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ABSTRACT
We study how pretrained language models can be enhanced by

using deep reinforcement learning to generate attractive text ad-

vertisements that reach the high quality standard of real-world ad-

vertiser mediums. To improve ad attractiveness without hampering

user experience, we propose a model-based reinforcement learning

framework for text ad generation, which constructs a model for

the environment dynamics and avoids large sample complexity.

Based on the framework, we develop Masked-Sequence Policy Gra-
dient, a reinforcement learning algorithm that integrates efficiently

with pretrained models and explores the action space effectively.

Our method has been deployed to production in Microsoft Bing.

Automatic offline experiments, human evaluation, and online ex-

periments demonstrate the superior performance of our method.
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•Computingmethodologies→Reinforcement learning;Nat-
ural language generation; Markov decision processes.
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1 INTRODUCTION
Text advertisements contribute to a large portion of revenue for

search engines, social media, and recommender systems. An attrac-

tive ad that is relevant to user tasks and interests can significantly

increase the probability that a user clicks the ad [16]. Thus, adver-

tisers usually make every effort to optimize the text displayed in

the ads. While most ads created by advertisers are of high quality,
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designing ads manually for every product is demanding and eco-

nomically inefficient, especially for large businesses with thousands

of products. It becomes even more challenging when advertisers

wish to create different ads for different user tasks or interests, or

frequently refresh the ad content to avoid user fatigue [2]. Moreover,

understanding what types of ads are attractive and lead to more

user clicks can also be difficult for advertisers with less experience

or working for small businesses.

To better automate the advertising process, a typical solution is to

use a template with spots reserved for certain keywords (e.g., search

queries) [5]. However, templates are rigid and still require human

efforts [15]. Recently, Hughes et al. have proposed a Recurrent-

Neural-Network-based model that takes product landing pages as

inputs to generate text ads [15]. As a pioneer in generating ads in a

data-driven way, this paper shows how challenging the task is: even

though a sophisticated deep learning model has been developed, a

considerable portion (>15%) of the generated ads are still reported

to be nonsense, broken, or bad [15], which hinders the method from

being applied in real-world advertising mediums. It is also unclear

whether the generated ads are attractive to real users due to the

absence of online experiments.

In this paper, we use text ads as a guiding example to show how

attractive texts that reach the high standard of quality required by

important real-world applications can be generated and demon-

strate their positive impacts on real users with online experiments.

To ensure both quality and attractiveness, we effectively leverage

multiple types of data, ranging from unsupervised textual data

(e.g., Wikipedia), supervised data (manually-created ads), and user

feedback (user clicks). We show that the incorporation of multiple

types of data can be conveniently achieved by using a three-phase

training schema, which tightly integrates reinforcement learning

(RL) [34] with pretrained language models [11, 17]. A key question

is how we design an RL method that 1) works efficiently and ef-

fectively with large and complex pretrained language models and

simultaneously 2) leverages user feedback effectively to improve

attractiveness without hindering user experience.

Developing an aforementioned RL method is challenging for

two reasons. First, RL methods for text generation typically re-

quire the model to decode sequences word by word during train-

ing [15, 23, 29]. This results in a slow and ineffective training process

because 1) decoding is extremely computationally expensive for a

large and complex pretrained model and 2) the decoding process

results in a propagation of uncertainty, which makes the RL method

spend too much time exploring suboptimal actions (C1). Second,
when improving the attractiveness of the ads by using reinforce-

ment learning, user experience can be easily hindered (C2). This is
because RL usually requires a lot of interactions with the environ-

ment (or user feedback) before a good policy is learned [9]. During
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the learning process, users often have to investigate and provide

feedback on potentially bad generations, but they may quickly aban-

don the system when they see bad results. Moreover, even if the

RL method has learned to increase user clicks, it may encourage

generating attractive ads with unfaithful claims like “free shipping".

To address the challenges, we propose a model-based reinforce-

ment learning framework for text ad generation. In our frame-

work, a model for the environment dynamics is constructed, which

helps avoid large sample complexity and improve attractiveness

without hindering user experience (C2). While model-based RL

methods are commonly used in robotics applications to reduce

sample complexity [9], we show how they can be tailored for mod-

eling online user behaviors like user clicks and demonstrate how

we avoid generating low-quality or unfaithful ads when improv-

ing attractiveness. Based on the framework, we develop Masked-
Sequence Policy Gradient (MPG), an RL method that explores the

action space effectively and is efficient even when integrated with

a large and complex pretrained model (C1). This is achieved by

replacing the computationally-expensive decoding process with

masked sequence generation and using importance sampling to

handle the discrepancy between the two generation processes.

Our model has been deployed in Microsoft Bing, a major search

engine with more than 100 million monthly active users. In addition

to automatic offline experiments, we also evaluate how the method

impacts real users by conducting human evaluation and online

experiments. Human evaluation shows that both the quality and

attractiveness of the ads are improved compared with the baselines.

Online experiments demonstrate that our method significantly in-

creases click yield and revenue.

The contributions of the paper are as follows:

• We propose a model-based reinforcement learning framework

for generating attractive and high-quality text advertisements.

This framework does not hamper user experience during RL

training and helps avoid generating attractive ads that contain

unfaithful claims. Although we focus on ad generation in this

paper, the framework can be generalized to many text generation

tasks, e.g., generating attractive news headlines.

• We propose Masked-Sequence Policy Gradient (MPG), which in-

tegrates seamlessly with pretrained models. MPG explores the

action space effectively and is efficient even when the policy

network is a large and complex pretrained model.

• Our model has been deployed to production in Microsoft Bing,

a search engine that has the second largest market share. Auto-

matic offline experiments, human evaluation, and online experi-

ments demonstrate the superior performance of our method.

2 METHOD
2.1 Problem Statement
We formulate the problem of text ad generation as follows.

Input. The model input contains two major parts.

The first part is a product landing page, which is a webpage that

describes the product to be advertised. As shown in Fig. 1(a), the

landing page consists of a landing page title x𝑇 = (𝑥𝑇
1
, ..., 𝑥𝑇𝑛 ) and a

landing page body x𝐵 = (𝑥𝐵
1
, ..., 𝑥𝐵

𝑛′). Here, 𝑥
𝑇
𝑖
, 𝑥𝐵

𝑖′ ∈ V correspond

to a word token in the title and body, andV denotes the vocabulary.

How Can I Create a Personalized Gift With a Lasting Impression?

Every gift can be personalized or customized so choose a gift you know they will love. Creating a 
personalized gift is easy and fun! Just decide their personalized style; something engraved, 
monogrammed, or custom-made is always a great idea, and the rest is just a click and delivery away. 
And don’t forget to explore our wide selection of photo gifts when you want to create a sentimental 
gift without words.

Who Should I Send Customized Gifts To?

A personalized gift is perfect when you’re looking for something that will leave an impression and 
generate fond memories. No one should feel left out, and that’s why we have such a wide selection of:
-Gifts for Men -Gifts for Women -Gifts for Teens -Gifts for Children
So be sure to send an appropriate gift with your recipient in mind.

…

Ad title

Ad 
description

(b) Text advertisement

(a) Product landing page

TitlePersonalized Gifts | Create Customed Gifts

Body

Figure 1: Example (a) landing page [1] and (b) text ad.

The second part x𝑈 = (𝑥𝑈
1
, ..., 𝑥𝑈

𝑛′′) represents user tasks or in-
terests. This part is optional. For ads displayed in search engines,

x𝑈 can be defined as the current search query of the user. Consid-

ering x𝑈 allows us to generate ads that are tailored to the user. For

scenarios in which user tasks or interests are absent, we can ignore

x𝑈 and generate ads based only on product landing pages.

Output. Text ad generation predicts an ad title y𝑇 = (𝑦𝑇
1
, ..., 𝑦𝑇𝑚)

and an ad description y𝐷 = (𝑦𝐷
1
, ..., 𝑦𝐷

𝑚′), as shown in Fig. 1(b).

𝑦𝑇
𝑖
, 𝑦𝐷

𝑖′ ∈ V are tokens in the ad title and ad description.

