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ABSTRACT
The Transformer-Kernel (TK)model has demonstrated strong rerank-
ing performance on the TREC Deep Learning benchmark—and
can be considered to be an efficient (but slightly less effective) al-
ternative to other Transformer-based architectures that employ
(i) large-scale pretraining (high training cost), (ii) joint encoding of
query and document (high inference cost), and (iii) larger number
of Transformer layers (both high training and high inference costs).
Since, a variant of the TK model—called TKL—has been developed
that incorporates local self-attention to efficiently process longer
input sequences in the context of document ranking. In this work,
we propose a novel Conformer layer as an alternative approach to
scale TK to longer input sequences. Furthermore, we incorporate
query term independence and explicit term matching to extend
the model to the full retrieval setting. We benchmark our models
under the strictly blind evaluation setting of the TREC 2020 Deep
Learning track and find that our proposed architecture changes lead
to improved retrieval quality over TKL. Our best model also outper-
forms all non-neural runs (“trad”) and two-thirds of the pretrained
Transformer-based runs (“nnlm”) on NDCG@10.
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1 INTRODUCTION
In the inaugural year of the TRECDeep Learning track [10], ranking
models using Transformers [57] demonstrated substantial improve-
ments over traditional information retrieval (IR) methods. Several
of these approaches—e.g., [62, 65]—employ BERT [17], with large-
scale pretraining, as their core architecture. Diverging from this
trend, Hofstätter et al. [21] propose the Transformer-Kernel (TK)
model with few key distinctions: (i) TK uses a shallower model with
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only two Transformer layers, (ii) there are no computation-inten-
sive pretraining, and (iii) TK independently encodes the query and
document allowing for offline precomputations for faster response
times. Consequently, TK achieves competitive performance at a
fraction of the training and inference cost of its BERT-based peers.

Notwithstanding these efficiency gains, the TK model shares two
critical drawbacks with other Transformer-based models. Firstly,
the memory complexity of the self-attention layers is quadratic
O(𝑛2) with respect to the length 𝑛 of the input sequence. This re-
stricts the number of document terms we can inspect under fixed
GPU memory budget. A trivial workaround involves inspecting
only the first 𝑘 terms of the document. This approach can nega-
tively impact retrieval quality and has been shown to under-retrieve
longer documents [20]. Secondly, in any real IR system, it is imprac-
tical to exhaustively evaluate every document in the collection for
every query—and therefore these systems typically enforce some
sparsity property to drastically narrow down the set of candidates.
TK employs a nonlinear matching function over query-document
pairs which makes it difficult to enforce such sparsity before model
inference. This restricts TK’s scope of application to late stage
reranking of smaller candidate sets as identified by simpler retrieval
models. So, in this work, we extend TK in the following ways:

(1) To scale to long text, we replace the Transformer layers
with novel Conformer layers whose memory complexity is
O(𝑛 × 𝑑key), instead of O(𝑛2),

(2) To enable fast retrieval with TK, we incorporate query term
independence (QTI) [42], and finally,

(3) we complement TK’s latentmatchingwith lexical termmatch-
ing as suggested previously by Mitra et al. [40, 41], which is
known to be effective for full retrieval [19, 28, 41, 60].

We study the impact of aforementioned changes under the strictly-
blind evaluation setting of the TREC 2020 Deep Learning track.

2 RELATEDWORK
Scaling self-attention to long text. The self-attention layer, as
proposed by Vaswani et al. [57], can be described as follows:

Self-Attention(𝑄,𝐾,𝑉 ) = Φ(𝑄𝐾
⊺√
𝑑𝑘

) ·𝑉 (1)

