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Abstract—ML-driven software is heralded as the next major
advancement in software engineering; existing software today
can benefit from being evolved to be ML-driven. In this paper,
we contribute practical knowledge about evolving software to
be ML-driven, utilizing real-world A/B testing. We draw on
experiences evolving two software features from the Windows
operating system to be ML-driven, with more than ten real-
world A/B tests on millions of PCs over more than two years.
We discuss practical reasons for using A/B testing to engineer
ML-driven software, insights for success, as well as on-going real-
world challenges. This knowledge may help practitioners, as well
as help direct future research and innovations.

Index Terms—Software engineering, data analysis, software
quality, software development management, learning (artificial
intelligence), machine learning, machine learning algorithms,
predictive models, big data applications

I. INTRODUCTION

Machine learning (ML)-driven software is heralded as the
next major advancement in computing: Software 2.0 [1].
Traditionally, software developers manually program rules and
heuristics to determine the behavior of software; for ML-
driven software, developers program a skeleton of the machine
learning model, provide it with examples, and then let the
machine ”learn” the optimal behavior. In this manner, software
can leverage the vast amount of data being collected today
to determine best behaviors and to continuously improve
user experience. ML-driven software is becoming increasingly
prevalent today with reported uses in PCs [2], phones [3], IoT
devices [4], and automobiles [5].

Much attention has been given to software like facial
recognition [6], voice recognition [7], autonomous driving
[8], among others built from the ground-up to be ML-driven;
nonetheless, existing software today can also benefit from ML
[2]. Little is known today about evolving existing software to
be ML-driven, especially using A/B testing, which is the gold-
standard used by many software organizations today to design,
evaluate, and deploy innovations [9] [10]. In this paper, we
contribute practical knowledge about evolving software to
be ML-driven utilizing real-world large-scale A/B testing:

• Practical reasons for using A/B testing to build ML-driven
software.

• Insights for successfully evolving software to be ML-
driven using A/B testing.

• Real-world challenges for evolving ML-driven software
using A/B testing.

We report on evolving two software features from the Win-
dows operating system to be ML-driven: Windows Update
(WU) and System Initiated User Feedback (SIUF). The de-
sign, evaluation, deployment, and update of these ML-driven
software features involved more than ten real-world A/B tests
on millions of PCs over more than two years. Our experiences
can help and inspire practitioners to evolve their software to
be ML-driven; the challenges and issues we faced can help
direct research and future innovations.

For the rest of this paper, we first discuss related work
and background in Sections II and III. The methodology is
discussed in Section IV. We then describe the two real-world
software features that we evolved to be ML-driven in Section
V. We discuss four reasons for using A/B testing to build ML-
driven software in Section VI. The insights of successfully
evolving software to be ML-driven using A/B testing are
discussed in Section VII. We discuss three on-going challenges
in Section VIII. Finally, we conclude in Section IX.

II. RELATED WORK

In this section, we discuss related work on A/B testing and
ML-driven software.

A. A/B Testing

In its simplest form, an A/B test randomly assigns users
to one of two variants: control (A) or treatment (B). Usually
control is the existing system and treatment is the software
with a feature added/changed, say, feature X. User interactions
with the two software variants are recorded and from that,
metrics are computed and compared. If the A/B test is de-
signed and executed correctly, the only difference between the
two variants is feature X. External factors such as seasonality,
impact of other feature changes, competitor moves, etc. are
distributed evenly between control and treatment, and therefore
do not impact results of the experiment. Hence, differences
in metrics between the two groups (in aggregate) can be



attributed to either feature X or noise. The noise part is
quantified with statistical tests (e.g. t-test). The upshot is
that a causal relationship between the change to the product
and changes in user behaviors is established through A/B
testing. Experimentation has been shown to be especially
useful when user reactions are uncertain to design changes
or novel innovations [11], which provides organizations an
effective approach of making data-driven decisions on their
innovations.

Due to its growing importance in the software industry,
A/B testing is an active research area. Research has been
focused on topics such as new statistical methods to improve
metric sensitivity [12], metric design and interpretation [13],
projections of results from a short-term A/B test to the long
term [14], the benefits of A/B testing at scale [11], A/B
testing in a social network setting [15], high-level architecture
of A/B testing platforms [16], [17], privacy and fairness
concerns [18], as well as examples, pitfalls, rules of thumb
and lessons learned from running controlled experiments in
practical settings [19].

