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Abstract
Secure multi-party machine learning allows several par-
ties to build a model on their pooled data to increase
utility while not explicitly sharing data with each other.
We show that such multi-party computation can cause
leakage of global dataset properties between the parties
even when parties obtain only black-box access to the
final model. In particular, a “curious” party can infer
the distribution of sensitive attributes in other parties’
data with high accuracy. This raises concerns regarding
the confidentiality of properties pertaining to the whole
dataset as opposed to individual data records. We show
that our attack can leak population-level properties in
datasets of different types, including tabular, text, and
graph data. To understand and measure the source of
leakage, we consider several models of correlation be-
tween a sensitive attribute and the rest of the data. Using
multiple machine learning models, we show that leakage
occurs even if the sensitive attribute is not included in
the training data and has a low correlation with other
attributes or the target variable.

1 Introduction

Modern machine learning models have been shown
to memorize information about their training data, lead-
ing to privacy concerns regarding their use and release
in practice. Leakage of sensitive information about the
data has been shown via membership attacks [47, 50],
attribute inference attacks [17, 53], extraction of text [8]
and data used in model updates [46, 55]. These attacks
focus on leakage of information about an individual
record in the training data, with several recent excep-
tions [18, 39] pointing out that leakage of global proper-
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ties about a dataset can also lead to confidentiality and
privacy breaches.

In this paper, we study the problem of leakage of
dataset properties at the population-level. Attacks on
leakage of global properties about the data are concerned
with learning information about the data owner as op-
posed to individuals whose privacy may be violated via
membership or attribute inference attacks. The global
properties of a dataset are confidential when they are
related to the proprietary information or IP that the data
contains, and its owner is not willing to share. As an ex-
ample, consider the advantage one can gain from learning
demographic information of customers or sales distribu-
tion across competitor’s products.

Our primary focus is on inferring dataset properties
in the centralized multi-party machine learning setting.
This setting allows multiple parties to increase utility
of their data since the model they obtain is trained on a
larger data sample than available to them individually.
Benefits of computing on combined data have been iden-
tified in multiple sectors including drug discovery, health
services, manufacturing and finance. For example, anti-
money laundering served as a use case for secure data
sharing and computation during the TechSprint organized
by the Financial Conduct Authority, UK in 2019 [5]. A
potential machine learning task in this setting is to create
a system that identifies a suspicious activity based on
financial transactions and demographic information of
an entity (e.g., a bank customer). Since multiple financial
institutions have separate views of the activities, such a
system can be used to detect common patterns.

Deployments and availability of secure computation
methods [2, 29, 32, 48] can enable multi-party machine-
learning by alleviating immediate privacy concerns of the
parties. In particular, secure multi-party machine learn-
ing provides parties with a black-box access to a model
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trained on their pooled data without requiring the parties
to share plaintext data with each other. Unfortunately,
as we show in this paper, this is insufficient to address
all privacy implications of collaborative machine learn-
ing. In particular, we demonstrate that global properties
about one party’s sensitive attributes can be inferred by
the second party, even when only black-box access to the
model is available. Consider implications of our attacks
in the use case above. An attacker party (e.g., one of
the banks) can learn distribution of demographic features
pertaining to the customer population in the other bank
(e.g., whether the other bank has more female than other
customers or what percentage of customers has income
over a certain threshold) that it can use in the future
when developing a marketing campaign to attract new
customers.

Analysis of our attacks shows that leakage of
population-level properties is possible even in cases
where sensitive attribute is irrelevant to the task, i.e., it
has ≈ 0 correlation with the task in hand. Though remov-
ing sensitive attributes may seem like a viable solution, it
is not provably secure due to correlations that are present
in the data. Indeed, we show that in many cases, infor-
mation is still leaked regardless of whether training data
contained the sensitive attribute or not. We argue that this
is possible due to correlation between sensitive attributes
and other attributes that exists in the data. For example,
datasets we use indicate that there is correlation between
sets of attributes including gender, occupation and work-
ing hours per week, as well as income, occupation and
age. Such customer attributes are often recorded by finan-
cial institutions, as a result indicating potential leakage
if institutions were to collaborate towards detection of
financial crime as described above.

