
AdsGNN: Behavior-Graph Augmented Relevance Modeling in
Sponsored Search

Chaozhuo Li
Microsoft Research Asia

cli@microsoft.com

Bochen Pang∗
Microsoft

bochen.pang@microsoft.com

Yuming Liu
Hao Sun

yumliu@microsoft.com
hasun@microsoft.com

Microsoft

Zheng Liu
Xing Xie

zheng.liu@microsoft.com
xingx@microsoft.com

Microsoft Research Asia

Tianqi Yang
Yanling Cui

tianqi.yang@microsoft.com
yanling.cui@microsoft.com

Microsoft

Liangjie Zhang
Qi Zhang

liazha@microsoft.com
zhang.qi@microsoft.com

Microsoft

ABSTRACT
Sponsored search ads appear next to search results when people
look for products and services on search engines. In recent years,
they have become one of the most lucrative channels for marketing.
As the fundamental basis of search ads, relevance modeling has
attracted increasing attention due to the significant research chal-
lenges and tremendous practical value. Most existing approaches
solely rely on the semantic information in the input query-ad pair,
while the pure semantic information in the short ads data is not
sufficient to fully identify user’s search intents. Our motivation
lies in incorporating the tremendous amount of unsupervised user
behavior data from the historical search logs as the complementary
graph to facilitate relevance modeling. In this paper, we extensively
investigate how to naturally fuse the semantic textual informa-
tion with the user behavior graph, and further propose three novel
AdsGNN models to aggregate topological neighborhood from the
perspectives of nodes, edges and tokens. Furthermore, two criti-
cal but rarely investigated problems, domain-specific pre-training
and long-tail ads matching, are studied thoroughly. Empirically,
we evaluate the AdsGNN models over the large industry dataset,
and the experimental results of online/offline tests consistently
demonstrate the superiority of our proposal.

CCS CONCEPTS
• Information systems→ Information retrieval.

KEYWORDS
sponsored search; relevance modeling; graph mining

∗* Indicates Equal Contributions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00
https://doi.org/10.1145/3404835.3462926

ACM Reference Format:
Chaozhuo Li, Bochen Pang, Yuming Liu, Hao Sun, Zheng Liu, Xing Xie,
Tianqi Yang, Yanling Cui, Liangjie Zhang, and Qi Zhang. 2021. AdsGNN:
Behavior-Graph Augmented Relevance Modeling in Sponsored Search. In
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’21), July 11–15, 2021, Virtual
Event, Canada. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3404835.3462926

1 INTRODUCTION
Search engine advertising has become a significant element of the
web browsing due to the outburst of search demands. Choosing
the right ads for a query and the order in which they are displayed
greatly affects the probability that a user will see and click on each
ad [22]. As the fundamental component of sponsored search sys-
tems, the relevancemodel measures the semantic closeness between
an input query and a candidate ad, which is capable of improving
the user experience and driving revenue for the advertisers.

Existing relevance models usually capture the semantic corre-
lations inside the query-ad pairs with powerful Natural Language
Understanding (NLU) models, which has been a key research field
with many breakthroughs over the last years. Deep Structured Se-
mantic Model (DSSM) [21, 28] is one of the first powerful solutions
to encode text data into latent distributed vectors. With the devel-
opment of NLU, transformers [32] and BERT [3, 23] are both the
emerging pre-trained language models with far superior perfor-
mance, which surpass previous approaches and can even approach
the human level. Pre-trained models can capture the contextual
information in the sentences and generate high-quality language
representations, leading to the promising performance.

However, directly applying such NLU approaches to the rele-
vance modeling scenario may not be desirable as the pure semantic
information in the ads data is not sufficient to fully identify the user
search intents. The queries and ads are quite short (e.g., less than 4
words on average from Bing’s log) compared with the long text (e.g.,
sentences and documents) used in the traditional NLU tasks, and
thus the performance is hindered by the scarce semantic informa-
tion in the input short texts. Manually labeled query-ad pairs can
provide more linguistic guidance for better understanding the latent
search intents, but they are quite expensive and time-consuming.

https://doi.org/10.1145/3404835.3462926
https://doi.org/10.1145/3404835.3462926
https://doi.org/10.1145/3404835.3462926

Besides, although existing models have demonstrated satisfying
results in matching common queries with popular ads, they usu-
ally achieve undesirable performance on the long-tail queries/ads
[39], which is potentially caused by under-training due to naturally
scarce data on these low-frequency examples.

Existing NLU-based relevance models mainly focus on implicit
feature engineering solely from the input textual data. Structural
complexities of new relevance models grow exponentially but the
performance improvement is relatively marginal. Therefore, in or-
der to significantly improve the relevance performance, employing
new and accessible data with supplementary information is a more
practical and favorable approach. A natural and easily accessible
data source that provides information beyond semantic text in
the search engine system is users’ historical click behaviors. Our
motivation lies in exploring this cheap and massive click data as
complementary for relevance modeling. For example, given a short
query “𝐴𝐹1”, it is intractable for NLU models to understand the ac-
tual meanings correctly. But in the user behavior data, its historical
clicked ads include “𝐴𝑖𝑟 𝐹𝑜𝑟𝑐𝑒 1” and “𝑁𝑖𝑘𝑒 𝐴𝐹1 𝑠ℎ𝑜𝑒𝑠”. With this
complementary information, the input query can be easily com-
prehended as a sub-brand of Nike shoes, which will facilitate the
downstream relevance modeling task.

A straightforward strategy is to employ click relations as a sur-
rogate of relevance annotations. Namely, the clicked query-ad pair
is viewed as positive, and negative pairs are synthesized by fixing
a query while randomly sampling its un-clicked ads. This strategy
confuses the relevance correlations with the click relations and
thus may introduce ambiguities from two aspects. Firstly, the arbi-
trariness and subjectivity of user behavior lead to the misalignment
between user clicks and true relevance annotations [20], which
may introduce noises into the ground truth and further pollute the
training set. Secondly, negative pairs sampled by data synthesizing
usually share no common tokens for queries and ads, which may
mislead the relevance model to view common terms as critical evi-
dence of relevance. However, lexically similar query and ad may
have totally different intents such as “iPad” and “iPad charger”.

Here we extensively study how to naturally incorporate the
user behaviors in the format of graphs without introducing the
mentioned ambiguities. Queries and ads are connected by click rela-
tions, based on which a bipartite behavior graph can be built easily
from the search logs. Over the recent years, Graph Neural Net-
work (GNN) [10, 33] and the variants are widely applied on graph
structural data with promising performance on many downstream
applications (e.g., node and graph classifications). Inspired by GNN,
we attempt to properly integrate the abundant behavior graph data
into the traditional semantic model. In most GNN models, the node
textual features are pre-existed and fixed in the training phase. In
contrast, we make the semantic and graph models work in con-
junction with each other, which contributes to generating more
comprehensive representations for deeper intent understanding.