2.2 Three-Phase Sequence Generation
We frame the text ad generation problem as a three-phase sequence-

to-sequence generation task. Specifically, the input sequence is

x = (𝑥𝑈
1
, ..., 𝑥𝑈

𝑛′′, 𝑣
𝑆 , 𝑥𝑇

1
, ..., 𝑥𝑇𝑛 , 𝑣

𝑆 , 𝑥𝐵
1
, ..., 𝑥𝐵

𝑛′) (1)

where 𝑣𝑆 ∈ V is a separator token [SEP] that distinguishes different
parts of the input. Similarly, the output sequence is

y = (𝑦𝑇
1
, ..., 𝑦𝑇𝑚, 𝑣𝑆 , 𝑦𝐷

1
, ..., 𝑦𝐷𝑚′) (2)

The goal is to learn a function 𝑓 such that y = 𝑓 (x). 𝑓 can be

represented by using a neural sequence generation model. We rep-

resent 𝑓 by using a Transformer-based pretrained language model,

UNILM [11], which 1) models a deeper level of interactions between

different parts of x and y and 2) has been shown effective in text

generation tasks such as question answering and response genera-

tion. Other pretrained models for sequence-to-sequence generation,

e.g., MASS [31], can also be used.

We train 𝑓 so that it effectively leverages different types of data

in different training phases. The basic idea is to ensure that 𝑓 first

uses unsupervised data to obtain fundamental capabilities (e.g., gen-

erate a fluent sentence) and then gradually learns abilities that are

relevant to the downstream task (e.g., generate ads that lead to more

clicks). This can be achieved conveniently by extending the two-

phase training schema of pretrained models to a three-phase one:

Phase I. Pretraining. UNILM is pretrained by using unsupervised

data such as Wikipedia [11]. This equips the model with funda-

mental natural language processing and generation abilities, e.g.,

learning about language models and distinguishing stop words [13].



Phase II. Fine-Tuning. UNILM is then fine-tuned with supervised

data [11], which consists of human-written ads provided by adver-

tisers. Fine-tuning maximizes the likelihood of generating human-

written ads, or minimizes the masked cross entropy loss:

𝐿𝑋𝐸 = −
∑

x,y∈𝑋,𝑌

∑
𝑡 ∈𝑀

log 𝑝\ (𝑦𝑡 |x, y<𝑡\𝑀 ) (3)

Here, 𝑋,𝑌 denote a preexisting ad corpus, 𝑀 is a set of masked

positions [11] for a training sample, y<𝑡\𝑀 = {𝑦𝑖 |𝑖 < 𝑡 & 𝑖 ∉ 𝑀},
and \ refers to the model parameters of UNILM.

Phase III. Reinforcement Learning. The first two phases cannot

incorporate user feedback. For many real-world applications, user

feedback like user clicks is the ultimate optimization goal. Inte-

grating feedback during model training closes the open loop and

provides a principled way to directly optimize user feedback. Thus,

we employ reinforcement learning to further refine \ after fine-

tuning, which maximizes the expected reward, or minimizes

𝐿𝑅𝐿 = −
∑
x∈𝑋
Eŷ∼𝑝\ ( · |x)𝑟 (ŷ|x) (4)

𝑟 (ŷ|x) denotes the reward of a predicted ad ŷ given x. In this paper,

we consider the reward as the click rate, which measures the per-

centage of impressed (displayed) ads that are clicked by users. The

framework can generalize to other types of feedback, e.g., revenue.

Next, we introduce how 𝐿𝑅𝐿 can be efficiently and effectively op-

timized by using our model-based RL framework and Masked-
Sequence Policy Gradient algorithm.

2.3 Model-Based RL Framework
The goal of reinforcement learning is to find an optimal policy (i.e.,

𝑓 with parameters \ ) that leads to the maximum expected reward,

or minimum 𝐿𝑅𝐿 . Directly minimizing 𝐿𝑅𝐿 is unrealistic in many

real-world applications, because it needs user feedback for many

predicted ads ŷ. Since RL often requires lots of interactions with the

environment to learn a good policy [9], users need to check many

potentially bad ŷ during the learning process and may abandon the

system before a good policy is obtained.

To solve this issue, we propose a model-based RL framework

for text ad generation. Compared with model-free methods, model-

based RL constructs a model of the environment dynamics, which

serves as a simulation environment. The policy then interacts with

the simulation environment to reduce sample complexity [9] and

avoid harming experience of real users. While most model-based RL

methods are designed based on physics or Gaussian processes [9],

we construct a model for complex online user click behaviors. In

particular, we formulate the environment dynamics of online clicks

by using a Markov Decision Process (MDP) model and illustrate

how to design the reward function in the model to avoid generating

low-quality or unfaithful ads when improving attractiveness. Next,

we introduce the MDP model and the reward function.

2.3.1 MDP Model. A MDP is defined by (S,A,T ,R), where S is

the state space, A is the action space, T : S ×A → S denotes the

transition function, and R : S × A → R is the reward function.

• State: The initial state s0 is the input x, i.e., s0 = x. State s𝑡 ∈ S
represents both the input sequence and the part of the ad that

has been generated at time 𝑡 : s𝑡 = (𝑥1, ..., 𝑥 |x |, 𝑣
𝑆 , 𝑦1, ..., 𝑦𝑡 ).

• Action: Given state s𝑡 , the policy (UNILM) outputs an action 𝑎𝑡 ∈
A = V that represents the (𝑡 + 1)-th token in the ad: 𝑎𝑡 = 𝑦𝑡+1.

• Transition: We consider a deterministic MDP, in which the next

state s𝑡+1 can be deterministically defined by using the current

state and action: s𝑡+1 = T (s𝑡 , 𝑎𝑡 ) = (𝑥1, ..., 𝑥 |x |, 𝑣
𝑆 , 𝑦1, ..., 𝑦𝑡+1).

• Reward: The reward function R(s𝑡 , 𝑎𝑡 ) approximates the online

CTR we obtain after taking action 𝑎𝑡 given state s𝑡 . Instead of

using real user feedback, which may hinder user experience, we

learn the reward function by using off-policy data [9]. Next, we

will discuss in detail how we design the reward function.

2.3.2 Reward Function. To avoid harming the experience of real

users, we learn the reward function based on user clicks of human-

written ads (i.e., y), instead of asking users to investigate the ads gen-
erated by using the RL policy (i.e., ŷ). Using such off-policy data may

result in two issues. First, the reward function may be inaccurate for

the generated ads. Suppose that a neural model 𝑔(x, y) that maps

x, y to 𝑟 (y|x) has been learned. 𝑔 may not be accurate for (x, ŷ),
since it is trained on the domain of (x, y). The issue becomes more

severe considering the fact that the RL policy can frequently inter-

act with𝑔 to explore the result of different generated ads. The policy

may easily find that some strange generations (e.g., ads that consist

only of fragments of attractive phrases) can lead to an unreasonably

large value of 𝑔 and takes advantage of these generations to max-

imize the reward. As a result, we may end up with a strange policy

that produces counterintuitive ŷ with large but misleading 𝑔(x, ŷ).
Second, even if the generated ads are similar with human-written

ads, RL may encourage generating attractive but unfaithful ads with

phrases like “free shipping” because these ads can lead to a larger 𝑔.

To solve these issues, we design the reward function so that it

evaluates generated ads from three aspects:

R(s𝑡 , 𝑎𝑡 ) = R
click

(s𝑡 , 𝑎𝑡 ) + _ℎRhuman
(s𝑡 , 𝑎𝑡 ) + _𝑐Rcons (s𝑡 , 𝑎𝑡 ) (5)

where _ℎ, _𝑐 > 0 are hyperparameters that balance the three terms

on the right, and R
click

, R
human

, and Rcons are defined as follows.

R
click

measures the probability of an ad being clicked:

R
click

(s𝑡 , 𝑎𝑡 ) =
{

0 if 𝑎𝑡 ≠ [EOS]
𝑔(x, ŷ, 𝑝𝑜𝑠1) if 𝑎𝑡 = [EOS]

(6)

where [EOS] is a token that denotes the end of the sentence, and

𝑔(x, ŷ, 𝑝𝑜𝑠1) is the probability that ŷ will be clicked when it is

displayed in the first position (𝑝𝑜𝑠1) in the page. Here, variable

𝑝𝑜𝑠 is added in the click prediction model 𝑔 to remove the position

bias [14, 20]. Given a training sample (x, y, 𝑝𝑜𝑠, 𝑟 ) where 𝑟 is 1 if y
is clicked or is 0 otherwise, we input x, y, 𝑝𝑜𝑠 to BERT, and

𝑔(x, y, 𝑝𝑜𝑠) = 𝜎 (w𝑇
1
ℎ([CLS])) (7)

Here,ℎ([CLS]) denotes the embedding of the first input token [CLS]
in the last hidden layer of BERT, 𝜎 is the sigmoid function, and

w1 ∈ R𝑑 represents parameters to be learned. BERT is fine-tuned

by minimizing the cross entropy loss: −∑[𝑟 log𝑔(x, y, 𝑝𝑜𝑠) + (1 −
𝑟 ) log(1 − 𝑔(x, y, 𝑝𝑜𝑠))]. The negative class in the user click data is

downsampled to obtain a 1:2 ratio of positive and negative samples.

