
Towards Inclusive Software Engineering Through
A/B Testing: A Case-Study at Windows

Irina Niculescu, Huibin Mary Hu, Christina Gee, Chewy Chong, Shivam Dubey, and Paul Luo Li
Microsoft

Redmond, WA
(irnicule, maryhu, christina.gee, chewy.chong, shivam.dubey, paul.li)@microsoft.com

Abstract—Engineering software to be inclusive of all those that
might/could/should use the software is important. However, today,
data used to engineer software can have inherent biases (e.g. gen-
der identity) with inclusiveness concerns. While much attention
has been given to this topic in the AI/ML space, in this paper,
we examine another data-centric software engineering process,
A/B testing, for which we have a dearth of understanding today.
Using real-world data from the Windows out of box experience
(OOBE) feature, we provide a case-study of how inclusiveness
concerns can manifest in A/B testing, practical adjustments to
A/B testing towards inclusive software engineering, and insights
into ongoing challenges. We discuss implications for research and
practice.

Index Terms—Software engineering, data privacy, data anal-
ysis, data collection, software quality, software development
management

I. INTRODUCTION

Inclusiveness is an important topic in software engineering
and data sciences today, with a key challenge being biases
inherent in the data collected and used to engineer software
[1]. These biases risk software being non-inclusive of all
potential users, perpetuating societal inequalities of today into
the future. For example, Google’s speech recognition has
been found to be more accurate for males than females [2];
Microsoft, IBM, and Face++ facial recognition systems have
all been found to classify males more accurately than females
[3]

Concurrently, A/B testing–a data-centric software engineer-
ing technique–is being used by many organizations to design
and improve their software, e.g. Google, Facebook, Amazon,
and Microsoft [4] [5] [6]. A/B testing is the gold standard for
evaluating the causal impact of changes, empowering organiza-
tions to make data-driven decisions about their software. While
much attention has been given to data-related inclusiveness
concerns in the ML/AI space (e.g. [7] [8] [9]), relative little
has been examined and reported about inclusiveness concerns
for A/B testing.

In this paper, we address the gap in real-world knowledge
about inclusive software engineering and A/B testing by
contributing:

• A real-world case-study of how inclusiveness concerns
can manifest in A/B testing

• Practical adjustments to A/B testing towards inclusive
software engineering

• Insights into ongoing real-world challenges

We examine the Windows out of box experience (OOBE)
functionality from the Windows 10 operating system, using
actual designs and results from A/B tests to show how
inclusiveness concerns can manifest. We then discuss ad-
justments to Windows experimentation to improve inclusive-
ness: analysis dashboards, statistical computations, and pro-
cesses/methodologies. Finally, we discuss insights into on-
going challenges in this space. This knowledge may help
practitioners improve their A/B testing methodology and may
inspire researchers to develop improvements towards even
more inclusive software engineering.

In the rest of this paper, we first discuss background and
related work in Section II. Then, we explain our methodology
in Section III. Next, in Section IV, we describe the Windows
OOBE functionality and inclusiveness concerns in A/B tests.
This is followed by adjustments to Windows experimentation
in Section V. We discuss insights into ongoing challenges in
Section VI. Finally, we conclude in Section VII.

II. BACKGROUND AND RELATED WORK

We discuss background and related work in two areas:
inclusiveness in software engineering and A/B testing.

A. Inclusiveness in Software Engineering

As data becomes increasingly integral to our society (e.g.
in finance, in criminal justice, in employment, in admissions),
so does the specter of inclusiveness, fairness, bias, and other
equality issues arising, due to data perpetuating inequalities of
the past and present [10]. This issue is especially concerning
for software, since data is essential to many software products
and software engineering processes.

Computer science research in numerous domains has ex-
amined how to detect, measure, and mitigate inclusive-
ness/fairness/bias concerns. These include NLP processing
(e.g. gender biases in Google’s Word2Vec embedding [11] and
YouTube automated transcriptions [2]) and computer vision
(e.g. gender and racial accuracy differences in Microsoft, IBM,
and Face++ image processing software [3]). More generally,
there is extensive work on the inclusiveness, fairness, and
bias issues in ML/AI [7], [8], [9], including definitions of
different kinds of fairness and approaches to adjust machine
learning algorithms to achieve various definitions of fairness.
A comprehensive review by Corbett-Davis and Goel is in [1].
However, relative little is known today about equality concerns



in the data-centric software engineering process of A/B testing,
where (as we discuss below) organizations use test results to
make feature decisions that may have inclusiveness/fairness
implications.