In this paper, we propose the AdsGNN models that naturally
extend the powerful text understanding model with the comple-
mentary graph information from user historical behaviors which
serves as a powerful guide to help us better understanding the latent
search intents. Firstly, three variations are proposed to effectively
fuse the semantic textual information and user behavior graph from

the perspectives of nodes, edges and tokens. Specifically, the node-
level AdsGNN𝑛 views the queries and ads as separated entities, then
aggregates the neighborhood information from the click graph to fa-
cilitate the learning of entity representations. Edge-level AdsGNN𝑒
treats the input query-ad pair as a unit and directly learns the edge
representations by aggregating the local topological information.
Token-level AdsGNN𝑡 regards the input token as processing units
and fuses the graph information to learn behavior-enhanced token
representations, which is a deeper tightly-coupled integration ap-
proach compared with previous two variations. After that, in order
to take full advantage of user behaviors, we propose to pre-train the
AdsGNN model on the behavior graph with two graph-based pre-
training objectives. Finally, as the long-tail queries/ads are usually
associated with limited click signals, we propose to learn a knowl-
edge distillation model to directly learn the mapping from the pure
semantic space to the behavior-enhanced embedding space, which
empowers our proposal with powerful topological predictive ability
to handle the long-tail entities. Empirically, AdsGNNs are evaluated
over the large industry dataset and yield gains over state-of-the-art
baselines with regards to the different parameter settings, which
demonstrates the superiority of our proposal.

We summarize our main contributions as follows.
• We incorporate the unsupervised user behavior graph as
complementary to enrich the semantic information in the
input query-ad pairs and propose three novel AdsGNN mod-
els to effectively fuse textual data and behavior graph from
different perspectives.

• A novel knowledge distillation based framework is proposed
to alleviate the formidable but less explored challenge of
long-tail ad matching.

• Extensively, we evaluate our proposal on the large indus-
try dataset. Experimental results demonstrate the superior
performance of the proposed AdsGNN models.

2 PROBLEM DEFINITION
In this section, we will formally define the studied problem. Dif-
ferent from existing approaches solely based on the semantic data,
here we further exploit the unsupervised user behavior data from
the search log as complementary. The behavior graph is defined
as a bipartite graph: G = {Q,A,E}, in which Q and A denote the
set of queries and ads, respectively. E ∈ N |Q |× |A | is the adjacency
matrix, which includes the click signals between queries and ads.
The ground truth of relevance modeling task is defined as a set
of triples: L = {< 𝑞𝑖 , 𝑎𝑖 , 𝑦𝑖 >}, where 𝑞𝑖 denotes the input query,
𝑎𝑖 denotes the ad and 𝑦𝑖 ∈ {0, 1} represents the relevance label
between 𝑞𝑖 and 𝑎𝑖 . We aim to learn a classifier f : f (𝑞, 𝑎) ∈ {0, 1} by
fusing the ground truth L and the click graph G.

3 METHODOLOGY
3.1 AdsGNN𝑛 for Node-level Aggregation
Denote 𝑞 and 𝑎 as the input query and ad, respectively. Figure
1(a) shows the motivation of the node-level aggregation model
AdsGNN𝑛 . Given the input 𝑞 (green pentagram), its neighbors in
the behavior graph are the ads (orange circles) that users tend
to click. The dotted lines represent message-passing directions.
Considering the scarce semantic information in the short input

q
a

(a) The illustration of AdsGNN𝑛 in the behavior graph.

q aqn1 qn2 an1 an2 an3

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Query aggregator Ad aggregator

Matching layer

(b) Overview of the model structure.

Figure 1: The illustration of the node-level AdsGNN𝑛 model.

text, fusing the behavior neighborhood contributes to correctly
understanding the user’s search intents.

The architecture of the AdsGNN𝑛 model is illustrated in Figure
1(b). 𝑞𝑛

𝑖
is the 𝑖-th graph neighbor (ad) of the input query 𝑞, and 𝑎𝑛

𝑖
is the 𝑖-th graph neighbor (query) of the input ad 𝑎. The proposed
model is a natural extension of the high performance two-tower
models (e.g., C-DSSM [5] and TwinBERT [23]) with additional in-
formation from graph structural data. As there exist millions of
candidate ads, it is infeasible to use a sophisticated text encoder to
compute the similarity between a search query and each ad one-by-
one [23]. Hence, the twin-tower structure is a good choice for online
serving as we could pre-compute the ad representations in advance.
When a query comes, we can easily generate its embedding and
calculate the similarities between the input query embedding and
cached ad representations. From the bottom up, AdsGNN𝑛 model
includes the following three layers:
Node Encoder. Node encoder embeds the textual information of
input entities into the low-dimensional latent vectors, which can be
implemented as any layer-wise text encoding models. For example,
as shown in Figure 1(b), BERT is selected as the node encoder. The
input text is first tokenized by the WordPiece [35] tokenizer. For
each token within the input sequence, the initial embedding is ac-
quired with the summation of its token embedding and positional
embedding before it goes through three transformer encoder layers.
After the node encoder layer, we can get a sequence of vectors
corresponding to the tokens in the sentence. The vectors are then
combined using a weighted-average pooling layer following Twin-
BERT model. Considering the topology context of queries and ads
are quite different (e.g., the number of a query’s neighbors is usually
larger than the one of an ad), we design two node encoders with
different parameter sets marked with different colors. Encoders
with the same color are set to share the same parameters.

Node Aggregator. The output vectors of the node encoders are fed
into the node aggregator to perform neighborhood fusion. A desir-
able node aggregator should be able to collect valuable information
from the behavior neighborhood, then fuse these messages with
the center node to learn high-quality contextual representations.
Considering the importance of different neighbors differ greatly in
depicting the local context, we employ the self-attention strategy
used in Graph Attention Network (GAT) [33] to learn the neigh-
bor weights properly and then weighted combine the contextual
semantic information. The attention score between the input query
𝑞 and its neighbor 𝑞𝑛

𝑖
is calculated as follows:

𝛼𝑞𝑖 =
exp(𝜎 (a𝑞 · [h𝑞 | |h𝑞𝑖]))∑𝑁
𝑖=1 exp(𝜎 (a𝑞 · [h𝑞 | |h𝑞𝑖]))

(1)

in which | | is the concatenation operation, a𝑞 is the local-level
attention vector for the neighbors and 𝜎 is activation function
to introduce nonlinear transformation. 𝑁 denotes the number of
neighbors. h𝑞 and h𝑞𝑖 are the embeddings learned by node encoder
of 𝑞 and 𝑞𝑛

