycl

reviews

Paul Sawers @psawers t 6, 2019 12:00 AM Al

ODE

Unsanitized user input flows from e
java.net.URL() opc_'-caljr\v-‘:tmn() ?N;;e_‘r’ms
Field() to java.nio file Files.copy(arg "
may result in a Path Traversal vulnerability:

¥ by injecting malicious input into an HTTE
header, an attacker may read and write
arbitrary files on the server. To fix it. consider
sanitizing the input using
org.apache commons.io FilenameUtils.getB

@), « aseName()

earn More

n this File

Maintain your We're fast approaching a point where every company is effectively a software

employer brand in a company, a notion proffered by some of tech’s top people such as Microsoft CEO Satya
pandemic Nadella. This is partly why we’ve seen a slew of major investments into tools that help
Read the VentureBeat developers operate — last year, for example, Microsoft went all-in and snapped up

;?ab:d?rtjg;de to employer code-hosting and collaboration platform GitHub in a §7.5 billion deal, while GitLab

raised huge funds from big-name investors including Alphabet’s GV.

Download eBook .
With more software, however, comes more code, which requires more checking,

testing, and debugging. And that is why automated developer operations (DevOps)
testing tools are also attractive targets for investors, with the likes of Functionize,

Testim, and Mabl all raising big bucks over the past year. In fact, the automated

Programs and Models:

Serving Each Other

e Large scale Programming
(Software Engineering) can
benefit from using ML to
provide recommendations
duri i cle

Programming language and
compiler techniques play a
key role in making ML
systems flexible and
efficient

Automatic differentiation in PyTorch

Adam Paszke Sam Gross Soumith Chintala
University of Warsaw Facebook AI Research Facebook AI Research
adam.paszke@gmail.com
Gregory Chanan Edward Yang Zachary DeVito
Facebook AI Research Facebook AI Research Facebook AI Research
Zeming Lin Alban Desmaison Luca Antiga Adam Lerer

Facebook AI Research University of Oxford OROBIX Srl Facebook Al Research

Journal of Machine Learning Research 18 (2018) 1-43

Automatic Differentiation
in Machine Learning: a Survey

Atilim Giines Baydin
Department of Engineering Science
University of Oxford

Ozford OX1 3PJ, United Kingdom
Barak A. Pearlmutter
Department of Computer Science

National University of Ireland Maynooth
Maynooth, Co. Kildare, Ireland

Alexey Andreyevich Radul
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139, United States

Jeffrey Mark Siskind

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907, United States

Editor: Léon Bottou

Submitted &/17; Published 4/18 Fact
Hifferentiation module of PyTorch — a
on machine learning models. It builds
orch, Chainer, and HIPS Autograd [4],
nment with easy access to automatic
brent devices (CPU and GPU). To make
w the symbolic approach used in many
s on differentiation of purely imperative
low overhead. Note that this preprint is
hg paper covering all PyTorch features.
GUNES@ROBOTS.0X.AC.UK

BARAK@PEARLMUTTER.NET

AXCHQMIT.EDU

QOBIQPURDUE.EDU

Programs and Models: Serving Each Other

* Large scale Programming
(Software Engineering) can
benefit from using ML to
provide recommendations
duri i cle

Programming language and
compiler techniques play a
key role in making ML
systems flexible and
efficient

Wampilers 469

Machine Learning

2nd C4AML workshop, at CGO 2020

Sunday, February 23,2020

San Diego Mission Bay Resort - Terrazza Ballroom

Presentation slides linked from the abstracts below

Previous workshops: C4ML 2019

Scope

Machine learning applications are becoming ubiquitous in large-scale production systems. With that growth and the scaling in data volume and model complexity, the focus on
efficiently executing machine learning models has become even greater. The push for increased energy efficiency has led to the emergence of diverse heterogeneous system and
accelerator architectures. In parallel, model complexity and diversity pushed for higher productivity systems, more powerful programming abstractions, type systems, language
embeddings, frameworks and libraries. Compilers have historically been the bridge between programmer efficiency and high performance code, allowing the expression of code
that remains understandable and productive to port and extend, while producing high-performance code for diverse architectures. As such, compiler techniques have been
increasingly incorporated into machine learning frameworks. This goes both ways: given the broadening gap between high-level constructs and hardware accelerators, compilers in
machine learning frameworks also emerged as natural clients of machine learning techniques, from domain-specific heuristics to autotuning.

This workshop aims to highlight cutting edge work and research that incorporate compiler techniques and algorithms in optimizing machine learning workloads. Compiler
techniques affect a large part of the machine learning stack. The workshop topics span from high-level abstract representations to code generation for accelerators. The list of
invited speakers are similarly experts across the different levels of the stack. The workshop does not have formal proceedings, and presentations will include ample time for

interaction.

s there value in combining programs and
models more deeply?

When programming, and when learning?

Programming makes sense
when there exists

* precise requirements

e a provably correct program
to satisfy the requirements

Even if we don’t write these
down formally!

E.g. Database, operating
system, device driver, payroll
processing, tax calculations

Learning makes sense when it is hard
to write

* precise requirements
e or provably correct implementation

Even if we were to spend time and
energy to write these down formally!

E.g. Image classification, NLP,
sentiment understanding, language
translation, search

Characteristics of programs and models

Programs are intended to work for
all inputs satisfying a precondition

If the specification or environment
changes, programs typically fail!

Programs are succinct ways to
specify domain knowledge l

Learning works well “on average”
when the test distribution is similar
to training distribution

ML models can generalize and work

on unforeseen inputs l‘

ML models can be opaque sets of
floating-point numbers, and hard to
Interpret

What if we want programs to be adaptive?

 What if a mathematical
specification exists, but it keeps
changing and evolving over time?
Can we have the system evolve
and “adapt” without programmer
Intervention?

