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Abstract

Reward decomposition, which aims to decompose the full reward into multiple
sub-rewards, has been proven beneficial for improving sample efficiency in re-
inforcement learning. Existing works on discovering reward decomposition are
mostly policy dependent, which constrains diversified or disentangled behavior be-
tween different policies induced by different sub-rewards. In this work, we propose
a set of novel policy-independent reward decomposition principles by constraining
uniqueness and compactness of different state representations relevant to different
sub-rewards. Our principles encourage sub-rewards with minimal relevant features,
while maintaining the uniqueness of each sub-reward. We derive a deep learning
algorithm based on our principle, and refer to our method as RD2, since we learn
reward decomposition and disentangled representation jointly. RD2 is evaluated on
a toy case, where we have the true reward structure, and chosen Atari environments
where the reward structure exists but is unknown to the agent to demonstrate the
effectiveness of RD2 against existing reward decomposition methods.

1 Introduction

Since deep Q-learning was proposed by Mnih et al. [2015], reinforcement learning (RL) has achieved
great success in decision making problems. While general RL algorithms have been extensively
studied, here we focus on those RL tasks with multiple reward channels. In those tasks, we are
aware of the existence of multiple reward channels, but only have access to the full reward. Reward
decomposition has been proposed for such tasks to decompose the reward into sub-rewards, which
can be used to train RL agent with improved sample efficiency.

Existing works mostly perform reward decomposition by constraining the behavior of different
policies induced by different sub-rewards. Grimm and Singh [2019] propose encouraging each policy
to obtain only its corresponding sub-rewards. However, their work requires that the environment
be reset to arbitrary state and cannot be applied to general RL settings. Lin et al. [2019] propose
encouraging the diversified behavior between such policies, but their method only obtains sub-rewards
on transition data generated by their own policy, therefore it cannot decompose rewards for arbitrary
state-action pairs.

In this paper, we propose a set of novel principles for reward decomposition by exploring the relation
between sub-rewards and their relevant features. We demonstrate our principles based on a toy
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environment Monster-Treasure, in which the agent receives a negative reward rmonster when it runs
into the wandering monster, and receives a positive reward rtreasure when it runs into the treasure
chest. A good decomposition would be to split the reward r into rmonster and rtreasure, where only
some features are relevant to each sub-reward. To be specific, only the monster and the agent are
relevant to predicting rmonster. A bad decomposition could be splitting the reward into r

2 and r
2 , or r

and 0. The first one is not compact, in the sense that all features are relevant to both sub-rewards. The
latter one is trivial, in the sense that none of the features is relevant to the 0 sub-reward. We argue that
if each of the sub-reward we use to train our agent is relevant to limited but unique features only, then
the representation of sub-returns induced by sub-rewards would also be compact and easy to learn.

Motivated by the example above, we propose decomposing a reward into sub-rewards by constraining
the relevant features/representations of different sub-rewards to be compact and non-trivial. We first
derive our principles for reward decomposition under the factored Markov Decision Process(fMDP).
Then we relax and integrate the above principles into deep learning settings, which leads to our
algorithm, Reward Decomposition with Representation Disentanglement(RD2). Compared with
existing works, RD2 can decompose reward for arbitrary state-action pairs under general RL settings
and does not rely on policies. It is also associated with a disentangled representation so that
the reward decomposition is self-explanatory and can be easily visualized. We demonstrate our
reward decomposition algorithm on the Monster-Treasure environment discussed earlier, and test
our algorithm on chosen Atari Games with multiple reward channels. Empirically, RD2 achieves the
following:

• It discovers meaningful reward decomposition and disentangled representation.
• It achieves better performance than existing reward decomposition methods in terms of

improving sample efficiency for deep RL algorithms.

2 Background and Related Works

2.1 MDP

We consider general reinforcement learning, in which the interaction of the agent and the environment,
can be viewed as a Markov Decision Process (MDP)[Puterman, 1994]. Denoting the state space by
S, action space by A, the state transition function by P , the action-state dependent reward function
by R and γ the discount factor, we write this MDP as (S,A,R, P, γ). Here a reward r is dependent
on its state s ∈ S and action a ∈ A.

r = R(s, a) (1)
A common approach to solving an MDP is by estimating the action-value Qπ(s, a), which represents
the expected total return for each state-action pair (s, a) under a given policy π.

