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Abstract

In this work, we introduce the notion of a counterfactual response to what we
call a Cross World Policy. Cross World policies are defined as a type of dynamic
treatment regime which assigns treatments based on a fixed function of the naturally
observed value of causally prior covariates, including the treatment itself. Cross
World policies share commonalities with treatment effects on the treated (albeit in
a dynamic treatment regime setting) and generalize the idea of shift interventions
on the treated (SITs) developed in Sani et al. (2020). We give examples of potential
queries of interest which may be described as Cross World policies and complete
identification criteria for estimation from observed data.

1 Introduction

Policies (also called dynamic treatment regimes) define decision rules which use the values of
previously observed covariates, [Z0, ..., Zi] = Z̄:i, and treatments, [A0, ..., Ai−1] = Ā:i−1 to pick
treatment assignment Ai at time step i. Evaluating the effect that deploying a particular policy has
on some outcome Y is a general problem encountered across a wide array of settings. Of course,
evaluating this effect by actually deploying a the policy is often infeasible. In this case, a policy
maker is forced to rely on two things to reason about the effects of a hypothetical policy f : (1)
the available observed data, generated from a possibly unknown natural policy fn, and (2) their
assumptions about the problem setting. Determining when (ie under what assumptions) and how this
effect can be estimated directly from observed data is a key topic in causal inference (Robins, 1986,
1997; Tian, 2008; Young et al., 2014; Nabi et al., 2018). If, given a set of causal assumptions, the
effect of running a different policy can be estimated from the observed data, the effect is said to be
identified.

Policies are typically defined with respect to a single world. That is to say, if we let Xi(f) stand for
the value that the variable Xi would take had we ran the policy f , the past history that a policy relies
on is defined as (Z̄:i(f), Āi−1(f)); so all variables the policy depends on are evaluated with respect
to the world in which we had ran the policy. For policies defined in this way, complete algorithms for
identification have been developed (Tian, 2008; Shpitser & Sherman, 2018).

There are also policies of interest that may be defined with respect to more than one world. As
an example, a regime considered in section 5.1 of Richardson & Robins (2013) intervenes at step
i to enforce a mandatory twenty minuets of exercise if a person would have, in the absence of an
intervention at step i, exercised for less than twenty minuets; the regime does nothing if they would
have naturally exercised for more than twenty minuets. In contrast to the kinds of policies described
above, this policy additionally relies on the value that Ai would have taken in a world in which
the policy was stopped at step i. Policies of this form were studied in (Robins et al., 2004; Young
et al., 2014), and termed as shift intervention policies (SIPs) in Sani et al. (2020), who also provided
complete identification criterion. One can also define policies which depend not just on the value Ai
had we stopped the policy at step i, but also on the value of Ai had we we not run the policy at all (ie
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the natural observed value of Ai) in a way analogous to treatment effects on the treated. Policies of
this kind were also studied in Sani et al. (2020), who termed them as shift interventions on the treated
(SITs).

In this paper, we generalize the notion of SITs defined in Sani et al. (2020) to policies that may
depend not only on the natural value ofAi had we not run the policy, but also potentially on the values
of causally prior covariates from either world (the ‘natural’ observed world or the counterfactual
world in which we had run the policy). We define these types of policies as Cross-World policies
due to their potential cross world dependences. To motivate the problem, we first give examples of
possible queries of interest which may be described through cross world policy effects. We then
provide complete identification criteria for cross-world policy effects.

1.1 Instances of Cross-World Policies

The task of formalizing (or reading another’s formalization of) a type of causal question benefits
greatly if it corresponds to a question someone might actually want to ask. Here we give several
examples of kinds of queries that correspond to the evaluation of cross-world policy effects (from
here on refered as CWP):

• Thresholding and Shifting Policies with Covariates: Much like how SITs allow thresh-
olding policies on the natural treatment value (policies of the form: Do X if the natural value
that treatment would take is above/below a threshold.) and shifting policies (policies which
modify the natural value of a treatment) CWPs may extend similar policies to permit the
input of covariates in the policy function. Possible Questions: What would the chance of
a patients recovery be had we doubled the dosage on the days where their systolic blood
pressure rose had risen above 150 and kept it the same on all other days?

• Replacement Policies: In fields such as digital advertising or robotics, quantifying the
effects of policies that replace or drop instances of one action with another suitable action
may be relevant for answering questions of importance attribution. Possible Questions:
What would the chance of a user visiting a website be if, on days in which the user had seen
the ad A we instead showed them an alternate ad B still relevant to their current query?