* What if the environment of the
program changes, and we want
the program to “self-tune” itself in
response to the environment
changes?

Examples of changing
specifications

AmericanAirIines\\ @

Changing data formats: =)
Shopping Web pages’ Thanks for choosing American Airlines EVN | A0L | 198608181123 '

PID | | | PATIDLE34~ 5~ M1l | | JONES ~ WILLIAM -~ A~ III | | 19610615 M- IC
PY1 |1 | I 20002012011 | | | 004777 LEBAUER - SIDNEY ~J. | | | SUR| | - | | ADM | &0

[
m a C h I n e e n e rate d Here's the trip you booked on Orbitz. You'll also find links to other great offers. ALY [Ll | ~ PENICILLIN | | PRODUCES HIVES ~ RASH ~ LOSS OF APPETITE
DG1 | 001 | I9 | 1550 | MAL NED LIVER, PRIMARY | 19880501103005]| F
f FR1 | 2234 | M11 | 111 ~ CODEL151 | COMMON PROCEDURES | 198809081123

Record locator:

Monday, June 11, 2018

JAX ~ PHL
12219 PM 7 02:29 PM

MORE LIKE THES ¥ipm Long Belance 1080 Hiprun s Lights Mens Baiance 1080 Black

Jacksonville Philadelphia 59.m 9w 59,

AA 1990

Customization by each ==

e s . PHL SYR — - - ‘
entlty IN aN Industry: 04:28 PM > 05:43 PM i 9 9

Philadelphia Syracuse

ATHLETICS

- o W - o, M N L M

financial data formats,....

w0

Free entertainment Mens Running Shoes - Decathlon -| 16 Products

Track your bags
| as you travel

Download the American app »

on your flight hitp: rw.decathlon_co.uk -

How to watch @ Year - Exercise More in 2019 with 70 Sports al Decathlon!

Mens Running Shoes - Decathlon - decathlon.co.uk

https://www.decathlon.co.uk ~ * m - - —
| Over £30 - Free Click and Collect - 365 Days Return |
= T Ad No Excuses this Year - Exercise More in 2019 with 70 Sports at Decathlon! =
_Save time with a Earn miles even when | ype of Practics: Road Running - Athletics - Joaging - Trail I
k. mobile |>(7z7:(1|ng pass you aren't flying Q - - A
Download the American app @ Join the AAdvantoge* program @ WS KALENII - Kirpun Long Running Shoes — Blue Rating:4/5 £59.99
M ‘m MIZUNG— Men's Running Shoe Wave Rider —Blue Rating’5/5 £79.98

Contactus | Privacy policy

AIR Itinerary

AIR Confirmation: AXYB12 Confirmation Date: 02/21/2013
Passenger(s) Rapid Rewards # Ticket # Expiration Est. Points Earned
Person Name - None Entered - 5611324256781 Feb 21, 2014 540

Rapid Rewards points earned are only estimates. Not a member - visit http://www.southwest.com/rapidrewards and sign up

today!

Date Flight Departure/Arrival

Fri Mar 8 3216 Depart SEATTLE TACOMA WA (SEA) on Southwest Airlines at 8:10
PM
Arrive in SAN JOSE CA (SJC) at 10:20 PM

Travel Time 2 hrs 10 migs
Wanna Get Away

Extract from machine-to-human (M2H) emails

Millions of emails/day

Heterogeneity: 100s of ever evolving formats

Some rare formats with very few emails

10s of data annotators write 100s of hard-crafted templates

Every breakage fixed manually

LM897JQRS
SEA # (JFK
11:10 AM 7:30 PM

Your Trip to New York

° Depart: Flight #1473 to New York

Flight to New York
Delta 1473

CHECK IN

A Depart: Flight #506 to Seattle

=
Mail

()

Goals:
1.
2.

Self repair when formats change

When new airlines and travel
aggregators come online, handle
them as automatically as possible

Predictability

Two approaches to entity extraction from emails

* Train ML models using
labeled data

* Write or automatically
synthesize programs
from labeled data

(using systems such as
PROSE)

AA

DL

F9

AA

DL

F9

3

2

AA

DL

F9

A

AA

DL

F9

3

0

>

DNN training

>

PROSE

Programsin a
Domain
Specific Language

What if the input format changes?

* Programs work well when formats are stable, but just fall flat when
format’s change

* ML Models generalize somewhat, but don’t get to 100%

* Combining both produces better results than either one in isolation!

Models for Generalization, Programs for Predictability

SK :. . —

I DNN Model

NN NG gy N
AA| IDL | |F9

D D | N
~ 103 AA | IDL | |F9

each 7

AR E

Models for Generalization, Programs for Predictability

x, S ‘\\
o —— . .\\\\\
3 _
XA

]

]

]

]

]

‘\/\/X\/\/X’

€ -

[Program Synthesis

(PROSE)

]

]

]

Y

Xy
=

B

]

Y)I(j (usu

v v v v v

Y)I(j New airline or changed format

~70% precision

Programs are regular
ally, all right or all wrong)

Heterogeneous Data Extraction Framework

Labelled
Inputs

LSTM-CRF

ﬁ

Model
Training

Noisy

labels
pr— L Mode| [——

Mails + Rule- based

Extractions

Additional
annotations

NDSYn
Program
Synthesizer

Email HTML + Noisy label

output pairs

Unlabelled Inputs

Semi-automated
annotator

l

Runtime

PROSE + Web DSL +
Field constraints

Disjunctive program
(Covering Sequence of
programs)

Different strategies for feedback
High ranked program outputs can be directly fed in

Models for Generalization, Programs for Predictability

LSTM-CRF

Labelled Model
Inputs Training

v

A
Mails + Rule- based

Extractions

Additional
annotations

ML Model

Noisy
labels

Unlabelled Inputs

Email HTML + Noisy label

output pairs

Semi-automated
annotator

v

NDSYn
Program
Synthesizer

PROSE + Web DSL +
Field constraints

Disjunctive program
(Covering Sequence of

l

Runtime

programs)

Prog
Nodes

Selector
FFProg
SubString

RegexPos

map(A node . FFProg(node), Nodes)
AllNodes(input) | Descendants(Nodes)
| filter(Selector, Nodes) | Children(Nodes)

tag = c | class = ¢ | id = ¢ | nth-child(n) | ...

