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Software engineering involves the consideration of both human and technical aspects, and although its
origins come from the sub-disciplines of computer science and engineering, today the importance of the
social and human aspects of software development are widely accepted by practitioners and researchers
alike. Researchers have at their disposal many research methods they can choose from, but does software
engineering research, at a community level, use methods that adequately capture the social and human aspects
of the socio-technical endeavour that is software development? To answer this question, we conducted a
categorization study of 253 ICSE papers and found a bigger emphasis on computational studies that rely on
trace data of developer activity, with fewer studies controlling for human and social aspects. To understand
tradeoffs that researchers make among their choice of research methods, we conducted a follow-up survey with
the authors of the mapping study papers and found they generally prioritize generalizability and realism over
control of human behaviours in their studies, sometimes for reasons of convenience or to appease reviewers
of their papers. Furthermore, our findings surprisingly suggest a gap in knowledge about triangulation that
could help address this gap within our community. We suggest our community, as a whole, diversify its use of
research methods, to increase the use of methods that involve more control of the human and social aspects of
software development practice while balancing our understanding of innovations on the technical side.
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1 INTRODUCTION
Software engineering is at the forefront of innovation and research, and involves the consideration
of both human and technical aspects. The origins of software engineering come from the 1950s
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and 1960s when the field emerged as a sub-discipline of computer science and engineering. As
such, it was highly technical and focused on solving technical, logical and mathematical problems.
Gradually, however, seminal works drew attention to the role of developers and social factors
in software engineering [2, 4, 21, 32]. Nowadays, software development is recognized as a socio-
technical endeavour [33], and many researchers consider both technical and human aspects of
software development in their work.

To study human aspects, researchers can take advantage of several specific research methodolo-
gies that make use of empirical methods suitable for studying these aspects. Qualitative methods,
described by Seaman et al. [17], are particularly valuable in highlighting human aspects. Sharp et
al. [18] advocate using ethnography in software engineering studies, pointing to its potential to
capture what developers do in practice and why they follow certain processes. Kitchenham [7] calls
for incorporating approaches from social science, such as case studies and quasi-experiments,
as she argues it will make findings more relevant to practitioners. Sjøberg, Dybå, and Jørgensen
[26] argue that doing more empirical work in SE will provide us with the knowledge needed to
develop better technologies for software development. And although empirical research in software
engineering has increased, howmany of our studies directly study developers or other stakeholders?
To understand how human aspects are studied (or not), we conducted a meta-study examining

the research strategies and data sources reported in a cohort of papers published at the International
Conference on Software Engineering (ICSE). We consider ICSE because it is seen by many as the
flagship conference in software engineering and purportedly represents the breadth of software
engineering research. Many of the papers presented at ICSE propose or evaluate technical tools
and/or descriptive or predictive theories. We could expect that many ICSE papers would not directly
study developers and may indirectly study developer behaviour through simulation or by mining
and manipulating developer trace data, but at a community level we would also expect to find other
papers that do directly study developer behaviours and evaluate new tools and interventions in
real work developer work contexts.

We use Runkel and McGrath’s research framework [16], originally developed to guide research
on human behavior in psychology and sociology, as a lens to understand how research produced by
the SE community captures human and social perspectives. McGrath [14] saw research methods as
“bounded opportunities”—whereby choosing a specific method provides opportunities not available
with other methods, but also introduces inherent limitations. Their model emphasizes that research
strategy choice involves trade-offs in generalizability, realism, and control. By control, McGrath
refers to control over the human subjects being studied. To address the inherent tradeoffs from one
method to another, Runkel and McGrath recommend triangulation as the best mitigation strategy.
The McGrath model has been used by other software engineering researchers to reflect on method
choice and the implication of that on research design [5].

We consider the following research questions:

RQ1: What kinds of empirical studies are reported in papers submitted to ICSE? More specifically,
we ask:

1.1: What research strategies are described in research published at ICSE?
1.2: What data sources are described in research published at ICSE?
1.3: How does the research presented in these papers prioritize generalizability, control, and

realism?
1.4: How is triangulation used in light of the prioritization of generalizability, control, and

realism criteria?
RQ2: What are the contributing factors that led to method choice described in these papers?
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To answer these questions, we conducted a two-phase study. First, we categorized 253 papers
published in the technical track at ICSE (accepted papers over a recent 3-year period). As mentioned
above, we chose to study ICSE because it is highly regarded and is assumed to not focus on a par-
ticular set of sub-topics or research methods. We classified the research strategies and data sources
used in the research described in these papers according to Runkel and McGrath’s model. From
the perspective of focus on human and technical aspects, this phase revealed a tendency towards
certain methods and data sources, and called for additional information about why researchers
chose those methods. In the second phase of our study, we surveyed the papers’ authors, asking
them to classify their own papers based on the same terminology. We also asked the authors to
reflect on their method choice, use of triangulation, and desirable research criteria they wished to
achieve in their research.

In the papers we considered, we found a skewed use of research strategies and data sources, and
that software engineering researchers prioritize generalizability and realism in their studies, for
reasons including convenience or to satisfy reviewers’ expectations. Our observations signal that
software engineering studies, at the methodology level and at least in some publishing venues, may
not adequately capture human and social aspects in software engineering. While triangulation
is the recommended mitigation strategy, our findings surprisingly suggest a gap in usage of and
knowledge about triangulation within our community.
The remainder of this paper is structured as follows. In Section 2 we discuss related work that

has both informed and motivated this research. This is followed by Section 3 where we describe the
methodology for both the categorization study and our survey. In Section 4 we present the findings
of our studies, and discuss possible explanations for the results that are grounded in our data in
Section 5. We also offer some recommendations for our research community to consider. We discuss
limitations and threats to validity of this research in Section 6.Finally, we conclude by identifying
areas for future work and reiterating important takeaways in Section 7. A number of traceability
artifacts from our analysis and a replication package are published on our supplementary website
at https://bit.ly/2vKxXvg.