After that, we get 207,451,658 training samples and 5,183,013 testing

samples. The evaluation results show that the click predictionmodel

is accurate, with a test AUC (Area Under the ROC curve) of 0.832.



R
human

estimates how similar a generated ad is to a human-

written ad. Large R
human

ensures that R
click

learned on the domain

of human-written ads gives meaningful and accurate scores for the

generated ads. For a given x, we compute R
human

by comparing

each token of ŷ with that in y:

R
human

(s𝑡 , 𝑎𝑡 ) = I(𝑎𝑡 = 𝑦𝑡+1) (8)

Note that 𝑎𝑡 = 𝑦𝑡+1. I is an indicator function, i.e., I(true) is 1 and
I(false) is 0. We formulate R

human
in this way because it can be

efficiently and accurately optimized and is inherently related with

the cross entropy loss 𝐿𝑋𝐸 (Appendix II).

Rcons constrains the word or phrase usage to avoid generating at-

tractive but unfaithful statements. Each constraint 𝑐 is represented

by a 3-tuple (v𝑐 , 𝑙𝑐 , [𝑐 ), in which v𝑐 = (𝑣𝑐1, ..., 𝑣𝑐𝑘 ) denotes a con-
strained phrase (e.g., “free shipping" or “official site"), 𝑙𝑐 > 0 refers

to the punishment weight for the constrained phrase, and [𝑐 is a

function that describes the condition under which generating v𝑐
should be punished. [𝑐 (v𝑐 , x, y) is 1 if v𝑐 should be avoided given

x and y and is 0 otherwise. For example, by setting [𝑐 (v𝑐 , x, y) to
I(v𝑐 ⊈ x & v𝑐 ⊈ y), we punish the generation of phrase v𝑐 when it

appears neither in the product landing page nor the human-written

ads. Given a set of constraints, Rcons can then be defined as:

Rcons (s𝑡 , 𝑎𝑡 ) = −
∑
𝑐

𝑙𝑐[𝑐 (v𝑐 , x, y) [𝛿 (s𝑡+1, v𝑐 ) − 𝛿 (s𝑡 , v𝑐 )] (9)

where 𝛿 (s𝑡 , v𝑐 ) is the number of times that v𝑐 appears in s𝑡 .
We construct the set of constraints in a semi-automatic way.

Specifically, we first find the most frequent words and bi-grams in

the ad corpus, and then compute their impact on R
click

by using

LIME [30]. The words or bi-grams that have the largest average

contribution to R
click

according to LIME are then investigated man-

ually to determine whether they will be included in the constraints.

The constraints we use are provided in Appendix I.

2.4 Masked-Sequence Policy Gradient
Based on our proposed RL framework, the loss in Eq. (4) becomes:

𝐿𝑅𝐿 = −
∑
x∈𝑋
Eŷ∼𝑝\ ( · |x)R(x, ŷ), R(x, ŷ) =

∑
𝑡

R(s𝑡 , 𝑦𝑡+1) (10)

Next, we discuss why minimizing 𝐿𝑅𝐿 by using existing RL algo-

rithms may be problematic and introduce our proposed method,

Masked-Sequence Policy Gradient.

2.4.1 Issues of Classical Policy Gradient. Policy gradient is widely

used in natural language generation for optimizing the RL loss of a

policy network [15, 23, 29]. Most existing methods compute ∇\𝐿𝑅𝐿
based on (a variant of) the following equation:

∇\𝐿𝑅𝐿 ≈ −
∑
x∈𝑋

(R(x, ŷ) − R(x, ȳ))∇\
∑
𝑡

log 𝑝\ (𝑦𝑡+1 |x, 𝑦1, ..., 𝑦𝑡 )

(11)

Each token 𝑦𝑡 in ŷ is decoded by sampling from 𝑝\ (·|x, 𝑦1, ..., 𝑦𝑡−1).
𝑦𝑡 is a baseline added to reduce variance and is usually decoded by

using argmax: 𝑦𝑡 = argmax𝑦′ 𝑝\ (𝑦′ |x, 𝑦1, ..., 𝑦𝑡−1).
These classical methods result in two issues when integrated

with pretrained models for ad generation.

The first issue pertains to large computational cost. Calculat-
ing the policy gradient according to Eq. (11) requires decoding se-

quences ŷ and ȳ token by token. This is computationally expensive

because decoding each token requires performing a forward propa-

gation through UNILM, which is a large, complex pretrained model.

Overall, classical policy gradient performs 𝑂 ( |𝑋 |𝑇
𝐵

) forward propa-

gations at each training epoch, where |𝑋 | is the number of training

samples, 𝑇 denotes the output sequence length, and 𝐵 refers to the

batch size. In comparison, the fine-tuning process requires only

𝑂 ( |𝑋 |
𝐵
) forward propagations per epoch. As a result, the RL phase

is much slower than the already time-expensive fine-tuning phase.

Empirically, fine-tuning takes about 11 hours/epoch for 6 million

ads on NVIDIA V100 GPU, while the RL phase that uses classical

policy gradient takes around 110 hours/epoch for the same data.

The second issue is ineffective exploration. Classical policy
gradient adds randomness and explores the action space by sam-

pling𝑦𝑡 from the distribution 𝑝\ (·|x, 𝑦1, ..., 𝑦𝑡−1). Each time a token

is sampled, a certain amount of uncertainty is introduced, which

will propagate to later decoding steps. This propagation of uncer-

tainty makes it difficult to control the quality of ŷ. Suppose that
a bad token 𝑦𝑡 is sampled, it is likely that many tokens decoded

after time 𝑡 becomes inappropriate, since they all depend on 𝑦𝑡 .

As a result, the RL method may spend too much time exploring

suboptimal actions. This ineffective exploration not only results in

slow improvement of the policy, it may also harm the model, since

good tokens share the same update weight R(x, ŷ) − R(x, ȳ) with
the bad tokens and are punished in the same way.

2.4.2 Masked Sequence Generation with Importance Sampling. To
solve the above issues, we replace the decoding process in classical

RL methods with masked sequence generation, and use importance

sampling to handle the discrepancy between masked sequence

generation and decoding.

Masked sequence generation is widely-used in the pretraining

and fine-tuning phases of pretrained models to generate a sequence

of tokens. Following UNILM, we randomly mask 𝑃𝑚 (70% as in [11])

tokens in y. Let𝑀 denote the set of masked positions and y<𝑡\𝑀 de-

note {𝑦𝑖 |𝑖 < 𝑡 & 𝑖 ∉ 𝑀}. If 𝑡 ∈ 𝑀 ,𝑦𝑡 is sampled from 𝑝\ (·|x, y<𝑡\𝑀 ).
If 𝑡 ∉ 𝑀 , 𝑦𝑡 is set to 𝑦𝑡 . Similarly, 𝑦𝑡 is computed by

𝑦𝑡 =

{
argmax𝑦′ 𝑝\ (𝑦′ |x, y<𝑡\𝑀 ) if 𝑡 ∈ 𝑀

𝑦𝑡 if 𝑡 ∉ 𝑀
(12)

In this formulation, 𝑦𝑡 and 𝑦𝑡 no longer depends on previously

decoded tokens. It enables us to compute sequence ŷ or ȳ by using

only one (instead of 𝑇 ) forward propagation through UNILM. In

total, masked sequence generation needs 𝑂 ( |𝑋 |
𝐵
) forward propa-

gations each epoch, which is much more efficient compared with

the 𝑂 ( |𝑋 |𝑇
𝐵

) forward propagations needed for decoding. Moreover,

since a previously sampled token will not affect the result of a fu-

ture token, the uncertainty introduced by sampling will no longer

propagate to future tokens. As a result, many suboptimal actions are

avoided and the exploration strategy becomes much more effective.