Substring | Concat(SubString, FFProg)
node.TextValue

| Extract(RegexPos, RegexPos, SubString)
RegexSearch(regex, k)

* Design of “Domain Specific Language” (DSL) is key for useful functioning of the combined system

e With a well-designed DSL, program synthesis can act as a “regularizer” and make the system predictable,
whereas ML models enable the system to be generalizable and robust to format changes

Deployment results:

”saves us nearly 100-120 Hrs of flight
model maintenance time from data
annotation per week ... 50% of data
annotator bandwidth”

Programs are cheaper to execute, so
they are used at runtime. ML models
are used offline for self-healing and
robustness when formats change

Synthesis and Machine Learning for Heterogeneous

Extraction
Arun Iyer Manohar Jonnalagedda Suresh Parthasarathy
Microsoft Research, Bangalore Inpher, Lausanne, Switzerland Microsoft Research, Bangalore, India
ariy@microsoft.com manohar jonnalagedda@gmail.com supartha@microsoft.com
Arjun Radhakrishna Sriram K. Rajamani

Microsoft, Bellevue, United States
arradha@microsoft.com

Abstract

We present a way to combine techniques from the program
synthesis and machine learning communities to extract struc-
tured information from heterogeneous data. Such problems
arise in several situations such as extracting attributes from
web pages, machine-generated emails, or from data obtained
from multiple sources. Our goal is to extract a set of struc-
tured attributes from such data.

We use machine learning models (“ML models”) such as
conditional random fields to get an initial labeling of poten-
tial attribute values. However, such models are typically not
interpretable, and the noise produced by such models is hard
to manage or debug. We use (noisy) labels produced by such
ML models as inputs to program synthesis, and generate
interpretable programs that cover the input space. We also
employ type specifications (called “field constraints”) to cer-
tify well-formedness of extracted values. Using synthesized
programs and field constraints, we re-train the ML models
with improved confidence on the labels. We then use these
improved labels to re-synthesize a better set of programs.
We iterate the process of re-synthesizing the programs and
re-training the ML models, and find that such an iterative
process improves the quality of the extraction process. This
iterative approach, called HDEF, is novel, not only the in way
it combines the ML models with program synthesis, but also
in the way it adapts program synthesis to deal with noise
and heterogeneity.

*This work was done when the author was at Microsoft Research, Bangalore,
India.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copics
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
e honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI "19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6712-7/19/06...$15.00
https://doi.org/10.1145/3314221.3322485

Microsoft Research, Bangalore, India
sriram@microsoft.com

More broadly, our approach points to ways by which ma-
chine learning and programming language techniques can
be combined to get the best of both worlds — handling noise,
transferring signals from one context to another using ML,
producing interpretable programs using PL, and minimizing
user intervention.

CCS Concepts - Software and its engineering — Auto-
matic programming; - Computing methodologies —
Machine learning.

Keywords Data extraction, Program synthesis, Machine
Learning, Heterogeneous data

ACM Reference Format:

Arun Iyer, Manohar Jonnalagedda, Suresh Parthasarathy, Arjun
Radhakrishna, and Sriram K. Rajamani. 2019. Synthesis and Ma-
chine Learning for Heterogeneous Extraction. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI ’'19), June 22-26, 2019, Phoenix, AZ,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3314221.3322485

1 Introduction

Extracting structured attributes from heterogeneous unstruc-
tured or semi-structured data is an important problem, which
arises in many situations. One example is processing web-
sites in domains such as travel, shopping, and news and
extracting specific attributes from them. Another example
is in processing machine generated emails in such domains,
and extracting specific attributes. A third example is data
wrangling where the goal is to transform and map raw data
to a more structured format, with the intent of making it
more appropriate and valuable for a variety of downstream
purposes such as analytics.

In the ML community, these problems have been han-
dled by training ML models. While impressive progress has
been made in making use of signals from noisy and large
scale data [12, 23, 24, 26], the models produced are not inter-
pretable and hence hard to maintain, debug and evolve. In
the PL community, program synthesis has been used to gen-
erate programs, such as Excel macros, from a small number
of training examples [7, 13, 18]. If the data-sets are large and
heterogeneous, and training data is small and noisy, neither

301

Synthesis and Machine Learning for Heterogeneous Extraction, Arun lyer, Manohar Jonnalagedda,
Suresh Parthasarathy, Arjun Radhakrishna, Sriram Rajamani, PLDI 2019

https://www.microsoft.com/en-us/research/publication/synthesis-and-machine-learning-for-heterogeneous-extraction/

Related work

“Programmatically Interpretable Reinforcement Learning”, Abhinav
Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and
Swarat Chaudhuri, In ICML 2018

“Verifiable reinforcement learning via policy extraction”, Osbert
Bastani, Yewen Pu, Armando Solar-Lezama, NIPS 2019

“An Inductive Synthesis Framework for Verifiable Reinforcement

Learning”, He Zhu, Zikang Xiong, Stephen Magill, Suresh Jagannathan,
PLDI 2019

What if we want programs to be adaptive?

 What if a mathematical
specification exists, but it keeps
changing and evolving over time?
Can we have the system evolve
and “adapt” without programmer

intervention?

* What if the environment of the
program changes, and we want
the program to “self-tune” itself in

response to the environment

changes?

Configuration settings are ubiquitous in software!