• Policies with different behaviours on subpopulations defined by original treatment
values: Similar to how the effect of treatment on the treated calculates an effect of an
intervention on the subpopulation of those who originally would receive treatment, CWPs
can also be used to formulate the effects of policies whose behaviour is different for units in
certain subpopulations, where the subpopulation is defined by a specific setting of original
treatment value. Possible Questions: What would be the effect of a new policy which which
runs an alternate regime A on units that otherwise, up the current time, would have not
received treatment under the default policy, and runs the default policy on all other units?.

2 Preliminaries

In this section we will layout some preliminaries. First some notation. We will denote a set of
variables and values with a bolded uppercase V and v respectively. Single variables and values will
be likewise but unbolded. We will be working with models defined on graphs, G, with variables V as
nodes. We will denote subgraphs containing only nodes in the set U as GU . We will also use the
following graphically defined sets: parents, children, descendants, non-descendants, and ancestors
of a variable. These will be written as PaG , ChG , deG , ndG , and anG2. For all graphs we work with
in here, we assume the Non Parametric Structural Equation Model with Independent Errors (Pearl,
2009) as our underlying causal model. See the aforementioned reference for further details.

2.1 DAGs, ADMGs, and CADMGs

Acyclic Directed Mixed Graphs (ADMGs) are a graphical formalism similar to directed acyclic
graphs (DAG) that permit for a more parsimonious representation of hidden variables. Given a DAG
G(V ∪H), where V are observed variables andH are hidden, one can define an equivalent ADMG
G(V ), with edges taking the following meanings: An edge A→ B in an ADMG indicates a directed

2Unless otherwise noted, we will use the same definition for these sets as Shpitser & Sherman (2018).
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path from A to B in G(V ∪H) with all intermediate nodes on the path in H . A A ↔ B edge
indicates a path with no colliders from A to B in the DAG with the first edge on the path being of the
form A←, the last being of the form→ B, and all other nodes on the path being inH .

A Conditional ADMG (CADMG) is defined in a similar fashion to a ADMG with its variables
partitioned into two sets: random variables: V , and fixed variables: W . In a CADMG, G(V ,W ),
the variables in V are treated the same as before, whereas the nodes inW as instead fixed to constant
values, with all incoming arrows to them removed.

An important structure in ADMGs and CADMGs are districts. A District is a maximal set of nodes
in a graph connected to eachother by paths made up of only↔ edges. In a CADMG, districts are
defined only over nodes in V . The set of districts in a graph is noted as D(G), while the district that a
node Vi belongs to in G is denoted as DisG(Vi). See Richardson et al. (2017) for details on ADMGs
and their properties.

2.2 Kernels and Fixing

A kernel, qV (V |W ), is defined as a map from values inW to normalized densities over V . Kernels
may be seen as a generalized version of conditional probability distributions (though they need not
follow properties such as Bayes rule, etc). Marginalization and conditioning in kernels are defined in
a similar fashion in the sense that:

q(A|W ) ≡
∑
V \A

q(V |W ); q(V \A|A,W ) ≡ q(V |W )

q(A|W )

Note that the full joint distribution, P (V ) can also be seen as a kernel (withW = ∅).
A variable V ∈ V is said to be fixable in a CADMG G(V ,W ) if deG(V )∩DisG(V ) = ∅. In words,
a variable is fixable in a graph if none of its descendants are found in the same district. If a variable
V ∈ V is fixable one may define a fixing operator, φV (q(V |W ),G) on the CADMG G(V ,W ) and
its respective kernel q(V |W ) which yields a new kernel:

φV (q(V |W ),G(V ,W )) =
q(V |W )

q(V |ndG(V ) ∪W )

The fixing operation also returns a new CADMG, G(V \ {V }, {V } ∪W ), which fixes the node V
and removes all of its incoming arrows.

A distribution p(V ) that follows the nested Markov factorization (Richardson et al., 2017) with
respect to an ADMG G may be factorized as:

p(V ) =
∏

D∈D(GV )

φV \D(p(V ),G)

and for any fixable set S, fixing the nodes in S yields a kernel that factorizes as:

φS(p(V ),G) =
∏

D∈D(φS(G))

φV \D(p(V ),G)

This factorization forms the backbone of much work in nonparametric identification theory, and is at
the heart of the ID algorithm (Shpitser & Pearl, 2006; Richardson et al., 2017); a complete algorithm
for the identification of interventional effects.