Since 𝑦𝑡 and 𝑦𝑡 do not depend on previously decoded tokens,

masked sequence generation can be implemented in a parallel way
so that all tokens in a sequence are computed simultaneously. Math-

ematically, we can also define the masked sequence generation

policy \ ′ by considering a sequential process. Specifically, given
a partially generated sequence s𝑡 = (𝑥1, ..., 𝑥 |x |, 𝑣

𝑆 , 𝑦1, ..., 𝑦𝑡 ), we
determine action 𝑎𝑡 = 𝑦𝑡+1 as follows. With a probability of 𝑃𝑚 , 𝑎𝑡



is masked and set to 𝑦𝑡+1
. With a probability of 1 − 𝑃𝑚 , 𝑎𝑡 is not

masked and is sampled according to UNILM, i.e., 𝑝 (𝑎𝑡 = 𝑦𝑡+1 |s𝑡 ) =
𝑝\ (·|x, y≤𝑡\𝑀 ). Accordingly, the policy \ ′ can be specified with

𝑝\ ′ (𝑎𝑡 |s𝑡 ) = (1 − 𝑃𝑚)I(𝑎𝑡 = 𝑦𝑡+1) + 𝑃𝑚𝑝\ (𝑎𝑡 |x, y≤𝑡\𝑀 ) (13)

Importance sampling. Masked sequence generation can only be

employed during training, since it uses human-written ads. During

testing, we still generate ads through decoding. Such a discrepancy

between training and testing causes exposure bias [27], which re-

sults in accumulation of errors during testing. As a consequence, it

is difficult to obtain an optimal test reward. To solve this issue, we

use important sampling [22], a method for estimating an expecta-

tion under one distribution (e.g., distribution of decoded sequences)

given samples from another distribution (e.g., distribution of se-

quences generated with masks).

In particular, we consider two policies: \ and \ ′. \ is the decoding

policy used during testing, and\ ′ denotes themasked-sequence gen-

eration policy used during training. The RL loss, which optimizes

the expected reward obtained during testing, can be written as:

𝐿𝑅𝐿 = −
∑
x∈𝑋

∑
𝑡<𝑇

E(s𝑡 ,𝑎𝑡 )∼𝑝\ (s𝑡 ,𝑎𝑡 )R(s𝑡 , 𝑎𝑡 )

= −
∑
x∈𝑋

∑
𝑡<𝑇

Es𝑡∼𝑝\ (s𝑡 )E𝑎𝑡∼𝑝\ (𝑎𝑡 |s𝑡 )R(s𝑡 , 𝑎𝑡 )

= −
∑
x∈𝑋

∑
𝑡<𝑇

Es𝑡∼𝑝\′ (s𝑡 )
𝑝\ (s𝑡 )
𝑝\ ′ (s𝑡 )

E𝑎𝑡∼𝑝\′ (𝑎𝑡 |s𝑡 )
𝑝\ (𝑎𝑡 |s𝑡 )
𝑝\ ′ (𝑎𝑡 |s𝑡 )

R(s𝑡 , 𝑎𝑡 )

≈ −
∑
x∈𝑋

∑
𝑡<𝑇

Es𝑡∼𝑝\′ (s𝑡 )E𝑎𝑡∼𝑝\′ (𝑎𝑡 |s𝑡 )
𝑝\ (𝑎𝑡 |s𝑡 )
𝑝\ ′ (𝑎𝑡 |s𝑡 )

R(s𝑡 , 𝑎𝑡 )

(14)

The third line is derived by using importance sampling, and the

fourth line is a first-order approximation of the loss. This approx-

imation trades off the variance of the off-policy correction while

still correcting for the large bias of policy gradient [3].

Eq. (14) illustrates that even if different policies are used in train-

ing and testing, we can still ensure optimization of the test reward

by considering the likelihood ratio 𝛽𝑡 =
𝑝\ (𝑎𝑡 |s𝑡 )
𝑝\′ (𝑎𝑡 |s𝑡 ) in training. In 𝛽𝑡 ,

𝑝\ (𝑎𝑡 |s𝑡 ) = 𝑝\ (𝑎𝑡 |x, ŷ≤𝑡 ) and 𝑝\ (𝑎𝑡 |s𝑡 ) is defined as in Eq. (13).

2.4.3 Policy Gradient of the Modified RL Loss. Based on Eq. (14),

we can then derive the policy gradient by

∇\𝐿𝑅𝐿 ≈ −
∑
x∈𝑋

∑
𝑡<𝑇

Es𝑡∼𝑝\′E𝑎𝑡∼𝑝\′ 𝛽𝑡R(s𝑡 , 𝑎𝑡 )∇\ log𝑝\ (𝑎𝑡 |s𝑡 )
(15)

A detailed derivation of Eq. (15) is given in Appendix II. The baseline

can then be added to reduce variance:

∇\𝐿𝑅𝐿 ≈ −
∑
x∈𝑋

∑
𝑡 ∈𝑀
Es𝑡∼𝑝\′E𝑎𝑡∼𝑝\′ 𝛽𝑡 △R𝑡∇\ log 𝑝\ (𝑎𝑡 |s𝑡 ),

△R𝑡 = R(s𝑡 , 𝑎𝑡 ) − R(s𝑡 , 𝑎𝑡 ), and 𝑎𝑡 = 𝑦𝑡+1

(16)

In Eq. (16), we only need to compute gradients for the masked

tokens, because when 𝑡 ∉ 𝑀 , we have 𝑎𝑡 = 𝑎𝑡 = 𝑦𝑡+1, thus △R𝑡 = 0.

Interpretation. In Eq. (16), the step size of ∇\ log 𝑝\ (𝑎𝑡 |s𝑡 ) is de-
termined by 𝛽𝑡△R𝑡 . Accordingly, the (log) probability of taking

action 𝑎𝑡 will be increased during optimization if △R𝑡 > 0, i.e., if

the reward of 𝑎𝑡 is larger than the reward of the baseline action 𝑎𝑡 .

𝛽𝑡 corrects the discrepancy between training and testing. By com-

bining Eq. (13) with 𝛽𝑡 =
𝑝\ (𝑎𝑡 |s𝑡 )
𝑝\′ (𝑎𝑡 |s𝑡 ) , we see that 𝛽𝑡 is larger when

I(𝑎𝑡 = 𝑦𝑡+1) = 0. This means that the probability of taking action

𝑎𝑡 will be increased faster if 𝑎𝑡 is a novel (not a human-written)

token that leads to a large reward gain △R𝑡 .

3 EVALUATION
We evaluate our method by conducting automatic offline experi-

ments, human evaluation, and online experiments.

3.1 Experimental Settings
3.1.1 Data. We train and test our method by using the ad data

from Microsoft Bing. We consider two datasets. In the first dataset,

each training sample consists of a product landing page (x𝑇 and

x𝐵 ) and a text ad provided by the advertiser (y𝑇 and y𝐷 ). For this
dataset, we ignore x𝑈 (i.e., x𝑈 = ∅) to consider scenarios where

user interests and tasks are unavailable. In the second dataset, each

training sample additionally contains a search query that triggers

the ad, which serves as x𝑈 (i.e., x𝑈 = Query). This dataset enables

us to generate ads based on both the product landing pages and

user queries. For both datasets, we filter out non-English language

sequences and sequences that contain common HTML code ele-

ments. To prevent the model from copying only templates used

for creating a large number of ads, we keep at most 3,000 samples

for each advertiser domain. After data pre-processing, each dataset

contains 6,066,249 samples. We then divide the samples into train-

ing, validation, and test sets of sizes 6,038,249, 14,000, and 14,000.

In average, the source sequences (x) of the two datasets contain

130.9 and 135.5 tokens (BERT tokenizer) respectively, and the target

sequences (y) contain 28.6 tokens.

3.1.2 Compared Methods. We compare our method with its varia-

tions and three baselines.

Our method and variations. We refer to our method as UNILM-

based Masked Policy Gradient (UMPG) and evaluate two variants

of our method. The first variant is UMPG-M , which replaces the

masked-sequence generation with the time-expensive decoding

process. The second is UMPG-C, which does not consider con-

strained phrases during reinforcement learning (i.e., _𝑐 = 0 and

Rcons is ignored). The impact of R
human

is evaluated by reporting

the results at different values of _ℎ for UMPG.
Baselines. We compare our method with three baselines. The first

baseline is Transformer [33], which is widely-used for sequence-

to-sequence generation. The second baseline, SCST [15] (Self Crit-
ical Sequence Training), is the state-of-art method for generating

text ads. SCST leverages an LSTM-based attentive policy network

and employs REINFORCE with baseline [29] to optimize the click

rate of the generated text ads. The third baseline, UNILM [11], is
a pretrained model that effectively utilizes both unsupervised and

supervised data for generating high-quality text.

