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Abstract

State-of-the-art deep neural networks require
large-scale labeled training data that is often
either expensive to obtain or not available for
many tasks. Weak supervision in the form of
domain-specific rules has been shown to be
useful in such settings to automatically gen-
erate weakly labeled data for learning. How-
ever, learning with weak rules is challenging
due to their inherent heuristic and noisy nature.
An additional challenge is rule coverage and
overlap, where prior work on weak supervi-
sion only considers instances to which domain-
specific rules apply. In contrast, we develop a
weak supervision framework (WST) that lever-
ages all available data for a given task. To
this end, we leverage task-specific unlabeled
data that allows us to harness contextualized
representations for instances where weak rules
do not apply. In order to integrate this knowl-
edge with domain-specific heuristic rules, we
develop a rule attention network that learns
how to aggregate them conditioned on their
fidelity and the underlying context of an in-
stance. Finally, we develop a semi-supervised
learning objective for training this framework
with small labeled data, domain-specific rules,
and unlabeled data. Extensive experiments on
six benchmark datasets demonstrate the effec-
tiveness of our approach with significant im-
provements over state-of-the-art baselines.

1 Introduction

The success of state-of-the-art neural networks cru-
cially hinges on the availability of large amounts
of annotated training data. While recent advances
on language model pre-training (Peters et al., 2018;
Devlin et al., 2019; Radford et al., 2019) reduce
the annotation bottleneck, they still require large
amounts of labeled data for obtaining state-of-the-
art performances on downstream tasks. However,
it is prohibitively expensive to obtain large-scale
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Figure 1: Our weak supervision framework WST lever-
ages small labeled data and large amounts of task-
specific unlabeled data with domain-specific heuristic
rules via iterative self-training.

labeled data for every new task, therefore posing a
significant challenge for supervised learning.

In order to mitigate labeled data scarcity, re-
cent works have tapped into weak or noisy sources
of supervision, such as regular expression pat-
terns (Augenstein et al., 2016), class-indicative
keywords (Ren et al., 2018b; Karamanolakis et al.,
2019), alignment rules over existing knowledge
bases (Mintz et al., 2009; Xu et al., 2013) or heuris-
tic labeling functions (Ratner et al., 2017; Bach
et al., 2019; Badene et al., 2019; Awasthi et al.,
2020). These different types of sources can be used
to generate weak rules for heuristically annotat-
ing large amounts of unlabeled data. For instance,
consider the question type classification task from
TREC with regular expression patterns such as: la-
bel all questions containing the token “when” as
numeric (e.g., “When was Shakespeare born?").
Such approaches relying on weak rules typically
suffer from the following challenges. (i) Noise.
Rules by their heuristic nature rely on shallow pat-
terns and may predict wrong labels for many in-
stances. For example, the question “When would
such a rule be justified?" refers to circumstances
rather than numeric expressions. (ii) Coverage.
Rules generally have a low coverage as they apply
to only specific subsets of instances. (iii) Conflicts.
Different rules may generate conflicting predictions
for the same instance, making it challenging to train



a robust classifier.
To address the challenges with conflicting and

noisy rules, existing approaches learn weights in-
dicating how much to trust individual rules. In the
absence of large-scale manual annotations, the rule
weights are generally learned via mutual agreement
and disagreement of rules over unlabeled data (Rat-
ner et al., 2017; Sachan et al., 2018; Bach et al.,
2019; Ratner et al., 2019; Awasthi et al., 2020). For
instance, such techniques would upweight rules
that agree with the majority, and downweight them
otherwise. A typical drawback of these approaches
is coverage since rules apply to only a subset of
the data leading to low rule overlap to compute
agreement. For instance, in our experiments on
six real-world datasets, we observe that 66% of the
instances are covered by fewer than 2 rules, out
of which 60% are not covered by any rule at all.
Rule sparsity limits the effectiveness of previous
approaches, thus leading to strong assumptions,
such as, each rule has the same weight across all
instances (Ratner et al., 2017; Bach et al., 2019;
Ratner et al., 2019), or additional supervision in the
form of labeled “exemplars” used to create such
rules in the first place (Awasthi et al., 2020). Most
importantly, all these works ignore unlabeled in-
stances that are not covered by any of the rules.
Overview of our method. In this work, we pro-
pose a weak supervision framework, namely WST,
that considers all task-specific unlabeled instances
and domain-specific rules without any assumptions
about the nature or source of the rules. WST makes
effective use of a small amount of labeled data,
lots of task-specific unlabeled data, and domain-
specific rules through iterative teacher-student co-
training. A student model provides pseudo-labeled
annotations for all instances, thereby, allowing us
to leverage unlabeled data where weak rules do not
apply. To deal with the noisy nature of heuristic
rules and pseudo-labels from the student, we de-
velop a rule attention (teacher) network that learns
the fidelity of these rules and pseudo-labels condi-
tioned on the context of the instances to which they
apply. We develop a semi-supervised learning ob-
jective based on minimum entropy regularization
and learn all of the above tasks jointly.