2.2 Factored MDP

Our theoretical foundation is based on factored MDP (fMDP). In a factored MDP [Boutilier et al.,
1995, 1999], state s ∈ S can be described as a set of factors s = (x1, x2, ..., xN ). In some factored
MDP settings, reward functionR can be decomposed into multiple parts where each part returns a
sub-reward, or localized reward. Let si be a fixed subset of factors in s, denoted by si ⊂ s, localized
rewards ri only depend on sub-states:

ri = Ri(si, a) (2)

and the full reward is obtained byR(s, a) =
∑K
i=1Ri(si, a).

In most environments, while the reward structure exists latently, we do not know the sub-reward
functionsRi nor the sub-rewards ri and only the full reward r is observable.

2.3 Reward Decomposition

Having access to sub-rewards ri can greatly accelerate training in RL [Schneider et al., 1999, Littman
and Boyan, 1993, Russell and Zimdars, 2003, Bagnell and Ng, 2006, Marthi, 2007, Van Seijen
et al., 2017, OpenAI et al., 2019]. Hybrid Reward Architecture (HRA) [Van Seijen et al., 2017]
proposes learning multiple Q-functions, each trained with its corresponding sub-reward and showed
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significant improvements compared to training a single Q-function. However, in HRA the rewards
are decomposed manually. In Dota 2 [OpenAI et al., 2019], over 10 reward types associated with
different parts of the state, e.g. gold, kills, mana, etc., are designed intrinsically to help the agent plan
better. Reward decomposition can also be used for multi-agent settings [Russell and Zimdars, 2003].

Given the potential of utilizing sub-rewards, finding a good reward decomposition in an unknown
environment becomes an important line of research. Reward decomposition seeks to find sub-rewards
ri without any domain knowledge. Grimm and Singh [2019] and Lin et al. [2019] both make
an assumption of policy disagreement to perform reward decomposition. Lin et al. [2019] first
perform reinforcement learning jointly with reward decomposition without domain knowledge or
manipulating environments. However, Lin et al. [2019] can only compute sub-rewards from sub-
values for transition data generated by their own policy, making it hard to apply learned sub-rewards
to downstream tasks such as training new agents.

2.4 Disentangled Representation

A recent line of work has argued that representations that are disentangled are an important step
towards a better representation learning [Bengio et al., 2013, Peters et al., 2017, Higgins et al., 2017,
Chen et al., 2016, 2018, Hsu et al., 2017]. The key idea is that a disentangled representation should
separate the distinct, informative factors of variations in the data. Particularly, entropy reduction
has been used for representation disentanglement in prior works [Li et al., 2019]. Different from
those works, we focus on reward decomposition in RL, and learn compact representation for each
sub-reward. Although we encourage the compactness and diversity of different representations
for different sub-rewards, there are usually some overlap between different representations, which
is different from the idea of disentangled representation. For example, in the Monster-Treasure
environment, the agent information is important for representations of both rmonster and rtreasure.

3 Minimal Supporting Principle for Reward Decomposition

In this section, we introduce our principles for finding minimal supporting reward decomposition
under fMDP. The first principle is that the relevant features of the sub-rewards should contain as
little information as possible, which implies compactness. To define relevant features formally, we
first define minimal sufficient supporting sub-state. We further define K-minimal supporting reward
decomposition, which directly leads to our second principle: each sub-reward should be unique in
that their relevant features contain exclusive information. The second principle encourages diversified
sub-rewards and features that represent different parts of the reward dynamics.

3.1 Minimal Sufficient Supporting Sub-state

We first consider an fMDP with known sub-reward structures. E.g., rmonster and rtreasure in the
Monster-Treasure environment introduced in the Introduction part. Let state be composed ofN factors,
denoted by s = {x1, x2, x3, ..., xN} and denote the i−th sub-reward at state s by ri(s), i ∈ [1,K].
For example, state in the Monster-Treasure environment is {sagent, smonster, streasure}, where
sagent/smonster/streasure represent the state of the agent/monster/treasure chest respectively. Sub-
state si is extracted from state s by selecting a subset of variables. For sub-reward rmonster, the best
sub-state would be {sagent, smonster} because it contains only relevant information for predicting
rmonster. Motivated by this observation, we define minimal sufficient supporting sub-state in
definition 1.
Definition 1. A sub-state si ⊂ s is the minimal sufficient supporting sub-state of ri if

H(si) = min
ŝi∈Mi

H(ŝi)

Mi = {ŝi|H(ri|ŝi, a) = min
s̄
H(ri|s̄, a), s̄ ∈ s}

where H(ri|si, a) denotes conditional entropy.