3.1.3 Implementation Details. For both UNILM and our method,

we leverage the base version of the pretrained model, in which the

number of layers is 12 and the hidden state size is 768. We reuse

most hyperparameters of Transformer, SCST, and UNILM. Important

hyperparameters like learning rates and hidden state sizes are tuned

on the validation set by using grid search and evaluated on the

test set. We search the learning rate and the hidden state size of

Transformer and SCST in the range of [1𝑒−4
, 3𝑒−4

, 1𝑒−3
,..., 1𝑒−1

]



x𝑈 = ∅ x𝑈 = Query

Click Rate Violation LM ROUGE-L Click Rate Violation LM ROUGE-L

Transformer 0.219 8.94% -3.327 39.9 0.279 15.79% -3.420 42.8

SCST 0.232 8.58% -4.013 34.1 0.317 13.77% -3.931 38.3

UNILM 0.290 7.42% -3.319 44.6 0.376 14.04% -3.302 48.5

UMPG-M 0.291 2.96% -3.451 39.6 0.383 6.79% -3.301 41.5

UMPG-C 0.357 84.00% -3.113 41.3 0.558 89.23% -3.269 41.8

UMPG (_ℎ=0.2) 0.308 3.47% -3.317 43.4 0.402 5.54% -3.292 47.1

UMPG (_ℎ=0.1) 0.312 0.49% -3.305 43.4 0.419 4.16% -3.278 46.2

UMPG (_ℎ=0.05) 0.314 0.99% -3.293 40.8 0.450 2.54% -3.261 42.7

Imprv. of UMPG (_ℎ=0.1) +7.48% +93.44% +0.42% -2.70% +11.62% +69.79% +0.74% -4.81%

Table 1: Evaluation results in terms of predicted click rate, constraint violation ratio, language model score, and ROUGE-L
(similarity) between generated and human-written ads. We highlight results that are better than those of all baselines and
show the improvement of our method (_ℎ=0.1) over the best baseline. The predicted click rate of human-written ads is 0.371.

and [64, 128, 256, 512]. The learning rate of the pretrained models

is searched in [1𝑒−7
, 3𝑒−7

, 1𝑒−6
, 3𝑒−6

, 1𝑒−5
]. The Adam optimizer

is leveraged during training. For our method, 𝑃𝑚 and _𝑐 are set to

0.7 and 0.1. If not specifically mentioned, _ℎ is set to 0.1. The batch

size is set to 80. We use mixed precision and a 0.1 linear warmup

schedule. All experiments are trained on NVIDIA V100 GPU.

3.2 Automatic Offline Evaluation
3.2.1 Criteria. We evaluate the generated ads in terms of four of-

fline criteria. The first is the click rate R
click

given by the click

prediction model 𝑔. A large R
click

indicates that the method can ef-

fectively generate ads that are considered attractive by the environ-

ment. The second criterion is the violation ratio, which measures

the percentage of generated ads that violates any of the specified

constraints. A large violation ratio means that many generated

ads may contain unfaithful claims. The third criterion is the lan-

guage model (LM) score, which evaluates whether the generated

ads are natural and fluent text ads. To compute the LM score, we

learn a masked language model of the human-written ads by using

BERT [10] (data described in Sec. 3.1.1). Given an ad ŷ and a word

token, the learned BERT model accurately predicts whether the

token is likely to appear given the context ŷ (test AUC is 0.989). The

LM score of an ad is computed based on the probability of all the

generated words, i.e., 𝐿𝑀 (ŷ) = 1

𝑇

∑𝑇
𝑡=1

log𝑝𝜗 (𝑦𝑡 |ŷ≤𝑇 \{𝑡 }), where
𝜗 denotes the model parameters of BERT. A large LM score means

that the generated ads fit the language model of human-written ads.

The fourth criterion is the ROUGE-L score [19], which is widely

used in text summarization to measure the similarity between the

generated text and the ground-truth. A large ROUGE-L score means

that the generated ads are similar with the human-written ads.

3.2.2 Results. The results are shown in Table 1. We evaluate both

the scenario when user tasks or interests x𝑈 are absent (i.e., x𝑈 = ∅)
and when x𝑈 can be specified by using the search queries (i.e.,

x𝑈 = Query). We have the following observations.

Overall performance. Our method (UMPG) consistently performs

better than the three baselines (Transformer, SCST, UNILM) in terms

of click rate, violation ratio, and LM scores. Take UMPG (_ℎ=0.1)

as an example. Compared with the best baseline, it improves the

click rate by over 7%, violates much less factual constraints (>65%),

and increases the language model score by at least 0.4%. When we

specify user interests or tasks by using search queries (x𝑈 = Query),

the predicted click rate of the generated ads (>0.402) is even higher

than that of the human-written ads (0.371). Improvement in terms of

click rate and violation ratio demonstrates that our RL method can

effectively generate ads that are considered attractive and faithful by

the environment, while large LM scores illustrate that the generated

ads fit the language model of human-written ads.

UMPG outperforms Transformer and SCST in terms of ROUGE-L,

but has a lower ROUGE-L score compared with UNILM. This shows

that our method can effectively leverage the model parameters of

UNILM to incorporate supervised data, but tend to generate ads

that diverge more from human-written ads compared with state-of-

the-art supervised learning models. This is reasonable because our

ultimate goal is not to maximize the similarity with human-written

ads (supervised learning task), but to optimize ad attractiveness

(click rate) and quality (RL task). We can see from Table 1 that

diverging from the human-written ads (a lower ROUGE-L score)

may sometimes lead to improved ad attractiveness and quality (e.g.,

larger click rate and smaller violation ratio).We further demonstrate

in the human evaluation that the quality and attractiveness of our

generated ads are indeed better than that of UNILM.

Impact of masked sequence generation. UMPG outperforms

UMPG-M, which indicates that compared with traditional decoding

process, the masked sequence generation is more effective in terms

of exploring the action space. In addition, our method (training time

is 24 hours/epoch) is much more efficient compared with UMPG-M
(training time is 110 hours/epoch).

Impact of Rcons. The results of UMPG-C illustrate that if we do

not employ Rcons to constrain the word or phrase usage during

reinforcement learning, the predicted click rate will largely increase

at the expense of frequently violating factual constraints (violation

ratio is larger than 80%). By checking the word distribution of the

ads generated by UMPG-C, we find that almost every ad contains

words like “official" and “free". On the one hand, this shows that our

RL method can effectively leverage feedback from the environment

to optimize the reward (click rate). On the other hand, this demon-

strates that constraining the word or phrase usage is essential to

avoid generating low-quality clickbaits.

Impact of Rhuman. We study the impact of R
human

by evaluating

the results of UMPG at different values of _ℎ . Table 1 shows that



x𝑈 = ∅ x𝑈 = Query

Language Human Accurate Relevant Overall Language Human Accurate Relevant Overall

SCST 81.6% 87.4% 82.2% 92.0% 69.2% 86.5% 89.7% 88.8% 95.9% 76.9%

UNILM 97.8% 98.1% 93.4% 99.4% 90.9% 97.7% 98.3% 92.6% 99.4% 89.7%

UMPG 97.9% 98.7% 94.8% 99.6% 92.9%* 98.1% 98.0% 94.6% 99.8% 92.0%*

Table 2: Human evaluation of ad quality. We show the percentage of generated ads that are considered good by judges in terms
of five criteria. For each method, 1,000 generated ads are evaluated. UMPG outperforms the baselines significantly in terms of
the overall good ratio. Best results are highlighted in bold. Statistically significant improvement is marked by * (p-value<0.05).

smaller _ℎ results in lower ROUGE-L, but improves the other three

criteria. If ROUGE-L is too low, the generated ads may be irrelevant

with the landing pages, even if all other three criteria are good. By

setting _ℎ to 0.1, we can generate attractive and high-quality ads

that are relevant with the product landing pages. In the following

experiments with real users, we will report the result of UMPG
(_ℎ=0.1) and demonstrate its superior performance.