Where, 𝑄 ∈ R𝑛×𝑑key , 𝐾 ∈ R𝑛×𝑑key , and 𝑉 ∈ R𝑛×𝑑value are the query,
key, and value matrices—and 𝑑key and 𝑑value are the dimensions of
the key and value embeddings, respectively. Here, 𝑛 is the length of
the input sequence and Φ denotes a softmax along the last tensor di-
mension. The quadratic O(𝑛2) memory complexity of self-attention
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is a direct consequence of the component𝑄𝐾⊺ that produces a 𝑛×𝑛
matrix. Recently, several approaches have been proposed tomitigate
this quadratic complexity that broadly fall under: (i) Restricting self-
-attention to smaller local windows over the input [15, 49, 54, 63], or
(ii) operating under the assumption that the attention matrix is low
rank 𝑟 [27, 52, 55, 59] and hence finding alternatives to explicitly
computing the 𝑄𝐾⊺ matrix, or (iii) hybrid approaches [3, 7, 61]. In
IR, recently Hofstätter et al. [20] extended TK to longer text using
local self-attention. Other more general approaches to reducing the
memory footprint, such as model parallelization [53] and gradient
checkpointing [3] have also been explored.
Full retrieval with deep models. Efficient retrieval using deep
models is an important challenge in IR [36, 37]. One approach in-
volves the dual encoder architecture where the query and document
are encoded independently, and efficient retrieval is achieved by ap-
proximate nearest-neighbour search [1, 5, 25, 26, 29] or by employ-
ing inverted-index over latent representations [66]. Precise match-
ing of terms or concepts may be difficult using query-independent
latent document representations [30], and therefore these models
are often combined with explicit term matching [40, 43].

An alternative approach assumes QTI in the design of the neural
ranking model [42]. In these models, the estimated relevance score
𝑆𝑞,𝑑 =

∑
𝑡 ∈𝑞 𝑠𝑡,𝑑 is the sum of the document scores w.r.t. individual

query terms. Readers should note that QTI is already baked into
several classical IR models, like BM25 [50]. Relevance models with
QTI can be used to offline precompute all term-document scores,
and subsequently efficient search is performed using inverted-index.
Several recent neural IR models [12–14, 32, 33, 42] that incorporate
QTI have obtained promising results under the full retrieval setting.
Document expansion based methods [46, 48], using large neural
language models, can also be classified as part of this approach,
assuming the subsequent retrieval step employs a traditional QTI
model like BM25. In all these cases, the focus of the deep model is
to estimate the relevance of the document w.r.t. individual terms
in the vocabulary that can be precomputed during indexing. An-
other approach may involve neural query reformulation [31, 45, 56],
although these methods typically underperform compared to the
methods considered here.

3 CONFORMER-KERNEL WITH QTI
Conformer. The quadratic memory complexity of self-attention
layersw.r.t. the input length is a direct result of explicitly computing
the attention matrix 𝑄𝐾⊺ ∈ R𝑛×𝑛 . In this work, we propose a new
separable self-attention layer that avoids instantiating the full term-
term attention matrix.

Separable-Self-Attention(𝑄,𝐾,𝑉 ) = Φ(𝑄) · 𝐴 (2)

Where, 𝐴 = Φ(𝐾⊺) ·𝑉 . As previously, Φ denotes softmax along the
last dimension of the input tensor. Note that, however, in this sepa-
rable self-attention mechanism, the softmax operation is employed
twice: (i) Φ(𝑄) computes the softmax along the 𝑑key dimension,
and (ii) Φ(𝐾⊺) computes the softmax along the 𝑛 dimension. By
computing 𝐴 ∈ R𝑑key×𝑑value first, we avoid explicitly computing the
full term-term attention matrix. The memory complexity of the
separable self-attention layer is O(𝑛 × 𝑑key), which is a significant
improvement when𝑑key ≪ 𝑛. We modify the standard Transformer
block as follows: (i) We replace the standard self-attention layer

with the more memory efficient separable self-attention layer, and
(ii) we apply grouped convolution before the separable self-atten-
tion layers to better capture the local context based on the window
of neighbouring terms. We refer to this combination of grouped
convolution and Transformer with separable self-attention as a
Conformer. We incorporate Conformers into TK as a direct replace-
ment for the Transformer layers and name the new architecture
as a Conformer-Kernel (CK) model. In relation to handling long
input sequences, we also replace the standard Kernel-Pooling with
windowed Kernel-Pooling [20] in our proposed architecture.
Query term independence. To incorporate QTI into CK, we make
two simple modifications. Firstly, we simplify the query encoder
by getting rid of the Transformer layers and only considering the
non-contextualized embeddings for the query terms. Secondly, in-
stead of applying the aggregation function over the full interaction
matrix, we apply it to each row individually, which corresponds to
individual query terms. The scalar outputs from the aggregation
function are linearly combined to produce the final query-document
score. Fig 1b shows the proposed CK-QTI architecture.
Explicit term matching. We adopt the Duet [38–40, 44] frame-
work wherein the term-document score is a linear combination of
outputs from a latent and and an explicit matching models.