If si ∈Mi butH(si) 6= minŝi∈Mi
H(ŝi), we refer to such sub-state as sufficient supporting sub-state.

The intuition of minimal sufficient supporting sub-state is to contain all and only the information
required to compute a sub-reward. Note that H(ri|si, a) is not necessarily 0 because of intrinsic
randomness.
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3.2 K-Minimal Supporting Reward Decomposition

To introduce our principles for reward decomposition, we start from several undesired trivial decom-
positions and one specific desired decomposition in the Monster-Treasure environment discussed in
the previous section.

The first trivial decomposition would be splitting the total reward into two equivalent halves, i.e.
r
2 and r

2 , where the minimal sufficient supporting state for both channels would be s1 = s2 = s.
Another trivial decomposition is r1 = r and r2 = 0 with corresponding minimal sufficient supporting
sub-states s1 = s and s2 = ∅, notice that the second channel would not contain any information.
A more general case of trivial decomposition would be r1 = r + f(sagent) and r2 = −f(sagent)
with corresponding minimal sufficient supporting sub-states s1 = s and s2 = {sagent}, where f is
an arbitrary function. The second channel does contain information but is in fact redundant. The
last undesired decomposition would be r1 = rmonster + 1

2rtreasure and r2 = 1
2rtreasure where the

corresponding minimal sufficient supporting sub-states are s1 = s and s2 = {sagent, streasure}.
streasure in s1 is clearly redundant.

The ideal decomposition for the Monster-Treasure environment would be to decompose the reward r
into rmonster and rtreasure, because it is a compact decomposition in which each sub-reward has a
compact minimal sufficient supporting sub-state. To distinguish the ideal decomposition from the
trivial ones, the first principle is that each channel should contain exclusive information that other
channels do not. On top of that, the second principle is that the sum of the information contained in
each channel should be minimized.

Motivated by above observation, we define K-minimal supporting sub-rewards as follows:
Definition 2. Let si, ŝi be the minimal sufficient supporting sub-state for ri, r̂i correspondingly. A
set of sub-rewards {ri(s)}Ki=0 forms a K-minimal supporting reward decomposition if:

K∑
i

H(si) = min
{r̂i}∈C

K∑
i

H(ŝi)

C =

{
{r̂i}|

K∑
i=1

r̂i = r, ŝi ( ŝj ∀i, j

}

Note that there could be multiple K-minimal reward decompositions, e.g. swapping two channels of
a K-minimal reward decomposition will create a new one. The intuition of K-minimal supporting
reward decomposition is to encourage non-trivial and compact decomposition, while no sub-state si
is a subset of other sub-state sj .

4 RD2 Algorithm

Minimal supporting principles define our ideal reward decomposition under factored MDP, where se-
lecting factors is inherently optimizing a boolean mask over factors. However, complex environments
pose more challenges in developing a practical algorithm. To be specific, the first challenge is to
allow complex states such as raw images as input, rather than extracted factors. The second challenge
is that estimating entropy in deep learning using either sample-based or neural estimation methods
could be time-consuming. In this section we propose several techniques to overcoming these two
challenges.

4.1 Objectives

To overcome the challenge of taking raw images as input, instead of viewing pixels as factors, we use
a H ′ ×W ′ ×N feature map f(s) as a map of factors, each encoding regional information. Here H ′
and W ′ represent the height and width after convolution, and N is the number of channels of feature
map.

In Section 3., we assume that si picks a fixed subset of s as sub-state, which is inherently a fixed
binary mask. However, in image-based RL environment, even when we are using feature map instead
of raw pixels, it is not realistic to assume that the mask would be fixed for all states. This is similar to
the attention mechanism, e.g. in the Monster-Treasure environment the mask would need to follow
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the monster’s position to extract its information. To this end, we allow the mask on the feature map
to be dependent on state s, given by mi(s). Sub-state ŝi can then be represented by

ŝi = f(s)�mi(s) (3)

Definition 2 implies that the final objective for a reward decomposition is reached by minimizing∑
H(ŝi). Normally we would first find the minimal sufficient supporting state si of a given reward

decomposition, represented by ri, then evaluate
∑
H(si). However, this objective cannot back

propagate to ri since the operation of finding minimal sufficient supporting sub-state is not derivable.