Some research papers have discussed developing ML using
”experiments”, which entails trying different approaches to
build the ML (e.g. configurations and algorithms [20]). In this
paper, we refer A/B testing to be randomized controlled trials
in real-world conditions with actual users, and we examine the
utilization of A/B testing in building ML-driven software.

B. Machine Learning Driven Software

At its core, machine learning instructs computing devices
to use example/past data to solve a given problem. It uses
statistical models to encode the example/past data in order to
make inferences about the future [21]. For example, in super-
vised learning, computers are presented with example inputs
(typically contextual factors associated with the occurrence)
and desired outputs. The goal is to learn rules–a model–that
map the inputs to the outputs. Then when provided new inputs,
the computing devices can use the model to make an inference.

With increasing computing capabilities of edge devices and
growth in data volumes being collected, machine learning has
been receiving growing interest in all areas of computing
and has been investigated for many applications. Examples
include mobile keyboard word completion [3], automotive
traffic predictions [5], image identification [22], and even
medical prognostications [23]. Research on machine learn-
ing has seen matching growth, with efforts proceeding on
many fronts, including new algorithms [24], new domains
of applications [25], ethical/fairness considerations [26] [27],
adversarial machine learning [28], architecture/design of real-
world systems [29], as well as experience reports and how-to-
guides for real-world practitioners [30].

Much attention in both research and industry has been
devoted to novel software applications built from the ground-
up to be ML-driven, including facial recognition [6], voice
recognition [7], autonomous driving [8]. However, little has
been reported about evolving the vast amount of existing
software today to be ML-driven, even though existing software

can also benefit from ML [2]. Evolving existing software to
be ML-driven is the focus of this paper.

III. BACKGROUND

In this section, we provide background of ML infrastructure
and A/B testing capabilities on the Windows operating system.

A. Windows Intelligent Services Engine
The ML-driven software features discussed in this paper

are built/evolved using the Windows Intelligent Services En-
gine (WISE): a Windows internal platform for ML-driven
software features on Windows PCs [31]. WISE is an end-to-
end solution, with components that link together cloud-side
ML training (via Azure Machine Learning) and client-side
inferences (e.g. WinML). It abstracts away the complexities
of building, deploying, A/B testing, and maintaining ML
models from Windows engineering teams. Once deployed,
the ML model can be continuously evolved/improved, in a
data-driven manner, without the need to update application
codes. The system (patent pending) has four integrated parts:
cloud-compute ML training/retraining pipeline, scalable and
secure deployment infrastructure, configurable client-side data
manager and prediction orchestrator, as well as a mechanism
to execute A/B testing.

For an application developer using WISE, the first step is
to register their scenario with the cloud ML training/retraining
pipeline and receive a unique identifier. The scenario is the
phenomenon of interest that the ML model would predict,
which the application can then use to modify its behavior.
The developer provides example/past data of the phenomenon
to train an initial model. One of the key features of WISE is
providing a default set of common predictors on Windows
devices (discussed more in Section V), which enables de-
velopers of different applications to reuse in their individual
ML models. The application developer builds their intelligent
application by calling a client-side API with unique identifiers.
The call returns an inference about the phenomenon of interest
specific to the context of the device (e.g. time during the day),
which the application can then use to adjust behaviors. Behind
the API, WISE securely deploys models to devices using a
cloud-service. In addition to the model (e.g. an ONNX file),
a feature engineering file is also deployed, which specifies
what raw data to use and how to transform them to produce
the predictors. Since the model and feature configurations are
behind the API call, the ML model can be updated on the cloud
without changing the application codes. The API also records
telemetries from users who have opted to share their data for
product improvement, which can be sent back to the cloud
for model improvement. Iterations of the ML model can be
evaluated and rolled out using a randomized controlled trials
methodology with the Windows Experimentation Platform
(WExp) [17], in order to monitor and evaluate causal impact
of the ML model.

B. The Windows Experimentation Platform
WISE evaluates the causal impact of ML models with the

Windows Experimentation Platform (WExp): a client-side A/B



testing platform for the Windows operating system [17]. WExp
leverages several existing components/services at Microsoft,
while building new components and using existing ones in
innovative ways. For example, the delivery of assets (e.g. codes
and ML models) to devices leverages the Windows Update
service [32]. Data are recorded and transmitted using Windows
Telemetry services and adheres to user settings and restrictions
[33]. Randomization and statistical comparisons of data are
performed using the ExP system [16]. Finally, WExp has a
set of policies and processes that help to ensure safety and
best-practices. For example, all A/B tests intended to reach
the general population must first be ran on internal and/or
Windows Insiders devices (a self-selected group of users who
run pre-release versions of Windows operating system and
provide feedback [34]) to ensure safety and quality.

