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E2E Models

Transducer S2S

Attention mechanism No Yes

Building block RNN or Transformer RNN or Transformer

Streaming Natural Need to covert full attention to 
partial attention

Ideal operation scenario streaming offline
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High Performance RNN-T Model

Jinyu Li et al., "Developing RNN-T Models Surpassing High-Performance Hybrid Models with Customization Capability," in Proc. Interspeech, 2020.
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Improving RNN-T Training/Modeling

• Saving GPU memory

• Improving Initialization

• Improving Encoder
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High Memory Cost of RNN-T Training

• RNN-T model training has high 
memory cost

The tensor 𝑧𝑡,𝑢 after encoder and
prediction output combination has 3
dimensions: (T,U,D), while other models
usually work on 2 dimensions.

• T: acoustic feature length

• U: token sequence length

• D: dimension of hidden output

Prediction Encoder

Joint

softmax
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Function Merging

After the joint network,  there are 3 functions to get loss: 

o Linear : ℎ𝑡,𝑢 = 𝑊𝑦 𝑧𝑡,𝑢 + 𝑏𝑦
o Softmax: Pr 𝑘|𝑡, 𝑢 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ℎ𝑡,𝑢

𝑘

o Loss: 𝐿 = − lnPr 𝒚|𝒙

• With chain rule method, we need space for: 𝑧𝑡,𝑢 , ℎ𝑡,𝑢, Pr 𝑘|𝑡, 𝑢 , 
𝜕𝐿

𝜕 Pr 𝑘|𝑡,𝑢
, 
𝜕 Pr 𝑘|𝑡,𝑢

𝜕ℎ𝑡,𝑢
𝑘 ,

𝜕ℎ𝑡,𝑢
𝑘

𝜕𝑊𝑦
, 
𝜕ℎ𝑡,𝑢

𝑘

𝜕𝑏𝑦
and 

𝜕ℎ𝑡,𝑢
𝑘

𝜕𝑧𝑡,𝑢

• With merging linear, softmax and loss ,  we only need space for: 𝑧𝑡,𝑢, ℎ𝑡,𝑢,
𝜕𝐿

𝜕𝑊𝑦
, 
𝜕𝐿

𝜕𝑏𝑦
and 

𝜕𝐿

𝜕𝑧𝑡,𝑢
.

Jinyu Li, Rui Zhao, Hu Hu, Yifan Gong, "Improving RNN Transducer Modeling for End-to-End Speech Recognition," in Proc. ASRU, 2019.
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Initialization

• Initializing the prediction network with a 
pre-trained LM is not effective.

Prediction Encoder

Joint

softmax

Language
Model
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Initialization

• Initializing the prediction network with a 
pre-trained LM is not effective.

• Initializing the encoder network with

• CTC criterion

• CE criterion – alignment is needed: 
equally divide the word segment by 
the number of word piece units in this 
word. 

Prediction Encoder

Joint

softmax

OR

CTC 
training

CE 
training

Language
Model
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Improving Encoder – Hybrid Model

• Contextual layer trajectory LSTM [1]
• Decouple the tasks of temporal modeling and target 

classification with time-LSTM and depth-LSTM, 
respectively.

• Use future context frames to incorporate more 
information for stronger encoder outputs

J. Li, et al., “Improving Layer Trajectory LSTM With Future Context Frames”, in Proc. ICASSP 2019.
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Improving Encoder – RNN-T Model

• Contextual LSTM (cLSTM)
• Use future context frames to incorporate more 

information for stronger encoder outputs.

• Element-wise product is used to save the 
computational cost.
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T

T
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Experiment Setup

• Training data: 
• 65 thousand hours of transcribed anonymized Microsoft data

• Testing data:
• 1.8 million words test set covering 13 application scenarios.

• Hybrid models
• Language model: 5-gram (5 Gb decoding graph)
• Acoustic models

• LSTM
• contextual layer trajectory LSTM (cltLSTM)
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High-Performance Hybrid Models

• Our hybrid model training recipe is highly optimized with 3-stage 
optimization.

J. Li, et al., "High-Accuracy and Low-Latency Speech Recognition with Two-Head Contextual Layer Trajectory LSTM Model," in 
Proc. ICASSP, 2020.

Hybrid CE WER% MMI WER% T/S WER% Parameter 
number

Encoder 
lookahead 

LSTM 14.75 13.01 11.49 30 M 0

cltLSTM 11.15 10.36 9.34 63 M 480 ms
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RNN-T Models

We use MpN_FxL to denote the encoder structure and use MpN_x2 as 
the prediction network structure.