To tackle this issue, we let ri be directly dependent of ŝi by ri = gθi(ŝi, a). The first constraint for
K-minimal supporting reward decomposition then leads to a straightforward objective:

Lsum = (r −
K∑
i=1

gθi(ŝi, a))2 (4)

Note that ŝi would always be a sufficient supporting sub-state for ri, but not necessarily minimal.
However, the minimal condition in definition 1 can be approximated by minimizing H(ŝi), which
is also the objective of K-minimal supporting reward decomposition given by definition 2. So our
second objective is given by

Lmini =

K∑
i=1

H(ŝi) (5)

The above two terms are still not suffice for finding K-minimal supporting reward decomposition. The
second constraint of definition 2, which is the non-trivial requirement, suggests that si ( sj , ∀i, j,
which is also equivalent to H(ŝi|ŝj) > 0 in general cases. This constraint is found critical in our
experiments. Also, as an alternative, an equivalent objective according to definition 1 isH(ri|ŝi, a) <
H(ri|ŝj , a).

Instead of simply demanding inequality, we further maximize H(ŝi|ŝj) or H(ri|ŝj , a) to encourage
diversity between sub-states. The last objective is given by

Ldiv1 = −
K∑
i=1

K∑
j=1,j 6=i

H(ŝi|ŝj) (6)

or

Ldiv2 = −
K∑
i=1

K∑
j=1,j 6=i

H(ri|ŝj , a). (7)

4.2 Surrogate Loss for Entropy Estimation

Computing Lmini and Ldiv requires entropy estimation. Since the state space in Atari is very
large, using sampling-based entropy estimation methods is unrealistic. There exist reliable methods
on neural entropy estimation, but are in general time-consuming. In our problem, we introduce
approximate losses that are reasonable and convenient in our setting.

Approximating H(ŝi) Recall that H(cX) = H(X) + log(|c|) and H(X|cY ) = H(X|Y ) when
c is a constant and c 6= 0. Since we let mi ∈ (0, 1)N and that ŝi = f(s) � mi(s), an empirical
estimation for H(ŝi) can be derived:

H(ŝi) ≈ H(f(s)) +

N∑
l=1

log(mi,l(s)) ≤ H(f(s)) + log(

N∑
l=1

mi,l(s)) (8)

where N is the size of the feature map. Note that if m is fixed, the first approximation becomes
equality. The last inequality gives an upper bound that resolves numerical issues of taking log of a
small float. Since the entropy of the feature map H(f(s)) is irrelevant to the mask, we can optimize
H(si) approximately by minimizing the second term:

Lmini =

K∑
i=1

log(

N∑
l=1

mi,l(s)) (9)
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Approximating H(ŝi|ŝj) Inspired by the method for estimating H(ŝi), we propose using an
intuitive approximate loss for H(ŝi|ŝj) that resembles Lmini:

Ldiv1 = −
K∑
i=1

K∑
j=1,j 6=i

log(

N∑
l=1

ReLU(mi,l(s)−mj,l(s))). (10)

To further explain the intuition behind Ldiv1, consider a factored MDP where a factor is either chosen
or not chosen for each sub-state. Note that a factor xk will contribute to H(ŝi|ŝj) only if xk is
chosen by ŝi but not chosen by ŝj , i.e. mi,k = 1 and mj,k = 0. A simple way to extend this logical
expression to real values is to use ReLU(mi,k −mj,k).

Approximating H(ri|ŝj , a) Estimating H(ri|ŝj , a) could be complicated in general, however if
we assume that H(ri|ŝj , a) is only related to the logarithm of its variance (e.g. Gaussian distribution),
i.e. H(ri|ŝj , a) ∼ log(V ar(ri|ŝj , a)), then a surrogate objective can be derived.

Note the definition of variance V ar(ri|ŝj , a) = E [ri − E(ri|ŝj , a)]
2. To obtain an estimation for

E(ri|ŝj , a), we use a network r̂i = gθij (ŝj , a) and minimizeMSE(ri, r̂i) over parameter θij . We can
then use r̂i as an estimation for E(ri|ŝj , a) and MSE(ri, r̂i) as an approximation for V ar(ri|ŝj , a).
Thus maximizing MSE(ri, r̂i) over ŝj will be equivalent to increasing log(V ar(ri|ŝj , a)), i.e.
H(ri|ŝj , a).