2.3 Edge and Path Interventions

Edge interventions (Shpitser & Tchetgen, 2016) are a generalization of the above node interventions
which, in addition to cutting the incoming edges of the intervened on variable V , can also set V to
different constant values for each of its outgoing edges. As an example, for a graph X ← Z → Y , a
node intervention do(Z = a) can set Z to a constant a leading to a joint factorization where Z is set
to a wherever it appears p(X|Z = a)p(Y |Z = a). An edge intervention may instead intervene to
set Z to a constant a for the edge (ZX)→ and a different constant b for the edge (ZY )→, giving a
joint factorization p(X|Z = a)p(Y |Z = b). Path interventions further generalize edge interventions,
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allowing one to set Z to a constant value along a specified directed path starting at Z. As shown in
Shpitser & Tchetgen (2016), only path interventions that are expressible as edge interventions are
identified.

Edge interventions play an important role here as our query of interest, the effect of a CWP, may be
seen as a path specific effect. Here we will give notation for the policy edge/path interventions that
will be of importance here. Let α be a subset of edges in our graph, then define a edge specific policy
as fα = {f (AX)→

A |(AX)→ ∈ α}, where each f (AX)→
A assigns a value to A along edge (AX)→. The

potential outcome of an edge policy intervention is then written as Y (fα). For path interventions, let
πX,Y be a subset of paths that start at some Xi ∈X and end at some Y ∈ Yi and do not intersect
X\Xi∪Y \Yi. Let fπX,Y

be the set of functions which assign values to the sources of paths in πX,Y .
If this is identified, it is expressible as the edge policy {f (AX)→

A |(AX)→ is prefix of a path in πX,Y }.

3 Identification of Cross World Policies

Here we provide complete identification criteria for CWPs. The proofs will build upon the theory
presented in Sani et al. (2020) and Shpitser & Sherman (2018), though some additional subtlety arises
due to two issues: (1) the cross world dependencies are not readily displayable in a graphical format,
and (2) depending on the inputs of the hypothetical policy we want to evaluate, new dependencies
between variables may open up which lead to the query being unidentified. At a high level, our proof
strategy involves handling these two issues in turn, allowing us to build off prior results to prove
completeness.

3.1 Cross World Policies: Formal Definitions

Before we begin, we first define cross world policy responses using the substitution construction of
counterfactuals. Fix a set of functions on each treatment variable: f ≡ {fi : XWi 7→ XAi |Ai ∈ A}
where XAi gives the domain of possible values that Ai may be assigned to, and Wi is the domain for
the input of fi, with the restriction that this input be causally prior to Ai.

A Cross World Policy is defined in a similar fashion to typical policy/dynamic regimes with the
distinguishing feature being the type of input that functions in f can take. Let B(Ai) be variables in
V causally prior to Ai. Then for each Vi ∈ B(Ai), fi may potentially take one of two versions of
this variable. The first version of this variable, Vi(f), is the value that the variable would take had we
been running the set of policies f from the start. This is generally the default semantics of policy
arguments when specifying dynamic treatment regimes. The second version of this variable is the
natural value the variable would take if we didn’t run f . We will denote this as Vi(fN) (where fN is
the “natural” policy) when we need to distinguish it from references to the variable Vi.

Note for a potential input Vi ∈ B(Ai), fi may take either Vi(f) or Vi(fN) as input, but not both, as
(Vi(f), Vi(fN)) is unidentified even from experimental data3. For a policy fi, write its domain as
Wi = W f

i ∪WN
i , where W f

i are inputs of the form Vi(f) and WN
i are inputs of the form Vi(fN).

For the purpose of simplifying proofs, we will assume for the rest of the paper that for each fi ∈ f
for a cross world policy f we have WN

i 6= ∅.
Our with the above definition of Wi, a Cross World Policy is defined as:

Y (f) = Y ({fAi(Wi)|Ai ∈ paG(Y ) ∩A}, {Vi(f)|Vi ∈ paG(Y ) \A}) (1)

As an example, the shift intervention on the treated defined in Sani et al. (2020) may be considered a
case of the above where for each fi, Wi = WN

i = Ai(fN).

As done similarly in the proofs of Sani et al. (2020), one can represent such a quantity above as the
response to the ETT path policy intervention4. For treatment setA and outcome set Y , the ETT path
intervention is defined as fπA,Y

, where f is a set of policy functions for each path, πX,Y is defined
as in Section 2.3, and fπA,Y

sets the sources of paths in πX,Y by their corresponding function in f .