B. A/B Testing

In its simplest form, an A/B test randomly assigns users
one of two variants: control (A) or treatment (B). Usually
control is the existing system and treatment is the software
with a feature added/changed, say, feature X. User interactions
with the two software variants are recorded and from that,
metrics are computed and compared (e.g. offerings/services
sign-up rates). If the A/B test was designed and executed
correctly, the only difference between the two variants is
feature X. External factors such as seasonality (i.e. time related
effects like weekday/weekend or summer/winter differences),
impact of other feature changes, moves by competition, etc. are
distributed evenly between control and treatment, and therefore
do not impact the results of the experiment. Hence, differences
in metrics between the two groups (in aggregate) can be
attributed to either feature X or noise (i.e. inherent/natural
variation of any metric within a population). The noise option
is ruled out using statistical tests (e.g. the t-test). The upshot
is that a causal relationship between the change to the product
and changes in user behavior is established through the A/B
test. Experimentation has been shown to be especially useful
when user reactions are uncertain for design changes or
novel innovations [12], providing organizations an effective
approach of making data-driven decisions to improve their
software.

Fueled by the growing importance of A/B tests in the
software industry, A/B testing is an active research area.
Research has been focused on topics such as new statistical
methods to improve metric sensitivity [13], [14], metric design
and interpretation [15], [16], projections of results from a
short-term A/B test to the long term [17], [18], benefits of
experimentation at scale [12], [19], experiments in social
networks [20], high-level architecture of A/B testing platforms
[21], [22], as well as examples, pitfalls, rules of thumb
and lessons learned from running controlled experiments in
practical settings [23], [24].

Fairness has received attention, with recent work looking
at novel metrics for assessing fairness in results of A/B tests
[25] (pre-print) as well as approach to conduct A/B tests with
differential private data [14]. Our work complements prior
work by providing practical methodology adjustments that
should work with (and enhance) any metric and any statistical
testing approach, advancing inclusive software engineering
practices.

III. METHODOLOGY AND CONTEXT

Our case study of inclusive software engineering through
A/B testing covers work in the Windows organization at
Microsoft Corporation in the USA between 2018 and 2019.
The authors of this paper are or have been employed at
Microsoft and are engineers, program managers, and data

scientists who worked on the Windows out of box (OOBE)
feature (the feature under examination) as well as the A/B
testing platform. We briefly describe our empirical approach
as prescribed by Runeson and Höst [26].

A. Data Collection

We leveraged two primary sources of data. First, we used
materials from actual A/B tests, including analysis reports
produced by engineering teams, which the authors had access
to. These contained findings, conclusions, and subsequent
engineering decisions. Second, we used documentation (e.g.
notes, emails, presentations, and design docs), extracted from
document depots (e.g. Sharepoint).

B. Data Analysis

Overall, we present factual findings from A/B testing of the
feature and subsequent engineering adjustments to the A/B
testing platform. We present actual data from experiments as
well as implementation decisions and their implications. Our
analyses and insights are based on the authors’ knowledge and
experience.

C. Threats to Validity

To reduce the risk to construct validity, we name features,
components, and findings (where possible). We use industry
standard terminology and provide explanations/examples to
clarify ambiguous concepts and terms. To reduce threats to
internal validity, this paper has been reviewed internally to
ensure accuracy. Finally, though this paper is a case-study with
external validity limitations, many of the topics and concerns
are not tied directly to Windows and are applicable to other
contexts and organizations.

IV. THE WINDOWS OUT OF BOX EXPERIENCE

We first describe the Windows out of box experience
(OOBE) feature and the changes under consideration. Then,
we discuss the initial A/B tests and the inclusiveness concerns
discovered.

A. Blue and Light OOBE Designs

OOBE helps users that are new to their Windows devices
to setup their Windows accounts and services. Historically,
OOBE has utilized a Blue design, see Figure 1. In 2018, the
feature team considered an alternative Light design, featuring
additional graphics and a lighter color scheme, see Figure 2.
Figure 3 is a close up comparison of the two designs for the
initial first screen. The goal of the OOBE changes was to
increase Windows services linking/sign-up, as measured by the
proportion of users who link/sign-up for the Windows services.