Ldiv2 = −
K∑
i=1

K∑
j=1,j 6=i

log(min
θij

(gθi(ŝi, a)− gθij (ŝj , a))2). (11)

Ldiv2 penalizes information in ŝj that is related to ri, which would enforce different channels to
contain diversified information.

The final objective of RD2 is given by:

L = αLsum + βLmini + γLdiv (12)

where Ldiv has two alternatives and α/β/γ are coefficients. We provide the pseudo code of our
algorithm in Appendix 1.

5 Experiment

In our experiments, we aim to answer the following questions: (1) Can RD2 learn reward decomposi-
tion? (2) Does RD2 learn meaningful mask on state input? (3) How does RD2 perform in terms of
using decomposed rewards to improve sample efficiency?

5.1 Toycase

Figure 1: Monster-
Treasure

In this section, we test RD2 with mini-gridworld [Chevalier-Boisvert et al.,
2018], configured to the Monster-Treasure environment discussed earlier as
shown in Figure 1. In this environment, rtreasure = 2 when the agent (red
triangle) finds the treasure (green grid), otherwise rtreasure = 0. The agent
also receives a reward of rmonster = −2 when it collides with the moving
monster (blue ball), otherwise rmonster = 0. Note that if the agent finds
the treasure and collides with the monster at the same time, the reward r =
rtreasure + rmonster will also be 0.

The coordinates of the objects are extracted into factors and are given by
{agentx, agenty,monsterx,monstery, treasurex, treasurey}. The net-
work takes as input the factors and the action, and is trained with equation 12 using the Ldiv1

variant. The mask in this case is trainable but does not depend on the input. Note that only
r = rtreasure + rmonster is used as a training signal.

We find that RD2 is able to completely separate rtreasure and rmonster trained only with r. As
shown in Figure 2, the MSE loss for rtreasure and rmonster eventually converges to 0. The mask
gradually converges to the optimal mask, where ŝ1 = {agentx, agenty, treasurex, treasurey} and
ŝ2 = {agentx, agenty,monsterx,monstery}.
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(a) Treasure reward error (b) Treasure mask (c) Monster reward error (d) Monster mask

Figure 2: Monster-Treasure training curves

rtreasure rmonster r predicted rtreasure predicted rmonster predicted r
2.00 0.00 2.00 1.85 0.13 1.99
0.00 -2.00 -2.00 -0.14 -1.86 -2.00
0.00 0.00 0.00 0.11 -0.15 -0.04
2.00 -2.00 0.00 1.92 -1.84 0.08

Table 1: Example of reward decomposition on Monster-Treasure

In Monster-Treasure, there are two possible (s, a) pair that would receive a reward of 0. One is
rtreasure = 0 and rmonster = 0, which is trivial. The second one is rtreasure = 2 and rmonster =
−2, meaning that the agent finds the treasure but bumps into the monster at the same time. It is
notable that while r does not show the difference between those two cases, RD2 is capable of telling
the difference even when the total rewards are both 0, since both rtreasure and rmonster are predicted
accurately as shown in Table 1.

One specific observation due to continuous masking between 0 and 1 is that, although both channel
masks have non-zero values on agent related factors, values of channel 2 are significantly larger than
values of channel 1 due to Ldiv1. However, as long as the value does not go to zero, we can consider
that channel 1 views agent coordinates as required factors.

5.2 Atari Domain

We also run our algorithm on a more complicated benchmark called Atari. Following Lin et al. [2019],
We experiment with the Atari games that have a structure of multiple reward sources. We first present
the results of reward decomposition and visualize the trained masks using saliency maps on several
Atari games, and then show that our decomposed rewards can accelerate the training process of
existing RL algorithms. We show that RD2 achieves much better sample efficiency than the recently
proposed reward decomposition method DRDRL [Lin et al., 2019] and Rainbow [Hessel et al., 2018].

Reward decomposition. We demonstrate that RD2 can learn meaningful reward decomposition on
Atari games which has multiple-reward structure. Figure 3 shows the results. In the game UpNDown,
the agent receives a reward of 3 when it hits a flag, and receives a reward of 2 when it jumps on
another car. We show that our algorithm can decompose these two reward signals into two channels
— when it jumps on another car, the first channel is activated and outputs a reward of 2; when it hits a
flag, the second channel will dominate the reward prediction and output a reward close to 3.