3An exception to this is the case in which Vi(fN) and Vi(f) are always equivalent, such as the case when
they are an ancestor for all variables in A. In this case, one can arbitrarily pick either variable kind as input.

4See section 4 of Shpitser & Tchetgen (2016)
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Figure 1: The graph (b) gives the CWPG constructed for graph (a), with A1 and A2 as the treatment
variables, using the procedure given in Section 3.2. The “copy” nodes (ie the nodes in the set C)
are colored red with variable names superscripted by c. Note that the node Q in (b) no longer has a
directed edge to Y in accordance with the last step of the CWPG construction procedure.

Note that this path intervention implicitly sets the sources of paths not in πX,Y to the natural value
they would have taken under no intervention.

From here we will rephrase the counterfactual (1) in terms of the path intervention Y (fπA,Y
). One

can look at this rephrasing as follows: for any counterfactual response of Y (A = a) conditioned on
the original observed value of A = b (eg an ETT computation), what we wish to evaluate is what
happens when all causal paths from A to Y behave like we intervened on A = a, while all other
covariates take on values as if A was still set to its original value b.

3.2 Graphical Representations of Cross World Policies

To facilitate the proof we develop a graphical representation which explicitly represents the natural
(ie Vi(fN)) and counterfactual versions (ie Vi(f)) of the covariates. For lack of a better name, we
will refer to them here as Cross-World Path Graphs (CWPG). A CWPG is built with respect to an
ADMG, G, a fixed set of outcome variables, Y ⊂ V , and of treatment variables, A ⊂ V \ Y . A
CWPG, G′(G,Y ,A) is created by extending G as follows:

1. For each variable Vi /∈ A ∪ Y create a copy version of that variable, V ci , which shares the
same functional mechanism and all exogenous or unobserved error terms. Add V ci to the
graph.

2. For each new variable V ci :

(a) Let Vi be the variable V ci was copied from.
(b) For each X ∈ PaG(Vi), if X ∈ A ∪ Y then V ci inherits X as a parent. If X /∈ A ∪ Y

then V ci inherits the copied version Xc as a parent.
(c) For each X ∈ ChG(Vi), if X ∈ Y then V ci inherits X as a child. If X /∈ A ∪ Y

then V ci inherits the copied version Xc as a child. V ci does not inherit as children any
variables inA

(d) If Vi has any→ edge to an element of Y , remove it.

The representation can be seen as a special case of the counterfactual graph representations developed
in Shpitser & Pearl (2007). The returned graph G′ will also be an ADMG defined over a set of
variables V ′ \C ∪C, where the variables C ⊂ V ′ denotes the “copy” variables in the graph; the
variables V ci described above. Since G′ is also a functional causal model, it also implies a distribution
p′(V ′) over its variables. Given a graph G and a CWPG built from it, G′(G,Y ,A), each observed
variable Vi ∈ V will have a corresponding version of itself, V ′i ∈ V ′ \C with the same functional
mechanism. The variable V ′i may also have copies of itself in the set C (these copies will also have
the same functional mechanism as Vi). Then V ′i , (and its possible copy V ci ∈ C) are the counterparts
of Vi in G′, denoted as CPG′(Vi). Define the vice-versa direction, CPG(V ′i ), similarly for V ′i ∈ V ′.
Nodes that are counterparts share the same functional mechanism and exogenous/unobserved noise.
For a CWPG, we have the following useful properties:

Proposition 1. For a CWPG G′(G,Y ,A) built from G with observed variables V , we have:
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1. For any V ′i ∈ V ′, |CPG(V ′i )| = 1

2. For any V ′i ∈ V ′, |PaG′(V ′i )| = |PaG(CPG(V ′i ))|

3. For any Vi ∈ V and any V ′i ∈ CPG′(Vi) we have that
⋃
V ′j∈PaG′ (V

′
i )

CPG(V ′j ) = PaG(Vi)

The above Propositions give us the guarantee of a one to one function from the counterparts of the
parents of some variable V ′i in G′, and the parents of CPG(V ′i ), a fact that is important to keep in
mind when proving functional equivalences.

As we will show, the construction of G′ will allow us to rephrase any cross world policy intervention
from the original model G in terms of a specific edge policy intervention on G′. After this reconstrual,
we can use existing theory from Shpitser & Sherman (2018) to develop complete identification
criteria.