Overall, we make the following contributions:

• We propose an iterative self-training mecha-
nism for training deep neural networks with
weak supervision by making effective use
of task-specific unlabeled data and domain-

specific heuristic rules. The self-trained stu-
dent model predictions augment the weak su-
pervision framework with instances where
rules do not apply.

• We propose a rule attention teacher network
(RAN) for combining multiple rules and stu-
dent model predictions with instance-specific
weights conditioned on the corresponding
contexts. Furthermore, we construct a semi-
supervised learning objective for training our
framework without any assumptions about the
structure or nature of the weak rules.

• We demonstrate the effectiveness of our ap-
proach on several benchmark text classifica-
tion datasets where our method significantly
outperforms state-of-the-art weak supervision
methods.

2 Self-Training with Weak Rules and
Unlabeled Data

We now present our approach, WST, that lever-
ages small labeled data, unlabeled data and domain-
specific heuristic rules. Our architecture consists
of two main components: the base student model
(Section 2.1) and the rule attention teacher network
(Section 2.2), which are iteratively co-trained in a
self-training framework.

Formally, let X denote the set of all instances
and Y = {1, . . . ,K} denote the set of labels for
a K-class classification task. We consider a small
set of manually-labeled examples DL = {(xl, yl)},
where xl ∈ X and yl ∈ Y and a large set of unla-
beled examples DU = {xi}. We also consider a
set of pre-defined heuristic rules R = {rj}, where
each rule rj is a labeling function that considers as
input an instance xi ∈ X , and either assigns a weak
label qji or does not apply, i.e., does not predict any
label for xi. Our goal is to leverage DL, DU , and
R to train a classifier that, given an unseen test
instance x′ ∈ X , predicts a label y′ ∈ Y .

2.1 Base Student Model

Our self-training framework starts with a base
model trained on the available small labeled setDL.
The model is then applied to unlabeled data DU

to obtain pseudo-labeled instances. In classic self-
training (Riloff, 1996; Nigam and Ghani, 2000),
the student model’s pseudo-labeled instances are
directly used to augment the training dataset and
iteratively re-train the student. In our setting, we
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Figure 2: Our WST framework for self-training with weak supervision.

augment the self-training process with weak labels
drawn from our teacher model (described in the
next section). The overall self-training process can
be formulated as:

min
θ

Exl,yl∈DL [− log pθ(yl | xl)]+

λEx∈SUEy∼qφ∗ (y|x)[− log pθ(y | x)] (1)

where, pθ(y|x) is the conditional distribution under
student model parameters θ; λ ∈ R is a hyper-
parameter controlling the relative importance of
the two terms; and qφ∗(y | x) is the conditional
distribution under the teacher model’s parameters
φ∗ from the last iteration and fixed in the current
iteration. The unlabeled subset SU ⊂ DU is se-
lected based on confidence scores of the teacher
(e.g., top K examples based on the least incurred
model loss).