2 BACKGROUND
Software development is a highly complex and technical process, and developers utilize a number of
different technologies to design, develop, deploy, andmaintain software.While much of our research
is technical, the importance of considering human and social factors of software development has
been recognized since the early days of software engineering. Books such as The Psychology of
Computer Programming [32] and Software Psychology: Human Factors in Computer and Information
Systems [21] drew attention to the role of developers and social factors in software development.
Other authors drew on personal experiences to demonstrate the impacts of different social constructs
and management practices in software development in their books, including The Mythical Man-
Month [2] and Peopleware: Productive Projects and Teams [4]. While these are only a few of the
many examples of early social research in software engineering, they still have impact today.
To study complex socio-technical systems, researchers in software engineering must employ

a wide variety of techniques from a number of interdisciplinary fields. There are a number of
seminal works that provide guidance for conducting and reflecting on empirical research in software
engineering. One key example is the book Empirical Methods and Studies in Software Engineering [3],
published in 2003. It offers an introduction of four major empirical methods: “controlled experiments,
case studies, surveys, and post-mortem analyses" [34]. Another prominent research book, published
in 2007, is the Guide to Advanced Empirical Software Engineering [22]. This book includes guidance
for a number of specific techniques, including qualitative methods [17], focus groups [10], personal
opinion surveys [8], and data collection techniques for field studies [24]. It also provides guidance
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on general topics, such as how to design ethical studies involving humans in software engineering
[31], a guide for building theories in software engineering [25] and a chapter explaining the benefits
and drawbacks of different empirical methods in software engineering to assist in research design
choices [5].

Other researchers offer guidance on specific methods for studying human subjects: Stol, Ralph,
and Fitzgerald provide guidelines for grounded theory specifically in the context of software
engineering [29] as they found that many papers that reported they used grounded theory lacked
rigor. While Runeson and Høst adapt case study research guidelines to the software engineering
domain [15], also in part to address the misuse of the term case study in our community. There are
also a number of seminal works available that focus around experimentation and evaluations. Both
Wohlin et. al. [35] and Ko, Latoza, and Burnett [9] provide excellent resources for understanding how
to conduct software engineering experiments with human participants. Sharp et al. [18] recently
explained how ethnographic studies could show not only what developers do in practice but also
why, and encouraged SE researchers to incorporate ethnography into their empirical studies.
These methods for directly studying human activities and behaviours are used across our com-

munity. Typically, there is at least one track on human aspects in the main research conferences, as
well as special purpose workshops on the topic such as the CHASE series 1. The papers presented at
CHASE tend to address broad socio-technical topics but as a workshop focus on early results. The
ESEM conference and EMSE journals also attract papers that consider human aspects, as their focus
is on empirical methods of which many involve direct human involvement. But how frequently
human aspects are considered in our main venues, particularly in papers that present technical
innovations, is not at all evident. And some researchers feel that the coverage of human and social
aspects is lacking [12, 19].
There are several meta-studies that reflect on papers published in our community and our use

of empirical methods. Shaw [20] investigated the papers submitted to ICSE 2002, analyzing the
content of the papers that were both accepted and rejected, as well as observing program committee
conversations about which papers to accept. She found that there were very low rates of submission
and acceptance of papers that investigated “categorization" or “exploration" research questions, or
papers whose research results presented “qualitative or descriptive models". A 2016 replication of
Shaw’s methodology [30] showed that since 2002, reviewers have raised their standards, particularly
with regards to empirical evaluations of research contributions. This is a good sign that empirical
research is increasingly prominent in SE. The replication study also found that a new category
of research papers, mining software repositories, was incredibly common. This new category of
mining papers may study human behaviours, but often in an indirect way.
Zelkowitz [36] found that the community’s use of empirical validation techniques for research

contributions was improving, but that researchers were using terms such as “case study" to refer
to different levels of abstraction, making it hard to understand the communicated research. More
recently, Siegmund et al.’s work [23] prompted discussions about validity within our community.
Another recent paper, published by Stol and Fitzgerald, also builds on Runkel and McGrath’s
research framework and use it to provide consistent terminology for research strategies. However,
they adapt the dimension of control (using the term precision) to mean control over the study
variables, rather than control of the human participants in the study [28]. They adapt the research
framework to categorize research studies, but do not focus on human aspects.
These papers, although introspective about empirical research in our community, do not tease

out how or to what extent social and human aspects are studied. Our aim is to understand how
the software engineering research community currently approaches studying human aspects in

1Cooperative and Human Aspects of Software Engineering, colocated with ICSE since 2011 http://www.chaseresearch.org/
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software engineering. The software engineering landscape is constantly changing with the creation
of new technologies and it has shifted in recent years with the addition of platforms and tools that
make software development more collaborative and social (GitHub, StackOverflow, Continuous
Integration and Slack are prominent examples). Therefore, we feel that an investigation of how
social aspects are captured and discussed in current software engineering research is both relevant
and timely.

3 METHODOLOGY
To investigate the research questions described in Section 1, we conducted a two-phased study.
We manually analyzed and categorized three years of ICSE papers, and then followed this with
a survey of the authors of those ICSE papers. We provide our methodological tools, anonymized
raw data, and analysis documents on our supplementary website, https://bit.ly/2vKxXvg, for the
purposes of replication and traceability.

3.1 Categorizing ICSE Paper Research Methods
To address RQ1, we manually analyzed ICSE technical research papers. We considered all technical
research track papers from ICSE’s 2015, 2016, and 2017 proceedings in the sample, collecting 84, 101,
and 68 technical track papers from each year, respectively, for a total of 253 papers. We focused on
three years of ICSE because it is the flagship SE conference and not focused on a specific type of SE
research, and because we wanted to understand the current state of ICSE rather than show trends
over time. Additionally, it was pragmatically easier for us to contact the authors to participate in
our survey by using more recent papers.
After collecting the papers, we developed rules to use for our categorization. We iteratively

refined Runkel and McGrath’s descriptions of data sources and research strategies as we applied
them to the ICSE papers in our sample, producing the adapted model described in Section 3.3. We
then classified the papers according to these completed descriptions and recorded the classification
of each paper, along with the reasoning for the classification.

3.2 Survey of Authors
We follow the reporting guidelines described by Jedlitschka and Pfahl [6] and used by Siegmund et
al. [23] to describe the design and dissemination of our survey to ICSE paper authors.