• M: the number of cells

• N: the projection layer size

• F: the number of lookahead frames at each layer

• L: the number of layers
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Impact of Initialization

Models Random CTC CE

1600p800_4x6 10.55 10.40 9.33

• Learning alignment information for the encoder may help RNN-T training to focus more on reasonable 
forward-backward paths instead of all the paths.

• All RNN-T models we trained later use CE initialization. 
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Comparison of RNN-T Models

Encoder 
network

Layers Lookahead 
Frames /layer

Cell size Projection size WER

1280p640_x6 6 0 1280 640 11.25
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Comparison of RNN-T Models

Encoder 
network

Layers Lookahead 
Frames /layer

Cell size Projection size WER

1280p640_x6 6 0 1280 640 11.25

1280p640_4x6 6 4 1280 640 9.81
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Comparison of RNN-T Models

Encoder 
network

Layers Lookahead 
Frames /layer

Cell size Projection size WER

1280p640_x6 6 0 1280 640 11.25

1280p640_4x6 6 4 1280 640 9.81

1600p800_4x6 6 4 1600 800 9.33

2048p640_4x6 6 4 2048 640 9.27

2048p640_4x8 8 4 2048 640 9.28

2560p800_4x6 6 4 2560 800 8.88

2560p800_2x6 6 2 2560 800 9.05
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Comparison of RNN-T Models

Encoder 
network

Layers Lookahead 
Frames /layer

Parameter 
number

Encoder 
lookahead

WER

1280p640_x6 6 0 62 M 0 11.25

1280p640_4x6 6 4 62 M 720 ms 9.81

1600p800_4x6 6 4 94 M 720 ms 9.33

2048p640_4x6 6 4 87 M 720 ms 9.27

2048p640_4x8 8 4 119 M 960 ms 9.28

2560p800_4x6 6 4 147 M 720 ms 8.88

2560p800_2x6 6 2 147 M 360 ms 9.05
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RNN-T vs. Hybrid

WER Encoder lookahead Size

LSTM (Hybrid) 11.49 0 124 Mb AM + 5 Gb decoding graph

1280p640_x6 11.25 0 248 Mb

cltLSTM (Hybrid) 9.34 480 272 Mb + 5 Gb decoding graph

2560p800_2x6 9.05 360 588 Mb
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Encoder Lookahead Doesn’t Translate to Overall Latency

• 1280p640_x6: 11*30ms = 330ms latency

• 2560p800_2x6: (1+12)*30ms = 390ms latency

• 2560p800_4x6: (-2+24)*30ms = 660ms latency

Frame duration is 30ms in the figure.
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Personalization RNN-T

Y. Huang, et al., “Rapid RNN-T Adaptation Using Personalized Speech Synthesis and Neural Language Generator," in Proc. Interspeech 2020.
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Rapid Speaker Adaptation - Challenges

• Massive number of model parameters

• Limited adaptation data (e.g. <=10 min)

• Imperfect supervision (unsupervised)



Our Proposed Approach

• Approach
• Train speaker embedding with small amount of source speech

• Use neural language generator to generate content relevant text

• Synthesize content relevant personalized speech  

• Adapt with source speech and synthesized speech

• Advantages
• Fundamentally alleviates data sparsity

• Gracefully circumvents the obstacle of explicit labeling error



Framework Review 

SUP: human transcription
UNSUP: ASR decoding result SUP: human transcription

UNSUP: ASR decoding result

SUP: human transcription
UNSUP: ASR decoding result

Y. Huang, et al., “Using personalized speech synthesis and neural language generator for rapid speaker adaptation,” in Proc. ICASSP 2020.



Adaptation Results

• Nice gain is obtained by leveraging TTS data. 

• Almost 10% WERR for unsupervised adaptation with only 1 minute 
data.



Streaming Transformer Transducer for 
speech recognition on large-scale 
dataset

X. Chen, et al., "Developing Real-time Streaming Transformer Transducer for Speech Recognition on Large-scale Dataset." arXiv preprint arXiv:2010.11395 (2020).
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Mocha

Background

Conformer

Transformer

LSTM-RNN

DNN

Fundamental network blocks

J. Li et al., “On the Comparison of Popular End-to-End Models for Large Scale Speech Recognition,” in Proc. Interspeech, 2020.