2.2 Rule Attention Teacher Network (RAN)
Our Rule Attention Teacher Network (RAN) ag-
gregates multiple weak sources of supervision with
trainable weights and computes a soft weak label
qi for an unlabeled instance xi. One of the poten-
tial drawbacks on relying only on heuristic rules is
that a lot of data get left behind. Heuristic rules by
nature (e.g., regular expression patterns, keywords)
apply to only a subset of the data. Therefore, a sub-
stantial number of instances are not covered by any
rules and thus are not considered in prior weakly su-
pervised learning approaches (Ratner et al., 2017;
Awasthi et al., 2020). To address this challenge
and leverage contextual information from all avail-
able task-specific unlabeled data, we leverage cor-
responding pseudo-labels from the base student
model (from Section 2.1). To this end, we apply
the base model to the unlabeled data x ∈ DU and
obtain pseudo-label predictions as pθ(y|x). These

predictions are used to augment the set of already
available weak rule labels to increase rule coverage.

Consider qji ∈ {0, 1}
K to be the one-hot encod-

ing of the weak label assigned by a heuristic rule
rj ∈ R to an instance xi ∈ DU from the unlabeled
set, where K is the number of classes. The objec-
tive of RAN is to aggregate all of these weak labels
(including pesudo-labels) to compute a soft label
qi for every instance xi to augment the base model.
Let Ri ⊂ R be the set of all heuristic rules that
apply to instance xi.

Simple majority voting (e.g predicting the label
assigned by the majority of rules) may not be effec-
tive as it treats all rules equally, while in practice,
certain rules are more accurate than others.

RAN predicts pseudo-labels qi by aggregating
rules rj with trainable weights aji ∈ [0, 1] that
capture their fidelity towards an instance xi as:

qi =
1

Zi

(∑
j∈Ri

aji q
j
i +a

R+1
i pθ(y|xi)+aui u

)
,

(2)

where u is a uniform rule distribution that assigns
equal probabilities for each of the K classes as
u = [ 1K , . . . ,

1
K ]; aR+1

i ∈ [0, 1]; aui = (|Ri| +
1−

∑
j∈Ri a

j
i − a

R+1
i ); and Zi is a normalization

coefficient to ensure that qi is a valid probability
distribution. u acts as a uniform smoothing fac-
tor that prevents overfitting for sparse settings, for
instance, when a single weak rule applies to an
instance.

According to Eq. (2), a rule rj with higher fi-
delity weight aji contributes more to the compu-
tation of qi. If aji = 1 ∀rj ∈ {Ri ∪ pθ}, then
RAN reduces to majority voting. If aji = 0 ∀rj ∈
{Ri ∪ pθ}, then RAN ignores all rules and predicts
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Figure 3: Variation in unsupervised entropy loss with
instance-specific rule predictions and attention weights
encouraging rule agreement. Consider this illustration
with two rules for a given instance. When rule predic-
tions disagree (q1 6= q2), minimum loss is achieved for
attention weights a1=0, a2=1 or a1=1, a2=0. When
rule predictions agree (q1 = q2), minimum loss is
achieved for attention weights a1=a2=1. For instances
covered by three rules, if q1=q2 6= q3, then minimum
loss is achieved for a1=a2=1 and a3=0.

a uniform label distribution for xi. Note the distinc-
tion of our setting to recent works like Snorkel (Rat-
ner et al., 2017), that learns global rule-weights
aji = aj ∀xi by ignoring the instance-specific rule
fidelity.

In order to effectively compute rule fidelities,
RAN considers instance embeddings that capture
the context of instances beyond the shallow pat-
terns considered by rules. In particular, we model
the weight aji of rule rj as a function of the con-
text of the instance xi and rj through an attention-
based mechanism. Consider hi ∈ Rd′ to be the hid-
den state representation of xi from the base model.
Also, consider the embedding of each rule rj as
ej = g(rj) ∈ Rd. Rule embedding allows us to ex-
ploit the similarity between different rules in terms
of instances to which they apply, and further lever-
age their semantics for modeling agreement. We
use ej as a query vector with sigmoid attention to
compute instance-specific rule attention weights as:

aji = σ(f(hi)
T · ej) ∈ [0, 1], (3)

where f is a multi-layer perceptron that projects hi
to Rd and σ(·) is the sigmoid function.