3.2.1 Objective. With our survey, we aimed to find answers to the research questions presented in
Section 1. In order to accomplish this, we asked the authors questions about their ICSE papers as
well as their careers as a whole. We phrased questions using the terminology from the research
lens so that the findings would triangulate with our findings from the categorization study.

3.2.2 Participants. Our survey participants consisted of the first author of each ICSE paper from
our categorization study. We focused on the first authors since they were likely heavily involved in
the research according to common publication conventions. We also chose this approach to avoid
sending multiple invitations to the same author (i.e., many researchers contribute to a high number
of papers).
At the time they conducted the research reported in their ICSE papers, participants were split

fairly evenly between being university faculty (46.7%) or students (43.3%), with some industry
involvement and researchers who were affiliated with more than one entity when they conducted
their research. They conducted their research in a variety of countries: 15 different countries were
represented, with the most prevalent being the United States (31.7%). Participants indicated that
they had a wide range of experience conducting SE research, with a minimum of 2 years experience,
a maximum of 25 years experience, and a mean of 7.1 years of experience.
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Fig. 1. Survey questions and possible responses, abbreviated for clarity.

3.2.3 Questionnaire and Conduct. The survey was designed in three parts. First, we asked the
authors basic demographic questions. Second, we asked questions specifically about the ICSE
papers they authored. To ensure that our participants understood the terminology in the survey
(the research strategies, data sources, and the three desirable research criteria), we included a set
of definitions with questions that involved these terms. We also provided examples next to each
provided response option. We then asked authors to classify their papers and explain why they
made those choices for their work. Finally, we asked participants about their research careers as
a whole, and their perceptions and experiences. All sections contained both closed-ended and
open-ended questions, and all questions were optional. A summary of the questions and possible
responses is shown in Figure 1.

To contact participants, we used email addresses from ICSE papers and public researcher websites,
contacting second or third authors if an email invitation failed to deliver. Participants were contacted
in March 2018, with a reminder email two weeks before closing the survey to responses in April. In
total, we sent 253 survey invitations successfully and received 60 responses, for a response rate of
23.7%.

3.2.4 Survey Analysis. We analyzed the survey data in three ways. First, closed answers were
cleaned and visualized using R. Second, the author-generated classifications were compared to our
findings from the categorization study. Where there were discrepancies, we investigated possible
causes and card-sorted these instances to determine common causes for discrepancies. To validate
our suggested causes of discrepancies, we conducted member checking with participants who
indicated they were willing to answer further questions. For this step we did not use the terminology
from the research lens, as we found miscommunication of the research lens to be the most common
cause of discrepancies. After member checking, we applied minor corrections to the categorization
study classifications where appropriate.

Finally, we followed an open coding approach to analyze the answers to open-ended questions.
The first author of this paper coded the responses and organized the codes into overarching
categories. Another author conducted an independent coding task on a subset of the data using
the coding scheme developed by the first author. There were minimal differences between the two
code sets, which were discussed and resolved when found. Primarily, these were errors of omission

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2019.



Methodology Matters 111:7

as there were many codes in the set. The first author then synthesized the contents of the codes in
these categories by iteratively describing and summarizing the data to produce a set of findings.

3.3 Our Research Lens for Interpreting Socio-Technical Research in Software
Engineering

To classify the ICSE papers, we adapted Runkel and McGrath’s model of research strategies and
data sources[13, 16]. This model highlight how the choice of research strategy and data source
impacts desirable research criteria, generalizability, realism, and control. Generalizability refers
to how generalizable the findings are to the population outside of the specific actors under study.
Realism is how closely the context under which evidence is gathered matches real life. Control
is defined as having control of the measurement of human behaviors under study, as well as
any extraneous factors not under study.2 Acknowledging that all method choices have inherent
weaknesses, Runkel and McGrath emphasized the importance of triangulation across research
strategies and data sources as a mitigation strategy. As the model was originally created for the
traditional social sciences, the complexities of SE research introduced a number of fringe cases,
signaling the need to adapt and extend the model for use in SE. We describe the adapted model
below.

3.3.1 Research Strategies. Runkel and McGrath [13, 16] placed eight different research strategies on
a “circumplex" diagram as segments of a circle; the circle is separated into four quadrants containing
two research strategies each, as seen in Figure 2. Strategies are mapped on the circumplex according
to the level of particularity/universality of the behavior systems under study and how obtrusive
the researchers are into natural settings experienced by the human subjects. The circumplex also
includes three dimensions representing desirable criteria—generalizability, realism, and control—and
shows where each of the three exist at their highest potential for maximization.

Researchers must triangulate across the circumplex, using complementary strategies that make up
for each other’s weaknesses, aiming to create a collective body of work that is high in generalizability,
realism, and control. It is important to note that while a study follows a single research strategy, a
research paper can contain multiple separate studies, and thus a paper can describe a number of
research strategies.

• Field strategies in SE involve researchers entering the natural setting of studied participants
to conduct their research. In field studies, the researcher does not manipulate the setting
and instead conducts their research in the “natural” environment. For example, a researcher
may observe how agile practices are used in a startup company. Field experiments differ
by introducing a controlled condition into the situation under study to understand the effects
it creates —compromising some unobtrusiveness for higher control in the resulting study. An
example of a SE field experiment could be introducing a novel automatic testing tool in a
company and observing its effects on code quality.

• Experimental strategies in SE involve testing hypotheses in highly controlled situations. These
strategies yield high control in the measurements and control over extraneous factors but at the
cost of reduced realism of context and narrowed generalizability. Laboratory experiments
refer to situations created by the researchers where participants take part in an experiment.
This strategy is used when researchers focus on a certain behavior and wish to measure it with
considerable control. For example, a researcher investigating the effects of a new debugging
tool on programming task efficiency may invite graduate students to a lab and ask them to
accomplish a set of predetermined debugging tasks with and without the tool. Experimental

2In his paper, McGrath refers uses the terms “precision” and “control” synonymously. For the purpose of clarity, we use the
term “control”.
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Fig. 2. McGrath’s Circumplex of Research Strategies

simulations in SE aim to replicate some aspect of the participant’s natural environment during
a controlled experiment thus gaining some realism. For example, a researcher investigating
project management meetings may conduct an experiment in a room with a similar setup to
the one used at the company.