Visualization. To better understand how our algorithm works, we visualize the saliency map [Si-
monyan et al., 2013] by computing the absolute value of the Jacobian ∂ri

∂s for each channel (i = 1, 2)
in Figure 4 for the games UpNDown and Gopher. We find that RD2 successfully learns meaningful
state decomposition. In UpNDown (top row), the first channel (blue) attends to the flag when the
agent hits it (top left), while the second channel (pink) attends to other cars which the agent jumps on
(top right).

In Gopher (bottom row), the agent receives a reward of 0.15 when it fills the hole in ground(bottom
left) and a reward of 0.8 when it catches a gopher (bottom right). We notice that RD2 learns a saliency
map that accurately distinguishes these two cases. The first channel (blue) attends to the ground and
predicts the 0.15 reward while the second channel (pink) attends to the gopher and predicts the 0.8
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𝑟( = 0.34
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𝑟" = 1.98
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𝑟" = 0.24
𝑟( = 0.59
𝑟)*)+, = 0.8

Figure 3: Reward decomposition results.

reward. We also find that with the help of dynamic mask, the second channel (pink) always have
attention on the gopher.

Figure 4: Saliency map visualization.

Joint training performance. We now simultaneously
train the sub-reward function and the sub-Q network and
use the decomposed reward to directly train the sub-Q net-
works for each channel as in Lin et al. [2019], Van Seijen
et al. [2017]. In brief, we train multiple Q networks and
introduce an additional sub-Q TD error defined by

LTDi
= [Qi(s, a)− ri − γQi(s′, a′)]

2 (13)

Note that we use global action a′ = argmaxa
∑
iQi(s, a)

instead of local actions a′i = argmaxaQi(st+1, a) to as-
sure unchanged optimal Q-function. For a detailed version
of combining RD2 with Q-learning, please refer to Ap-
pendix A.

Q-learning combined with RD2 shows great improvements
in sample efficiency compared with both Rainbow and
DRDRL as shown in Figure 5. At early epochs the curves
of RD2 are below baselines due to noise in sub-reward
signals. But once the reward decomposition part was
partly trained, it accelerates an agent’s learning process
significantly.

Figure 5: Joint training performance on Atari games. Each curve is averaged by three random seeds.

6 Discussion and Conclusion

In this paper, we propose a set of novel reward decomposition principles which encourage sub-rewards
to have compact and non-trivial representations, termed RD2. Compared with existing methods, RD2
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is capable of decomposing rewards for arbitrary state-action pairs under general RL settings and does
not rely on policies. Experiments demonstrate that RD2 greatly improves sample efficiency against
existing reward decomposition methods. One possible explanation for the performance of RD2 is
its relation to learning compact state representation. Each learned sub-reward is dependent only on
a subset of the state, allowing the corresponding sub-value to also depend on a subset of the state
and thus learn a compact representation for such sub-values. Therefore, RD2 naturally has a closer
connection to learning compact representation for sub-values and speed up RL algorithms.

In the future, we will explore reward decomposition under multi-agent RL setting. The state in
multi-agent RL may have natural graph structure modeling agents’ interaction. We will explore how
to leverage such structure for a better reward decomposition.

Broader Impact

Reinforcement learning has a wide range of applications in real life. In board games [Schrittwieser
et al., 2019], RL has shown that it has the potential to beat human and therefore provide valuable
insights. In optimal control, RL has also been widely used as a search policy that guarantees
convergence. In general planning problems such as traffic control or recommendation system,
introducing RL is also an active line of research.

Reward decomposition has a lot of potential impacts, especially in multi-agent setting, where each
agent should obtain a portion of the total reward, and in interpretation-required problems such as
recommendation system. RD2 is capable of both decomposing rewards into sub-rewards, and on top
of that provide meaningful interpretation due to disentangled representation. Integrating RD2 with
those settings would provide benefits to both training aspects and interpretability aspects.