WExp enables validation, deployment, and update of ML-
driven features in several ways. During feature development,
WExp can A/B test the ML-driven feature (on or off) as well
as A/B/C test various model configurations (e.g. triggering
thresholds). After feature is deployed, WExp supports reverse
A/B tests to further validate the feature efficacy in production,
as well as controlled rollouts of updates (i.e. rollouts of new
models with randomized control groups for causal inferences).

IV. METHODOLOGY

Our case studies of evolving existing software to be ML-
driven using A/B testing cover work in the Windows organi-
zation at Microsoft corporation in the USA between 2018 and
2020. The authors of this paper are or have been employed at
Microsoft, who work on the WISE platform and/or ML-driven
software as software developers or data scientists. We briefly
describe our empirical approach as prescribed by Runeson and
Höst [35].

A. Data Collection

We leveraged two primary sources of data. First, we used
materials from actual A/B tests, including analysis reports
produced by engineering teams, which the authors had access
to. These contained findings, conclusions, and subsequent
engineering decisions. Second, we used documentation (e.g.
notes, emails, presentations, and design docs) extracted from
document depots (e.g. Sharepoint).

B. Data Analysis

Overall, we present factual findings from building and
A/B testing of the ML-driven software, including efforts and
decisions in response to the A/B test results. Our analyses and
insights are based on the authors’ knowledge and experiences.

C. Threats to Validity

To reduce the risk to constructing validity, we name soft-
ware features, components, and findings (where possible).
We use industry standard terminologies and provide expla-
nations/examples to clarify ambiguous concepts and terms.
We reference public communications, patents, and external
reports where possible. To reduce threats to internal validity,

Fig. 1. Initiative framing slide for ML-driven Windows Update effort, showing
an example of a heuristic that can be improved using ML.

this paper has been reviewed internally to ensure accuracy.
Finally, though this paper is a case-study with external validity
limitations, many of the topics and concerns are not tied
directly to the Windows operating system and are applicable
to other contexts and organizations.

V. ML-DRIVEN WINDOWS FEATURES

In this section, we describe two Windows features and their
efforts to enhance behaviors with ML. The two engineering
teams self-selected to pioneer evolving their Windows features
to be ML-driven using WISE.

A. Windows Update

Windows Update (WU) provides the latest ”patches” to
the files and applications on Windows PCs [36]. Many of
the updates are of vital importance, such as those involving
security and/or application functionality. Consequently, PCs
are commonly configured to automatically install updates and
reboot to ensure that the updates take effect. The install and
reboot processes ensure that updates are installed in a timely
manner, whiling using rules and heuristics to minimize user
disruptions, such as outside of ”Active Hours”, as shown in
Figure 1. However, user feedback indicated that the rules and
heuristics could be improved: an anecdote being a user actively
working on their PC outside of active hours, stepping away
momentarily, and then returning to find their PC in the middle
of a reboot.

The engineering team leveraged WISE to enhanced WU
behaviors with ML. When attempting a potentially disruptive
reboot post-installation, a functionality was added to predict
whether the PC will be active using ML, and then possibly
adjusting behaviors (e.g. defers the reboot). This was referred
internally as Smart Busy Check (SBC). In addition to re-
ducing user disruptions, the engineering team also believed
that leveraging ML could improve upgrade velocity. Since
users often choose to defer (i.e. not complete updates) when
notified of impending reboots, the ML model can also improve
upgrade velocity by avoiding potentially disruptive situations
and reducing reboot deferrals. These motivations are shown in
the original initiative framing slide in Figure 1.



Fig. 2. Feature importance plot for the WU ML model, showing the diversity
of contributing predictors.

The WU ML model uses predictors on PC client that
consist of environmental factors like time of day and day
of week, as well as user interactions with the device (e.g.
mouse or keyboard activities). The model is gradient boosted
trees, implemented using Microsoft’s LightGBM algorithm.
This algorithm was chosen due to contextual considerations
and the nature of tabular telemetry data (discussed more in
Section VII-D). The model was constructed under standard
practices (e.g. train/validation/test splits and parameter tuning
via random cross validations). The initial model was trained
using data from Windows Insiders, with 51 predictors and
5.5M observations from 2.5K devices over 3 months. The
model was then updated using production data from general
users who opted to share their data for product improvement
[33]. Figure 2 shows the feature importance plot of the ML
model. Insights about the impact of environmental and user
interaction features are in Figures 3 and Figure 4. For example,
data show that users are frequently active at 5pm (the default
for Active Hours) and that it may not be an optimal time
for rebooting. An interesting note is that a same underlying
feature can be engineered into different predictors that capture
different aspects. For example, the predictors include the
amount of activities in the past 60, 600, and 3600 seconds.
When considered together in a same model, it identifies the
most relevant duration to examine as well as the interplay
between these features.