• Respondent strategies are used to systematically gather participant responses to questions
posed by the researcher. Sample surveys aim to gather information about the human behavior
under a stimulus while judgment studies aim to gather information about the stimulus itself.
The main difference between Sample Surveys and Judgment Studies is whether the study
aims to gather information about the human behavior under a stimulus, or information about
the stimulus itself. These strategies make the participant’s physical setting and conditions
irrelevant. Sample Surveys tend to use representative populations, making them highly gen-
eralizable, while Judgment Studies are typically done with “actors of convenience”, lowering
the potential for generalizability but increasing control. Sample Surveys in SE are used to

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2019.
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investigate the effects that a phenomenon has on human behavior by surveying specific mem-
bers of a chosen population, aiming at generalizing the findings to more of the population.
For example, a researcher aiming to improve continuous integration tools may distribute an
online survey, asking developers to describe how they use these tools and what challenges
they face. Sample surveys are not limited to surveys in the traditional sense, and this method
could also refer to interviews and focus groups. Sample surveys can be more convenient than
field strategies because they often do not require physical access to an industrial environment
and can be remotely conducted. Judgment Studies are commonly used in SE to evaluate
the performance or utility of a new tool or technique. For example, in order to evaluate an
API recommendation system, a researcher may invite developers to use the system and then
survey them on the relevance and accuracy of the resulting recommended APIs. Judgment
studies tend to be high on control of measurement of both the stimulus materials and the
responses; however, they are often low on generalizability of population, as they are done
with “actors of convenience” or relatively small population samples.

• Theoretical strategies differ from the previously described strategies as they are the only
methods not involving the inclusion of active human participation as part of the research (but
the studies may be based on past empirical data and studies). Computational studies refer
to computer experiments using a complete and closed system to model operations without
any human involvement or dynamic feedback from the outside world. The primary tool of
the researcher is a computer. These studies are very common in SE and can be conducted
using a wide variety of techniques, including experiments to evaluate software tools, data
mining studies, computational analysis of big data, the creation and evaluation of prediction
models, natural language processing techniques, and computer simulations. This strategy
was originally named Computer Simulation by Runkel and McGrath, but we changed the
name to Computational Study to reflect the varied nature of studies conducted using this
strategy in SE. For example, a researcher aiming to evaluate a new bug detection technique
may use version control history in an open-source project to see if their tool identified all
the bugs that were fixed in subsequent versions of the project. Another example is running a
series of experiments comparing the performance of various state-of-the-art static Android
security analysis tools. Computational Studies may use methods for gathering and analyzing
digitized data, which is common in data mining studies. Formal theory research focuses on
the creation of models and theories based on previously gathered data or existing theories
and models, instead of gathering new empirical data. In SE this includes qualitative synthesis
studies, literature reviews, mathematical or logical research papers, etc. For example, by
building on a previously formed model, a theory formulation study may aim to identify and
describe underlying factors, which can explain why certain practices support alignment and
coordination in software projects.

3.3.2 Adapting the Circumplex. As we conducted the categorization study, we realized that the
circumflex model of Runkel and McGrath [16] had difficulty with completely characterizing the
papers published at ICSE. Coming as it does from the social and behavioural sciences, the circumplex
has no quadrant that maps directly to the many solution+evaluation papers we found. We therefore
adapted the circumplex as shown in Fig. 3. Our high-level approach first separated empirical
approaches from non-empirical approaches. For non-empirical papers, we created a category, Meta,
for research that analyze the research papers themselves (such as a systematic literature review).
We also moved Runkel and McGrath’s category Formal Theory for research strategies that use a
mathematical epistemology.
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Fig. 3. Adapted circumplex for categorization study.

Simplifying the empirical categories of Runkel and McGrath, we created four quadrants. Three
quadrants (all except the lower right) are primarily strategies that involve humans: Lab strategies,
Field strategies, and Respondent strategies. These map directly to the categories Runkel and
McGrath defined, and which we explained above.
Our new addition is to add a Data quadrant that reflects a logic of precision over data-based

research strategies. As we will show, this quadrant captures the majority of papers published in
our dataset. As the original circumplex nicely elaborates, one’s choice of strategy maximizes the
potential for either control, generalizability, realism, or precision, and reduces the potential for the
other strategies. Thus, Data strategies maximize precision, while foregoing Control over human
actors.

3.3.3 Data Sources. In addition to research strategies, McGrath [13] also describes a number
of possible empirical data sources for behavioral research, and the benefits and drawbacks of
each. These sources help us to determine the level of human involvement in the research. Self
Reports and Observations are active forms of human involvement, where Archival Records and
Trace Measures are inactive forms of human involvement. Additionally, research that uses logical
constructs, mathematics, and proofs rather than empirical data has no human involvement outside
of the researchers themselves.

Self Reports refer to instances where participants voluntarily report on their own behavior or
perceptions for research purposes, usually responding to direct researcher questions through a
questionnaire or an interview. They have the benefit of being able to determine a participant’s
perceptions about a topic from their own perspective, but they have the drawback of being at risk
of bias from participants wanting to portray themselves positively, or tell the researcher what they
want to hear.

Observations by a Visible Observer and Observations by a Hidden Observer are observa-
tions of human participants; either participants are aware they are being observed or measured
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(Visible Observer) or not (Hidden Observer). Data gathered through these methods occurs in real
time from a variety of techniques, including sensor data, video and audio recordings, and being
physically present in the same room as a participant. Observational data has the potential to
show how participants respond to different stimuli, which can be helpful for maximizing control.
However, visible Observer data may be influenced by the participants reacting to the fact that they
are being observed, potentially changing their behavior. Hidden Observer methods do not have this
limitation, but instead present the ethical concern of researching someone without their consent.
An example of Visible Observer data in SE are notes taken while observing a development meeting
in a company, and one example of Hidden Observer data is entering a development team and
observing their behavior for research purposes under the guise that you are a new team member.
Public Archival Records and Private Archival Records are data about human behavior that is
recorded by a third party for non-research purposes, but is used as the subject of research after the
fact. The difference between them is that private records would be unlikely to become a matter of
public record, like a diary entry. Both of these data sources are fairly uncommon in SE research;
public records are often very easy to access and can be useful for showing trends over time, for
example university graduation statistics could help to show trends in SE education. Private records,
on the other hand, are often very difficult to access due to security and ethical concerns. One
example of a private record in SE would be high-level production meeting minutes in industry.