Note that the rule predictions qji are considered
fixed, while we estimate their attention weights.
The above coupling between rules and instances
via their corresponding embeddings ej and hi al-
lows us to obtain representations where similar
rules apply to similar contexts, and model their
agreements via the attention weights aji . To this
end, the trainable parameters of RAN (f and g)

Algorithm 1 Self-training with Weak Supervision

Input: Small amount of labeled data DL; task-
specific unlabeled data DU ; weak rules R
Outputs: Student p∗θ, RAN Teacher q∗φ

1: Train pθ(y | x) using DL

2: Repeat until convergence:
2.1: Train qφ(y | R, pθ, x) using DL, DU

through Eq. (2) and (4)
2.2: Apply qφ(·) to DU to obtain pseudo-
labeled data: DRAN = {(xi, qi)}xi∈DU
through Eq. (2)
2.3: Train pθ(y|x) usingDL,DRAN through
Eq. (1)

are shared across all rules and instances. Next, we
describe how to train RAN.

2.3 Semi-Supervised Learning of WST

Learning of instance-specific weights a(·)i for the
weak sources (including rules and pseudo-labels)
is challenging due to the absence of any explicit
knowledge about the source quality and limited
amount of labeled training data. We thus treat the
weights a(·)i as latent variables and propose a semi-
supervised objective for training RAN with super-
vision on the coarser level of qi:

LRAN = −
∑

(xi,yi)∈DL

yi log qi −
∑
xi∈DU

qi log qi.

(4)
Given task-specific labeled data DL, the first term
in Eq. (4) minimizes the cross-entropy loss between
the teacher assigned label qi for the instance xi and
the corresponding clean label yi. This term pe-
nalizes weak sources that assign instance-specific
labels q(·)i that contradict with the ground-truth la-
bel yi by assigning a low instance-specific fidelity
weight a(·)i .

The second term in Eq. (4) considers unlabeled
data DU to minimize the entropy of the aggregated
pseudo-label qi and therefore learns source weights
that maximize their agreement. To this end, we
leverage minimum entropy regularization objective
from Grandvalet and Bengio (2005) to integrate un-
labeled data into the teacher model. This is highly
beneficial in our setting given the small amount of
labeled data. Since the teacher label qi is obtained
by aggregating weak labels q(·)i , entropy minimiza-
tion encourages RAN to assign higher instance-
specific weights a(·)i to sources that agree in their



TREC SMS Youtube CENSUS MIT-R Spouse

|DL| 68 69 100 83 1842 100
|DU | 5K 5K 2K 10K 65K 22K
Test Size 500 500 250 16K 14K 3K
#Classes 6 2 2 2 9 2
#Rules 68 73 10 83 15 9
Rule Accuracy (Majority Voting) 60.9% 48.4% 82.2% 80.1% 40.9% 44.2%
Rule Coverage (instances in DU covered by ≥ 1 rule) 95% 40% 87% 100% 14% 25%
Rule Overlap (instances in DU covered by ≥ 2 rules) 46% 9% 48% 94% 1% 8%

Table 1: Dataset statistics.

labels over the given instance xi, and lower weights
when there are disagreements between them – ag-
gregated across all the unlabeled instances.

Figure 3 plots the minimum entropy loss over
unlabeled data over two scenarios where two rules
agree or disagree with each other for a given
instance. The optimal instance-specific fidelity
weights a(·)i are 1 when rules agree with each other,
thereby, assigning credits to both rules, and only
one of them when they disagree. We use this un-
supervised entropy loss in conjunction with cross-
entropy loss over labeled data to ensure grounding.
End-to-end Learning: Algorithm 1 presents an
overview of our learning mechanism. We first use
the small amount of labeled data to train a base
student model that generates pseudo-labels and
augments heuristic rules over unlabeled data. Our
RAN network computes fidelity weights to com-
bine these different weak labels via minimum en-
tropy regularization to obtain an aggregated pseudo-
label for every unlabeled instance. This is used to
re-train the student model with the above student-
teacher training repeated till convergence.