𝑖
, respectively. The learned attention score 𝛼𝑞𝑖 denotes

how important neighbor 𝑞𝑛
𝑖
will be for the center node 𝑞. Then

the contextual embedding z𝑛𝑞 can be achieved by aggregating the
neighbor’s encoded features with the corresponding coefficients:

z𝑛𝑞 = 𝜎 (
𝑁∑︁
𝑖=1

𝛼𝑞𝑖 · h𝑞𝑖) (2)

This contextual embedding is then connected with the direct output
of the query encoder through the concatenation, similar to the idea
of Residual Connection Network [11]:

z𝑞 = [h𝑞 | |z𝑛𝑞] (3)

Note that, query and ad aggregators are implemented with different
parameter sets following the bipartite nature of the behavior graph.
Matching Layer. The topology-augmented query representation
is interacted with ad-side output in the matching layer to get the
final classification outputs. Here we implement the matching layer
as a multi-layer perceptron (MLP) with one-hidden layer following
previous works [19, 23, 39].

AdsGNN𝑛 first learns the semantic embedding of each input
text, and then combine them together following the guidance of
user historical behaviors. The aggregation is processed in the node-
level in the GNN style, which is expected to provide additional
information beyond the traditional semantic texts.

3.2 AdsGNN𝑒 for Edge-level Aggregation
The proposed AdsGNN𝑛 model aggregates the neighborhood in-
formation on the node-level, in which input queries and ads are
processed separately. However, the studied relevance matching
problem focuses on the correlations inside the query-ad pair in-
stead of a single query or ad. Handling the query-ad pair as a whole
can capture and exploit the information from both sides, while the
node-based model can only utilize the data from one side. Query-ad
pairs can be naturally viewed as the edges in the behavior graph,
and thus we propose AdsGNN𝑒 for the edge-level aggregation.

In order to embed the topological context into edges as much as
possible, we design the following three types of edges as shown in
Figure 2(a):

q a input

first-order

second-order

(a) The illustration of AdsGNN𝑒 in the behavior graph.

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

First-order

aggregator

< q, a > < q, ani > < a, qni >< a, ani > < q, qni >

Second-order

aggregator

Edge aggregator

Matching layer

(b) Overview of the model structure.

Figure 2: The illustration of the edge-level AdsGNN𝑒 model.

• Input Edge denotes the relevance relation between the in-
put query 𝑞 and ad 𝑎, and most existing works are solely
based on this connection.

• First-order Edge captures the click relations between the
center node and its neighbors in the behavior graph. The
insight lies in the homophily [17, 31] among the connected
edges. Given the input query 𝑞, its neighbor 𝑞𝑛

𝑖
and the input

ad 𝑎 can be viewed as the co-clicked items, and thus these
two adjacent edges <𝑞, 𝑎> and <𝑞, 𝑞𝑛

𝑖
> tend to share similar

search intents. Thus, the first-order edge can capture the
local context of the input edge as the complementary.

• Second-order Edge encodes the semantic relations between
the input query (ad) and the neighbors of the input ad (query)
(e.g., <𝑞, 𝑎𝑛

𝑖
> and <𝑎, 𝑞𝑛

𝑖
>). Our motivation is that if two ads

are both clicked given the same query, they have a larger
chance to be similar. Second-order edges are capable of cap-
turing the semantic information from high-order neighbors
to enrich the inputs.

Different meaningful and complex semantic information is in-
volved in the various types of edges, and different edges may also
extract diverse semantic information. It is nontrivial to select the
most meaningful edges and fuse the semantic information suitably.
Hence, we propose a novel AdsGNN𝑒 model based on the hierarchi-
cal attention, including first/second-order and edge-level attentions.
Specifically, the first/second-order attentions aim to learn the impor-
tance of edges in the same category, while the edge-level attention
is able to learn the informativeness of different types of edges and

assign proper weights to them. Figure 2(b) demonstrates the details
of AdsGNN𝑒 model, which includes the following four layers:
Edge Encoder. Edge encoder aims to capture the textual infor-
mation of the input edge along with the correlations between the
associated query and ad. The text of query and ad in the input
edge are concatenated with the [SEP] token to define the sentence
boundary as [𝑞𝑢𝑒𝑟𝑦, 𝑆𝐸𝑃, 𝑎𝑑]. After processing with the tokenizer,
a three-layer BERT is employed to learn the representation of the
input edge. In the transformer layer, each token on one side (e.g.,
query) is able to attend tokens on the other side (e.g., ad), which
captures the correlations inside query-ad pair and is intrinsically
different from the AdsGNN𝑛 model. Note that, we design different
encoders for different types of edges to emphasize the various roles.
First/Second-order Aggregator. The output vectors of the edge
encoders are fed into the first/second-order aggregators based on
the edge categories. The first-order aggregator is selected as an
example, which is designed to learn the importance of different
first-order edges. Denote the embedding of the 𝑖-th first-order edge
as h𝑒𝑖 . Different from the node-level aggregator, these edges are
position-insensitive without the definitions of center or neighbor
edges. Hence, we design another format of attention as follows:

𝑎𝑒𝑖 = tanh(w𝑒 · h𝑒𝑖 + 𝑏𝑒),

𝛼𝑒𝑖 =
exp(𝑎𝑒𝑖)∑𝑁
𝑗=1 exp(𝑎𝑒 𝑗)

s𝑒 =
𝑁∑︁
𝑖=1

𝛼𝑒𝑖h𝑒𝑖

(4)

in which 𝑁 is the number of first-order edges, w𝑒 and 𝑏𝑒 are the
trainable parameters. 𝛼𝑒𝑖 represents the normalized importance of
the 𝑖-th edge compared with other edges. Edges belonging to the
same category are aggregated according to the attention scores.
Edge Aggregator. Different types of edges may have different
significance, and thus we design the edge aggregator to distinguish
informative edge types from less informative ones. Here we also
employ the self-attention method to learn the weights of three edge
types, which is similar to the attention mechanism used in the node
aggregator. The input edge is viewed as the center edge and others
are regards as the neighbors.

Overall, AdsGNN𝑒 model can be understood as the natural exten-
sion of the traditional one-tower models (e.g., BERT), which usually
achieve higher performance by considering the rich information
from both sides but cannot be easily applied on the low-latency
online matching scenario.