Trace Measures are records indirectly created by humans as a result of their behavior. Humans
create these measures on their own; they are not collected by a third party and they are not created
for the purposes of research. Most software development artifacts fall into this category as they are
traces created by developers as a result of software development behavior. For example, software is
written by developers to fulfill some need, but later the source code (or its bugs, commits, or error
logs) becomes a Trace Measure we can study in future research. Often, Trace Measures are publicly
available and easily accessed. and are not influenced by the knowledge that the traces would be
analyzed for research. However, there are drawbacks to using Trace Measures, particularly with
the lack of control over measurement and lack of context available to explain such data.

McGrath discusses how data collection methods can be classified by type of human involvement.
Self reports refer to study instances where participants voluntarily report on their own behavior

for research purposes. Visible observer and hidden observer data are observations of human
participants; either they are aware they are being observed (visible) or not (hidden).Public archival
records and private archival records are records of human behavior that are recorded by a third
party for non-research purposes. The difference between them is that private records are unlikely
to become a matter of public record. Trace measures are records indirectly created by humans
as a result of their behavior. For example, the source code developers write to fulfill some need
becomes a trace measure to be used in future research. Self reports and observations are considered
active forms of human participation, while archival records and trace measures are inactive forms of
human participation. Formal/theoretical is used to describe purely theoretical research that does
not consider empirical data. It reflects the absence of human involvement beyond the researchers
themselves.

4 FINDINGS
We structure this section around answering our research questions and include insights from both
the categorization study and the survey. The categorization study data is presented after having
made minor adaptations following our validation and member checking. To protect anonymity
when presenting survey data, author (survey participant) quotes are identified using “Ax", where the
x corresponds to the order in which authors responded to the survey. We refer to survey questions
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by the identifier “SQx" as seen in Figure 1. We refrain from presenting numerical data from the
open-ended questions in our survey as quantifying this information may be misleading.

4.1 The Current State of Software Engineering Research from a Social Perspective
To understand how the SE research community addresses the social aspects of software development,
we investigated the research strategies and data sources used by ICSE authors, as well as the
corresponding balance of generalizability, realism, and control. We first present the research strategy
and data source classifications from the categorization study. Numerical data here represents the
number of papers that include a specific research strategy or data source.

RQ 1.1: What research strategies are described in research published at ICSE?

Among the 253 papers, we found a high use of data strategies (195/77.1%) compared to any of
the other research strategies in the categorization study (shown in Figure 4). There were fewer
instances of each of the other research strategies, with lab strategies being slightly less common
than other strategies.
Data strategies were the most commonly used, but these data strategy papers reported on a

variety of techniques. They include data mining studies, natural language processing experiments,
computer simulations, computational experiments to evaluate tools and techniques, computational
analysis of software artifacts, and computational prediction models.

Fig. 4. Research strategies used in ICSE papers.

RQ1.2: What data sources are described in research published at ICSE?

We found a high use of trace measures as a data source (82.21%) in the categorization study
(shown in Figure 5). About 20% of papers included self-reports or visible observer data, but other
data sources were not featured prominently. Trace measures used in papers varied, with researchers
reporting the use of log files, data from websites such as Stack Overflow, datasets of software bugs,
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Fig. 5. Data sources included in ICSE papers.

open source repositories, code comments, research papers, and software programs such as websites
and apps, among other sources.

RQ1.3: How does the software engineering research community prioritize generalizability,
control, and realism?

To investigate the balance of generalizability, realism, and control in ICSE papers, Fig. 6 shows
the absolute frequencies. Due to the high use of data strategies, our findings show a skew towards
relatively high potential for precision over data, but low potential for control over human behaviour.
Neither criteria’s potential is fully maximized as it would be if we observed more field studies or
sample surveys/formal theory.

In order to investigate the notion that levels of realism and generalizability may be higher than
control in ICSE papers, we asked the authors to rate their papers according to these criteria (SQ8).
The resulting distribution is shown in Figure 6. We see that authors rated their own papers more
highly on realism and generalizability and lower on control. Overall, authors rated their papers
highly on all three criteria; this is perhaps expected, as the papers were published in a top-tier
conference and are likely to be of good quality, and authors are unlikely to respond in a way that
reflects poorly upon themselves. Even so, it is the difference between each of the criteria that we
would like to draw attention to, indicating that realism and generalizability may be more highly
prioritized than control in ICSE papers.

We also asked the authors if they prioritize generalizability, realism, or control in their research
in general (SQ12). While some authors indicated that they prioritized all criteria equally, others
said that some approaches to research were better suited for prioritizing certain criteria over others.
Further still, authors indicated some criteria were more important to them in their careers as a
whole. Overall, realism was the highest priority for authors, followed by generalizability. A small
minority of the authors indicated that they prioritized control.

When asked whether they perceived a bias in the community with regards to these criteria (SQ13),
authors responded in a similar way; while some indicated they did not perceive a community
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Fig. 6. Authors indicated that their papers are higher in realism, closely followed by generalizability, and
lower in control.

bias towards any particular criteria, the majority indicated they believed the community was
prioritizing some criteria over others. Authors shared their perception that the community was too
focused on generalizability, followed by realism, and control was last. The responses to these two
survey questions support the imbalance suggested by the categorization study data that realism
and generalizability are prioritized over control in SE research from a social perspective.

RQ1.4: How is triangulation used in light of the prioritization of generalizability, control, and
realism?

Given our findings of the high use of data strategy using trace measure data in ICSE papers,
we chose to investigate triangulation. Computational studies can help researchers include large
samples of varied data in their work to maximize generalizability. Trace measure data may often be
readily available and is also not influenced by participant knowledge of research tasks, which can
help researchers maximize realism in their studies. However, the combination of a data strategy
and trace measure data includes a potential weakness: it does not allow for researchers to control
for different confounding factors that influence developer behaviors as they cannot be well exposed
with these methods. Triangulation across complementary research strategies and data sources is
considered key for mitigating this weakness [16].