3 Experiments

Datasets. We evaluate our framework on the fol-
lowing six benchmark datasets for weak supervi-
sion from Ratner et al. (2017) and Awasthi et al.
(2020). (1) Question classification from TREC-6
into 6 categories (Abbreviation, Entity, Description,
Human, Location, Numeric-value); (2) Spam clas-
sification of SMS messages; (3) Spam classification
of Youtube comments; (4) Income classification on
the CENSUS dataset on whether a person earns
more than $50K or not; (5) Slot-filling in sentences
on restaurant search queries in the MIT-R dataset:
each token is classified into 9 classes (Location,
Hours, Amenity, Price, Cuisine, Dish, Restaurant
Name, Rating, Other); (6) Relation classification
in the Spouse dataset, whether pairs of people men-
tioned in a sentence are/were married or not.

Method
Learning to Weight Unlabeled
Rules Instances (no rules)

Majority - - -
Snorkel (Ratner et al., 2017) X - -
PosteriorReg (Hu et al., 2016) X - -
L2R (Ren et al., 2018a) - X -
ImplyLoss (Awasthi et al., 2020) X X -
Self-train - - X
WST X X X

Table 2: WST learns rule-specific and instance-specific
attention weights and leverages task-specific unlabeled
data where no rules apply.

Table 1 shows the dataset statistics along with
the amount of labeled, unlabeled data and domain-
specific rules for each dataset. Rules have various
types, including regular expression patterns, lexi-
cons, and knowledge bases for weak supervision.

On average across all the datasets, 66% of the in-
stances are covered by fewer than 2 rules, whereas
40% are not covered by any rule at all – demonstrat-
ing the sparsity in our setting. We also report the
accuracy of the rules in terms of majority voting
on the task-specific unlabeled datasets. Additional
details on the dataset are presented in Appendix.
Evaluation. We train WST five times for five dif-
ferent random splits of the labeled training data and
evaluate on held-out test data. We report the aver-
age performance as well as the standard deviation
across multiple runs. We report the same evalua-
tion metrics as used in prior works (Ratner et al.,
2017; Awasthi et al., 2020) for a fair comparison.
Model configuration. Our student model consists
of embeddings from pre-trained language models
like ELMO (Peters et al., 2018) or BERT (Devlin
et al., 2019) for generating contextualized represen-
tations for an instance, followed by a softmax clas-
sification layer. The RAN teacher model considers
a rule embedding layer and a multilayer perceptron
for mapping the contextualized representation for
an instance to the rule embedding space. Refer to
Appendix for more details on the configurations
and hyper-parameters.



TREC SMS Youtube CENSUS MIT-R Spouse
(Acc) (F1) (Acc) (Acc) (F1) (F1)

Majority 60.9 (0.7) 48.4 (1.2) 82.2 (0.9) 80.1 (0.1) 40.9 (0.1) 44.2 (0.6)

LabeledOnly 66.5 (3.7) 93.3 (2.9) 91.0 (0.7) 75.8 (1.7) 74.7 (1.1) 47.9 (0.9)

Snorkel+Labeled 65.3 (4.1) 94.7 (1.2) 93.5 (0.2) 79.1 (1.3) 75.6 (1.3) 49.2 (0.6)

PosteriorReg 67.3 (2.9) 94.1 (2.1) 86.4 (3.4) 79.4 (1.5) 74.7 (1.2) 49.4 (1.1)

L2R 71.7 (1.3) 93.4 (1.1) 92.6 (0.5) 82.4 (0.1) 58.6 (0.4) 49.5 (0.7)

ImplyLoss 75.5 (4.5) 92.2 (2.1) 93.6 (0.5) 80.5 (0.9) 75.7 (1.5) 49.8 (1.7)

Self-train 71.1 (3.9) 95.1 (0.8) 92.5 (3.0) 78.6 (1.0) 72.3 (0.6) 51.4 (0.4)

WST (ours) 80.3 (2.4) 95.3 (0.5) 95.3 (0.8) 83.1 (0.4) 76.9 (0.6) 62.3 (1.1)

Table 3: Overall result comparison across multiple datasets. Results are aggregated over five runs with random
training splits and standard deviation across the runs in parentheses.