3.3 Human Evaluation
In this experiment, we ask human judges to label ads in terms of

quality and attractiveness. On average the judges have 12 months of

experience in labeling text ads. They have been carefully trained to

ensure that they correctly understand the tasks. Detailed guidance

is provided before labeling and their initial labeling results have

been checked to eliminate misunderstanding. We randomly order

the ads so that the judges do not know which method is used to

generate each ad. User interfaces andmore details about the labeling

guidance are provided in Appendix I.

3.3.1 Criteria. High quality and attractiveness are two of the most

important goals for ad generation, hence the human-labeling-based

evaluation are designed to cover these two aspects accordingly, in

similar spirit as that of Hughes et al. [15].

To evaluate quality, the following four pivots are evaluated by

judges: 1) language: language fluency and grammar correctness; 2)

human-likeness: whether the ad looks like a human-written one;

3) relevance: whether the ad is relevant to the product landing

page; 4) information accuracy: whether the information conveyed

in the ad is accurate with regard to what on the advertiser’s landing

page / website. For example, if an ad claims “free shipping” but that

is not promised by the advertiser, it shall be labeled as bad. An ad

is considered as overall good if and only if all of the four pivots

are labeled as good by the judges.

To evaluate attractiveness, we show two ads side-by-side, and

let the judge choose which one looks more attractive. When x𝑈

is set to the search query, the judges are asked to determine the

attractiveness based also on the query. To eliminate biases caused

by the layout position, we randomly determine the layout order

(left or right) of the ads generated by using different methods.

3.3.2 Results. Tables 2 and 3 compare our method with the two

most competitive baselines in terms of ad quality and attractiveness.

For each method, 1,000 ads are evaluated. We compute whether an

improvement is statistically significant by using paired t-test.

Quality. Table 2 shows that the ads generated by using our method

have better or comparable quality according to multiple criteria

compared with those generated by the baselines. The improvement

x𝑈 = ∅ Query

SCST better 31.1% 26.0%

UMPG better 68.6%* 72.7%*
Identical 0.3% 1.3%

(a) UMPG vs. SCST

x𝑈 = ∅ Query

UNILM better 44.1% 36.9%

UMPG better 50.9%* 60.2%*
Identical 5.0% 2.8%

(b) UMPG vs. UNILM

Table 3: Human evaluation of attractiveness. Judges choose
between two ads generated by different methods. In each ex-
periment, 1,000 labels are collected. Statistically significant
difference is marked by * (p-value < 0.05).

in terms of overall good ratio is statistically significant, even though

the ROUGE-L score of UNILM is larger than ours (Table 1). This

further demonstrates that achieving a larger ROUGE-L score does

not necessarily lead to better ad quality and that our model-based

RL framework is effective for generating high-quality ads. The

ads generated by using SCST have more quality issues compared

with UNILM and UMPG, which indicates that effectively leveraging

unsupervised data and pretrained models is important.

Attractiveness. Table 3 demonstrates that the ads generated by

using our method are significantly more attractive compared with

those generated by the baselines. This is consistent with the auto-

matic offline evaluation, which shows that our method achieves

much larger predicted click rate. Example ads generated by using

different methods are shown in Table 4. We can see that compared

withUNILM, our method generates ads withmore attractive phrases

and phrases that are relevant with the user interests or tasks.

3.4 Online Evaluation
In the online evaluation stage, we deployed our model in Dynamic

Search Ads (DSA) of Microsoft Bing, which is a major search engine

that has the second largest market share and has more than 100

million monthly active users. DSA allows for minimum advertiser

effort when creating ads. In particular, the advertisers share their

landing pages. The DSA infrastructure then generates ads for land-

ing pages by using different models. In DSA, the ads are generated

offline when user queries are unknown (i.e., x𝑈 = ∅).

3.4.1 Criteria. Three major online criteria used by the search en-

gine are Revenue, Click, and MClick. Revenue represents the earn-
ings that accrue for every 1000 impressed Search Engine Results

Pages (SERPs). Click yield is defined as the total clicks divided by

the total number of impressed SERPs.MClick (mainline click yield)

is the click yield of the mainline position of the SERP. Different

from the bottom ads, which are shown after the regular search

results, ads in the mainline position are shown before the regular



Landing Page 1 Landing Page 2 Landing Page 3
https://www.keeganlegal.com/ https://www.autojapanonline.com/ https://www.1stmedfinancial.com/

x𝑈 = ∅ x𝑈 = “kia garage santa rosa” x𝑈 = “bank america vet practice loans”

SCST

Aggressive Defense Attorney - We’re

Local for Any Location

We’ll Fight Tooth & Nail to Ensure Your
Rights, Freedom & Future Are Protected.

Kia Repair Shop for Car - Free Shipping

- Shop Online

Call Us for Service, Repair Your Car, Truck,
or SUV. Repair Your Car in the Area.

Veterinary Practice Loans - We’re on

Lexus of Plano

Veterinary Financing Available for
Veterinary Financing

UNILM

Get the Answers You Need Now - Call

Our BUI Defense Firm

We Will Help You Understand Your Rights
& Will Fight Tirelessly to Protect Them!

Kia Repair Specialists - Asian Auto Re-

pair

Factory Trained Technicians. Same Day
Service. Great Prices!

Looking for Vet Practice Loans? - See

Why Vets Love 1st Med

We’re Here to Help You Find the Right
Loan for Your Veterinary Practice.

UMPG

BUI Defense Attorney - Aggressive &

Experienced Help

Are You Facing BUI Charges?WeMake Your
Fight Our Own and Won’t Back Down!

Kia Garage Specialists - Voted Best

Alternative in Santa Rosa

Same Day Service at Low Prices withWar-
ranty in Cars.

Bank of America Veterinary Loans -

See Why Vets Love Us.

Get the Best Rates & No Closing Costs .
Over $1m in Closed Practice Transactions !

Table 4: Example ads generated by using different methods. SCST sometimes generates ads with language or grammar issues .
Compared with UNILM, our method generates more attractive phrases and phrases that are relevant with the user query x𝑈 .

Impressions △Revenue △Click △MClick

Base2 vs. Base1 >3.5 million +1.15% +1.63%
∗

+0.81%

Ours vs. Base2 >3.5 million +1.68%
∗

+1.31%
∗

+1.84%
∗

Table 5: Online experiment result. △Revenue, △Click, and
△MClick refer to gain in revenue per thousand impressions,
click yield, and mainline click yield, respectively. Statisti-
cally significant difference is marked by ∗ (p-value < 0.05).

search results and contribute a majority of the revenue. DSAs are

displayed both in the mainline position and at the bottom.

3.4.2 Compared methods. Methods to be deployed online need to

be carefully evaluated by judges first to ensure good user experi-

ence. The standard guideline is that the quality of the generated ads

should be similar with or better than the quality of human-written

ads. Among all baselines, only methods that leverage pretrained lan-

guage models reach this high standard for deployment. Accordingly,

we deploy and compare three methods:

• Base1 is the method previously used to generate DSAs. It em-

ploys UNILM for generating ads, together with a few heuristic

extractive approaches (e.g., using the titles of the product landing

pages as the ad titles). Among multiple candidate ads for a land-

ing page, the online infrastructure picks the one that results in the

largest predicted click probability. The predicted click probability

is computed by using an online click prediction model.

• Base2 leverages UniLMv2 [4] to generate ads, in addition to the

approaches in Base1. Similar with Base1, the ads with the largest

predicted click probability are displayed to users.

• Ours includes ads generated by using UMPG, in addition to the

set of ads generated by Base2. As with Base1 and Base2, ads with
the largest predicted click probability are displayed.

3.4.3 Results. Table 5 shows the online experiment results after

the flight runs for 8.8 days. We get over 3.5 million impressions for

each compared method. As shown in the table, even though Base2
already achieves good improvement by combining advanced pre-

trained models, ours still improves over Base2 significantly (t-test, p-
value<0.05) in terms of revenue and clicks by applying the proposed

Masked-Sequence Policy Gradient to UNILM. This demonstrates the

effectiveness of integrating reinforcement learning with pretrained

models, which enables effective utilization of unsupervised, super-

vised, and user feedback (click) data. Due to its good performance,

ours has been deployed in production to serve the main traffic.