Papers in our categorization study reported up to three research strategies and up to four different
data sources. We found that 48 papers (19%) reported more than one research strategy and 53
papers (21%) reported more than one data source. 71% of the papers published at ICSE in those
three years do not report triangulation with different data source types or research strategies in
a single paper. However, we recognize that these authors may have triangulated their research
strategies and data sources and published this work in another venue, another year of ICSE, or not
at all. We discuss author perceptions about triangulation in the following section.

4.2 Contributing Factors to the Current State of Software Engineering Research from
a Social Perspective

Our findings from RQ1 helped us present an understanding of the current state of SE research from
a social perspective. However, it is imperative that we also understand the factors that contribute to
this state, which we addressed with RQ2. Such factors help us contextualize our understanding and
illuminate potential issues for further discussion in Section 5. These factors were identified through
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our qualitative analysis, primarily the author responses to SQ4-7 and SQ10-12. Each “box" below
represents a unique factor contributing to the current state of SE research from a social perspective.

Authors focus on technical problems and choose methods that best fit these problems.

A common theme is that authors chose the research strategies and data sources that were the best
fit for their research questions or topic area, and prioritized the criteria (generalizability, realism,
or control) most relevant to their chosen approach. When authors communicated the focus of their
research to us, unsurprisingly, the majority indicated that they addressed a technical problem with
their work. While it is important to address technical problems in software development, we draw
attention to the fact that there is relatively less focus on social problems in SE compared to technical
issues.

Authors indicated they primarily used computational studies and formal theory in their work to
study technical aspects of software development. Authors indicated that they used these strategies to
evaluate an approach, tool, or algorithm that formed part of their research contribution. For example,
authors said they conducted computational studies to “prove [the] scalability of our approach" (A10)
and to “[test] performance against previous benchmark suites" (A45).

A minority of authors who were focused on technical research topics also indicated they thought
that other strategies involving active human participation were beyond the scope of their work
and they did not see them as an option. For example, an author commented that “because we are
working on algorithms [...] there is no need to conduct user study with human participants" (A21) and
“user studies would have been beyond the scope of our work" (A27).

A minority of authors indicated they used humans to evaluate their tools. For example, one
author said they “used a controlled environment for participants to use a tool we developed" (A59),
and another said they used “self-reports to assess perceived usefulness" (A18) of a tool.

Authors choose data sources opportunistically, by ease of use and access (or lack thereof) to
certain data sources.

When analyzing why authors chose certain research strategies and data sources (SQ3-7), we
found authors had practical concerns such as ease of use or availability. Authors said it was difficult
to gain access to developers and software engineers to conduct studies involving them. They also
highlighted that ethical concerns surface when accessing developers, making it difficult to use
Hidden Observer data, for example. One author said, “ideally, we also would have conducted a field
experiment to answer questions regarding usability, but we didn’t have subjects readily available with
the right training" (A16). This suggests that lack of access to an appropriate population may be
keeping authors from triangulating by using research strategies that involve developers.
At the same time, authors found it easier to gain access to trace measure data, saying it was

publicly available (A34, A54, A17), easy to access (A53), or used by other researchers in related
work (A34). One author indicated that Sample Surveys are an easy way to reach practitioners (A10),
however, other authors explained they chose computational studies with trace measures because
they were easier to conduct and more efficient at analyzing large sample sizes than other research
strategies (A41, A57). Participants signaled that the use of readily available data may have hidden
risks for the SE research community; as one author pointed out, “just because data is convenient or
available does not mean it reveals what we are looking for." (A4)

There is a potential lack of knowledge about triangulation in the software engineering research
community.
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After finding very little triangulation across research strategies and data sources in ICSE papers
during our investigation into RQ1.4, we asked authors to define triangulation and describe how
they use it in their work (SQ11). This was to gauge how authors understood triangulation (if at
all), and whether or not it was a technique they applied to their work. For context, we understand
triangulation as “taking different angles towards the studied object and thus providing a broader
picture" of the phenomenon under study, as described by Runeson and Höst [15].
Some authors provided us with rich definitions of triangulation and indicated they utilized a

number of different techniques in their work. For example, one author said, “triangulation means
integrating different sources of evidence. You can triangulate across data collected from different sites,
using different methods, or analyzed in different ways. I do all of the above, depending on the study."
(A12) Other authors did not provide a definition, but described their knowledge and practice of
triangulation in the context of their own specific research domain, like experimentation: “I define
triangulation as reaching conclusions based on multiple data sources and/or multiple experiments that
investigate some phenomenon using different techniques." (A60)

A surprising number of authors (17 out of 60) indicated they did not understand triangulation in
the context of research. Some of the responses given were “I’ve never used this word; I’m unsure
what is being asked exactly (perhaps that answers something?)" (A16) and “I did not know about
triangulation prior to this survey" (A56). This finding may have been influenced by the presence of
students in our sample; 11 out of 17 authors indicated they were students at the time they conducted
the research published the paper. Still, these students may have joined the research community in
a different role after the publication of their paper.

Authors believe that reviewers are too focused on generalizability, so they focus on having large
sample sizes to be accepted for publication.

Authors indicated a perceived bias towards generalizability in the SE community, particularly
with regards to the reviewing process. Authors reported that, in their view, generalizability is too
heavily emphasized by reviewers because it is easy to criticize in papers, even if work is highly
realistic or controlled (A19, A28). Authors thought this was leading reviewers to have “totally
unrealistic expectations regarding generalizability" (A26) and sample size, and one author said,
“generalizability is highly demanded by reviewers. This is why there is an increasing number of subjects
(software systems and developers) in studies over the last decade." (A34)

Authors noted this influenced their priorities, saying that they tried to maximize generalizability
in their work because “that’s what reviewers easily criticize" (A19). The perception that large sample
sizes are needed in a study for a paper to be accepted for publication may be keeping authors from
conducting research that is highly naturalistic or controlled, such as field studies or laboratory
experiments, where having large sample sizes is prohibitively difficult.

Authors prioritize having high realism and generalizability in order to be relevant to practitioners.