However, the rise of autonomous analytic algorithms will inevitably decrease the demand for human
data analysts.
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A Algorithm

Algorithm 1 provides pseudo code for RD2 on the Atari environment, which learns sub-Q network
with jointly learned reward decomposition. Note that RD2 can plug in any Q-learning based methods.
We found that the second variant of Ldiv works better in Atari. At each time step, we first interact
with environments, collect samples in replay buffer (Line 3 to 6). We then train the sub-reward
prediction network to predict the total reward with minimal sufficient supporting sub-state (Line 9).
We also train the auxiliary prediction network to predict sub-reward ri using sub-state ŝj (Line 10) to
compute Ldiv2. After that, we update the mask network mi to encourage diversity between sub-states
(Line 13).

To train our RL agent, we first perform standard Q-learning using TD error (Line 16) with the full
reward. Simultaneously, we use the decomposed sub-rewards to directly train sub-Q network with a
global action (Line 20, 21).

Algorithm 1 RD2: Reward Decomposition with Representation Decomposition

1: Initialize replay buffer D, the parameters of sub-Q network φi, sub-reward prediction net-
work θi(i = 1, 2, ...,K), auxiliary prediction network θij(i 6= j), and mask network
mi(i = 1, 2, ...,K).

2: for time step t do
3: Receive observation st from environment.
4: Select action using ε-greedy policy at ← argmaxa

∑
iQφi(st, a).

5: Take action at, receive reward rt and next state st+1

6: Append (st, at, rt, st+1) to D.
7: if t mod nmini == 0 then
8: Sample training experiences (s, a, r, s′) from D.
9: Update parameters θi to minimize the Lsum in Eq. 4 and Lmini in Eq. 9.

10: Update parameters θij in Eq. 11: minθij (gθi(ŝi, a)− gθij (ŝj , a))2

11: if t mod ndiv == 0 then
12: Sample training experiences (s, a, r, s′) from D.
13: Update parameters mi to minimize Ldiv2 in Eq. 11.
14: if t mod nupdate == 0 then
15: Sample training experiences (s, a, r, s′) from D.
16: Perform standard Q-learning to update agent’s parameters φ to minimize TD error
17: φi ← φi − η1∇φi

(∑
iQφ̄i

(s, a)− (r + γmaxa′
∑
iQφi(s

′, a′))
)2
, ∀i

18: if t mod nsubq == 0 then
19: Sample training experiences (s, a, r, s′) from D.
20: Compute next action a′ = argmaxa′

∑
iQφi

(s′, a′)
21: Update parameters of sub-Q network φi with decomposed reward ri = gθi(ŝi, a)

22: φi ← φi − η2∇φi

(
Qφ̄i

(s, a)− (ri + γQφi(s
′, a′))

)2
, ∀i

B Hyper-parameters

We build our code using the supplied implementation of [Castro et al., 2018]. For all experiments
we use K = 2. However, K could vary depending on the games we choose. Following Castro
et al. [2018], we use η1 = 6.25e − 5. We use a large learning rate (α = 10 × η1) to minimize
Lsum. We sweep the learning rate β, γ, η2 in {1.0, 0.1, 0.01, 0.001, 0.0001, 0.00001}×η1 and finally
choose β = 0.0001 × η1, γ = 0.1 × η1, η2 = 0.0001 × η1. In RD2, we update parameters with
nmini = 4, ndiv = 16, nupdate = 4, nsubq = 4. We use Adam [Kingma and Ba, 2014] to optimize
all parameters.

C Ablation Study

To investigate the contribution of each loss term in algorithm 1, we we compare three variants of RD2:
(1) RD2 without Lsum; (2) RD2 without Lmini; (3) RD2 without Ldiv2. As shown in Figure 6, when
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we drop the Lsum term, RD2 is equivalent to learn with randomly decomposed reward. Therefore,
the performance deteriorates dramatically. When we drop the diversity encouraging term Ldiv2, we
get the trivial reward decomposition, which is not helpful to accelerate the training process. Finally,
we find that the minimal sufficient regularization term Lmini mainly contributes to the later training
process.

Figure 6: Ablation study

D Network Architecture

Figure 7 shows the diagram of RD2 to demonstrate the workflow. ri can then be plugged into any
Q-learning algorithm with multiple sub-Q functions. Note that only one of Ldiv1 or Ldiv2 is required.
In our toy experiment, we use Ldiv1. In Atari, we use Ldiv2.

Figure 7: RD2 work flow.

Figure 8 shows the detailed network architecture. Multiple arrows indicate different network for each
of the K reward channels.
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Figure 8: Network architecture of RD2.
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