In order to get to this point, we must first prove that identification in one model implies identification
in the other. The following two lemmas will prove useful towards this (see Appendix for all proofs):
Lemma 1. Let p(V ) be a distribution nested Markov relative to an ADMG G. Fix a set of outcome
variables, Y ⊂ V , and treatment variables,A ⊂ V \ Y , and build a CWPG G′(G,Y ,A). Choose
an assignment v for the variables in V , and let copy(v) be an assignment to all variables in V ′ such
that V ′i = vCPG(V ′i ) for all V ′i ∈ V ′. Then for all values of v we have:

p(V = v) = p′(V ′ = copy(v)) =
∑
C

p′(V ′ \C = v,C)

Lemma 2. For a graph G and its CWPG G′ with variables V ′, if an ETT path specific policy
intervention, fπA,Y

, on G for treatmentsA and outcomes Y is expressible as an edge specific policy
intervention fα, we have:

p(Y (fα)) = p′(Y ′(f ′α′))

where Y ′ are the counterparts of Y in G′, α is the set of all edges in G starting a path in πX,Y , α′ is

the set {(A′X)′→|X ∈ C ∪ Y ′} in G′, and f (AX)→
A ∈ f is functionally equivalent to f (A

′C)′→
A′ ∈ f ′

when CPG′(A) = A′

The above allows us to easily establish the following :
Theorem 1. Let α′ be the set of edges {(A′X)′→|A ∈ A′;X ∈ C∪Y ′} in G′ and let f ′α′ be an edge
policy intervention in G′ on edges in α′. Assume that fπA,Y

is expressible as an edge intervention fα
and fAi ∈ f is functionally equal to f ′A′i ∈ f

′ when CPG′(Ai) = A′i. Then p(Y (fα)) is identified if
and only if p′(Y ′(f ′α′)) is.

3.3 Complete Identification Criteria for Cross World Policies

In the previous section we reduced the problem of cross world policy identification to one of
identification of an edge specific policy p′(Y ′(fα′)) on G′ (given the path intervention can be
expressed as such). For the following theorems, let G′ = G′(G,Y ,A) be the CWPG built from G.
Let fπA,Y

be our CWP formulated as a path intervention, fα its respective edge intervention (if
applicable), and f ′α′ the corresponding edge intervention on G′. Furthermore, let G′f ′

α′
be a graph

created from G′ as follows: For eachA′i assigned by function fi with input variablesWi = W f
i ∪WN

i ,
add an edge from V ′k ∈ V ′ \ C to A′i if Vk ∈ WN

i (ie are natural valued) and add an edge from
V ck ∈ C to A′i if V ck ∈W

f
i . Define Y ∗ = anG′

f′
α′

(Y ′). Then we have the following:

Theorem 2. The Cross World Policy response p(Y (fπA,Y
)) is identified from p(V ) if and only if

the following hold:

• fπA,Y
is expressible as an edge intervention fα on G

• ChG′
Y ∗

(A′i) ∩ DisG′
Y ∗

(A′i) = ∅ for all A′i ∈ A′,

• No districts D ∈ D((G′f ′
α′

)Y ∗) contain both a variable V ′i ∈ V ′ \ (C ∪Y ′) and a variable
V ′j ∈ C ∪ Y ′
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If these hold, then the identifying formula is:∑
Y ∗\Y ′

∏
D∈D(G′

Y ∗ )

φV ′\D(p(V ′),G′)
∣∣
{A′i=f ′Ai (W

′
i )|A′i∈A′∩PaY (D)} (2)

Where PaY (D) are parents of D along the edges {(A′X)′→|A′ ∈ A′;X ∈ C ∪ Y ′} and W ′i are the
inputs to the policy f ′Ai .

4 Conclusion

In this work we defined counterfactual responses to Cross-World policies, a type of dynamic treatment
regime whose input dependencies may be cross world, generalizing prior work done in Sani et al.
(2020). We gave examples of the types of questions that may be answered as Cross-World policy
responses. We showed how the subtleties of dealing with cross world dependencies could be dealt
with via a graphical construction that makes explicit these dependencies. With this tool, we developed
complete non parametric identification criteria for responses to Cross-World policies.
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Appendix

Proofs

Proposition 2. For a CWPG G′(G,Y ,A) built from G with observed variables V , we have:

1. For any V ′i ∈ V ′, |CPG(V ′i )| = 1

2. For any V ′i ∈ V ′, |PaG′(V ′i )| = |PaG(CPG(V ′i ))|

3. For any Vi ∈ V and any V ′i ∈ CPG′(Vi) we have that
⋃
V ′j∈PaG′ (V

′
i )

CPG(V ′j ) = PaG(Vi)

Proof. (1) follows directly from the construction of a CWPG. (2) follows from steps 2c and 2d in
the CWPG construction, which enforces that for any V ′i ∈ V ′ that has a copied version V ci ∈ C,
ChG′(V ′i ) ∩ ChG′(V ci ) = ∅; so the addition of the copy nodes do not add any “extra” incoming edges
to any variable in the graph. (3) follows from the construction of the CWPG, together with (1) and
(2).