Baselines. We compare our method with the fol-
lowing methods: (a) Majority predicts the ma-
jority vote of the rules with ties resolved by pre-
dicting a random class. (b) LabeledOnly trains
classifiers using only labeled data (fully super-
vised baseline). (c) Self-train (Nigam and Ghani,
2000; Lee, 2013) leverages both labeled and un-
labeled data for iterative self-training on pseudo-
labeled predictions over task-specific unlabeled
data. This baseline ignores domain-specific rules.
(e) Snorkel+Labeled (Ratner et al., 2017) trains
classifiers using weakly-labeled data with a gen-
erative model. The model is trained on unlabeled
data for computing rule weights in an unsupervised
fashion, and learns a single weight per rule across
all instances. It is further fine-tuned on labeled
data. (f) L2R (Ren et al., 2018b) learns to re-weight
noisy or weak labels from domain-specific rules
via meta-learning. It learns instance-specific but
not rule-specific weights. (g) PosteriorReg (Hu
et al., 2016) trains classifiers using rules as soft
constraints via posterior regularization (Ganchev
et al., 2010). (h) ImplyLoss (Awasthi et al., 2020)
leverages exemplar-based supervision as additional
knowledge for learning instance-specific and rule-
specific weights by minimizing an implication loss
over unlabeled data. This requires maintaining a
record of all instances used to create the weak rules
in the first place. Table 2 shows a summary of
the different methods contrasting them on how they
learn the weights (rule-specific or instance-specific)
and if they leverage task-specific unlabeled data not
covered by any rules.

3.1 Experimental Results

Overall results. Table 3 summarizes the main
results across all datasets. Among all the semi-
supervised methods that leverage weak supervi-
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Figure 4: Gradual accuracy improvement over self-
training iterations in the CENSUS dataset. WST (Stu-
dent) performs better than Classic Self-training (Stu-
dent) being guided by a better teacher.

sion from domain-specific rules, WST outperforms
Snorkel by 6.1% in average accuracy across all
datasets by learning instance-specific rule weights
in conjunction with self-training over unlabeled in-
stances where weak rules do not apply. Similarly,
WST also improves over a recent work and the
best performing baseline ImplyLoss by 3.1% on
average. Notably, our method does not require ad-
ditional supervision at the level of exemplars used
to create rules in contrast to ImplyLoss.

Self-training over unlabeled data. Recent works
for tasks like image classification (Li et al., 2019;
Xie et al., 2020; Zoph et al., 2020) and neu-
ral sequence generation (Zhang and Zong, 2016;
He et al., 2019) show the effectiveness of self-
training methods in exploiting task-specific unla-
beled data with stochastic regularization techniques
like dropouts and data augmentation. We also make
similar observations for our tasks, where classic
self-train methods (“Self-train”) leveraging only a
few task-specific labeled examples and lots of unla-
beled data outperform weakly supervised methods
like Snorkel and PosteriorReg that have additional
access to domain-specific rules.
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% Overlap TREC YTube SMS MITR CEN. Spouse

Only Rules 46 48 9 1 94 8
WST 95 87 40 14 100 25
Increase +49 +39 +31 +13 +6 +17

Table 4: WST substantially increases rule overlap (%)
determined by the proportion of unlabeled instances
that are covered by at least 2 weak sources (from multi-
ple rules and pseudo-labels, as applicable).

Self-training with weak supervision. Our frame-
work WST provides an efficient method to incorpo-
rate weak supervision from domain-specific rules
to augment the self-training framework and im-
proves by 6% over classic self-training.