3.3 AdsGNN𝑡 for Token-level Aggregation
The previous twomodels first learn the embeddings of input entities
based on their own textual data and then aggregate the neighbor
embeddings as the final representations. Graph aggregation mod-
ule is built on top of the textual encoder, which forms a cascade
framework. In each layer of the encoder, a token can only attend to
other tokens in the belonged node but cannot refer to the tokens in
other nodes, leading to a loosely-coupled structure. Here we aim to
deeply fuse the textual and topological information with a tightly-
coupled structure named AdsGNN𝑡 , where multiple layers of graph
transformers and text transformers are alternately deployed.

q aqn1 qn2 an1

Trans!

Trans!

Trans! Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Trans!

Matching layer

Trans!

Trans!

Trans!

Figure 3: The illustration of token-level AdsGNN𝑡 model.

As shown in Figure 3, messages are passed among contextual
neighbors and the center node in each node encoder layer. Hence,
tokens within the center node can attend to tokens in the neigh-
borhood, which contributes to learning the topology-aware token
representations. Each input text is tokenized into a sequence of
tokens by WordPiece [35]. For each tokenized sequence, a [CLS]
token is padded in the front. The embedding of [CLS] token is re-
garded as the representation of the input text. As shown in Figure
4, the 𝑖-th layer of AdsGNN𝑡 on the query side is selected as an
example, which includes the following two components:
Graph Transformer. Graph transformer aggregates the contex-
tual topology information, and then dispatches it to the input
texts. Firstly, we define the symbol h(𝑙)

𝑖 𝑗
shown in Figure 4, which

represents the embedding of 𝑗-th token in the 𝑖-th node in the
layer 𝑙 . Index 𝑖 is set to 0 for the center node and 𝑗 = 𝑐 means
this is the embedding of CLS token. The CLS embeddings h(𝑙−1)

𝑖𝑐

from the (𝑙-1)-th layer can be organized into a matrix Hc
(𝑙−1) =

[h(𝑙−1)0𝑐 , h(𝑙−1)1𝑐 , · · · , h(𝑙−1)
𝑁𝑐

]⊤ ∈ R(𝑁+1)×𝑑ℎ , in which 𝑁 is the num-
ber of neighbors and 𝑑ℎ denotes the dimension of latent embedding.
Then, the graph-transformer is introduced below to exchange in-
formation among different nodes:

Ĥ(𝑙−1)
𝑐 = G-Transformer

(
H(𝑙−1)
𝑐

)
= softmax

(
QK⊤√︁
𝑑ℎ

)
V,

(5)

where
Q = H(𝑙−1)

𝑐 W(𝑙−1)
𝑄

,

K = H(𝑙−1)
𝑐 W(𝑙−1)

𝐾
,

V = H(𝑙−1)
𝑐 W(𝑙−1)

𝑉
.

(6)

In the above equations, W(𝑙−1)
𝑄

,W(𝑙−1)
𝐾

,W(𝑙−1)
𝑉

∈ R𝑑ℎ×𝑑ℎ denote

the trainable variables. The learned matrix Ĥ(𝑙−1)
𝑐 preserves the

topological context information. Finally, the contextual token em-
bedding vector ĥ(𝑙−1)

𝑖𝑐
is padded with the embedding sequence of

the rest tokens as shown in the middle part of Figure 4.
Text Transformer. The contextual CLS embedding ĥ(𝑙−1)

𝑖𝑐
cap-

tures the semantics of tokens in other nodes. Text transformer aims
to transmit this contextul information from the CLS token to the

Graph Transformer

ĥ
(l−1)
0c

Text Transformer Text Transformer Text Transformer

q qn1 qn2

h
(l−1)
0c h

(l−1)
01 h

(l−1)
02 h

(l−1)
1c h

(l−1)
2ch

(l−1)
11 h

(l−1)
12 h

(l−1)
21 h

(l−1)
22

ĥ
(l−1)
01 ĥ

(l−1)
02 ĥ

(l−1)
1c ĥ

(l−1)
11 ĥ

(l−1)
12 ĥ

(l−1)
2c ĥ

(l−1)
21 ĥ

(l−1)
22

h
(l)
0c h

(l)
01 h

(l)
02 h

(l)
1c h

(l)
11 h

(l)
12 h

(l)
2c h

(l)
21 h

(l)
22

Figure 4: The details of the 𝑙-th AdsGNN𝑡 layer.

textual ones within an input sentence. Here we employ the vanilla
transformer model as the text transformer. The self-attention mech-
anism is able to covey the contextual information from the padded
CLS embedding to the rest tokens. The CLS embedding of the input
query/ad in the last layer is outputted as the final representation
and then fed into the matching layer to fit the ground truth dataset.

Overall, AdsGNN𝑡 utilizes the embedding of a special token as
the intermediate to convey messages among tokens in different
nodes. In the text transformer phase, the CLS token collects the
information from other textual tokens in the belonged sentence,
and then exchange them with CLS tokens in other nodes by graph
transformer. This indirect message passing structure is designed to
ensure model efficiency. A straight-forward approach is to directly
concatenate all the tokens from the neighborhood together and feed
them into the BERT model. Denote𝑚 as the average length of the
input text and 𝑛 as the number of neighbors. Each token will attend
to (𝑚 × (𝑛 + 1)) tokens, which significantly enlarges the parame-
ter space and will be seriously memory-cost and time-consuming.
However, the attended field sizes of graph transformer and text
transformer are 𝑛 and𝑚, respectively, which ensures our proposal
is capable of both aggregating neighbor tokens and maintaining
model efficiency.

3.4 Objective Function
The output vector from the matching layer is denoted as y′ ∈
R1×2, which contains the predicted probabilities of the input pair
is relevant or not. We select the cross-entropy as the objective
function:

L =
∑︁
𝑥 ∈L

𝑐𝑟𝑜𝑠𝑠 (y, y′),

𝑐𝑟𝑜𝑠𝑠 (y, y′) = −
∑︁
𝑖

y𝑖 log(y′𝑖).
(7)

4 PRE-TRAINING ON BEHAVIOR GRAPH
The text encoders used in our proposal are set to the transform-
ers, so we can conveniently load the weights from the first three
layers of the pre-trained large BERT model to get a good starting
point. However, the available BERT checkpoints are pre-trained on
the general text dataset, which is intrinsically different from the
sponsored search scenario. The ad text is much shorter than the

AdsGNNn

q qn1 qn2

zq

(a) The illustration of the teacher model.

BERT

q

ẑq

(b) Student model.

Figure 5: The illustration of knowledge distillation model.

normal sentences, and the relevance relation between the query
and ad is also different from the adjacency relationship captured
by the popular Next Sentence Prediction (NSP) task [3]. Hence, we
propose the following two objective functions to adapt the general
pre-trained checkpoints to the unsupervised user behavior graph
as the domain-specific warm up.