4 RELATEDWORK
4.1 Text Generation in Online Advertising
There are two major generation tasks in online advertising: bid

phrase generation [28] and text ad generation [8, 15]. For each

ad, bid phrases are the search queries that will trigger the ad. Au-

tomatically generating bid phrases aims to expand the manually-

chosen bid phrase set to more accurately match the corresponding

ads [6, 18]. Compared with bid phrase generation, which focuses

on relevance or match accuracy, generating ads also requires opti-

mizing fluency and attractiveness of the generated sentences: it is

important that the text ads consist of natural language sentences

that attracts users by revealing the advantages of the products.

Pioneer works on text ad generation rely on pre-defined tem-

plates to generate readable and attractive sentences [5, 12, 32].

Example templates include “<product name> with <feature set>
<price>" and “<feature set> <price>" [32]. Sophisticated methods

are developed to extract key phrases and fill them appropriately in

the templates. Compared with creating each ad manually, template-

based ad generation methods can largely reduce human effort. How-

ever, templates are usually rigid, lack diversity, and cannot adapt

in the manners that a human would [15].

Recently, Hughes et al. propose a data-driven method that learns

to write text ads from existing examples [15]. The model employs

LSTMs and attention layers to encode product landing pages and

decode text ads. Moreover, REINFORCE with baseline [29] is lever-

aged to generate attractive ads that potentially have larger click

rate. This method achieves a certain degree of success in automatic

generation of text ads. However, over 15% text ads it generates are

labeled as non-sense, broken, or bad [15], which fails to meet the

high quality standard for production.We show that further improve-

ment of ad quality and attractiveness can be achieved by effectively

combining different types of data (e.g., the unsupervised data) and



tightly integrating reinforcement learning with pretrained models.

We also develop a reinforcement learning method, MPG, that more

effectively explores the action space andworks efficiently with large

and complex pretrained models. Because of its good performance,

our method is deployed in a major search engine.

4.2 Pretrained NLP Models
Pretrained language models have achieved great success in many

natural language processing (NLP) tasks. While bidirectional pre-

trained language models like BERT [10] and RoBERTa [21] are very

effective for natural language understanding (NLU) tasks such as

sentiment classification and natural language inference, left-to-right

pretrained language models like GPT [7, 24, 25] and XLNet [35] may

also be used for natural language generation (NLG). Researchers

have also proposed sequence-to-sequence pretrained models, e.g.,

MASS [31] and T5 [26], to better encode input sequence during

sequence generation. Recently, UNILM [4, 11] has been proposed,

which unifies all three types of models. Jointly pretrained with

unidirectional, bidirectional, and sequence-to-sequence language

model objectives, UNILM has proven effective for both NLU and

NLG. In this paper, we use UNILM as a guiding example to show

how large and complex pretrained models can be effectively and

efficiently integrated with RL for text ad generation. Our method

can also be applied to other pretrained language models or other

text generation tasks that benefit from user feedback.

5 CONCLUSION
We show how pretrained models can be enhanced by using deep RL

to generate attractive and high-quality text advertisements. To lever-

age user feedback effectively without hindering user experience, we

propose a model-based RL framework for text ad generation. Based

on the framework, we propose an RL algorithm, Masked-Sequence
Policy Gradient, which integrates efficiently with large and complex

pretrained models and explores the action space effectively. We

have conducted extensive experiments to demonstrate the superi-

ority of our method. Because of its good performance, our method

has been deployed to production in Microsoft Bing.
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SUPPLEMENTARY MATERIAL
Appendix I. Implementation Details
Constraint list. The list of constraints we use to avoid generating

attractive but unfaithful ads is shown in Table 6. The constraints

can be divided into two categories.

Category I includes phrases about concrete facts, e.g., “free ship”

or “lowest price”. Making false claims about these facts can easily

annoy users and lead to severe consequences. Thus, we only allow

the generation of these phrases if they have been mentioned in

the product landing page title (x𝑇 ) or body (x𝐵 ), and assign a large

punish weight 𝑙𝑐 if the constraint is violated.

Category II includes phrases that are less sensitive, e.g., “official”

and “luxury”. Whether these phrases are fact or not for a product is

more ambiguous. Even if the product landing page does not contain

these phrases, it is highly possible that they are still true given the

content of the landing page. For example, even if a landing page does

not contain the word “official”, we can generate “Official Olukai®

Webstore” in the ad if “Olukai” appears frequently in the product

landing page. As a result, we allow the generation of these words if

they appear in the product landing page (x𝑇 or x𝐵 ) or the human-

written ads (y). By maximizing Rcons during RL training, the model

automatically learns to judge whether a phrase in Category II can

be used in an ad based on the content of the landing page.

Humanevaluation: user interface and labeling guideline. User
interfaces for labeling ad quality and ad attractiveness are shown

in Figs. 2 and 3, respectively. In addition to the user interfaces, a

detailed guidance about each task is provided to the judges before

they start labeling ads. The guidance includes an overall description

of the task, clarifications about what is important, and labeling ex-

amples. A part of the guidance for labeling ad attractiveness is given

in Fig. 4. The judges are asked to carefully read the guidance and

their initial labeling results are verified to avoid misunderstanding.

Figure 2: User interface for labeling ad quality.

Appendix II. Proof and Theoretical Analysis
Relationship between Rhuman and 𝐿𝑋𝐸 . Here, we show that

optimizing the reinforcement learning loss for R
human

= I(𝑎𝑡 =

𝑦𝑡+1) by using Eq. (16) is closely related to optimizing the cross-

entropy loss 𝐿𝑋𝐸 . When R is R
human

and when a simple baseline

method that obtains a zero reward for ∀𝑡 ∉ 𝑀 is used, we can

compute Eq. (16) accurately by enumerating all possible actions:

∇\𝐿𝑅𝐿 ≈ −
∑
x∈𝑋

∑
𝑡 ∈𝑀
Es𝑡∼𝑝\′E𝑎𝑡∼𝑝\′ 𝛽𝑡 △R𝑡∇\ log𝑝\ (𝑎𝑡 |s𝑡 ),

= −
∑
x∈𝑋

∑
𝑡 ∈𝑀
Es𝑡∼𝑝\′

∑
𝑎𝑡

𝑝\ ′ (𝑎𝑡 |s𝑡 )𝛽𝑡 △R𝑡∇\ log 𝑝\ (𝑎𝑡 |s𝑡 ),

= −
∑
x∈𝑋

∑
𝑡 ∈𝑀
Es𝑡∼𝑝\′𝑝\ ′ (𝑦𝑡+1 |s𝑡 )𝛽𝑡∇\ log𝑝\ (𝑦𝑡+1 |s𝑡 )

= −
∑
x∈𝑋

∑
𝑡 ∈𝑀
Es𝑡∼𝑝\′𝑝\ (𝑦𝑡+1 |s𝑡 )∇\ log𝑝\ (𝑦𝑡+1 |s𝑡 )

≈ −
∑
x∈𝑋

∑
𝑡 ∈𝑀

𝑝\ (𝑦𝑡+1 |s𝑡 )∇\ log𝑝\ (𝑦𝑡+1 |x, y≤𝑡\𝑀 )

≈ −
∑

x,y∈𝑋,𝑌

∑
𝑡 ∈𝑀

`∇\ log𝑝\ (𝑦𝑡+1 |x, y≤𝑡\𝑀 )

=`∇\𝐿𝑋𝐸

(17)

Figure 3: User interface for labeling ad attractiveness.

Figure 4: Part of the guidance for labeling ad attractive.



v𝑐 𝑙𝑐 [𝑐

Category I “free ship”, “lowest price”, “lowest cost”, “best”, “first”, “largest”, “latest”,

“permanently”, or any word that contains a number

3 I(v𝑐 ⊈ x𝑇 & v𝑐 ⊈ x𝐵)

Category II “official”, “top”, “experienced”, “luxury”, “instant” 1 I(v𝑐 ⊈ x𝑇 & v𝑐 ⊈ x𝐵 & v𝑐 ⊈ y)
Table 6: The constraints we use to compute Rcons (·).

The 2nd line is derived by computing the expectation E𝑎𝑡∼𝑝\′ (·)
through enumerating all possible 𝑎𝑡 , which is more accurate com-

pared with approximating E𝑎𝑡∼𝑝\′ (·) by sampling several 𝑎𝑡 . The

3nd line holds because △R𝑡 = I(𝑎𝑡 = 𝑦𝑡+1) is not 0 only when 𝑎𝑡

is 𝑦𝑡+1. The 4rd line can be derived since 𝛽𝑡 =
𝑝\ (𝑎𝑡 |s𝑡 )
𝑝\′ (𝑎𝑡 |s𝑡 ) for ∀𝑎𝑡 .