𝑠𝑡,𝑑 = 𝑤1 · BN(𝑠(latent)𝑡,𝑑
) +𝑤2 · BN(𝑠(explicit)𝑡,𝑑

) + 𝑏 (3)

Where, {𝑤1,𝑤2, 𝑏} are learnable parameters and BN(𝑥) = (𝑥 −
E[𝑥])/(

√
Var[𝑥]) denotes the BatchNorm operation [22]. We em-

ploy CK and define a new lexical matching function modeled on
BM25 to compute 𝑠(latent)

𝑡,𝑑
and 𝑠(explicit)

𝑡,𝑑
, respectively.

𝑠
(explicit)
𝑡,𝑑

= IDF𝑡 ·
BS(TF𝑡,𝑑 )

BS(TF𝑡,𝑑 ) + ReLU(𝑤dlen · BS( |𝑑 |) + 𝑏dlen) + 𝜖
(4)

Where, IDF𝑡 , TF𝑡,𝑑 , and |𝑑 | denote the inverse-document frequency
of the term 𝑡 , the term-frequency of 𝑡 in document 𝑑 , and the
length of the document, respectively. The𝑤dlen and 𝑏dlen are the
only two leanrable parameters of this submodel and 𝜖 is a small
constant added to prevent a divide-by-zero error. The BatchScale
(BS) operation is defined as BS(𝑥) = 𝑥/(E[𝑥] + 𝜖).

4 EXPERIMENT DESIGN
TREC 2020 Deep Learning Track. We evaluate CK under the
strictly-blind TREC benchmarking setting1 by participating in the
2020 edition of the Deep Learning track [11], which: (a) provides
stronger protection against overfitting that may result from the
experimenter running multiple evaluations against the test set, and
(b) is fairer to dramatically new approaches that may surface addi-
tional relevant documents not covered by pre-collected labels [64].
The 2020 track [11] uses the same training data as the previous
year [10] originally derived from the MS MARCO dataset [2]. How-
ever, the track provides a new blind test set for the second year.
We only focus on the document ranking task and point the reader
to [11] for further benchmarking details. We report NDCG@10 [23],
NCG@100 [51], AP [67], and RR [8] against this blind set.

1We exclude group name and run IDs here to anonymize for the blind-review process.
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(a) Transformer-Kernel (TK)
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(b) NDRM1 variant of Conformer-Kernel (CK) with QTI

Figure 1: A comparison of the TK and the proposed CK-with-QTI architectures. In addition to replacing the Transformer
layers with Conformers, the latter also simplifies the query encoding to non-contextualized term embedding lookup and
incorporates a windowed Kernel-Pooling based aggregation that is employed independently per query term.

Model variants.We compare several variants of our model. The
NDRM1 variant incorporates Conformer layers andQTI into TK [21].
Figure 1 visualizes the NDRM1 architecture. The NDRM2 model is
a simple QTI-compliant explicit-term-matching model as described
by Equation 4. A linear combination of NDRM1 and NDRM2 gives
us the NDRM3 model. Because of the limit on the number of run
submission to TREC, we only evaluate NDRM1 and NDRM3, al-
though we confirm on the TREC 2019 test set that NDRM2 is com-
petitive with a well-tuned BM25 baseline. The TREC 2020 Deep
Learning track provided participants with a click log dataset called
ORCAS [9]. We use clicked queries in the ORCAS data [9] as addi-
tional meta description for corresponding documents to comple-
ment the intrinsic document content (URL, title, and body). Unlike
previous work [66] on fielded document representations, we simply
concatenate the different fields. We test each variant under both
the rerank and the fullrank settings.
Model training.We consider the first 20 terms for every query and
the first 4000 terms for every document. We pretrain the word em-
beddings using the word2vec [35] implementation in FastText [24].
We use a concatenation of the IN and OUT embeddings [41, 43]
from word2vec to initialize the embedding layer parameters. The
document encoder uses 2 Conformer layers and we set all hidden
layer sizes to 256. We set the window size for the grouped convolu-
tion layers to 31 and the number of groups to 32. Correspondingly,
we also set the number of attention heads to 32. We set the number
of kernels 𝑘 to 10. For windowed Kernel-Pooling, we set the window
size to 300 and the stride to 100. Finally, we set the dropout rate to
0.2. For further details, please refer to the publicly released model
implementation in PyTorch.2 All models are trained on four Tesla
P100 GPUs, with 16 GB memory each, using data parallelism.