The first task is the neighbor-enhanced masked language mod-
eling (NE-MLM), which aims to exploit the topological neighbors
to predict the masked tokens. We first randomly select a set of
entities from the click graph as the center node and then collect
their neighbor texts. After that, a subset of the center node’s textual
tokens is replaced by the mask token. The BERT model is expected
to predict the masked tokens according to the remaining ones and
the data from neighborhood. NE-MLM empowers the text encoders
with the ability to capture the token-level topological connections.

The second task is the neighbor prediction (NP), which is similar
to the NSP task and only differs in the input data. Our motivation
lies in predicting the neighbors given the center node, which cap-
tures the topological relations at the entity-level. We first randomly
sample a set of edges from the behavior graph. Text in a node is
viewed as the next sentence of the text in its connected node and
vice visa. The constructed text pairs are then used to strengthen
the model’s ability to leverage the rich user behaviors. After pre-
training the BERT checkpoint with these two tasks, we select the
first three layers as the initialization of the text transformers used
in the AdsGNN model.

5 KNOWLEDGE DISTILLATION FOR
LONG-TAIL ADS MATCHING

The proposed AdsGNN models leverage the unsupervised user
behavior graph to enhance the relevance matching performance.
However, their practical value is potentially hindered by the low-
frequency long-tail entities. Neighborhood information from the
behavior graph is indispensable to our proposals in both the training
and inference phases, while long-tail entities are usually associated
with few or even no neighbors. This scarce topological information
brings a formidable challenge to the graph-enhanced semantic
models, which is rarely studied by previous works.

Assume the AdsGNN𝑛 model has been fully trained on the nor-
mal ads dataset. Next, we will study how to apply the learned model
to generate quality embeddings for long-tail entities in the infer-
ence phase. One straight-forward approach is to set the missing

Table 1: Statistics of the ground truth dataset.

Postive samples Negative samples All

Training 184,213 410,021 594,234
Validation 21,798 44,237 66,026

Test 59,028 127,770 186,798

neighbors as a special token (e.g., [PAD]) and feed them into the
learned model to obtain the representations. Given an input query
𝑞 and its neighbors 𝑞𝑛

𝑖
, AdsGNN𝑛 essentially learns the mapping

function M: z𝑞 = M(𝑞, 𝑞𝑛
𝑖
), in which z𝑞 is the learned embedding

and will be fed into the matching layer. If we input the query 𝑞

with meaningless tokens into the learned mapping function to get
z′𝑞 = M(𝑞), it is obvious that z𝑞 and z′𝑞 would be quite different,
which may further lead to the diverse matching results. Thus, this
padding strategy may not be a desirable solution. Another possible
solution is to comprehend the long-tail entities with their seman-
tical closeness neighbors. For example, we can use Approximate
Nearest Neighbor (ANN) search [4] to select the top similar ads 𝑞𝑛

𝑖
from the whole candidate set and view them as the complemented
neighbors of 𝑞. Despite of the low-efficiency of ANN search on the
dataset with millions of samples, the mapping functionM is trained
to capture the click relations between the queries and ads, which
are intrinsically different from the semantic similarities. Thus, the
set 𝑞𝑛

𝑖
and 𝑞𝑛

𝑖
have a large chance to be different, leading to the

undesirable matching performance.
Here we aim to alleviate the challenge of long-tail ads matching

in the manner of knowledge distillation [12]. As shown in Figure
5(a), a pre-trained AdsGNN𝑛 is viewed as the teacher model. The
learned representation z𝑞 encodes the input query and its neighbors,
which will be used as the training target of the student model. The
right sub-figure illustrates the student model, which is a vanilla
BERT model with the output as ẑ𝑞 . Our motivation lies in that the
output vector ẑ𝑞 of the student model should be similar to z𝑞 as
much as possible. The objective function is defined as follows:

L𝑘𝑑 = | |ẑ𝑞 − z𝑞 | |2 (8)

The L2-loss L𝑘𝑑 forces the outputs of the student model should be
topological preserving, which strengthens the student model with
the ability to latently predict the neighbor information. Thus, it can
effectively handle the long-tail entities. In addition, according to
the universal approximation theorem [13], a feed-forward neural
network can approximate any nonlinear functions and BERT is
a comparatively sophisticated model with a large number of pa-
rameters. Hence, the student model is expected to approximate the
mapping function learned from the teacher model successfully.

6 EXPERIMENTS
6.1 Dataset
The proposed AdsGNN models are extensively evaluated on a large
industry dataset and Table 1 shows its statistics. This dataset is
imbalanced, which is consistent with the fact that most query-ad
pairs are unrelated. User behavior graph is sampled from the search
log of a commercial search engine with 300 million distinct seg-
ments and more than 1 billion clicked relations. There exist some

publicly available datasets like MSLR1 and ESR2. However, they
only contain the relevance annotations but lack the historical user
behaviors, which are not suitable for the studied graph-augmented
task. Although only one dataset is adopted, it includes 847,058
different manually labeled samples, which is much larger than the
publicly available datasets (e.g., 32,000 for ESR). Besides, it is an
online serving relevance dataset used by a popular commercial
search engine and achieves satisfying online performance, which
proves the quality and comprehensiveness of this dataset.

6.2 Baseline Methods
We select several state-of-the-art supervised baselines, including
the semantic-based, graph-based and hybrid models. The semantic-
based baselines are shown as follows:

• C-DSSM [26] is a latent semantic model that incorporates
a convolutional-pooling structure over word sequences to
learn representations for queries and documents.

• BERT [3] is a dominant method of pre-training language
representations. Here we concatenate the query and ad as
the input of BERT model.

• Twin-BERT [23] is two-tower BERT-based structure model,
which serves for the efficient retrieval.

Our proposal is also compared with the graph neural networks.
Following the normal GNN pipeline, we first learn the semantic em-
beddings of entities with the pre-trained BERT checkpoint, which
are viewed as static node features. Then, GNNmodels aggregate the
contextual node features into the center one. The objective function
is to maximize the similarities between query and ad in the positive
pairs while minimizing the similarity scores in negative pairs. Two
hybrid approaches are also introduced as follows:

• MetaBERT concatenates the text of center node and con-
textual neighbors as the input of a BERT model.

• TextGNN [39] incorporates the text and graph information
with a node-level aggregator, which is similar to AdsGNN𝑛 .
Themajor difference is that query and ad encoders in TextGNN
share the same parameters, while AdsGNN𝑛 views them as
independent modules.