B. Initial A/B Test Results

During the development process, the engineering team used
an initial small-scale A/B test to evaluate the two designs using
web-based mock-ups. The tests were statistically powered
to detect roughly a 15% change in the link/sign-up rates,
with each variant having roughly 150 paid participants. The
participants were recruited with the criteria of having recently



Fig. 1. The Blue OOBE design

Fig. 2. The Light OOBE design

purchased a Windows PC. The A/B test consisted of going
through the OOBE screens, followed by a common set of
demographic questions (which was specific to the A/B test
and not part of the OOBE feature), as shown in Figure 1 and
Figure 2.

Initial analysis of the results, a summary of which is shown
in Figure 4, indicated no statistically significant differences
between the two designs. However, a closer examination
of data along demographic slices indicated large differences
along gender identity. The two biggest differences where with
the OneDrive screen, shown in Figure 5, and the Office365

screen, shown in Figure 6 (exact percentages obfuscated). For
OneDrive, those self-identified as Female had 18% higher opt-
in for the Light theme, while those self-identified as Male
had 21% lower opt-in. Similarly, for Office365, those self-
identified as Female had 39% higher opt-in for the Light
theme, with those self-identified as Male had 39% lower opt-
in. However, since the A/B tests were not specifically powered
to detect differences in the gender identity slice, the results
were borderline statistically significant.



Fig. 3. Comparison of the Blue and White OOBE designs

Fig. 4. Summary of initial A/B test

Fig. 5. Detailed results by gender identity for OneDrive

C. Inclusive Software Engineering Concerns

The A/B tests revealed several concerns about the process.
First, this A/B test unintentionally recruited a balanced 50/50
split in gender identity, which enable the insights related to
gender identity; however, in general, A/B tests are conducted
with random sampling, which are unlikely to be balanced.
For example, given the inherent under-representation of the
gender identity of female in computing data sets [2], rather
than no statistically significant difference, the overall results
would likely have been the Blue design being better.

Second, the A/B test was not sufficiently powered to de-
tect the changes in the sub-populations. Even though the
differences all exceeded the initial 15% differences threshold,
due to sub-populations being smaller, the results were only
marginally statistically significant. In addition, other than the
unintentional balance in gender identity, the demographics

Fig. 6. Detailed results by gender identity for Office

were heavily imbalanced along other dimensions like ed-
ucation and ethnicity, unable to yield insights into those
dimensions.

Finally, overall, the results indicated that explicit consider-
ations and adjustments for inclusiveness are needed a-priori.
Otherwise, inclusiveness concerns caused by inherent biases
in real-world data might go undetected.

V. ADJUSTMENTS TO WINDOWS EXPERIMENTATION

In this section, we discuss initial steps that Windows has
taken towards inclusiveness software engineering through ad-
justments to its A/B testing methodology. We first give back-
ground on the Windows Experimentation platform (WExp)
and then describe adjustments to improve its ability to detect,
quantify, and account for inclusiveness concerns.

While feature decisions (e.g. mitigation, modifications,
ship/no-ship, etc.) can have many additional considerations
(e.g. security, economics, costs) the fairness adjustments pro-
vides additional knowledge that enable organizations to make
more informed decisions.

A. The Windows Experimentation Platform

The Windows Experimentation Platform (WExp) is an A/B
testing platform built for Windows client-side code experi-
ments and roll-outs. Other commercially available solutions
and experimentation platforms in the literature are generally
server-side systems (e.g. web-pages), where either control or
treatment behavior is delivered to the user at the time when
the experimental scenario is encountered (e.g. navigation to
a web-page), and complete data are captured server-side. In
contrast, for WExp, due to the need to quickly terminate A/B



tests and return devices to known safe conditions, the code
for both control and treatments are delivered to devices, then
a centralized cloud service manages the A/B assignments. This
enables fast termination of A/B tests and prevents new/other
devices from accidental exposure (i.e. devices are kept in
the known safe condition, unless explicitly toggled via the
cloud service). Due to possible offline scenarios, restarts, and
telemetry delays, inbox components of WExp record and
cache information about the assignments, exposures (i.e. actual
executions of the code paths), and data about user/system
behaviors. Finally, since information from other interacting
services (e.g. Bing) may be important for evaluating the
success of experiments, the system performs fuzzy joins from
various data sources to produce the final analysis.