[Resourcel]

RefreshInterval=00:01:00 double ScorelLinesMap(double sel, double lines) {
PriorityHighUnderloaded=97 double minScore = 100.0;
PriorityHighOverloaded=98 double alpha = 1.@; double beta = 1.0;
PrioritylLowlUnderloaded=88 return alpha * sel + beta * lines + minScore * 20;
PriorityLowOverloaded=90 }
. bool IsLikelyDataRatio(int dataCount, int totalCount) {
[Resource?] if (totalCount < 10) return dataCount >= 6;
RefreshInterval=00:01:00 1f (totalCount < 20) return dataCount >= 15;
PriorityHighUnderloaded=80 1f (totalCount < 5@) return dataCount >= 30:
PriorityHighOverloaded=96@ return dataCount / (double) totalCount >= 0.6;

}

Can we learn such “structured” decision
functions automatically?

Programming By Rewards (PBR)

Decision function

structure

PBR Learned

: Decision
engine Function

Programming By Rewards (PBR)

int[2] counts = getCounts(contents);
if
(PBR.DecisionFunction(PBRID_IsLikelyDataRatio,

count[0], count[1]))
preProcess(fileName); <

PBR :'\‘/ Learned
engine

Decision

Function

double reward =
(success/Config.Benchmarks.Length) —
(sw.ElapsedMilliseconds/1000);

PBR.AssignReward(reward);

Programming By Rewards (PBR)

int[2] counts = getCounts(contents);

if

(PBR.DecisionFunction(PBRID_IsLikelyDataRatio,
count[0], count[1])) bool IsLikelyDataRatio
preProcess(fileName); < (int dataCount, int totalCount) {

if (totalCount < 10)
return dataCount >= 6;

PBR :> if (totaICount < 20)
engine return dataCount >= 15;
if (totalCount < 50)

return dataCount >= 30;

return (dataCount /totalCount >= 0.6);

double reward = }
(success/Config.Benchmarks.Length) —
(sw.ElapsedMilliseconds/1000);

PBR.AssignReward(reward);

Learning with black-box rewards

For a given unknown (black-box) reward function r, and a known code
template for the decision (e.g., linear), the goal is to solve:

AT .
max) n(w'x)

l
w; * latency +
w, * load +

parameters
w3 * min +w,

blackbox RL, online learning, black-box
reward optimizers are expensive in
terms of #reward calls needed
£ w |d (prop. to d)

Learning with black-box rewards

For a given unknown (black-box) reward function r, and a known code
template for the decision (e.g., linear), the goal is to solve:

AT .
max) n(w'x)

l
w; * latency +

k
wy * load + parameters
w3 * min +w,

blackbox decision(sj

»
reward

Gradient-descent style algorithms,
with #rewards needed proportional to
#decisions m (typically, m=1)

Case study: PROSE codebase

- We applied Self-Tune to simultaneously learn~70 ranking heuristics in PROSE

- Reward: # tasks where PROSE synthesizes a correct program

- Each reward query is expensive (~20 minutes)

- In~100 hours of training, PBR improves over state-of-the-art ML-ranker by ~8%
in terms of accuracy

- Competitive with the manually-tuned heuristics that took 2+ years of effort

ML-PROSE [2019**] 606/740
PROSE + SelfTune [2020%*] 668/740

* Programming by Rewards, 2020. N., Ajaykrishna Karthikeyan, Prateek Jain, lvan Radicek, Sriram Rajamani, Sumit
Gulwani, Johannes Gehrke. https://arxiv.org/pdf/2007.06835.pdf

** Learning natural programs from a few examples in real-time. N., Dany Simmons, Naren Datha, Prateek Jain, Sumit
Gulwani. AISTATS, 20109.

Learning algorithms can exploit
the structure of the decision
function to get better sample
complexity

arXiv:2007.06835v1 [cs.LG] 14 Jul 2020

Programming by Rewards

Synthesizing programs using black-box rewards

NAGARAJAN NATARAJAN, Microsoft Research, IN
AJAYKRISHNA KARTHIKEYAN, Microsoft Research, IN
PRATEEK JAIN, Microsoft Research, IN

IVAN RADlCEK, Microsoft, Austria

SRIRAM RAJAMANI, Microsoft Research, IN

SUMIT GULWANI, Microsoft, USA

JOHANNES GEHRKE, Microsoft Research, USA

We formalize and study “programming by rewards” (PBR), a new approach for specifying and synthesizing
subroutines for optimizing some quantitative metric such as performance, resource utilization, or correctness
over a benchmark. A PBR specification consists of (1) input features x, and (2) a reward function r, modeled
as a black-box component (which we can only run), that assigns a reward for each execution. The goal of
the synthesizer is to synthesize a decision function f which transforms the features to a decision value for
the black-box component so as to maximize the expected reward E[r o f(x)] for executing decisions f(x) for
various values of x.

We consider a space of decision functions in a DSL of loop-free if-then-else programs, which can branch
on linear functions of the input features in a tree-structure and compute a linear function of the inputs
in the leaves of the tree. We find that this DSL captures decision functions that are manually written in
practice by programmers. Our technical contribution is the use of continuous-optimization techniques to
perform synthesis of such decision functions as if-then-else programs. We also show that the framework is
theoretically-founded —in cases when the rewards satisfy nice properties, the synthesized code is optimal in a
Pprecise sense.

PBR hits a sweet-spot between program synthesis techniques that require the entire system r o f as a white-
box, and reinforcement learning (RL) techniques that treat the entire system r o f as a black-box. PBR takes a
middle path treating f as a white-box, thereby exploiting the structure of f to get better accuracy and faster
convergence, and treating r as a black-box, thereby scaling to large real-world systems. Our algorithms are
provably more accurate and sample efficient than existing synthesis-based and reinforcement learning-based
techniques under certain assumptions.