For the proposed AdsGNN model, “Bert-base-uncased” in the
huggingface3 is selected as pre-trained BERT model. The number
of behavior neighbors is set to 3. For the pre-training tasks, 15% of
the input tokens are masked (80% of them are replaced by the mask
token, the rest are replaced randomly or kept as the original tokens
with the same probabilities). The size of minimal training batch
is 64, learning rate is set to 0.00001, number of training epochs is
set to 3. The student model in the knowledge distillation part is
implemented with a five-layer BERT model. Adam optimizer [16] is
employed to minimize the training loss. Other parameters are tuned
on the validation dataset and we save the checkpoint with the best
validation performance as the final model. Parameters in baselines
are carefully tuned on the validation set to select the most desirable
parameter setting. Considering the high imbalance distribution of
the annotations, following the previous work [20] we select ROC-
AUC score as the measurement, which represents the area under
1https://www.microsoft.com/en-us/research/project/mslr/
2https://data.world/crowdflower/ecommerce-search-relevance
3https://github.com/huggingface/transformers/

Table 2: Performance with different training ratio 𝑇𝑟 .

𝑇𝑡𝑟 𝑇𝑡𝑟=0.1 𝑇𝑡𝑟=0.3 𝑇𝑡𝑟=0.5 𝑇𝑡𝑟=0.7 𝑇𝑡𝑟=1.0

GAT 0.706 0.713 0.726 0.736 0.756
GraphSAGE 0.702 0.715 0.729 0.737 0.751
GraphBert 0.713 0.735 0.741 0.752 0.771

C-DSSM 0.762 0.795 0.803 0.812 0.829
Bert 0.786 0.816 0.833 0.839 0.858

Twin-BERT 0.779 0.814 0.827 0.835 0.852

MetaBERT 0.792 0.823 0.834 0.846 0.862
TextGNN 0.801 0.831 0.839 0.848 0.857

AdsGNN𝑛 0.815 0.843 0.849 0.855 0.863
AdsGNN𝑒 0.820 0.846 0.857 0.863 0.873
AdsGNN𝑡 0.829 0.852 0.864 0.869 0.881

the Receiver Operating Characteristic curve. We release our code
to facilitate future research (https://github.com/qwe35/AdsGNN).

6.3 Experimental Results
𝑇𝑡𝑟 portion of the training set is randomly selected to train the
relevance models. We repeat this process three times and report the
average ROC-AUC scores. Training ratio 𝑇𝑡𝑟 is increased from 0.1
to 1.0. Experimental results are reported in Table 2 with different
settings of 𝑇𝑡𝑟 . From the results, one can see that GNN models ob-
tain the worst performance, which may be due to the node textual
features are pre-existed and fixed in the training phase, leading
to the limited expression capacity. The one-tower textual model
(BERT) outperforms the two-tower models (C-DSSM and Twin-
BERT) as it can incorporate the information from both sides, while
two-tower models can only exploit the data from a single side. How-
ever, one-tower structure has to compute the similarity between
a search query and each ad one-by-one, which is not suitable for
low-latency online scenario. By integrating the user behavior graph
with semantic information under a unified co-training framework,
the hybrid models beat the other baselines by nearly 1%. Our pro-
posals consistently outperform all the baselines. Compared with
TextGNN, the node-level aggregation model AdsGNN𝑛 can cap-
ture the different roles of queries and ads, leading to around 1%
performance gain. AdsGNN𝑒 surpasses AdsGNN𝑛 by nearly 0.7%
because it is capable of capturing the correlations between queries
and ads. AdsGNN𝑡 achieves the best performance, demonstrat-
ing that the tightly-coupled structure is more powerful than the
loosely-coupled framework in deeply fusing the graph and textual
information. From the results, we can summarize the following two
conclusions: (1) the unsupervised user behaviors indeed facilitate
the relevance matching task; (2) it would be better to integrate the
complementary information into the underlying semantic units
(e.g., tokens) instead of the high-level ones (e.g., nodes and edges).

6.4 Ablation Study
Here we perform the ablation study on the proposed models from
different perspectives. The training ratio 𝑇𝑟 is set to 0.1.
Pre-training Tasks Here we aim to investigate the importance of
two proposed pre-training tasks NE-MLM and NP. Text encoders
are pre-trained with various combinations of pre-training tasks.

https://github.com/qwe35/AdsGNN

Table 3: Ablation study on the pre-training tasks.

AdsGNN𝑛 AdsGNN𝑒 AdsGNN𝑡
None 0.804 0.812 0.819

NE-MLM 0.812 0.818 0.825
NP 0.807 0.815 0.823

NE-MLM + NP 0.815 0.820 0.829

Table 4: Performance of different combinations of edge types.

Edge combination ROC-AUC

𝑒𝑖𝑛 0.786
𝑒𝑖𝑛 + 𝑒1𝑠𝑡 0.817
𝑒𝑖𝑛 + 𝑒2𝑛𝑑 0.804

𝑒𝑖𝑛 + 𝑒1𝑠𝑡 + 𝑒2𝑛𝑑 0.820

Table 5: Ablation study on the aggregation mechanism.

Aggregation strategy AdsGNN𝑛 AdsGNN𝑒
Mean-pooling 0.772 0.785
Max-pooling 0.791 0.783
Summation 0.784 0.776

LSTM 0.802 0.804
Self-attention 0.815 0.820

Table 3 presents the experimental results. One can see that the
model performance significantly drops without any pre-training
tasks, which demonstrates the effectiveness of the domain-specific
adaption. NE-MLM task outperforms the NP task, proving that the
token-level correlations are more critical than the node-level corre-
lations. This conclusion is consistent with the superior performance
of token-level aggregation model AdsGNN𝑡 . Mixing these two tasks
can sufficiently incorporate the domain-specific data from different
levels, thus achieving the best performance.
Edge Category Here we perform ablation study on the proposed
AdsGNN𝑒 model from the perspective of edge category selection.
As mentioned in section 3.2, three types of edges are proposed to
capture the local topology structure: input edge 𝑒𝑖𝑛 , first-order edge
𝑒1𝑠𝑡 and second-order edge 𝑒2𝑛𝑑 . Here we investigate the perfor-
mance of different combinations of three types of edges, in which
𝑒𝑖𝑛 is indispensable as it is the primary learning target. Hence, four
ablation models can be obtained as shown in Table 4 along with the
relevance matching performance. Without the neighborhood infor-
mation, model 𝑒𝑖𝑛 performs the worst. Model 𝑒𝑖𝑛 +𝑒1𝑠𝑡 significantly
outperforms 𝑒𝑖𝑛 + 𝑒2𝑛𝑑 , which demonstrates that the directly con-
nected neighbors are more important and informativeness than the
long-distance neighbors. The proposed AdsGNN𝑒 model achieves
the best performance by enjoying the merits of three types of edges.
AggregationMechanism In the AdsGNN𝑛 and AdsGNN𝑒 models,
self-attention is selected as the node/edge aggregator. In order to
demonstrate the effectiveness of attention-based aggregator, four
popular aggregation strategies are selected as the baselines includ-
ing mean-pooling, max-pooling, summation and LSTM [10]. Results

TextGNN AdsGNNn AdsGNNe AdsGNNt

0.70

0.75

0.80

0.85

0.90

R
O
C
-A
U
C

Padding ANN KD

Figure 6: Results of different completion strategies.

are shown in Table 5. Max-pooling outperforms the mean-pooling
and summation operations as it can effectively extract the strongest
features from the inputs but suffers from serious information miss-
ing. LSTM can preserve all the input text information and thus
obtain higher performance. However, LSTM aggregates the neigh-
bors in sequences, which cannot distinguish the informativeness
nodes from the less important ones. Self-attention enables the Ads-
GNN models to learn the importance of the input nodes/edges and
weighted combine them together as the high-quality representa-
tions, leading to more promising performance.