The above Propositions give us the guarantee of a one to one function from the counterparts of the
parents of some variable V ′i in G′, and the parents of CPG(V ′i ), a fact that is important to keep in
mind when proving functional equivalences.

Lemma 3. Let p(V ) be a distribution nested Markov relative to an ADMG G. Fix a set of outcome
variables, Y ⊂ V , and treatment variables,A ⊂ V \ Y , and build a CWPG G′(G,Y ,A). Choose
an assignment v for the variables in V , and let copy(v) be an assignment that copies the assignments
of v to the corresponding variables and copy variables in V ′ = V \C ∪C. Then for all values of v
we have:

p(V = v) = p′(V ′ = copy(v)) =
∑
C

p′(V ′ \C = v,C)

Proof. Since we assume a functional causal model, the settings of the variables are deterministic
functions of the exogenous error variables ε. By construction of G′ shares the same distribution over
the error variables, p(ε). Set ε to the same value in both G and G′ models. Now pick an observed
variable V ′i ∈ V ′ \ C which has no observed parents; the existence of such a variable follows
from the acyclicity of G′. By construction, their also exists a variable Vi in G which has the same
assignment function, Fi as V ′i . Since Vi and V ′i share the same assignment function that only depends
on the fixed error terms, and the error terms are fixed to the same values in both graphs, it follows
that Vi = V ′i whenever the error variables have the same values for both models. Set both variables
to the value they take, and add them to the set F of fixed variables. If V ′i has a copy in C then it also
takes on the same value due to functional equivalence. Set it to this value and add it to F .

Now pick a new observed variable V ′j ∈ V ′ \C which either has no observed parents, or all of its
parents are in F .

We can prove the existence of such a variable as follows: Assume no such variable exists, and not
all variables in G′ have been added to F . Then there must exist some variable V ′k in G′ which has a
parent not in F . This parent must also have a parent not in F . Continuing this recursion, we will
eventually reach a node with either no parents, or with all parent in F (by the finiteness of our variable
set and acyclicity), which contradicts the initial assumption. Thus such a variable must exist, or all
variables in the graph are in F .
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Thus the variable V ′j , as well as its analogue in G, Vj , both have parents in F set to the same value.
From the shared assignment function between V ′j and Vj , and the equal setting of error variables
across both models, it follows that V ′j = Vj . We can add these variables to F , along with any copied
version of V ′j , and repeat this process until all variables are in F .

From this it follows that whenever the error variables are set the same in G and G′, then V = v
implies V ′ = copy(v). Since the distribution over error variables is the same in both models, it
follows that p(V = v) = p′(V ′ = copy(v)). That p′(V ′ = copy(v)) =

∑
C p′(V ′ \C = v,C)

follows from the fact that the nodes in C must take on the same value as the node they are a copy of
in V ′ \C, so all other assignment have zero probability mass in the observed distribution.

Lemma 4. For a graph G and its CWPG G′ with variables V ′, if an ETT path specific policy
intervention, fπA,Y

, on G for treatmentsA and outcomes Y is expressible as an edge specific policy
intervention fα, we have:

p(Y (fα)) = p′(Y ′(f ′α′))

where Y ′ are the counterparts of Y in G′, α is the set of all edges in G starting a path in πX,Y , α′ is

the set {(A′X)′→|X ∈ C ∪ Y ′} in G′, and f (AX)→
A ∈ f is functionally equivalent to f (A

′C)′→
A′ ∈ f ′

when CPG′(A) = A′

Proof. Under the recursive substitution definition for counterfactuals, Y ′(fα′) is equal to:

Y ′(fα′) = Y ′({f (A
′
iY
′)→

A′i
(Wi)|A′i ∈ PaG′(Y ′) ∩A′}, {Vi(fα′)|Vi ∈ paG(Y ′) \A′})

Similarly, the counterfactual Y (fα∗) is defined as:

Y (fα) = Y ({f (AiY )→
Ai

(Wi)|Ai ∈ PaG(Y ) ∩A}, {Vi(fα)|Vi ∈ paG(Y ) \A})