For offline SR, 
Transformer model 
shows better 
accuracy than LSTM, 
and Conformer
further improves its 
results. E2E ASR solution

Streaming method

Streaming
Transducer

Trigger 
attention

Streaming
CTC

For online SR, 
streaming transducer 
is more robust and 
shows better 
accuracy on large-
scale dataset
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Transformer Recap 
Step 0. Given input 𝑋

Following operations are conducted on multi-head in parallel, we 
take the i-th head as an example:

Step 1.1 Linear Transformation: 
𝑄𝑖 = 𝑊𝑞𝑋𝑖 , 𝐾𝑖 = 𝑊𝑘𝑋𝑖 , 𝑉𝑖 = 𝑊𝑣𝑋𝑖

Step 1.2. Compute Attention weight:

𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑖
𝑇𝐾𝑖

𝑑𝑚𝑜𝑑𝑒𝑙
)

Step 1.3. Linear combination values:
𝐻𝑖𝑑𝑑𝑒𝑛 = 𝛼𝑉𝑖

Step 2. Residual Connection and layer normalization. 

Step 3. Feed-forward network

Step 4. Residual Connection and layer normalization. 

Vaswani et al. “Attention is all you need” NIPS 2017
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Architecture

Transformer Transducer Conformer Transducer

Zhang et al., “Transformer Transducer: A Streamable Speech Recognition Model with Transformer Encoders and RNN-T Loss,” 

in Proc. ICASSP 2020

Gulati et al. “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proc. Interspeech, 2020.
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Challenges

Transformer Encoder

1) Memory and runtime cost increase linearly 
with respect to the history length.

2) Look-ahead window grows linearly with 
number of layers for small lookahead scenario. 

Transformer Encoder

32Zhang et al., “Transformer Transducer: A Streamable Speech Recognition Model with Transformer Encoders and RNN-T Loss,” 

in Proc. ICASSP 2020



Existing Solution

1) Chunk-wise method: Modeling chunks 
independently.

Pros: Efficient training and inference. 
Cons: Performance drop significantly due to loss 
of cross chunk information

2) Memory-based method: A memory to encode 
history information recurrently.

Memory Memory

Pros: History information is well modeled. 
Cons: Recurrent structure decreases training 
speed 33



Our Solution

• Compute attention weight {𝛼𝑡,𝜏} for time t over input sequence  {𝒙𝜏}, binary
attention mask {𝑚𝑡,𝜏} to control range of input {𝐱τ} to use

𝛼𝑡,𝜏 =
mt,𝜏exp(𝛽 𝑊𝑞𝒙𝑡

𝑇
𝑊𝑘𝒙𝜏 )

σ𝜏′mt,𝜏′exp(𝛽 𝑊𝑞𝒙𝑡
𝑇
𝑊𝑘𝑥𝜏′ )

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽𝒒𝑡
𝑇𝒌𝜏, 𝑚𝑡,𝜏)

• Apply attention weight over value vector {𝒗𝜏}

𝑧𝑡 = 

𝜏

𝛼𝑡,𝜏𝑊𝑣𝒙𝜏 =

𝜏

𝛼𝑡,𝜏𝒗𝜏

• Attention Masking is all you need to design for different scenarios



Attention Mask is All You Need

• Offline (whole utterance)

Predicting output for 𝑥10 Attention MaskNot streamable



Attention Mask is All You Need

• 0 lookahead, full history

Predicting output for 𝑥10 Attention Mask
Memory and runtime cost

increase linearly



Attention Mask is All You Need

• 0 lookahead, limited history (3 frames)

Predicting output for 𝑥10 Attention Mask
In some scenario, small amount 

of latency is allowed



Attention Mask is All You Need

• Small lookahead (at most 2 frames), limited history (3 frames)

Predicting output for 𝑥10 Attention Mask
Look-ahead window [0, 2]



Our Method: Masking is all you need

2) In a chunk, all frames can see each other.

𝒄𝒉𝒖𝒏𝒌𝒊

1) Each frame can see fixed 
numbers of the left chunk, 
and the left reception field 
will propagate. 

3) Future chunk cannot be seen to ensure 
parallel training of Transformer

• Left reception field = encoder_layers * left_chunk_can_be_seen *chunk_size
• Right reception field = chunk_size/2 39



Implementation

• Efficient transducer decoder implementation with C++, on CPU
• Beam search based on prefix tree expansion

• Caching Query and Key in previous frames, avoid repeated computation

• Model trained with Pytorch (GPU) and exported with Libtorch (CPU)
• FP16 is applied to speed up training

• Relative position embedding for performance improvement

40



Experiment Setup

Training Data: 65k hours 
Microsoft Internal 
dataset

Test Data: Audios cover 
multiple domains, 
consisting of 1.8M words

Model Size: ~80M
parameters

Training Speed: converge 
in 2 days with 32 V100 
GPU
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WER and RTF results for zero lookahead