6.5 Experimental Results on the Long-Tail Set
Here we evaluate the performance of the proposed knowledge
distillation based model on the long-tail dataset. Node degrees in
the user behavior graph indicate the clicked frequencies, and thus
we randomly select a subset of nodes with only one edge connected
as the long-tail entities. Then, we combine the selected node with
its neighbor as the long-tail query-ad pairs. The relevance models
are still trained on the normal training set and then applied to the
long-tail dataset. Here we design the following three neighborhood
completion approaches for the long-tail entities:

• Padding adds the special token [PAD] as the neighbors.
• ANN selects the most similar entities from the whole set
based on the semantic closeness and then add them as the
complemented neighbors.

• KD is the proposed knowledge distillation approach.
The strongest baseline method TextGNN is selected for compari-

son. Experimental results are shown in Figure 6. Given the same
neighbor completion strategy, AdsGNN𝑡 consistently outperforms
other methods, demonstrating that the token-level aggregation
is more robust to the scarce topology information. ANN method
significantly beats the Padding strategy by around 3%, proving
that the semantic-related neighbors can bring richer information
than the meaningless special tokens. The proposed KD strategy
consistently outperforms the other two approaches. By viewing
the topology-augmented representation as the learning target, the
learned KD model is able to fit the mapping function which di-
rectly projects the input text from the original textual space to the
topology-aware space. The neighborhood of long-tail entities can
be latently predicted and incorporated by the KD model.

1 2 3 4

number of neighbors

0.83

0.84

0.86

0.88

0.90

AdsGNNn

AdsGNNe

AdsGNNt

(a) Number of neigbors.

1 2 3 4

number of transformer layers

0.83

0.84

0.86

0.88

0.90

AdsGNNn

AdsGNNe

AdsGNNt

(b) Number of transformer layers.

Figure 7: Parameter sensitivity study.

6.6 Parameter Sensitivity Study
We study the performance sensitivity of AdsGNN models on two
core parameters: the number of neighbors 𝑛 and the number of
transformer layers 𝑙 used in encoders. Training ratio 𝑇𝑡𝑟 is set to 1.
Both parameters vary from 1 to 4, and the ROC-AUC scores under
different settings are recorded. Figure 7 presents the experimental
results. From the results, one can see that with the increase of 𝑛,
the performance first increases and then keeps steady. It means
that the incorporation of more contextual neighbors contributes to
better matching performance at the beginning. When the available
contextual semantic information is fully explored, larger neighbor
number cannot further improve model performance, which in turn
slows down the training speed. When the parameter 𝑙 increases
from 1 to 2, the performance is significantly improved. After that,
the trend rate of growth slows down.

6.7 Online A/B Testing
The distilled AdsGNN𝑡 model has already been successfully de-
ployed in a major sponsored search platform and demonstrated
significant performance gains. Revenue Per Mile (RPM) and Defect
Rate are selected as measurements to estimate the revenue gained
for every thousand search requests and the ratio of irrelevant ad
impressions, respectively. The defected impressions are labeled
by human experts. C-DSSM model is the original online severing
model. The online A/B testing results of the AdsGNN𝑡 model are
summarized in Table 6. Our proposal is employed on both recall
and relevance stage of the ads search. As shown in the table, the
AdsGNN𝑡 model achieves very impressive results because it can
significantly increase RPM and reduce advertising defect rates. Re-
sults demonstrate that our proposal is capable of improving the user
experience and driving revenue for the advertisers simultaneously.

7 RELATEDWORK
In this section, we will summarize the related works. Relevance
modeling in sponsored search can be viewed as the sub-domain
of information retrieval (IR). In terms of matching queries with
documents, traditional approaches usually adopt the shallow lan-
guage representation learning models such as LSA [25], LDA [2]
and Bi-Lingual Topic Models [7]. In recent years, deep learning
based approaches have dominated the search area. Specifically, the

Table 6: Results of online A/B test.

Relative RPM Relative Defect Rate

Relevance phase +1.13% -1.46%
Recall phase +1.02% -1.17%

siamese structure is adopted in a range of works [6, 14, 18, 27, 29, 30].
By modeling local contextual information at the word level, Shen
et al. [29] present a series of latent semantic models based on CNN
to learn semantic vectors for web searching. To map source-target
document pairs into latent semantic space, Gao et al. [6] propose a
deep semantic similarity model with special convolutional-pooling
structure. Besides, several works adopt the interaction-based struc-
ture [34, 36, 38]. Yang et al. [36] propose an attention-based neural
matching model that adopts a value-shared weighting scheme to
combine matching signals. Auto-encoders are used in [25], in which
documents are mapped to memory addresses so that semantically
similar documents are located at nearby addresses. In addition,
several works also utilize lexical and semantic matching networks
[9, 24]. By employing a jointly learning framework at the query term
level, Guo et al. [9] propose a deep relevance matching model for
ad-hoc retrieval. With two separated deep neural networks, Mitra et
al. [24] propose a document ranking model utilizing local represen-
tation and learned distributed representations respectively to match
the query and document. Bai et al. [1] propose an n-gram based
embedding of queries and ads to perform the efficient sponsored
search. Grbovic et al. [8] propose a real-time personalization solu-
tion where embeddings of items that user most recently interacted
with are combined in an online manner to calculate similarities to
items that need to be ranked. Huang et al. [15] design a unified
embedding framework developed to model semantic embeddings
for personalized search.

Apart from the textual information, some related works attempt
to incorporate other types of data in sponsored search scenario.
Yang et al. [37] propose to learn the compositional representations
by fusing the textual, visual and relational data. Zhu et al. [39]
extend the Twin-Bert model to TextGNN, which aims to incorporate
the search log data as complementary. Different from existingworks
[39] only focusing on a single aspect of data fusion, we aim to
extensively investigate how to naturally fuse the semantic textual
information and the user behavior graph from different perspectives
and address several critical challenges in industry scenario.