From Proposition 1, and step (d) in the CWPG construction, one can see that |PaG(Yi)| = |PaG′(Y ′i )|,
and that each parent of Yi has a one counterpart in PaG′(Y ′i ). As such, to complete the proof we
will show that the terms appearing in the recursive substitution definition of Y ′(fα′) are functionally
equivalent to their counterparts in Y (fα). In G′, the parents of Y ′i may be of one of three kinds of
variables: a treatment variable in A′, a copy variable in C, or an outcome variable in Y ′. Since
the elements of Y ′ are fixed for the purpose of evaluating a probability, the parents of Y ′i that are
elements of Y ′ are vacuously equivalent to their counterparts in G.

For the variables in A′, we have by construction that they are set according to policy functions
f
(A′iY )→
A′i

(W ′i ), and their counterparts which are parents of Y in G are set by equivalent functions

f
(AiY )→
Ai

(Wi). Thus, the assignments to parents belonging in the treatment set will be identical
across graphs as long as their inputs, Wi and W ′i , are the same.

We now look at variables in C which are parents of Y ′. By recursive substitution, all variables
C ∈ Pa(Y ′) ∩C are set to C(fα′). For some C, if it does not have parents, then it is functionally
equivalent to its counterpart in G (since its only dependence is on the exogenous noise terms which
are the same across graphs). If C has parents its parents are either: (1) a variable A′i ∈ A′ whose
value is set by a policy function f (A

′
iY )→

A′i
(W ′i ), (2) an element of Y ′ which is fixed and identical

across graphs, or (3) another variable in C. This nesting ends only in the case of no parents, or in the
case of (1) or (2). Due to acyclicity and finiteness, all terms in the recursive substitution definition of
C(fα′) will eventually reach either the no parents case, case (1), or (2). Since assignments in the no
parents case and in case (2) are functionally equivalent across graphs, we will have that C(fα′) is
functionally equivalent to its counterpart in G as long as policy assignments to variables in A′ are
equivalent to there counterparts. Since the counterpart for a treatment variable shares an assignment
function fA′i = fAi , this will be the case if we can show that the inputs to these functions are the
same across graphs. If we show this, then the parents of Y ′ are functionally equivalent to their
counterparts in G under the edge policy intervention, and the counterfactuals Yi(fα) and Y ′i (fα′) are
thus functionally equivalent.

Recall that the inputs to a policy may either be the original, naturally occurring value of the variable Vi,
or the counterfactual version of it under the policy Vi(f). In G′ under our assumed edge intervention,
the former is represented explicitly by variables in V ′ \C, while the later is represented explicitly by

9



variables inC. If the input corresponds to the naturally occurring value of the variable, then the input
is functionally equivalent across graphs by the proof of Lemma 1.

If the input is a counterfactual, then look at a treatment variable A′i in G′ which has no other treatment
variable as an ancestor (that such a variable exists comes from the acyclicity of the graph). The
inputs to the policy function that assigns treatments to A′i must all be natural valued variables, or
counterfactuals that are equivalent to the natural value of the variable. This follows from rule 3 of the
PO calculus (Malinsky et al., 2020). Thus, the output of the policy function on A′i for edges going to
nodes in C is functionally equal the output of the policy function on its counterpart in G. We can
now reuse the proof of Lemma 1 to pick a new variable A′j which, if it has a treatment variable as an
ancestor, it is a treatment variable whose policy inputs have been shown equivalent across graphs,
which proves input equivalence across graphs for the assignment policy on A′j . From this, input
equivalence for all treatment assignment policies follows.

Thus, Yi(fα) and Y ′i (fα′) are functionally equivalent for any Yi and counterpart Y ′i . From the
equivalence of the error terms and their respective distribution, we thus have that

p(Y (fα)) = p′(Y ′(fα′))

Theorem 3. Let α′ be the set of edges {(AX)→|A ∈ A′;X ∈ C ∪Y ′} in G′ and let f ′α′ be an edge
policy intervention in G′ on edges in α′. Assume that fπA,Y

is expressible as an edge intervention fα
and fAi ∈ f is functionally equal to f ′A′i ∈ f

′ when CPG′(Ai) = A′i. Then fα is identified if and
only if f ′α′ is.