WExp leverages several existing Microsoft compo-
nents/services, uses others in novel ways, and has new compo-
nents. For example, delivery of code to devices leverages the
Windows Update service [27]. Data is recorded and transmit-
ted using Windows Telemetry services and adheres to user
settings and restrictions [28]. Randomization and statistical
comparison of data are performed using the ExP system [21].
For a more thorough technical description of the system, please
refer to [22]. Finally, WExp has a set of policies and processes
that help to ensure safety and best-practices. For example,
all A/B tests intended for General users must first be run in
internal and/or Windows Insider populations (a self-selected
group of users who run pre-release versions of Windows to
provide feedback [29]) to ensure safety and quality.

B. Adjustments for inclusiveness

Three adjustments were made to WExp towards inclusive
software engineering: modifications to the pre-launch sample
size computations, improvements to the analysis dashboards,
and changes to guidance/education to consider possible inclu-
siveness concerns.

1) Pre-launch sample size computations: Best-practices
today call for pre-release sample size calculations (within the
time-frame of the A/B test) to determine the minimum samples
needed to detect the predetermined amounts of change in key
metrics of interest. The A/B test is then conducted on this
minimal sample rather than the entire population. These best-
practices help to minimize the possible down-sides of the A/B
test. For Windows, this also helps to reduce costs associated
with executing the A/B tests both for users (e.g. data collection
and transmission costs) and for Windows (e.g. data processing
and storage costs).

Based on the insights, the modification was to per-
form sample-size calculations for each metric for each sub-
populations of interest and then take the maximum among the
sample sizes required. There are two important reasons for this
adjustment. The first, as discussed above, there are inherent
sub-population imbalances which may lead to insufficient
samples in the sub-population of interest to detect different
(possibly negative) effects. For example, those identified as
Female in the 2019 United States Census were 51.0% [30];
the proportion is significantly different (both statistically and in

percentages) in the Windows Insider population. Therefore, to
obtain the desired minimum sample size to detect movement of
a metric for a given sub-population (e.g. the gender identity of
female), a larger random sample would be needed compared
to the sample needed to detect movement of the metric for
the overall population. The second related reason is that
metric characteristics (e.g. mean and standard deviation) can
be different for each sub-population, which would also alter
sample sizes needed to detect a desired amounts of metric
movement.

As an example, adjustments to the standard sample-size
computation for a two-sided equality of proportions (i.e. p-
test) [31] is shown in Equations 1 and 2. Computations for
Type I error rate α and power 1 − β would be done for
each of the k sub-populations of interest, with the proportions
for control, pAk

, for treatment (projected) pBk
specific to

each sub-population (since these can differ for each sub-
population), this is Equation 1. The sample sizes nk are then
adjusted by the size of sub-population nk relative to the overall
population size, propk. The max is then taken over the sub-
populations to obtain the desired sample size for the metric,
this is in Equation 2. This is repeated for each metric of
interest, with similar adjustments for other types of statistical
tests (e.g. t-test). The max over all the metrics is the final
sample size.

nk = (pAk
(1− pAk

)+ pBk
(1− pBk

))(
z1−α/2 + z1−β

pAk
− pBk

)2 (1)

n = max
k

(
nk

propk
) (2)

2) Analyses and dashboards: WExp analyses and dash-
boards were also modified to better enable inclusive software
engineering. The data are labeled with sub-population informa-
tion, and then analyses/dashboards can automatically surface
notifications when statistically significant differences between
sub-populations occur. Furthermore, a drill-down ability is
provided to examine differences between sub-populations
holistically across all metrics.

A hypothetical example for the gender identity dimension
and the ”Distinct Search Queries” metric is shown in Figure
7. In the example, the overall metric movement is not sta-
tistically significant with p-value=.70. This is due to a larger
proportion of male in the random sample, for which there is
no statistically significant difference, hiding the statistically
significant difference in the smaller female sub-population.
The dashboard visually indicates that there is a ’Segment
of Interest’ for the ’Gender Seg’ in the data; clicking on
the line reveals the differences in the metric for the gender
sub-populations. The information provided includes both the
amount of difference in the metric and the sizes of the sub-
populations. Many dimensions can be analyzed concurrently,
for example, gender identity, regions of the world, device form
factor, etc.