In addition to feature/functional/automated testing, the WU
ML-driven software feature underwent three phases of A/B
testing. First, like many other Windows features, this ML-
driven software feature initially underwent ON/OFF testing
on the internal self-host population to verify feature quality.
These A/B tests help to uncover unforeseen issues, such as
cross-component system integration issues. The primary focus
of these A/B tests is quality rather than efficacy; these initial
A/B tests are ran on populations different from the intended
audience and in contexts that are different from the intended
environment.

Second, the team used A/B tests on Windows Insiders to

Fig. 3. Insights about environmental factors for the WU ML model, showing
how time of day (e.g. after mid-night) and day of week impact outcomes.

Fig. 4. Insights about user interactions for the WU ML model, showing how
any recent user interactions impact outcomes.

further validate quality and assess model configurations (e.g.
probability thresholds). Though success of the feature cannot
be fully determined on Beta users in a pre-release environment
(discussed more in Section VIII), these A/B tests do assess
possible negative reactions to the software feature. As a result,
the software feature was shipped after quality validation was
completed and initial ML configurations were set.

Released in the Windows 10 1909 update, the ML-driven
WU received positive feedback from users and reviewers
[2]. The team monitored the performance of this ML-driven
software feature as the 1909 Update was progressively de-
ployed. Once the deployed population was sufficiently large
and representative of the overall population, the team used
production data to update the ML model. This is an underap-
preciated aspect of ML-driven applications for edge devices,
which is that edge devices (especially phones and PCs) do not
all update instantaneously or consistently (i.e. some devices
update faster than others). Therefore, there are usually biases
present in the initial data returned, and determining when to
update an ML model can sometimes be difficult. After the
ML model was updated, the engineering team again went
through multiple rounds of A/B tests to validate efficacy.
The engineering team then used controlled feature rollouts–the
third kind of A/B testing–to progressively release the update
while monitoring quality (using a control group). Today, it
continues the monitoring and updating of this ML-driven



Fig. 5. Screenshot of a Windows SIUF question to be improved using ML.

software feature.

B. System Initiated User Feedback
System Initiated User Feedback (SIUF) ”surveys” selected

users about their experiences with Windows PCs [37]. SIUF
gives valuable feedback/inputs to engineering teams by pro-
viding “in the moment” feedback from users after they’ve
performed certain actions. It uses both rating scales and free
form texts to facilitate easy evaluations, and also enables
asking granular/targeted questions about specific aspects of
the users’ experiences. Figure 5 shows an example SIUF about
the overall customer experiences with Windows PCs (usually
appearing on the lower right of the screen). SIUF questions
are triggered by conditions (e.g. number of usage hours and/or
usage of specific Windows features) and are managed by
various rules (e.g. asking each question only once and not
asking more than one question in a period of time). Feedback
and statistics on the SIUF system suggested that improvements
can be made to survey users when they are more likely to
respond and less likely to be disrupted.

The engineering team also leveraged WISE to enhance SIUF
behaviors with ML. In addition to meeting existing conditions
and rules, SIUF was enhanced with an option to use an ML
model that predicts whether the user is likely to respond. The
model was a lightGBM model built using the same standard
practices as the WU ML model. The SIUF is then only asked
if the likelihood of response is high (otherwise deferred to a
future time), making better use of the chance to survey the
user (possible bias/fairness concerns are discussed in Section
VIII-A). The SIUF ML model uses environmental factors (e.g.
day of week), user interactions with the device (e.g. mouse
and keyboard activities), as well as device characteristics (e.g.
country and locale). The starting model was trained using
data from a production SIUF. Figure 6 displays the feature
importance plot, and the insights about key predictors are
shown in Figure 7 and Figure 8.

Similar to WU, the ML-driven SIUF went through multiple
phases of A/B testing. These included multiple iterations of
A/B tests to ensure quality, as well as verifying no nega-
tive user reactions. While quality being high, the A/B tests
uncovered various contextual issues that lead to interesting
results about user reactions (discussed more in Section VIII).
Nevertheless, since the ML-driven functionality was built as
an addition to existing, the engineering team was able to ship
it and continue A/B testing without impacting other SIUF
questions in production.