We train the model using the RankNet objective [4]. For every
positively labeled query-document pair in the training data, we
randomly sample one negative document from the provided top 100
candidates corresponding to the query and two negative documents
from the full collection. In addition to making pairs between the
positively labeled document and the three negative documents, we
also create pairs between the negative document sampled from

2We will add a link to the repo here after completion of the blind-reviewing process.

Table 1: Official TREC2020 results. Allmetrics are computed
at rank 100, except for NDCG which is computed at rank 10.
Best and median runs are selected based on NDCG@10.

Run description Subtask NDCG NCG AP RR
Other TREC runs for comparison
Best “trad” run fullrank 0.5629 0.6299 0.3829 0.9195
Best TKL run rerank 0.5852 0.6283 0.3810 0.9296
Median “nnlm” run fullrank 0.5907 0.6669 0.4259 0.8916
Best “nnlm” run fullrank 0.6934 0.7718 0.5422 0.9476
Our models
NDRM1 fullrank 0.5991 0.6280 0.3858 0.9333
NDRM1 rerank 0.6161 0.6283 0.4150 0.9333
NDRM3 rerank 0.6162 0.6283 0.4122 0.9333
NDRM3 fullrank 0.6162 0.6626 0.4069 0.9333
NDRM3 + ORCAS rerank 0.6217 0.6283 0.4194 0.9241
NDRM3 + ORCAS fullrank 0.6249 0.6764 0.4280 0.9444

the top 100 candidates and those sampled from the full collection,
treating the former as more relevant. This can be interpreted as
incorporating a form of weak supervision [16] as the candidates
were previously generated using a traditional IR function.

5 RESULTS
RQ1. Does CK-QTI improve reranking quality over TKL? Ac-
cording to the taxonomy proposed by Craswell et al. [10], CK-QTI
and TKL runs are the only “nn” runs—i.e., neural models that do
not use pretrained transformers—submitted to TREC 2020 Deep
Learning track. TKL has previously been shown to outperform
TK [20], and we confirmed with the submitting group that they
considered these as well-tuned TKL runs. We also confirm that the
related hyperparameters are comparable between the TKL runs and
ours. Table 1 shows that in the same rerank setting, both NDRM1
and NDRM3 improve NDCG@10 over the best TKL run by 5.3%.
The improvement from NDRM1 over TKL is statistically significant
according to student’s t-test (𝑝 < 0.05). However, similarly large
improvement from NDRM3 over TKL is not stat. sig. likely due to
small test set size. Even if we consider TK and CK to be comparable
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Figure 2: Comparison of peak GPU Memory Usage in MB,
across all four GPUs, when employing Transformers vs.
Conformers.