Another important analysis/dashboard is all metrics for
given sub-populations. This is needed because, while examin-



Fig. 7. Sub-population movement detection UX

ing differences in a single metric is valuable, viewing all the
metrics is important for triangulation. Best practice today calls
for measuring behaviors using multiple metrics and multiple
statistics to better holistically understand behaviors. This can
include measuring multiple steps along a causal chain (e.g.
a funnel). This can also include using multiple metrics (e.g.
means, proportions greater than, and percentiles) to be more
resilient to outliers. Thus, the analyses/dashboard also look
at all the metrics sliced by sub-populations; a hypothetical
example is in Figure 8. In the example, holistically examining
looking link/sign-up rates across all screens provides better
understanding of the differences between the designs. In this
manner, all facets of impact to a sub-population can be
assessed holistically.

3) Education and guidance: Finally, technical improve-
ments and better statistics need to be complemented by cultural
change in the engineers to utilize the information and to
adjust their thinking/decisions. Therefore, Windows has also
added several education and training documentation to help
engineering teams be more aware of possible inclusiveness
concerns. These entail considering sub-populations that may
be relevant for the product change a-priori, then adjusting the
A/B tests (as described above) to ensure that their impact can
be assessed, and finally guidance to consider potential impacts
on the sub-populations when making final product decisions.

Though not all features have inclusiveness issues, a shift
in mindset to consider potential impacts for all features is
important. For example, even a non-user-facing change in
networking protocols can behave differently in countries with
less-advanced networking infrastructure and adversely impact
those sub-populations [22].

VI. INSIGHTS INTO ONGOING CHALLENGES

While we have made a positive start, more work is needed.
We provide insights into some of the on-going challenges
that we hope to tackle, possibly through collaborations with
researchers and other practitioners.

A. Targeted sampling

While it may be possible to conduct target sampling for
specific sub-populations (e.g. to create representative sample),
in practice we have found it to be impractical for two reasons.
First, many dimensions are inter-related (e.g. higher propor-
tions of the laptop form factor in the United States region);
therefore, target sampling one dimension can lead to artificial
imbalances in other dimensions. This creates problems in
evaluating results, especially in assessing impact of changes
for other sub-populations. Second, more importantly, some
dimensions are not known at the beginning of the experiment.
For example, the OOBE feature is often the first feature
encountered by users, many dimension are not know at the
time when users experience the feature (but would be known
later). Therefore, to sample sufficient users of specific sub-
populations into the experiment for a feature, a sufficiently
large random sample is needed. Nonetheless, we realize that
this approach has inefficiencies that can be improved.

B. Impacts of anonymity

One of the commonly discussed approaches to help protect
vulnerable sub-populations is anonymity; by not providing
information (e.g. demographics) organizations cannot use that
information to bias their product and services [10]. However,
we have found that anonymity also makes it difficult for re-
sponsible software organizations to adjust innovations to better
suit those sub-populations. For example, in Section V-B2,
without knowing the gender identity, the impact on female
population would not be detectable in the A/B tests due to
natural imbalanced in gender identity in the Windows Insiders
population. In fact, all of our inclusive adjustments require
knowing sub-population membership. While it is possible to
create features that promote inclusiveness without A/B testing,
it would then be difficult to understand whether the features
had the intended impact and/or whether unforeseen negative
impacts occurred. This might be considered as an example
of a trade-off between fairness and privacy. Consequently,
approaches to safely share information about sub-population



Fig. 8. Slicing by sub-population UX

membership, to promote trust in the information sharing,
and/or to raise awareness about the potential benefits may be
interesting areas of future research.

C. Unknown unknowns

We have open questions about whether observable data from
interesting sub-populations have external validity concerns:
whether those in the data are representative or biased. After
all, with the goal of being inclusive, it is those that cannot
be observed that may need the most help to be included.
Therefore, whether the insights/conclusions for those that can
be observed can be generalized to others of the sub-population
(i.e. the unknown unknowns) is often a difficult question. Our
general approach has been to make do with the data available,
since making a decision with some data is better than no data.
However, we recognize that this can (and should) be improved.

VII. CONCLUSION

Software should be inclusively engineered, taking into con-
sideration all those that might/could/should use the software.
However, data can have inherent biases (e.g. gender identity)
that cause inclusiveness concerns, including for A/B tests,
which are widely-used today by many organization to en-
gineer their software. We have provided examples of how
inclusiveness concerns can manifest as well as adjustments that
practitioners can make towards inclusive software engineering.
We have also provided insights into ongoing challenges that
we face, which we hope can be overcome, possibly through
collaborations/contributions of researchers. Together we can
enable the engineering of better and more inclusive products
for our ever increasingly software dependent society.
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