VI. REASONS FOR USING A/B TESTING TO BUILD
ML-DRIVEN SOFTWARE

In this section, we discuss four reasons for using A/B testing
to build ML-driven software based on our experiences: safety

Fig. 6. Feature importance plot for the SIUF ML model, showing the diverse
contributing predictors.

Fig. 7. Insights about environmental factors for the SIUF ML model, showing
how time of day (e.g. not during mornings) and day of week impact outcomes.

Fig. 8. Insights about user interactions for the SIUF ML model, showing the
complex impact of user interactions.



first (bugs can happen), unforeseen situations and inputs, inter-
acting with other software, and unpredictable human reactions.
These reasons are refrains of reasons to conduct A/B testings
for other software. Overall, our experiences are that ML-driven
software are still software, and best practices like A/B testing
are still beneficial. While these reasons could be raised even
without our case studies, our empirical evidences show that
these can (and do) occur in practice.

A. Safety First: Bugs Can Happen

ML models, by themselves, do not produce user-facing be-
haviors in our case studies (e.g. initiating reboots or displaying
surveys); to do so, other codes have to call the ML model
and then take its outputs to perform actions. Those codes can
have bugs. Consequently, as with other types of software, A/B
testing helps to ensure quality. For both cases of our ML-
driven software features, A/B testing helped to uncover quality
issues, which were then addressed.

B. Unforeseen Situations and Inputs

For real-world software (especially the Windows operat-
ing system), it is known that many unforeseen usage situa-
tions/contexts are possible and that a complete in-house testing
is impractical [38]. Therefore, the use of real-world A/B tests
helps to ensure quality. This is particularly true for ML-driven
software, since the motivations/justifications for using ML are
complex and not well covered by existing rules. Real-word
A/B testing is potentially even more important since it can
be hard to foresee the behaviors of ML-driven software in
complex situations.

A particularity of ML-driven software is a mitigation plan
for unforeseen bad inputs. Well-formed data are required for
ML models, and significant efforts in data science are spent on
sanitizing/cleaning data [39]. Ensuring all the different ways
(possibly unforeseen) that bad inputs are correctly mitigated
(e.g. clipping extreme values, creating a special category for
unrecognized strings) is another reason for the need for A/B
testing.

C. Interacting with Other Software

Evolving software to be ML-driven (perhaps more so than
software built from the ground up to be ML-driven) entails
working well with other software components as well as with
other parts of the ML platform.

As we will discuss in more detail in the next section, an
effective approach to evolve existing software to be ML-driven
is to add the ML model to the existing rules. This implies that
the ML functionality has integrated appropriately with other
parts of the software. For example, in ML-driven WU, when
the ML model defers a reboot, integration with a retry logic is
needed to ensure that critical updates are installed in a timely
manner by retrying reboots as soon as possible.

Additional components are also needed to ensure that the
ML-driven software works as expected with the ML platform.
For example, for both software features, additional validations
were needed to verify telemetry reporting and model updates.

A/B testing, with its ability to isolate the impact of a change,
is especially useful. For the Windows operating system, which
is large and complex, attributing and debugging problems
can be difficult [17]. Therefore, the use of A/B testing helps
to isolate issues in the system caused by adding the ML
functionality.

D. Unpredictable Human Reactions

ML-driven software aim to improve user experiences. How-
ever, positive user reactions are not assured. This is especially
true in both of our cases, which tackle customer pain points
that might have caused negative reactions. A/B testing is a
proven approach to successfully build software with poten-
tially unpredictable user reactions. In both of our cases, we
used various metrics to measure user reactions in our A/B
tests. They yielded interesting insights of user reactions to our
changes, which we discuss in more detail in Section VIII-C.

VII. INSIGHTS OF EFFECTIVELY BUILDING ML-DRIVEN
SOFTWARE USING A/B TESTING

Our experiences of evolving software to be ML-driven
yielded several insights about how to effectively build ML-
driven software, particularly using A/B testing.

A. Make the ML Model an Addition

Since evolving software to be ML-driven usually involves
starting with the existing functionality that has rules and
conditions, we found that adding the ML model on top of
existing system is an effective incremental approach. It reduces
both engineering risks as well as organizational risks.

For our software features, replacing all the rules and condi-
tions by ML models would have been much larger scoped
and more error-prone, which entails risks not only from
adding codes but also from removing codes. For example, for
WU, removing the ”Active Hours” functionality would have
entailed changing UI elements, shown in Figure 1, as well as
behaviors. By adding the ML model as another check, the risks
were lowered. This enabled engineering team to successfully
build and deploy with high quality, and then start the work to
retire/migrate other rules and conditions.