When asking authors about their priorities and perceived bias toward particular criteria (SQ12,
13), we found they emphasized a need for practical relevance in SE research. Those who prioritized
realism in their work tended to have relationships with industry and were concerned with creating
solutions to real-world problems that could be adopted by their industrial collaborators, as well as
other developers with similar issues. For example, one author said, “realism comes first. Given that I
work [in] an industrial research lab and all my research needs to help practitioners in the real-world
daily work." (A10) Another explained, “I need to have impact on the process and save money for the
company. Not being realistic means I will have zero impact." (A31)
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Other authors believed that realism and generalizability were dependent on each other. For
example, one author felt that it is “important to make sure that the approach could generalize for
subjects beyond the current study to ensure the applicability of the approach" (A22). Another author
commented that “realism is an important contributor to generalizability; the two are not orthogonal"
(A9).

It was noted by some authors that this perceived need for practical relevance in SE research
potentially influences research direction. One author noted that “software engineering researchers
are not interested in “boring" research; they are very solution-focused. As a result, fundamental research
does not get done in my opinion, because it requires giving up realism for control." (A3) Another
responded, “I think in the last decade there is a growing and strong bias towards realism. It is a strength
but also a weakness: bias towards short term impact, bias towards solutions that work although nobody
cares why, results over-fitting available data." (A42) This view could explain why fewer studies are
using methods that investigate causal factors of software development behavior.

5 DISCUSSION
Our investigation of ICSE from a social perspective leads to a number of valuable insights, each of
which has several implications for the SE research community. We aim to generate reflection and
discussion in the community by outlining the implications of our findings and raising questions in
light of our collected evidence.

5.1 Replication in Software Engineering
The snapshot we produced through our study shows a preference towards computational studies and
trace measures in current ICSE research. While there is merit in using these methodological tools
in particular for studying technical research questions, as a community we should be aware of the
trade-offs. Many papers that focus on technical solutions also may have to take into consideration
social and human factors, but it is difficult to understand the social factors that cause the behaviors
we measure through a computational approach alone. Similarly, trace measures—while often easy
to obtain—may be missing social and contextual factors that led to the data’s creation [1]. Without
understanding the social context surrounding the creation of software artifacts that we use in
our research, we have no way of knowing how the rapid advancement of software development
technologies and practices will affect our work.

Computational studies are typically considered highly replicable because they are often accom-
panied by packages including the software artifacts, algorithms, and tools used in the studies.
However, without understanding what about the social context of development made the artifacts
the way they are, it may be difficult to truly replicate the study on software that was created in a
similar way. After all, software is continuously evolving and so diverse that the context surrounding
software is more important than ever. One author commented to us that “given the wide variety of
programming languages, project processes and communities, open source vs proprietary projects, etc.
I think true generalizability is often difficult to achieve." (A48) Thus, we call on the community to
reflect on the true replicability of this type of work in SE.

5.2 The Importance of Understanding Causal Factors of Software Developer Behaviors
When mapped on Runkel and McGrath’s circumplex, we see that the community’s most popular
choice for research strategy supports the criteria of generalizability and realism while neglecting
control. The authors who responded to our survey indicated that this imbalance reflected their
priorities, where realism and generalizability were seen as necessary to have practical relevance
and be accepted for publication. However, highly controlled or naturalistic research in SE helps
us to understand the specific factors that cause certain software development behaviors, which is
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instrumental for developing foundational knowledge on which to base our future research. Having
this type of knowledge helps us to make informed decisions and base our tools and technologies
on a deeper understanding of the needs of developers that will use them.

5.3 Triangulation in Software Engineering Research
Triangulation could serve as a mitigation strategy to the high use of computational studies and trace
measure data in SE. Runkel and McGrath recommend the use of various research strategies and data
sources to address imbalance in prioritizing generalizability, realism, and control. While we could
not determine whether authors triangulated their work outside of their paper, our findings show
that the vast majority of the papers in our sample used a single research strategy and data source
type. In addition, we found an alarming number of participants (17 out of 60) that indicated they
did not understand the concept of triangulation in the research context. This suggests potential
knowledge gaps in the SE research community about triangulation. Triangulation is a critical
concept for empirical research, so we suggest that this issue requires further investigation.

However, the responsibility for triangulation does not need to be on the level of individual studies;
while it is valuable to triangulate findings with multiple research strategies and data sources within
a single paper, it may be impractical, and many studies have valuable insights that warrant an entire
paper. Instead, we suggest that the community as a whole should be responsible for triangulation;
it is unreasonable to expect each researcher to have the knowledge and the means to conduct
research using all of the methods available. Thus, we call on the community to reflect on the value
of studies that triangulate work conducted by other researchers. Harnessing our strengths and
skills in particular methods as individual researchers to triangulate the work of others will help
us to develop more impactful findings for the community as a whole[11], and help us to better
understand the social, as well as technical, aspects of software development.

5.4 Reflecting on the Contributing Factors to the Current State of ICSE
Investigating the factors that are contributing to the current state of SE illuminated some potential
issues, and we pose open questions to the research community based on our evidence.
The research community’s overwhelming focus on technical research was a major factor for

the high use of computational studies and trace measure data, as it is often the combination
that is the best fit to address highly technical research questions. However, we argue that social
factors are equally as important as technical concerns in SE, and require attention. We wonder
if it is not possible to reframe some of the research questions that guide us in studying technical
phenomena to instead consider them from a socio-technical perspective, incorporating both social
and technical concerns. As a community, are the research questions we choose to investigate
adequately addressing the socio-technical nature of software development?

Our analysis revealed that there is a dissonance between author priorities and what they perceive
as the priorities of reviewers. Paper reviewers are authors themselves, so we suggest looking
into other explanations of the current state. One author already suggested that the possible cause
could be that reviewers do not have adequate time to properly review papers (A25), and that
generalizability is easier to criticize in a paper than realism or control. If authors perceive that
their paper will not be accepted if they cannot produce a large sample size they may refrain
from conducting highly controlled or naturalistic research, where having large sample sizes is
prohibitively difficult. This type of research is key to understanding the complexities of human
behavior in software development, so we suggest that the issue of reviewer prioritization needs
further study and reflection from the community. Do our peer review and publication processes
bias the community towards certain types of research?
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6 LIMITATIONS
In this section, we identify the limitations associated with this research and the measures we took
to mitigate these issues through the research design.