in results quality, the key motivation behind Conformers is their
reduced GPU memory usage which we discuss next.
RQ2.DoesCK-QTI improve train-timeGPUmemory require-
ment over TKL? To demonstrate how the GPU memory consump-
tion scales with respect to input sequence length, we plot the peak
memory, across all four GPUs, for our proposed architecture using
Transformer and Conformer layers, respectively, keeping all other
hyperparameters and architecture choices fixed. Fig 2 shows the
GPU memory requirement grows linearly with increasing sequence
length for the Conformer, while quadratically when Transformers
are employed. This is a significant improvement in GPUmemory re-
quirement over TK for longer text that could be further operational-
ized to improve training time convergence using larger batches or
to incorporate longer input representations of documents.
RQ3. How does CK-QTI perform in the full retrieval setting?
To enable retrieval from the full collection, we incorporate two
changes in TK: QTI and explicit term matching. QTI allows for
precomputation of term-document scores and consequently fast
retrieval using inverted-index data structures. The explicit term
matching is expected to help with result quality under the full re-
trieval setting. In Table 1, we find that the NDRM3 variant—that in-
corporates explicit term matching—does indeed achieve 2.9% better
NDCG@10 compared to the NDRM1 variant and 5.5% improvement
in both AP and NCG@100. In contrast, both models achieve similar
performance under the rerank setting. The candidate documents
for reranking were generated by a first-stage BM25 ranker and
hence explicit term matching signal is already part of this retrieval
pipeline which may explain why we find no benefit from explicit
term matching in reranking. These observations are supported by
Kuzi et al. [28], who find that exact term matching are important
for the fullrank setting. Also, NDRM1, in the absence of explicit
term matching, achieves a lower NDCG@10 under the fullrank set-
ting compared to the rerank setting. However, when explicit term
matching is incorporated (i.e., NDRM3), the metrics are comparable
under both settings. Interestingly, when we include the ORCAS
data in the document representation, we see improvements under
the fullrank setting compared to reranking across all metrics: 2.2%
for RR, 2.1% for AP, and 0.5% for NDCG@10. We confirm that the
NDCG@10 improvement from fullrank over rerank setting under
the NDRM3 + ORCAS configuration is stat. sig. based on a student’s
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Figure 3: Comparing CK-QTI runs with runs submitted by
other groups. The runs in each plot are sorted independently
based on the corresponding metric.

t-test (𝑝 < 0.05). Based on qualitative inspection of the queries, we
find that exact term matching may be important for queries con-
taining named entities—e.g., “who is aziz hashim” and “why is pete
rose banned from hall of fame”—where it is necessary to ensure that
the retrieved documents are about the correct entity. Finally, with
respect to the full retrieval setting, we note that NDRM3 with OR-
CAS improves NCG@100 by 7.7% over the provided candidates for
the reranking setting, which puts it among the 10 top performing
runs according to NCG@100 as seen in Fig 3.
RQ4. How does CK-QTI compare to “trad” and “nnlm” runs?
In adhoc retrieval, a common strategy involves sequentially cas-
cading multiple rank-and-prune stages [6, 18, 34, 47, 58] for better
effectiveness-efficiency trade-offs. The multiple stages can improve
result quality at additional computation costs. However, in our
experiments under the full retrieval setting, we employ CK-QTI
as a single stage retriever. Despite of this straightforward and ef-
ficient setup, we find that all three runs NDRM1, NDRM3, and
NDRM3 + ORCAS achieve better NDCG@10 compared to the best
non-neural (i.e., “trad”) run. The improvements from NDRM3, both
with and without the ORCAS-based document representation, is
stat. sig. compared to the best “trad” run based on student’s t-test
(𝑝 < 0.05). Additionally, NDRM3, with and without ORCAS, outper-
forms two-thirds of the “nnlm” runs that employ costly pretraining
of Transformers. The “nnlm” runs that outperform CK-QTI not only
employ cascades of multiple rank-and-prune stages but sometimes
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multiple of those stages employ costly models like BERT. In con-
trast, CK-QTI retrieves from the full collection in one-shot and its
performance can be likely improved by additional reranking stages.

6 CONCLUSION
We update TK by (i) replacing Transformers with Conformers,
and incorporating (ii) QTI and (iii) explicit term matching. Con-
formers scale better to longer inputs and show both relevance and
GPU memory improvements. Incorporating QTI and explicit term
matching adapts the model to fullrank setting. In spite of being a
single-stage retriever, CK-QTI outperforms all traditional methods
and two-thirds of pretrained Transformer models. We believe that
CK, like its predecessor TK, represents an alternative to BERT-based
ranking models at lower training and run-time inference cost.
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