Another factor is the organizational risk. With limited
resources and many innovation investment options, commit-
ting significant resources can be risky. Initial successes and
evidence of efficacy help to gain organizational support for
more significant investments. For example, in the ML-driven
WU, in addition to the positive customer reviews, metrics from
telemetries also demonstrated benefits. Data from when re-
boots eventually take place indicate that the default 8-5 active
hours may not be optimal and that ML-driven functionality can
help identify better reboot times. These information helped to
gain organizational support for further investments.

B. Use Overall Success Metrics in Addition to Scenario Suc-
cess Metrics

In addition to scenario success metrics, overall success
metrics are needed in A/B testing because ML can cause



Fig. 9. Evaluation of Time to Logon for ML-Driven WU, where an SRM
occurred due to the ML model.
sample ratio mismatches (SRMs). An SRM in A/B testing
is where the sample size is statistically significantly different
between different groups. For example, in a 50/50 A/B test
of 100 devices, 0 and 50 devices reporting a metric would
constitute an SRM for the metric. Traditionally, this is a
problem because it is unknown what other devices would
have reported data. Therefore, any comparison of the metric
between A/B groups may be invalid due to the fact that the
difference could be caused by the devices selected rather than
the software feature change. However, the problem lies in that
the ML-driven software feature or the use of ML can cause
SRMs on purpose.

Both of our ML-driven software features aim to avoid
potentially disruptive behaviors (a bad time to reboot or
to survey users). However, this implies that the metric for
the scenario (e.g. whether the reboot disrupted the user or
whether the user responded to the survey) does not exist when
the ML model intervenes, causing an metric-level SRM. For
example, for the ML-driven WU, results showed statistically
significant improvement in increasing the time until users
return to using their devices after the automated reboot (i.e.
removing disruptive reboots), shown in Figure 9; however,
the number of devices having automated reboots (and thus
reporting the ”Time to AutoLogon” metric) were also statis-
tically significantly lower. This was expected, as discussed in
Section V-A, that more reboots were initiated by explicit user
actions. Nevertheless, this SRM left open the possibility that
those devices would have changed results. Our experience with
this situation is to use overall success metrics in conjunction
with the scenario success metrics to holistically assess the
software feature change and triangulate on the impact to user
experiences. In this manner, the ML-driven software feature
can be shown to benefit those that it changes behaviors for
as well as the overall success of the scenario. For ML-driven
WU, in addition to time to user interaction after automatic
reboots, we also used the overall success metrics, including
proportion of devices upgraded and overall user satisfactions
with Windows.

C. Make ML Models Updatable, Separate From Code Updates

While there are some practitioners who believe in evergreen
ML models, e.g. ML burned onto silicon [1], our experiences
are that updatable ML models separate from other engineering
codes are preferable. In our ML-driven software features, the

Fig. 10. Improvement in Time to Logon After Automatic Reboot due to the
ML update for WU.

ML models are system resource files that can be updated
independently from code updates.

We found this approach to be preferable for three reasons.
First, this expedites engineering efforts by enabling concurrent
training/retraining of the ML model and the coding/debugging
of the software feature that utilizes the ML model. Second, we
found that ML models usually require updating. For example,
the WU ML model needed to be updated because it was
initially built using data from Beta users. Figure 10 shows
the statistically significant improvements of reducing user
interruptions in the controlled rollout evaluation of the WU
ML model update. Finally, related to the previous, updating
engineering codes is more risky than updating a system
resource file. By compartmentalizing the ML model, risks and
costs associated with updating the ML-driven software feature
are significantly reduced.

D. Avoid Complex Black-box Models

Recently, deep learning models have been picking up mo-
mentum and shown to be effective in numerous applications,
such as facial recognition [6], text analysis [3], and voice
recognition [7]. Our experience with ML-driven Windows
features, which involve tabular telemetry data as inputs (such
as day of week or seconds of interactive usage) rather than
images, texts, or audio, indicate that unless the scenario is
known to benefit from deep learning models (like the ones
mentioned), traditional ML models are preferred. There are
three reasons.

First, though there have been advancements in ”explainable”
deep learning models [40], tools and practices for understand-
ing traditional ML models are significantly more advanced
[41]. In analyzing A/B tests of ML-driven software, we’ve
needed to analyze the ML models in order to understand why
they produced certain predictions and which inputs/factors



lead to those predictions. In those situations, a traditional ML
model like tree ensembles [42] provides much rich and mature
explainability. These benefits are needed to debug potential
data issues, help ensure fair and equitable ML models, as well
as to provide transparency to engineering teams.