• T-T and C-T present consistent WER improvement over RNN-T

• 0.1% WER degradation with 60 hist frames, compared to full history

• RTFs for T-T and C-T is 2-4 times higher than RNN-T
• slow to compute frame by frame for Transformer
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WER and RTF results for batching

• By introducing several frame latency, significant speedup could be achieved by 
grouping multiple frames as a minibatch for forward

• The speedup from T-T and C-T is higher than LSTM
• Due to the model differences in LSTM and Transformer

• RTF as low as 0.2 could be achieved with 15 frames latency (i.e. 450ms latency)
43



WER and RTF results with lookahead

• T-T and C-T trained with lookahead gives consistent improvement

• Beat other S2S models with similar latency
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8-bit quantization

• Significant speedup achieved for RNN-T

• The speedup/performance for T-T and C-T is not ideal
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Streaming End-to-End Multi-talker Speech 
Recognition

L. Lu, et al., "Streaming end-to-end multi-talker speech recognition," arXiv preprint 2020.
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Far-field conversational speech 
recognition is becoming more important

• Unsegmented continuous recordings

• Speech with 15~25% speech overlap

• Different recording conditions & setup
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Background of Multi-talker Speech Recognition
• Cascaded approach: Speech Separation + ASR

Z. Chen, et al., “Continuous Speech Separation: Dataset and Analysis”, ICASSP 2020

• Hybrid joint training approach

D. Yu, et al.,  “Recognizing multi-talker speech with permutation invariant training”, Interspeech, 2017

Y. Qian, et al., “Single-channel multi-talker speech recognition with permutation invariant training”, 
Speech Communication, 2018

• (Offline) End-to-end approach

S. Settle, et al., “End-to-end multi-speaker speech recognition”, ICASSP 2018

X. Chang, et al., “End-to-end monaural multi-speaker ASR system without pretraining”, ICASSP 2019

N. Kanda, et al., “Serialized output training for end-to-end overlapped speech recognition”, 
Interspeech 2020

A. Tripathi, et al. “End-to-end multi-talker overlapping speech recognition”, ICASSP 2020
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Streaming Unmixing and Recognition Transducer (SURT)

• Streaming end-to-end multi-taker ASR
• Employs RNN-T as the backbone

• Two different model structures
• Speaker-differentiator based network

• Mask-based network

• Two different loss functions
• Permutation Invariant Training

• Heuristic Error Assignment Training 
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Model Structure

1. Speaker-differentiator based network
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Model Structure

2. Mask-based network
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Model Training

• Loss functions
• Permutation Invariant Training: consider all the possible permutations:

• Drawbacks: computationally expensive and not scalable

• For S-speaker case, PIT needs to compute the RNN-T loss S! times

53



Model Training

• Heuristic Error Assignment Training (HEAT)
• Considers only one possible error assignment

• Based on the timing information to fix the error assignment

• Computationally more scalable 

• Similar approach has been studied in:

A. Tripathi, et al. “End-to-end multi-talker overlapping speech recognition”, 
in Proc. ICASSP 2020
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Why it works?
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Why it works?
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Why it works?
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Experiments

• LibrispeechMix: simulated overlapped speech dataset derived from 
Librispeech

• In our experiments, we only consider 2-speaker case

• Investigating two conditions  = 0 and   = 0.5

• Overlapped data sampled form [   ,   ]
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SD-based model
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Mask-based model
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Results
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Results

1. SURT: SD-based network, trained with HEAT

2. PIT-S2S: LSTM-based S2S model, trained with PIT

63
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Conclusions

• We reported our recent development of RNN-T models
• The CE initialization of RNN-T encoder significantly reduced WER by 11.6% relatively

• The model with future context improved from the zero-lookahead model by 12.8% 
relatively

• Surpasses the best hybrid model by 3.1% relative WER reduction and 120 ms less 
encoder lookahead latency
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Conclusions

• Personalization RNN-T
• Synthesizing TTS audio on top of scripts generated from the neural language 

model gracefully circumvents the obstacle of explicit labeling error

• 10% WERR is obtained with unsupervised adaptation of only 1 minute  
speech.
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Conclusions

• Masking is all you need – enables high accuracy (much better than 
RNN-T), low cost and low latency streaming Transformer Transducer.
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Conclusions

• Streaming Unmixing and Recognition Transducer (SURT) provides a 
streaming solution to multi-talker speech recognition.

• Obtained strong recognition accuracy with very low latency and a much 
smaller model compared with an offline PIT-S2S model.
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Thank You!
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