Proof. Assume that fα is not identified. Then there exists two parameterizations M1 and M2 for G
such that p1(V ) = p2(V ) but p1(Y (fα)) 6= p2(Y (fα)), where pi is the distribution under model
Mi. Create a CWPG G′ with variablesV ′. Then by Lemma 1, we have p′1(V ′) = p′2(V ′). By Lemma
2 we have p′1(Y ′(f ′α′)) = p1(Y (fα)) and p′2(Y ′(f ′α′)) = p2(Y (fα)) and thus p′1(Y ′(f ′α′)) 6=
p′2(Y ′(f ′α′)). Thus f ′α′ is not identified.

Now assume that f ′α′ is not identified. Then follow a similar proof above to show that this implies fα
is not identified. From this, our result follows.

Theorem 4. The Cross World Policy response p(Y (fπA,Y
)) is identified from p(V ) if and only if

the following hold:

• fπA,Y
is expressible as an edge intervention fα on G

• ChG′
Y ∗

(A′i) ∩ DisG′
Y ∗

(A′i) = ∅ for all A′i ∈ A′,

• No districts D ∈ D((G′f ′
α′

)Y ∗) contain both a variable V ′i ∈ V ′ \ (C ∪Y ′) and a variable
V ′j ∈ C ∪ Y ′

If these hold, then the identifying formula is:∑
Y ∗\Y ′

∏
D∈D(G′

Y ∗ )

φV ′\D(p(V ′),G′)
∣∣
{A′i=f ′Ai (W

′
i )|A′i∈A′∩PaY (D)} (3)

Where PaY (D) are parents of D along the edges {(A′X)′→|A′ ∈ A′;X ∈ C ∪ Y ′}

Proof. By Theorem 3, proving identification for the Cross World Policy response p(Y (fπA,Y
)) in G

can be done by proving identification for p′(Y ′(f ′α′)) on the graph G′.
The first thing to note is the construction of the graph G′f ′

α′
which represents the graph under the

policy intervention and will determine the variables belonging in Y ∗. Contrary to usual constructions,
no edges are removed in the creation of this graph, and some may be added. To see that this will
always be the correct construction for G′f ′

α′
note that (1) We can construe f ′α′ as additionally defining

policies on edges {(A′X)′→|A′ ∈ A′;X /∈ C ∪ Y ′} which set A′ to its natural value, and (2) we
assume for all f ′i ∈ f ′ we have WN

i 6= ∅. From this we can see that all nodes will have some edge
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with a policy which assigns the natural value. Since the inputs to this “policy” are simply the original
inputs to A′ in G′, we do not remove any edges to A′ in the original graph (though edges may be
added).

Given this, we first show that the three conditions of Theorem 4 imply identification of f ′α′ . Since
our expression is originally a path intervention a necessary condition for identification is for the
first point be true; that fπA,Y

be expressible as an edge intervention fα (Theorem 5.2 of Shpitser &
Tchetgen (2016)). To prove that p′(Y ′(f ′α′)) (and hence p(Y (fα))) is identified, we use Theorem 3
from Shpitser & Sherman (2018), which implies identification for edge policies if (1) Y ∗(A′ = a′)
is identified for any assignment a′, and (2) the edge assignments to the districts in G′f ′

α′
are consistent

(there exist no recanting districts).

If the second point of Theorem 4 is true, then this will imply that Y ∗(A′) is identified, using the
same observation used in Theorem 3 of Sani et al. (2020) (that Theorem 60 of Richardson et al.
(2017), the one line ID algorithm, is valid even whenA and Y are not disjoint).

If the third condition of Theorem 4 holds then it will follow that there will be no districts D ∈
D((G′f ′

α′
)Y ∗) with inconsistent edge assignments. In our setting, only edges from some A′ to an

element ofC ∪Y ′ will have an assignment different from the natural value, hence, only the existence
of a variable V ′i ∈ V ′ \ (C ∪ Y ′) and V ′j ∈ C ∪ Y ′ in the same district will lead to an inconsistent
edge assignment. Thus the conditions of Theorem 4 imply identification of p′(Y ′(f ′α′)), with the
identifying formula Equation 3 following from Theorem 60 in Richardson et al. (2017).

We now show the other direction. If this first condition is violated, we are unidentified by Theorem
5.2 in Shpitser & Tchetgen (2016). If the second condition is violated, then we can take advantage of
the fact that shift interventions on the treated (SITs) are a special case of the cross world policies
defined here, and use the construction used in the proof of Theorem 4 in Sani et al. (2020) to show
non-identification for SITs when this condition is violated. If the third condition is violated then
by Theorem 7 of Shpitser & Sherman (2018), the edge policy intervention is not identified. Thus,
violation of any of the conditions of Theorem 4 implies non identification.
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