Second, deep learning models are larger on the disk. There
have been recent advancements to reduce the size of deep
learning models, which include utilizing a more compact archi-
tecture [43] and techniques like pruning and quantization [44].
However, the complexity of deep learning models particularly
on tabular data still makes them less efficient in model size
comparing to traditional ML models. The Windows operating
system closely monitors the sizes of system files (which
include ML models) and aims to minimize them on users’
devices. As the number of ML-driven software features (and
the number of ML models) grows, the need for parsimonious
models also grows. Furthermore, since updating ML models
is an integral part of the evolving process, model transmission
costs are also of importance. Though the ML model files are
relatively small in size, when scaled out to potentially billions
of PCs (and updated regularly), the costs become non-trivial.

Finally, simpler ML models run faster, without requiring
specialized hardware (e.g. GPUs). This becomes increasingly
important as we look forward to more aspects of user experi-
ences to be ML driven. Our Windows customers may choose
different types of devices for various purposes (e.g. gaming,
education). The need for efficient models that can enable
effective ML-driven functionalities even in low-cost and/or
low-powered devices becomes critical to ensure optimized
experiences for all Windows users.

VIII. REAL-WORLD CHALLENGES FOR A/B TESTING AND
ML-DRIVEN SOFTWARE

In this section, we discuss three on-going challenges we face
in evolving software to be ML-driven using A/B testing. We
hope to tackle these challenges in the future, possibly through
collaborations with researchers and other practitioners.

A. Different Definitions of Equality for Different Applications

Machine learning can make software less intrusive, more
informative, and more reliable; however, using ML to change
behaviors of an application can have unintended consequences
of unfairly impacting its users [45]–[47]. Building fair ma-
chine learning systems is a difficult socio-technical effort that
requires us to carefully define ”fairness” in each scenario.
Defining fairness is difficult in general but can be especially
difficult when trying to ensure a complicated ML system is
”fair” to all users.

For our ML-driven WU model, our model rollout data
suggested that the model impacted laptops differently from
desktops. As our goal is to be less intrusive for all users rather
than just desktops, we are interested in success metrics that
are approximately equal for both laptops and desktops. This
notion of a fair model is common in the algorithmic fairness
literature [48]. Many of these fairness definitions balance some
metric for success across different subgroups. Notions like

accuracy parity or false positive parity are similar to our
desire for similar average values of the metric TimeToLogon
between laptops and desktops. We addressed the disparity in
TimeToLogon by training two separate models for the two
device types. This example highlights one of the challenges
for building fair machine learning systems. We may not know
what subgroups will be impacted unfairly before training
and deploying the model. The literature often consider user
subgroups that are important to the society like age, socio-
economic status, gender, ancestry and so on. However, the soft-
ware and the ML model might unfairly impact unanticipated
subgroups like laptops vs. desktops or region A vs. region B.
We can proactively mitigate some sources of unfairness, but
this example highlights the need for A/B testing and retroactive
investigations.

For our ML-driven SIUF model, we observed that the model
made SIUF less intrusive but it did so by choosing to show
the prompt less often to older devices. Our goal was to
be less intrusive and to give every user the opportunity to
offer feedback. Translating these priorities into a quantitative
notion of fairness was challenging due to the number of
ways we could formulate the problem. We used the feature
DaysSinceOOBE, which measures number of days since the
Windows’ out of box experience, as a proxy for device age.
As this feature value got larger the probability of showing
SIUF decreased. In this scenario, we did not have well defined
groups that would allow us to use fairness notions based on
equal success metrics for each subgroup. We could create
subgroups by bucketing devices or we could draw on new
ideas like individual fairness [49]. Individual fairness says that
similar users should have a similar probability of getting the
prompt. Although we thought this is an appropriate definition
of fairness for our scenario, it highlights one of the difficulties
of implementing fair ML-driven software. We realized that we
must consider not just the definition of fairness but also the
corresponding mitigation strategies. Given our system, it is
easier and more effective to bucket the devices into subgroups
based on device age and then re-weight the training data in a
manner that produces similar probabilities for subgroups [50].
Individual fairness does not offer a clear mitigation strategy
even though it is a reasonable definition of ”fairness” in this
scenario. Fair ML requires careful thoughts about defining,
measuring, and mitigating unfairness and in practice we find
that each of these three steps can impact the other two.