The 5th line is true considering that 𝑝\ (𝑎𝑡 |s𝑡 ) = 𝑝\ (𝑎𝑡 |x, ŷ≤𝑡 ) ≈
𝑝\ (𝑎𝑡 |x, ŷ≤𝑡\𝑀 ) = 𝑝\ (𝑎𝑡 |x, y≤𝑡\𝑀 ). The 6th line can be derived by

considering that \ has been trained with human-written ads during

the fine-tuning phase. Thus, 𝑝\ (𝑦𝑡+1 |s𝑡 ), the probability of gener-

ating the human-written token, is usually large with a relatively

small variance (≈0.04 in practice). Thus, we may ignore the variance

and approximately consider 𝑝\ (𝑦𝑡+1 |s𝑡 ) as a constant `. Then, we
have ∇\𝐿𝑅𝐿 ≈ `∇\𝐿𝑋𝐸 , i.e., optimizing the reinforcement learning

loss for R
human

according to Eq. (16) is similar to optimizing the

cross-entropy loss 𝐿𝑋𝐸 by using gradient descent.

Policy gradient of the modified RL loss. Considering the mod-

ified RL loss defined in Eq. (14) in the paper:

𝐿𝑅𝐿 = −
∑
x∈𝑋

∑
𝑡<𝑇

Es𝑡∼𝑝\′ (s𝑡 )E𝑎𝑡∼𝑝\′ (𝑎𝑡 |s𝑡 )
𝑝\ (𝑎𝑡 |s𝑡 )
𝑝\ ′ (𝑎𝑡 |s𝑡 )

R(s𝑡 , 𝑎𝑡 )

(18)

We now prove that the gradient of this loss can be approximately

computed by using Eq. (15) in the paper.

Proof.

∇\𝐿𝑅𝐿 ≈ −∇\
∑
x∈𝑋

∑
𝑡<𝑇

Es𝑡∼𝑝\′ (s𝑡 )E𝑎𝑡∼𝑝\′ (𝑎𝑡 |s𝑡 )
𝑝\ (𝑎𝑡 |s𝑡 )
𝑝\ ′ (𝑎𝑡 |s𝑡 )

R(s𝑡 , 𝑎𝑡 )

≈ −∇\
∑
x∈𝑋

∑
𝑡<𝑇

1

𝑁

𝑁∑
𝑛=1

E
𝑎𝑡∼𝑝\′ (𝑎𝑡 |s

(𝑛)
𝑡 )

𝑝\ (𝑎𝑡 |s
(𝑛)
𝑡 )

𝑝\ ′ (𝑎𝑡 |s
(𝑛)
𝑡 )

R(s(𝑛)𝑡 , 𝑎𝑡 )

= −∇\
∑
x∈𝑋

∑
𝑡<𝑇

1

𝑁

𝑁∑
𝑛=1

∑
𝑎𝑡

𝑝\ ′ (𝑎𝑡 |s
(𝑛)
𝑡 )

𝑝\ (𝑎𝑡 |s
(𝑛)
𝑡 )

𝑝\ ′ (𝑎𝑡 |s
(𝑛)
𝑡 )

R(s(𝑛)𝑡 , 𝑎𝑡 )

= −
∑
x∈𝑋

∑
𝑡<𝑇

1

𝑁

𝑁∑
𝑛=1

∑
𝑎𝑡

∇\𝑝\ (𝑎𝑡 |s
(𝑛)
𝑡 )R(s(𝑛)𝑡 , 𝑎𝑡 )

= −
∑
x∈𝑋

∑
𝑡<𝑇

1

𝑁

𝑁∑
𝑛=1

∑
𝑎𝑡

𝑝\ (𝑎𝑡 |s
(𝑛)
𝑡 )∇\ log𝑝\ (𝑎𝑡 |s

(𝑛)
𝑡 )R(s(𝑛)𝑡 , 𝑎𝑡 )

≈ −
∑
x∈𝑋

∑
𝑡<𝑇

Es𝑡∼𝑝\′ (s𝑡 )
∑
𝑎𝑡

𝑝\ (𝑎𝑡 |s𝑡 )∇\ log𝑝\ (𝑎𝑡 |s𝑡 )R(s𝑡 , 𝑎𝑡 )

= −
∑
x∈𝑋

∑
𝑡<𝑇

Es𝑡∼𝑝\′ (s𝑡 )
∑
𝑎𝑡

𝑝\ ′ (𝑎𝑡 |s𝑡 )𝛽𝑡∇\ log𝑝\ (𝑎𝑡 |s𝑡 )R(s𝑡 , 𝑎𝑡 )

= −
∑
x∈𝑋

∑
𝑡<𝑇

Es𝑡∼𝑝\′ (s𝑡 )E𝑎𝑡∼𝑝\′ (𝑎𝑡 |s𝑡 )𝛽𝑡∇\ log 𝑝\ (𝑎𝑡 |s𝑡 )R(s𝑡 , 𝑎𝑡 )

(19)

The 2nd and 6th lines are derived by approximating the expecta-

tion Es𝑡∼𝑝\′ (s𝑡 ) (·) through sampling. Here, s(𝑛)𝑡 is the 𝑛-th sample

from the distribution 𝑝\ ′ (s𝑡 ). The 5th line holds because ∇𝑥 𝑓 (𝑥) =
𝑓 (𝑥)∇𝑥 log 𝑓 (𝑥). The 7th line is true since 𝛽𝑡 =

𝑝\ (𝑎𝑡 |s𝑡 )
𝑝\′ (𝑎𝑡 |s𝑡 ) . □

Approximation of 𝛽𝑡 . 𝛽𝑡 can be accurately computed by:

𝛽𝑡 =
𝑝\ (𝑎𝑡 |s𝑡 )
𝑝\ ′ (𝑎𝑡 |s𝑡 )

=
𝑝\ (𝑎𝑡 |x, ŷ≤𝑡 )

(1 − 𝑃𝑚)I(𝑎𝑡 = 𝑦𝑡+1) + 𝑃𝑚𝑝\ (𝑎𝑡 |x, y≤𝑡\𝑀 )
(20)

We can compute 𝛽𝑡 for ∀𝑡 by performing two forward propagations

through UNILM. We can more efficiently compute 𝛽𝑡 by considering

that 𝑝\ (𝑎𝑡 |x, ŷ≤𝑡 ) ≈ 𝑝\ (𝑎𝑡 |x, ŷ≤𝑡\𝑀 ) = 𝑝\ (𝑎𝑡 |x, y≤𝑡\𝑀 ). Thus,

𝛽𝑡 =
𝑝\ (𝑎𝑡 |x, ŷ≤𝑡 )

(1 − 𝑃𝑚)I(𝑎𝑡 = 𝑦𝑡+1) + 𝑃𝑚𝑝\ (𝑎𝑡 |x, y≤𝑡\𝑀 )

≈
𝑝\ (𝑎𝑡 |x, y≤𝑡\𝑀 )

(1 − 𝑃𝑚)I(𝑎𝑡 = 𝑦𝑡+1) + 𝑃𝑚𝑝\ (𝑎𝑡 |x, y≤𝑡\𝑀 )

=
1

1−𝑃𝑚
𝑝\ (𝑎𝑡 |x,y≤𝑡\𝑀 ) I(𝑎𝑡 = 𝑦𝑡+1) + 𝑃𝑚

≈ 1

(1 − 𝑃𝑚)` ′I(𝑎𝑡 = 𝑦𝑡+1) + 𝑃𝑚

=
1

𝑃𝑚
[1 − 𝛽 ′I(𝑎𝑡 = 𝑦𝑡+1)]

(21)

The 4th line can be derived by ignoring the small variance of

1

𝑝\ (𝑎𝑡 |x,y≤𝑡\𝑀 ) (≈0.13 in practice) and consider it as a constant.

𝛽 ′ =
(1−𝑃𝑚)`′

(1−𝑃𝑚)`′+𝑃𝑚 in the 5th line is a constant that determines

how much we lower the weight for human-written tokens. We

find that approximating 𝛽𝑡 by using Eq. (21) sufficiently balances

efficiency and effectiveness in practice.
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