8 CONCLUSION
In this paper, we propose a set of AdsGNN models to effectively
incorporate the click graph as complementary from three aspects to
improve the relevance matching performance. Three variations are
designed to aggregate the neighborhood information from node-,
edge- and token-levels. After that, two domain-specific pre-training
tasks are proposed to warm up model parameters. A knowledge-
distillation model is further proposed to handle the challenge of
long-tail entity inference. Empirically, we evaluate the proposed
models over a real-life dataset, and the experimental results demon-
strate the superiority of our proposal.

REFERENCES
[1] Xiao Bai, Erik Ordentlich, Yuanyuan Zhang, Andy Feng, Adwait Ratnaparkhi,

Reena Somvanshi, and Aldi Tjahjadi. 2018. Scalable query n-gram embedding
for improving matching and relevance in sponsored search. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 52–61.

[2] David M Blei, Andrew Y Ng, Michael I Jordan, and John Lafferty. 2012. Latent
Dirichlet Allocation. Journal of Machine Learning Research 3 (2012), 993–1022.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[4] Cong Fu and Deng Cai. 2016. Efanna: An extremely fast approximate nearest
neighbor search algorithm based on knn graph. arXiv preprint arXiv:1609.07228
(2016).

[5] Jianfeng Gao, Xiaodong He, and Li Deng. 2015. Deep learning for web search
and natural language processing. (2015).

[6] Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong He, and Li Deng. 2017.
Modeling Interestingness with Deep Neural Networks. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP).

[7] Jianfeng Gao, Kristina Toutanova, and Wen Tau Yih. 2011. Clickthrough-Based
Latent Semantic Models for Web Search. In Proceeding of International Acm Sigir
Conference on Research Development in Information Retrieval.

[8] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time personalization using em-
beddings for search ranking at airbnb. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 311–320.

[9] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. 55–64.

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in neural information processing systems.
1024–1034.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[13] Kurt Hornik. 1991. Approximation capabilities of multilayer feedforward net-
works. Neural networks 4, 2 (1991), 251–257.

[14] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2015. Convolutional
Neural Network Architectures for Matching Natural Language Sentences. (2015).

[15] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2553–2561.

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[17] Chaozhuo Li, Senzhang Wang, Yukun Wang, Philip Yu, Yanbo Liang, Yun Liu,
and Zhoujun Li. 2019. Adversarial learning for weakly-supervised social network
alignment. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
996–1003.

[18] Chaozhuo Li, Senzhang Wang, Dejian Yang, Zhoujun Li, Yang Yang, Xiaoming
Zhang, and Jianshe Zhou. 2017. PPNE: property preserving network embed-
ding. In International Conference on Database Systems for Advanced Applications.
Springer, 163–179.

[19] Chaozhuo Li, Yu Wu, Wei Wu, Chen Xing, Zhoujun Li, and Ming Zhou. 2016.
Detecting context dependent messages in a conversational environment. arXiv
preprint arXiv:1611.00483 (2016).

[20] Xue Li, Zhipeng Luo, Hao Sun, Jianjin Zhang, Weihao Han, Xianqi Chu, Liangjie
Zhang, and Qi Zhang. 2019. Learning Fast Matching Models from Weak Annota-
tions. In The World Wide Web Conference. 2985–2991.

[21] Xiaodan Liang, Hongfei Zhou, and Eric Xing. 2018. Dynamic-structured semantic
propagation network. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 752–761.

[22] Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, and Feng Sun.
2017. Model ensemble for click prediction in bing search ads. In Proceedings of
the 26th International Conference on World Wide Web Companion. 689–698.

[23] Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. TwinBERT: Distilling knowl-
edge to twin-structured BERT models for efficient retrieval. arXiv preprint
arXiv:2002.06275 (2020).

[24] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to match using
local and distributed representations of text for web search. In Proceedings of the
26th International Conference on World Wide Web. 1291–1299.

[25] Ruslan Salakhutdinov and Geoffrey Hinton. 2009. Semantic hashing. International
Journal of Approximate Reasoning 50, 7 (2009), 969–978.

[26] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
A latent semantic model with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM international conference on conference on

information and knowledge management. 101–110.
[27] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014. A

Latent Semantic Model with Convolutional-Pooling Structure for Information
Retrieval. (2014), 101–110.

[28] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning semantic representations using convolutional neural networks for web
search. In Proceedings of the 23rd international conference on world wide web.
373–374.

[29] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning semantic representations using convolutional neural networks for web
search. In International Conference on World Wide Web.

[30] Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved
Semantic Representations From Tree-Structured Long Short-Term Memory Net-
works. Computer ence 5, 1 (2015), : 36.

[31] Mike Thelwall. 2009. Homophily in myspace. Journal of the American Society for
Information Science and Technology 60, 2 (2009), 219–231.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762 (2017).

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[34] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng.
2015. A Deep Architecture for Semantic Matching with Multiple Positional
Sentence Representations. (2015).

[35] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

[36] Liu Yang, Qingyao Ai, Jiafeng Guo, and W. Bruce Croft. 2018. aNMM: Ranking
Short Answer Texts with Attention-Based Neural Matching Model. (2018).

[37] Xiao Yang, Tao Deng, Weihan Tan, Xutian Tao, Junwei Zhang, Shouke Qin, and
Zongyao Ding. 2019. Learning Compositional, Visual and Relational Representa-
tions for CTR Prediction in Sponsored Search. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. 2851–2859.

[38] Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. 2015. ABCNN:
Attention-Based Convolutional Neural Network for Modeling Sentence Pairs.
Computer Science (2015).

[39] Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Liangjie
Zhang, Tianqi Yan, Ruofei Zhang, and Huasha Zhao. 2021. TextGNN: Improving
Text Encoder via Graph Neural Network in Sponsored Search. arXiv preprint
arXiv:2101.06323 (2021).

	Abstract
	1 Introduction
	2 Problem Definition
	3 Methodology
	3.1 AdsGNNn for Node-level Aggregation
	3.2 AdsGNNe for Edge-level Aggregation
	3.3 AdsGNNt for Token-level Aggregation
	3.4 Objective Function

	4 Pre-training on Behavior graph
	5 Knowledge Distillation for Long-tail Ads Matching
	6 Experiments
	6.1 Dataset
	6.2 Baseline Methods
	6.3 Experimental Results
	6.4 Ablation Study
	6.5 Experimental Results on the Long-Tail Set
	6.6 Parameter Sensitivity Study
	6.7 Online A/B Testing

	7 Related Work
	8 Conclusion
	References