6.1 Construct Validity
The model we adapted for this research was originally developed in the 1970s for traditional
behavioral science domains such as psychology and sociology, not socio-technical domains like
software engineering. One threat may be that the original model may not adequately capture
the true potential for generalizability, realism, or control in software engineering studies. To
mitigate this issue, we iteratively adapted and extended the original model to fit the current realities
of software engineering research so that they accounted for the technical aspects of software
development.
Also, although Runkel and McGrath’s model is from the 1970s, it is generally considered as

still relevant today in the fields of HCI (Human Computer Interaction) and CSCW (Computer
Supported Cooperative Work) and applied to socio-technical research settings. We introduced this
model to software engineering researchers back in 2008 [5] as a way to guide suitable research
methods for research questions, and this paper is still being used today. Most notably, Stol et al.,
adapted it for their “ABC of software engineering research” paper [28]. However, they changed the
interpretation of the obtrusiveness dimension to mean obtrusiveness in terms of how obtrusive a
researcher may be on a research setting – a researcher that manipulates the data only would with
their interpretation be obtrusive. We remain consistent with Runkel and McGrath and consider
obtrusiveness in terms of obtrusiveness on the human subjects being studied. Thus, for Stol and
Fitzgerald’s interpretation, a lab experiment could be an experiment with no human subjects (and
rely on data only that is perturbed by the researcher), whereas, we consider an experiment that
uses and manipulates data only as a “computational study” rather than a lab experiment.
Indeed, this distinction was perhaps confusing to some of our survey participants as some au-

thors confused “computational study" with “experimental simulation". An experimental simulation
does involve human observation and participation with some aspects of their environment being
simulated, whereas a computational study is conducted without any direct human subject interac-
tions. To mitigate this issue, we triangulated the findings from the survey with the categorization
study we did. We also conducted member checking with authors without relying on the use of the
terminology from the research lens to determine a common ground between the authors and the
researchers.

6.2 Internal Validity
The majority of the research tasks reported in this paper were conducted by the first author, which
introduces a threat to internal validity. Because many of the analysis tasks rely on human judgment,
such as open coding and classification of research papers, heavily relying on a single researcher
introduces the potential for researcher bias. To mitigate this issue, we validated the classifications
from the categorization study by having the authors of papers classify their own work as part of
the survey. We also validated the open coding of long-answer questions with a second independent
coder, and provided a number of analysis documents on our website to make the analysis process
as transparent and traceable as possible.

6.3 External Validity
For our investigations, we chose to focus on three years of ICSE proceedings and the authors of
those papers. This introduces a limitation in terms of external validity as different years, different
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venues, and different tracks may have produced a different distribution of research strategy and
data source use, and may have attracted researchers with different experiences and opinions to
participate in our survey. As mentioned earlier, there are other venues that clearly focus on human
aspects, including the CHASE workshop, co-located with ICSE since 2011, as well as other venues
such as VL/HCC 3 and CSCW 4. Thus we recognize our findings are particular to ICSE, but we feel
important to share as the ICSE publishing venue is recognized as being inclusive in terms of topics
and methods, but it is also seen by many as the premier publishing venue in software engineering.
Researchers may wish to apply our approach to other venues (e.g., journals or ESEC/FSE con-

ference) thus we provide a number of documents on our supplementary website designed to help
other researchers follow our methodology, making it highly replicable. We encourage members
of the community to conduct replication studies on additional years of ICSE and other venues to
explore the differences that may exist between venues and time periods in SE.

6.4 Novelty
We know of only one other work that has applied the circumplex model to learn about the SE
research community. Stol and Fitzgerald [27] described the benefits of using the model in SE,
but as we mentioned above they rely on a very different interpretation of the model. In their
interpretation an “actor" when studying the SE process could be either a human participant or
a software system, deviating from the original model where humans and social constructs were
the only potential “actors" for a study. We have developed an interpretation of the model from a
socio-technical perspective. We believe that maintaining that actors must be human allows us to
understand how SE research addresses social factors of SE.

7 CONCLUDING REMARKS
Through our categorization study and survey of ICSE authors, we identify a number of potential
issues within the community for further study and consideration. With all of the implications of
our findings in mind, we call the SE research community to action: software is designed, developed,
and maintained by people. If our goal is to improve software development processes and tools, we
must, as a community, adequately study humans to understand the social factors that influence
software development. Understanding the complexities of human behavior requires the use of
a diverse set of research methods and both active and inactive forms of human participation to
produce a collective body of work.

Our findings present a platform for the SE research community to have an informed discussion
around a number of issues, including the role of triangulation in SE, the effects of our current
reviewing process, our choice of methods and topics, and our prioritization of generalizability,
realism, and control with respect to the study of human behavior. We do not suggest that any of
these issues should be acted on immediately; rather, we call the community to further investigate,
reflect upon, and discuss these issues. The work that we produce as a community should be a
reflection of our collective values and goals for the future of SE, and so it is time for the SE research
community to engage in a discussion around our priorities for the future of the discipline, carefully
considering the benefits and drawbacks associated with the current state of our research output.
If we see our current state as being in conflict with our vision for the future of our research field,
then we must then also discuss the changes we need to make moving forward to better consider
the social aspects of the socio-technical system that is software development. We hope that this

3http://conferences.computer.org/VLHCC/
4ACM Conference on Computer Supported Cooperative Work, https://cscw.acm.org

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2019.

http://conferences.computer.org/VLHCC/
https://cscw.acm.org


Methodology Matters 111:21

paper sparks a change within the research community and that we begin to diversify our research
choices to include more active human involvement in our work.
As this research investigated a number of issues in the SE research community, there are a

number of possible areas for future work and follow-up studies. Our findings suggest a lack of
knowledge about triangulation within the SE research community, which we believe should be
studied further to determine the severity of this issue, as well as potential causes and solutions. We
also believe that the disconnect between author and reviewer priorities calls for potential action to
align our reviewing process with one that reflects our collective priorities.
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