To better understand the benefits of our approach
compared to classic self-training, consider Figure 4
which depicts the gradual performance improve-
ment over iterations. The student models in classic
self-training and WST have the same architecture
and the same number of parameters. However,
the latter is guided by a better teacher (RAN) that
learns to aggregate noisy rules and pseudo-labels
over unlabeled data.
Impact of rule sparsity and coverage for weak
supervision. In this experiment, we compare the
performance of various methods by varying the
proportion of available domain-specific rules. To
this end, we randomly choose a subset of the rules
(varying the proportion from 10% to 100%) and
train various weak supervision methods. For each
setting, we repeat experiments with multiple rule
splits and report aggregated results in Figure 5. We
observe that our method WST is effective across all
settings with the most impact at high levels of rule
sparsity. For instance, with 10% of domain-specific

Configuration Acc

WST (Teacher) 88.1
WST (Student) 87.7 (↓ 0.4%)
No minm. entropy regularization in Eq. (4) 86.9 (↓ 1.4%)
No student fine-tuning on DL (step 2.3) 86.7 (↓ 1.6%)
No student pseudo-labels in RAN in Eq. (2) 85.3 (↓ 3.2%)

Table 5: Summary of ablation experiments aggregated
across multiple datasets. Refer to Appendix for corre-
sponding results in each dataset.

rules available, WST outperforms ImplyLoss by
12% and Snorkel+Labeled by 19%.

This performance improvement is made possible
by incorporating self-training in our framework
to obtain pseudo-labels for task-specific unlabeled
instances, and further re-weighting them with other
domain-specific rules via the rule attention network.
Correspondingly, Table 4 shows the increase in data
coverage for every task given by the proportion of
unlabeled instances that are now covered by at least
two weak sources (from multiple rules and pseudo-
labels) in contrast to just considering the rules.

3.2 Ablation Study
Table 5 reports several ablation experiments to eval-
uate the impact of various components in WST.

WST teacher marginally outperforms the student
model on an aggregate having access to domain-
specific rules. WST student that is self-trained
over task-specific unlabeled data and guided by an
efficient teacher model significantly outperforms
other state-of-the-art baselines.

Minimum entropy regularization in the semi-
supervised learning objective (Eq. (4)) allows WST
to leverage agreement between various weak super-
vision sources (including rules and pseudo-labels)
over task-specific unlabeled data. Removing this
component results in an accuracy drop of 1.4% on
an aggregate demonstrating its usefulness.

Fine-tuning the student on labeled data is im-
portant for effective self-training: ignoring DL in
the step 2.3 in Algorithm 1, leads to 1.6% lower
accuracy than WST.

We observe significant performance drop on re-
moving the student’s pseudo-labels (pθ(·)) from the
rule attention network in Eq. (2). This significantly
limits the coverage of the teacher ignoring unla-
beled instances where rules do not apply, thereby,
degrading the overall performance by 3.2%.

3.3 Case Study: TREC-6 Dataset
Refer to Table 6 for some illustrative examples on
how our WST framework aggregates various weak



Instances Teacher Student Set of Heuristic Rule Labels

1. Which president was unmarried ? HUM HUM(1) {}
2. What is a baby turkey called? ENTY DESC(1) {ENTY(1), DESC(0), HUM(0)}
3. What currency do they use in Brazil? ENTY ENTY(1) {DESC(0), DESC(0)}
4. What was President Johnson’s reform program called? ENTY ENTY(1) {HUM(1), ENTY(1), DESC(0), HUM(0)}
5. What is the percentage of water content in the human body? NUM DESC(0) {HUM(0), NUM(0.2), DESC(0)}

Table 6: Snapshot of answer-type predictions for questions in TREC-6 from WST teacher and student along with
a set of labels assigned by various weak rules (DESC: description, ENTY: entity, NUM: number, HUM: human) with
corresponding attention weights (in parentheses). Correct and incorrect predictions are colored in green and red
respectively. Detailed analysis and rule semantics reported in Appendix.

supervision sources with corresponding attention
weights shown in parantheses. In Example 1 where
no rules apply, the student leverages the context
of the sentence (e.g., semantics of “president”) to
predict the HUM label. While in Example 2, the
teacher downweights the incorrect student (as well
as conflicting rules) and upweights the appropriate
rule to predict the correct ENTY label. In example
3, WST predicts the correct label ENTY relying
only on the student as both rules report noisy labels.