We have leveraged PBR to synthesize non-trivial decision functions related to search and ranking heuristics
in the PROSE codebase (an industrial strength program synthesis framework) and achieve competitive results to
manually written procedures over multiple man years of tuning. We present empirical evaluation against other
baseline techniques over real-world case studies (including PROSE) as well on simple synthetic benchmarks.

Additional Key Words and Phrases: Al driven software engineering, sketching, online learning

Story so far: Programs + Models

Using compilers and runtimes
to make ML systems flexible
and efficient

Using ML to provide
recommendations during the
software life cycle

Having programs adapt when
specifications (eg, formats)
change

Having programs “self-tune”
when environments change

Probabilistic
Programming

RESEARCH

RESEARCH ARTICLES

COGNITIVE SCIENCE

Human-level concept learning
through probabilistic
program induction

Brenden M. Lake,"* Ruslan Salakhutdinov,?> Joshua B. Tenenbaum®

[Science 2015]

Bayesian programming language
framework (BPL

* Capable of learning visual
concepts from a single example

* Programmer specifies primitives,
Earts and subparts as domain
nowledge

e System infers knowledge
representation as probabilistic
programs using Bayesian
Inference

A B

i) primitives :-) ’-U

i) sub-parts Q\l_};) "b - . Q —1)
iii) parts 3 L iy
., L
it\t;)n'loslggt relation: \l / relation:\ ‘aj relation: \ / '
attached along attached along attached at start L
type level —_

tokenlevel :‘/1‘:““““7‘““““’/\: _____

v) exemplars

vi) raw data

o
Q"
ks

Tutorial on probabilistic programs (1)

cl = Bernoulli(0.5); el P(cl,c2)

c2 = Bernoulli(@.5); false false 1/4
return(ci, c2); false true 1/4
true false 1/4

true true 1/4

Tutorial on probabilistic programs (2)

bool c1, c2;

bool €1, €2 @ .59 P(c1,c2)

c2 = Bernoulli(@.5); false false 0

observe(cl || c2);

return(cl,c2); false true 1/3
true false 1/3

true true 1/3

Tutorial on probabilistic programs (3)

“TrueSkill” from Infer.Net
@MSR Cambridge

* Player A beats Player B,
if A performs better than B
during the game

* Performance is a stochastic
function of skill

float skillA, skillB, skillC;
float perfAl, perfBl, perfB2,

___ perfC2, perfA3, perf(C3;
skillA = Gaussian(100, 10);
skillB = Gaussian(100, 10);
skillC = Gaussian(100, 10);

// first éame: A vs B, A won
perfAl = Gaussian skiilA, 15
perfBl = Gaussian(skillB, 15
observe(perfAl > perfBl);

// second game: B vs C, B won
perfB2 = Gaussian sklliA, 15
perfC2 = Gaussian(skillB, 15
observe(perfB2 > perfC2);

// third game: A vs C, A won
perfA3 = Gaussian skiilA, 15
perfC3 = Gaussian(skillB, 15
observe(perfA3 > perfC3);

J
J

J
J

.
J

.
J

return(skillA, skillB, skillC);

= Sample perfA from a
noisy skillA distribution

= Sample perfB from a
noisy skillB distribution

= if perfA > perfB then
A wins else B wins

skillA = Gaussian(102.1,7.8)

skillB = Gaussian(100.0,7.6)
skillC Gaussian(97.9,7.8)

4

Kidney Disease Estimation

double logScr, age;
bool isFemale, isAA;

double f1 =
estimateLogEGFR (logScr,age,
isFemale, isAA);
double nLogScr, nAge;
bool nlsFemale, nisAA;

nLogScr = logScr +
Uniform(-0.1, 0,1);
nAge = age +
Uniform(-1, 1);

nlsFemale = isFemale;
if (Bernoulli(0.01))
nlsFemale = !isFemale;

nlsAA = isAA;
if (Bernoulli(0.01))
nlsAA = lisAA;

double f2 =
estimateLogEGFR (nLogScr,nAge,

nIsFemale, nIsAA);

bool bigChange = 0;

if(f1 - £2 >= 0.1)
bigChange = 1;
if(£f2 - £f1 >= 0.1)
bigChange = 1;

return(bigChange) ;

double estimateLogEGFR(

double logScr, double age,
bool isFemale, bool isAA)

double k, alpha;
double f = 4.94;
if (isFemale){
k = -0.357;
alpha= -0.328;
}
else{
k = -0.105;
alpha = -0.411;
}

if (logSer < k)

f = alpha * (logscr-k);
else

f = -1.209 * (logscr-k);

f=1% - 0.007 * age;

if(isFemale) f +

=f 0.017;
if(isAA) £ = £ + 0.148;

return f;

S. Sankaranarayanan, A. Chakarov, and S. Gulwani.
Static analysis of probabilistic programs: Inferring
whole program properties from finitely many
executions. In Programming Languages Design and
Implementation (PLDI), 2013.