Microsoft is committed to the advancement of AI driven
by ethical principles that put people first [51]. Practical
implementations have many challenges. We found that no
single definition of fairness works for all scenarios and that
identifying the correct one depends on the software involved,
the ML model used, the evaluation tools available to us (like
our A/B testing platform), and the possible mitigation strate-
gies. While there are some tools available to help implement
mitigation strategies and academic literature available to help
define fairness and fairness metrics, we found that building
fair ML systems is a difficult task that can change drastically
from scenario to scenario. More sharing of experiences and



best practices by fellow practitioners may help.

B. Federated Learning with Local Privacy

Federated learning (FL) with local privacy (LP) is a promis-
ing approach of distributing the costs of training ML models
and strengthening the privacy protection of user data [3]. Using
methods like Secure Multiparty Communications and Local
Differential Privacy, researchers have shown that edge devices
can collaboratively train an ML model without users’ data
leaving their devices. With increasing computing capabilities
of edge devices and rising concerns over user data privacy,
FL with LP has been receiving growing interests and has been
investigated in many applications [23].

The challenge is how to incorporate FL with LP while
retaining the benefits of A/B testing. FL with LP aims to
minimize the data exposures of users. For example, in Secure
Multiparty Communications [23], it is possible to compute
a model update without revealing any information about the
performance of the model on any individual device. However,
anonymity hinders A/B testing and may increase difficulties
in identifying issues for at-risk sub-populations. For example,
all our efforts at testing and validating ML-driven software
for bias and fairness require knowing the sub-population
membership of those devices/users. Without the information,
it may not be possible to ascertain whether issues exist (or
have been addressed by fixes), since inherent population im-
balances (e.g. more data from men than women [7]) may mask
experiences of at-risk sub-populations. Approaches of securely
sharing information about sub-population membership may be
interesting areas of future research.

C. Pre-release A/B Testing May Not Be Indicative of Perfor-
mance in Production

Pre-release A/B testing of ML-driven software have many
benefits, as detailed in Section VI; however, making decisions
based on data from pre-release A/B testing can be challenging
due to differences relative to the general production. These
differences include both the Beta users as well as the pre-
release environment.

In the pre-release A/B test of ML-driven WU, there was
a statistically significant drop in the proportion of devices
automatically rebooted. This was linked to two phenomenons
which were likely specific to the pre-release environment.
First, it was not unusual for devices to be in the pre-release
environment for only a short period of time (for testing and for
trying out new software features, etc.); thus, some devices for
which ML-driven WU deferred a reboot were not seen again
(i.e. not getting another opportunity to complete the update).
This is uncommon in the general population. In addition, the
drop in automated reboots but more overall update completions
meant that many users were initiating reboots themselves (after
ML-driven WU deferred the automatic reboot initially). This
was likely due to the particularities of Windows Insiders.
Since the pre-release environment frequently gets updates with
the latest new functionalities (e.g. weekly), which commonly

Fig. 11. User behavior with ML-driven SIUF in pre-release A/B tests

require reboots, Windows Insiders (who also tend to be ad-
vanced users) seek and complete updates. This behavior is also
uncommon in the general population. Nevertheless, the A/B
test was able to identify these potentially negative reactions,
which may have otherwise gone unnoticed, since the rate of
automated reboots in the pre-release environment can fluctuate
(e.g. the time of year effects and as the release gets closer to
finalization).

ML-driven SIUF had similar challenges. While quality was
high, the A/B tests had contextual complications that lead to
equivocal results about user behaviors. For example, while
the user response rate and satisfaction score increased, the
total number of responses dropped significantly. A contribution
factor was the resetting of the minimum usage condition upon
new releases, which is much more frequent in the pre-release
environment (as well as short-lived devices discussed previ-
ously). Therefore, deferring the SIUF significantly reduced
the number of users surveyed, as the relevant metrics on A/B
testing scorecard shown in Figure 11.

Discerning which issues are real and which are by-products
of the pre-release context (thus safe to proceed) can be
challenging. We found no simple rules-of-thumb, and each
scenario involves nuanced interplay of users, context, and
software feature functionalities, which requires significant time
and efforts to understand. More experience reporting and
knowledge sharing may help yield a generalizable guidance.

IX. CONCLUSION

Incorporating intelligent behaviors into existing software,
driven by machine learning, can improve user experiences. The
knowledge reported in this paper may help practitioners and
researchers innovate (or start investing in) evolving software
to be ML-driven, with the potential to greatly benefit our
increasingly software-dependent society.
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