4 Related Work

Self-Training Self-training (Yarowsky, 1995;
Nigam and Ghani, 2000; Lee, 2013) as one
of the earliest semi-supervised learning ap-
proaches (Chapelle et al., 2009) trains a base model
(student) on a small amount of labeled data and ap-
plies it to pseudo-label (task-specific) unlabeled
data. This is used to augment the labeled data and
re-train the student in an iterative manner. Self-
training has recently been shown to obtain state-of-
the-art performance for tasks like image classifica-
tion (Li et al., 2019; Xie et al., 2020; Zoph et al.,
2020), text classification (Mukherjee and Awadal-
lah, 2020), and neural machine translation (Zhang
and Zong, 2016; He et al., 2019) and has shown
complementary advantages to unsupervised pre-
training (Zoph et al., 2020). A typical issue in self-
training is error propagation from noisy pseudo-
labels. This is addressed in WST via rule attention
network to compute fidelity of the pseudo-labels.

Learning with Noisy Labels Classification un-
der label noise from a single source has been an
active research topic (Frénay and Verleysen, 2013).
One major line of research focus on correcting the
labels by learning label corruption matrices (Patrini
et al., 2017; Hendrycks et al., 2018; Zheng et al.,
2019). More related to our work are the instance re-
weighting approaches (Ren et al., 2018b; Shu et al.,
2019), which learn to up-weight and down-weight
instances with cleaner and noisy labels respectively.

However these operate on only instance-level and
do not consider rule-specific importance. Our ap-
proach learns both instance- and rule-specific fi-
delity weights and substantially outperforms Ren
et al. (2018b) across all datasets.

Learning with Multiple Rules To address the
challenges with multiple noisy rules, existing ap-
proaches learn rule weights based on mutual rule
agreements with some strong assumptions. For in-
stance, Meng et al. (2018); Karamanolakis et al.
(2019); Mekala and Shang (2020) denoise seed
words using vector representations of their seman-
tics. However it is difficult to generalize these
approaches from seed words to more general label-
ing functions that only predict heuristic labels (as
in our datasets). Ratner et al. (2017); Sachan et al.
(2018); Ratner et al. (2019) assume each rule to
be equally accurate across all the instances that it
applies to. Awasthi et al. (2020) learn rule-specific
and instance-specific weights but assume access to
labeled exemplars that were used to create the rule
in the first place. Most importantly, all these works
ignore unlabeled instances that are not covered by
any of the rules, while our approach leverages all
unlabeled instances via self-training.

5 Conclusions and Future Work

We developed a weak supervision framework
(WST) to integrate task-specific unlabeled data,
few labeled data, and domain-specific knowledge
as rules for training efficient models. To this end,
we leverage self-training for harnessing contextual-
ized representations for unlabeled instances where
weak rules do not apply. This significantly im-
proves the model coverage in contrast to prior
works. Additionally, we developed a rule atten-
tion network to aggregate various noisy sources
of weak supervision (including rules and pseudo-
labels) with instance-specific weights – that are
trained without any assumptions about the source
or nature of the sources. Extensive experiments on



several benchmark datasets demonstrate WST out-
performing state-of-the-art models with particular
effectiveness at high levels of rule sparsity.

Ethical Considerations

In this work, we introduce a framework for training
of neural network models with few labeled exam-
ples and domain-specific knowledge. This work
is likely to increase the progress of NLP applica-
tions for domains with limited annotated resources
but access to domain-specific knowledge. While it
is not only expensive to acquire large amounts of
labeled data for every task and language, in many
cases, we cannot perform large-scale labeling due
to access constraints from privacy and compliance
concerns. To this end, our framework can be used
for applications in finance, legal, healthcare, retail
and other domains where adoption of deep neural
network may have been hindered due to lack of
large-scale manual annotations on sensitive data.

While our framework accelerates the progress
of NLP, it also suffers from associated societal im-
plications of automation ranging from job losses
for workers who provide annotations as a service.
Additionally, it involves deep neural models that
are compute intensive and has a negative impact
on the environment in terms of carbon footprint.
The latter concern is partly alleviated in our work
by leveraging pre-trained language models and not
training from scratch, thereby, leading to efficient
and faster compute.
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