Lotka-Volterra Population Model

int goats, tigers;
double ci1, c2, c3, curTime;
// initialize populations
goats = 100; tigers = 4;
// initialize reaction rates
cl=1; c2 = 5; 3 = 1 Lotka, Elements of physical
//initialize time . - orr .
curTime = 0; biology. Williams & Wilkins
while (curTime < TIMELIMIT) company, Baltlmore, 1925.
{
if (goats > 0 && tigers > 0)
{ else if (goats > 0) !
double ratel, rate2, rateld, { G — ZG
rate; double rate; G+T — 2T V. Volterra. Fluctuations in the
ratel = cl * goats; rate = cl * goats; .
rate2 = c2 * goats * tigers; double dwellTime I — 0 abundance of a species
rate3 = c3 * tigers; Exponential (rate); . .
rate = ratel + rate2 + rate3; curTime += dwellTime; COhSIdEI‘Ed mathemat|ca||y
oats++; .
double dwellTime = } & Nature, 118-558_560, 1926-
Exponential (rate) ; else if (tigers > 0)
int discrete = {
Disc3(ratel/rate,rate2/rate); double rate;
curTime += dwellTime; rate = c3 * tigers;
switch (discrete) double dwellTime =
{ Exponential (rate) ;
case 0: goats++; break; curTime += dwellTime;
case 1: goats-—; tigers++; tigers-—;
break; }
case 2: tigers—-; break; }//end while loop
} return(goats,tigers);
b ¥

Several more applications that can be
modeled as probabilistic programs

* Hidden Markov Models (eg. for speech recognition)
e Kalman Filters (eg. In computer vision)

* Markov Random Fields (eg. In image processing)

* Markov Chains

* Bayesian Networks

* And more applications:
* Ecology & Biology (Carbon modeling, Evolutionary Genetics,...)
 Security (quantitative information flow, inference attacks)

Probabilistic Inference

BLOG HBC Hansei

U {?IE\II‘JERSIT":’ mJTGERS
OF UTAH*®

* Infer the distribution specified
by a probabilistic program. Berkele g

* Generate samples to test a

machine learning algorithm BUGS FACTORIE In_fer-NET R2

* Calculate the expected value of Medical UMassAmbherst ~Microsoft Research

Research

a function wrt the distribution MRC | counci Church
specified by the program Alchemy

* Calculate the mode of the E arles f »
distribution specified by the FEZD UNIVERSITY OF Charles river analytics
program «2 OXFORD

. TensorFlow Probabilit
e Punchline: Stan Y

. . &2 COLUMBIA UNIVERSITY
* Inference is program analysis of o E,?HEI{;,TYOF N?WYORKRS Go gle

probabilistic programs

Pearl’s Burglar alarm example

int alarm() {

char earthquake = Bernoulli(0.001);
char burglary = Bernoulli(0.01);
char alarm = earthquake || burglary;
char phoneWorking =

(earthquake)? Bernoulli(©.6) : Bernoulli(©.99);
char maryWakes;
if (alarm && earthquake)

maryWakes = Bernoulli(0.8);
else if (alarm)

maryWakes = Bernoulli(0.6);

else maryWakes = Bernoulli(0.2);

char called = maryWakes && phoneWorking; “called” is a low probability
observe(called); event, and causes large
return burglary; number of rejections

} during sampling

Pre transformation

* Let P be any program

* Let Pre(P) denote the program
obtained by propagating observe
statements immediately after
sample statements

Theorem: P =Pre(P)

imt addem@)(X {

o s SRS EL Bar RET: RS e
maryWakes calle 5

earahualbairgBambui 1Bermou;li(0.01);
burglapy 51 BERNL AL ake || burglary;

alarm = earthquake || burglary;

if (rartenelorking =
(e%gngmpléBeréggH&}ﬂg%ss)) :Bernoulli(0.99);

dvaprRipRaRésking) ;
}o.
els}ef{(alarm && earthquake)

phangiatkésg = Bermoull{q®9g) ;
bserfg(Fainewogklng),

se 1

if (anaryWakesrthgBekapulli(0.6);
e IELY a2 B Rofhn 1 (0. 2) ;
observe(maryWakes && phonelor 1ng),

} char called = maryWakes && phoneWorking;

elshdér(ernited);

maryWakes = Bernoulli(0.6);

rebYER QUEBHAIE: && phoneWorking);
zlse {
maryWakes = Bernoulli(0.2);
observe(maryWakes && phoneWorking);
}
called = maryWakes && phoneWorking;
return burglary;

}

Background: Sampling

Problem. Estimate expecta.;cion of d(x) wrt to the distribution
P*(x): [P*(x) X d(x) dx

If we can sample from P*(x)we can estimate the expectation as:

=X (p(xr) +P(az) -+ + P lxw))

Figure from D J Mackay, Introduction to Monte Carlo Methods

Background: MH sampling

Q)

X

1. Draw samples for x' from a proposal Q(x; x")
P*(x/)XQ(x;x')

P*(x)xQ(x";x)

3. Ifa>1,accept x’ else accept with probability a

2. Compute a =

Figure from D J Mackay, Introduction to Monte Carlo Methods

MH without rejections

" For each statement of the form: 1 During each run of m;, for each
x; = Dist(E); observe(¢) ,
sample statement:
 Sample from proposal sub-
. distribution Q conditioned by ¢
* L =P1 X[y XX By
Density(Dist(E))(x) x Q¢ (x5 x')
s Density(Dist (E))(x() x Q¢ (x';2®) Iff = 1, accept x’ else accept with
probability
L A

Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel.
R2: An Efficient MCMC Sampler for Probabilistic Programs,
In AAAI '14: AAAI Conference on Artificial Intelligence, July 2014

http://research.microsoft.com/apps/pubs/?id=211941

Program Slicing
[Mark Wiser, 1981]

Reduce a program to a
smaller program “slice”
when interested in only
some values of interest at
a program point

Many applications:
* Debugging

* Optimization

* Maintenance

PROGRAM SLICING*

Mark Weiser

Computer Science Department
University of Maryland
College Park, MD 20742

Abstract

Program slicing is a method used by experienc-
ed computer programmers for abstracting from pro-
grams. Starting from a subset of a program's be-
havior, slicing reduces that program to a minimal
form which still produces that behavior. The
reduced program, called a "slice", is an indepen-
dent program guaranteed to faithfully represent
the original program within the domain of the
specified subset of behavior.

Finding a slice is in general unsolvable. A
dataflow algorithm is presented for approximating
slices when the behavior subset is specified as
the values of a set of variables at a statement.
Experimental evidence is presented that these
slices are used by programmers during debugging.
Experience with two automatic slicing tools is
summarized. New measures of program complexity
are suggested based on the organization ot a
program's slices.

KEYWORDS: debugging, program maintenance, soft-
ware tools, program metrics, human factors, data-
flow analysis

Introduction

A large computer program is more easily con-
structed, understood, and maintained when broken
into smailer pieces. Several different methods
decompose programs 9ur1ng progr?m design, such as

daoa [0 o g Lo+ £ 2

a in L s+ 2 oo 2 10772

behavior is of interest. For instance, during
debugging a subset of pehavior is being corrected,
and in program modification or maintenance a sub-
set of behavior is being improved or replaced. In
these cases, a programmer starts from the program
behavior and proceeds to find and modify the cor-
responding portions of program code. Code not
having to do with behavior of interest is ignored.
Gould and Dronkowski {19/4) report programmers
behaving this way during debugging, and a further
confirmng experiment is presented below.

A programmer maintaining a large, unfamiliar
program would almost have to use this behavior-
first approach to the code. Understanding an en-
tire system to change only a small piece would
take too much time. Since most program mainte-
nance 1s done by persons other than the program
designers, and since 67 percent of programming
effort goes into maintenance (Zelkowitz, Shaw,
and Gannon 1979), decomposing programs by behavior
must be a common occurence.

Automatic slicing requires that behavior be
specified in a certain form. If the behavior of
interest can be expressed as the values of some
sets of variables at some set of statements, then
this specification is said to be a slicing crite-
rion. Dataflow analysis (Hecht 1977) can tind all
the program code which might have influenced the
specified behavior, and this code is called a
slice of the program. A slice is itself an
executable program, whose behavior must be identi-

Dependences used by Slicing

S1: A= B*C S1: if (A)then
S2: C:=A*E+1 S2- B=C+D
S2 is “Data Dependent” S2 is “Control Dependent” on S1

onS

Probabilistic Programs have new dependences

* Figure represents
p(x,y,z) = p(zlx,y).p(x).p(¥)
* There is no dependence between x and y
\/ * On the other hand, if z (or some

descendant of z) is observed, then x
depends on y and vice versa

* This is called “observe dependence”

Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, Selva Samuel.
Slicing Probabilistic Programs, In PLDI '14: Programming Language Design and
Implementation, June 2014

http://research.microsoft.com/apps/pubs/default.aspx?id=208584

Slicing Probabilistic Programs

Chung-Kil Hur *

Seoul National University

Aditya V. Nori

Microsoft Research

gil.hur@cse.snu.ac.kr adityan@microsoft.com

Abstract

Probabilistic programs use familiar notation of programming lan-
guages to specify probabilistic models. Suppose we are interested
in estimating the distribution of the return expression r of a prob-
abilistic program P. We are interested in slicing the probabilistic
program P and obtaining a simpler program SLI(P) which retains
only those parts of P that are relevant to estimating 7, and elides
those parts of P that are not relevant to estimating r. We desire that
the SLI transformation be both correct and efficient. By correct, we
mean that P and SLI(P) have identical estimates on . By efficient,
we mean that estimation over SLI(P) be as fast as possible.

We show that the usual notion of program slicing, which tra-
verses control and data dependencies backward from the return ex-
pression 7, is unsatisfactory for probabilistic programs, since it pro-
duces incorrect slices on some programs and sub-optimal ones on
others. Our key insight is that in addition to the usual notions of
control dependence and data dependence that are used to slice non-

probabilistic programs, a new kind of dependence called observe
') 1. icac rs 11 i 1, Ny M N

Sriram K. Rajamani Selva Samuel

Microsoft Research Microsoft Research

sriram@microsoft.com t-ssamue@microsoft.com

1. Introduction

Probabilistic programs are “usual” programs (written in languages
like C or Java or LISP or ML) with two added constructs: (1)
the ability to draw values at random from distributions, and (2)
the ability to condition values of variables in a program through
observe statements (which allow data from real world observa-
tions to be incorporated into a probabilistic program). A variety of
probabilistic programming languages and systems have been pro-
posed [2, 10-12, 18, 20, 23, 26]. However, unlike “usual” programs
which are written for the purpose of being executed, the purpose of
a probabilistic program is to implicitly specify a probability dis-
tribution. Probabilistic programs can be used to represent proba-
bilistic graphical models [19], which use graphs to denote condi-
tional dependences between random variables. Probabilistic graph-
ical models are widely used in statistics and machine learning, with
diverse application areas including information extraction, speech
recognition, computer vision, coding theory, biology and reliability
analysis.
Danhohilictio infe ic th, Il £ H Lici

Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, Selva Samuel.

Slicing Probabilistic Programs, In PLDI '14: Programming Language Design
and Implementation,
Jue 2014

A Theory of Slicing for Imperative Probabilistic Programs

TORBEN AMTOFT, Kansas State University, USA
ANINDYA BANERJEE, IMDEA Software Institute, Spain

Dedicated to the memory of Sebastian Danicic.

We present a theory for slicing imperative probabilistic programs containing random assignments and “ob-
serve” statements for conditioning. We represent such programs as probabilistic control-flow graphs (pCFGs)
whose nodes modify probability distributions. This allows direct adaptation of standard machinery such as
data dependence, postdominators, relevant variables, and so on, to the probabilistic setting. We separate the
specification of slicing from its implementation:

(1) first, we develop syntactic conditions that a slice must satisfy (they involve the existence of another
disjoint slice such that the variables of the two slices are probabilistically independent of each other);

(2) next, we prove that any such slice is semantically correct;

(3) finally, we give an algorithm to compute the least slice.

To generate smaller slices, we may in addition take advantage of knowledge that certain loops will terminate
(almost) always.

Our results carry over to the slicing of structured imperative probabilistic programs, as handled in recent
work by Hur et al. For such a program, we can define its slice, which has the same “normalized” semantics
as the original program; the proof of this property is based on a result proving the adequacy of the semantics
of pCFGs w.r.t. the standard semantics of structured imperative probabilistic programs.

CCS Concepts: » Theory of computation — Probabilistic computation; Program semantics; - Soft-
ware and its engineering — Correctness; Automated static analysis;

Additional Key Words and Phrases: Probabilistic programming, program slicing, probabilistic control-flow
graphs

ACM Reference format:

Torben Amtoft and Anindya Banerjee. 2020. A Theory of Slicing for Imperative Probabilistic Programs. ACM
Trans. Program. Lang. Syst. 42, 2, Article 6 (April 2020), 71 pages.

https://doi.org/10.1145/3372895

http://research.microsoft.com/apps/pubs/default.aspx?id=208584

Probabilistic Programming

Andrew D. Gordon

Microsoft Research
adg@microsoft.com

Thomas A. Henzinger

IST Austria
tah@ist.ac.at

Aditya V. Nori

Microsoft Research
adityan@microsoft.com

Sriram K. Rajamani

Microsoft Research

sriram@microsoft.com

Abstract

Probabilistic programs are usual functional or imperative programs
with two added constructs: (1) the ability to draw values at random
from distributions, and (2) the ability to condition values of vari-
ables in a program via observations. Models from diverse applica-
tion areas such as computer vision, coding theory, cryptographic
protocols, biology and reliability analysis can be written as proba-
bilistic programs.

Probabilistic inference is the problem of computing an explicit
representation of the probability distribution implicitly specified by
a probabilistic program. Depending on the application, the desired
output from inference may vary—we may want to estimate the
expected value of some function f with respect to the distribution,
or the mode of the distribution, or simply a set of samples drawn
from the distribution.

In this paper, we describe connections this research area called
“Probabilistic Programming™ has with programming languages and
software engineering, and this includes language design, and the
static and dynamic analysis of programs. We survey current state
of the art and speculate on promising directions for future research.

application areas including information extraction, speech recog-
nition, computer vision, coding theory, biology and reliability anal-
ysis.

Probabilistic inference is the problem of computing an explicit
representation of the probability distribution implicitly specified
by a probabilistic program. If the probability distribution is over
a large number of variables, an explicit representation of the joint
probability distribution may be both difficult to obtain efficiently,
and unnecessary in the context of specific application contexts. For
example, we may want to compute the expected value of some
function f with respect to the distribution (which may be more effi-
cient to calculate without representing the entire joint distribution).
Alternatively, we may want to calculate the most likely value of the
variables, which is the mode of the distribution. Or we may want
to simply draw a set of samples from the distribution, to test some
other system which expects inputs to follow the modeled distribu-
tion.

The goal of probabilistic programming is to enable probabilis-
tic modeling and machine learning to be accessible to the work-
ing programmer, who has sufficient domain expertise, but perhaps

not enough expertise in probability theory or machine learning. We
svich to hide the detaile of interence ingide the comnpiler and mn,

Andrew D. Gordon, Thomas A. Henzinger,
Aditya V. Nori, Sriram K. Rajamani,
Probabilistic programming, ICSE-FoSE 2014

Programs + Models

Using compilers and runtimes
to make ML systems flexible
and efficient

Using ML to provide
recommendations during the
software life cycle

Having programs adapt when
specifications (eg, formats)
change

Having programs “self-tune”
when environments change

Probabilistic programs: General framework to
express rules and examples

Deep combinations of program analysis ideas with
ML ideas have the potential to scale probabilistic
inference

Challenges and Opportunities (1)

Adaptive specifications and environments
d Need base“nes and benChmarkS, that Thanks for choosing American Airlines m}ﬁ 1:];;éfs‘£cﬁz‘ammﬂﬂmllgsamwsmmm s

FID | | | PATIDI234~ S~ MLl | | JONES - WILLIAM ~ A~ III| | 19610615 | ®-| |C
PV 112000200201 | | | 004777~ LEBAUER - SIDNEY ~d. | | [SUR| | - | | ADH | A0

L] L
Ca pt u re evo I u t I O n Ove r t I l I I e Here's the trp you booked on Orbitz. You'l also find links to other great offes. ALY [L| | PENICILLIN| | PRODUCES HIVES - RASH - LO3S OF APPETITE

* Need metrics to measure manual effortin
updating annotations as well as precision W
and recall over time

* Need new user interaction models for L L = o %

04:28 PM -

Record locator:

aaaaaaaaaaa racuse

involving annotators and users when the = as
system needs human help B =
i ? LN

w08)
i Mens Running Shoes - Decathlon - decathlon.co.uk
https:/www.decathlon.co.uk ~

-

o UmeWitha | - earn miles even when

mobile boarding pass AL &
6% | youarentflying 0

ontheMbanagepopma IR

A8

Possibility to develop a new field: “model
and program engineering”, on how models
and programs evolve over time.

act us vacy

Challenges and Opportunities (2)

Assurance of ML/Al systems using verified monitoring
* Can we write partial specifications for safety critical ML/Al systems?

* Can we synthesize monitors to “safeguard” such systems even if the ML/AI
algorithms are hard to verify?

 How do we evolve the specifications over time?

“An Inductive Synthesis Framework for Verifiable Reinforcement Learning”, He Zhu, Zikang Xiong, Stephen Magill,
Suresh Jagannathan, PLDI 2019

Challenges and Opportunities (3)

Practical and usable frameworks to combine domain knowledge (rules)
with empirical knowledge (examples and data)

* Technical challenge:
 Scaling probabilistic inference
* Usable programming languages and notation

* Industrial challenge: Development life cycle and tools for probabilistic
programs

* Educational challenge:

* Developing educational material and pedagogy for modeling rules and
empirical knowledge together