Threat model. We consider the setting where the
model is securely trained on the joined data of the honest
party and of an honest-but-curious party. Honest-but-
curious adversary considers a realistic setting where the
malicious party (1) will not alter its own data — if it
does, the model may not perform well and, if detected,
could undermine the trust from the other party in the part-
nership — and (2) will not change the machine learning
code — both parties may wish to observe the code to be
run on the data to ensure its quality and security.

The attacker is interested in learning global properties
about a sensitive attribute at the dataset level, that is, how
values of this attribute are distributed in the other party’s
dataset. It may be interested in learning which attribute
value is dominant (e.g., whether there are more females)
or what the precise ratio of attribute values is (e.g., 90%

females vs. 70% females).

Attack technique. We show that dataset property can
be leaked merely from the black-box access to the model.
In particular, the attacker does not require access to the
training process of the model (e.g., via gradients [39])
or to model parameters (aka white-box attack [7, 18]).
Following other attacks in the space, the attacker also
uses shadow models and a meta classifier. However, in-
dividual predictions from the model are not sufficient to
extract global information about a dataset. To this end, we
introduce an attack vector based on a set of queries and
use them in combination in order to infer a dataset prop-
erty. In contrast to previous work on property leakage,
the attack requires less information and assumptions on
the attacker (see Table 1 and Section 8 for more details).

Methodology. To understand what causes information
leakage about a property we consider several correla-
tion relationships between the sensitive attribute A, the
rest of the attributes X , and the target variable Y that the
machine learning model aims to learn. Surprisingly, we
show that dataset-level properties about A can be leaked
in the setting where A has low or no correlation with Y .
We demonstrate this with experiments on real data and
experiments with a synthetic attribute where we control
its influence on X and Y . The attack persists across differ-
ent model types such as logistic regression, multi-layer
perceptrons (MLPs), Long Short Term Memory networks
(LSTMs), and Graphical Convolution Networks (GCNs)
models and for different dataset types such as tabular,
text, and graph data. The attack is efficient as it requires
100 shadow models and fewer than 1000 queries.

Machine learning settings. In addition to the multi-
party setting, our property leakage attack can be carried
out in the following two settings. (1) single-party setting
where an owner of a dataset releases query interface of
their model; (2) in the model update setting, one can infer
how the distribution of a sensitive property has changed
since the previous release of the model. The second attack
also applies to multi-party machine learning, showing
that the party that joins last exposes its data distribution
more than parties who were already collaborating.

Contributions. Our contributions are as follows:

• Problem Formulation: We study leakage of proper-
ties about a dataset used to train a machine learning
model when only black-box access to the model is
available to the attacker.
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Attacker’s knowledge Single-party Multi-party Datasets
Melis et al. [39] training gradients X tabular, text, images
Ganju et al. [18] model parameters (white-box) X tabular, images
Ateniese et al. [7] model parameters (white-box) X tabular, speech
This work model predictions (black-box) X X tabular, text, graphs

Table 1: Comparison of attacks on leakage of dataset properties.

• Attack Technique: We propose an effective attack
strategy that requires only a few hundred inference
queries to the model (black-box access) and relies
on a simple attack architecture that even a computa-
tionally bound attacker can use.
• Attack Setting: We show that leakage of dataset prop-

erties is an issue for an owner of a dataset when the
owner releases a model trained on their data (single-
party setting); when the owner participates in multi-
party machine learning, and when the owner con-
tributes data to update an already trained model
(e.g., either because it joins other parties or because
it has acquired new data).
• Empirical Results: We show that distribution of a

sensitive attribute can be inferred with high accuracy
for several types of datasets (tabular, text, graph) and
models, even if the sensitive attribute is dropped
from the training dataset and has low correlation
with the target variable.

Finally, we note that secure multi-party computa-
tion, based on cryptographic techniques or secure hard-
ware, [13, 19, 20, 26, 27, 34, 40, 41, 42, 54] guaran-
tees that nothing except the output of the computation
is revealed to the individual parties. However, it is not
concerned with what this final output can reveal about
the input data of each party. On the other hand, defenses,
such as differential privacy, are concerned with individual
record privacy and not dataset property privacy consid-
ered in this paper. We discuss this further in Section 7.
In summary, we believe this work identifies a potential
gap in multi-party machine learning research in terms
of techniques that parties can deploy to protect global
properties about their dataset.

2 Preliminaries

We assume that there is an underlying data distribu-
tion D determined by variables X , A, Y where X models
a set of features, A models a feature that is deemed pri-
vate (or sensitive) and Y is the target variable, i.e., either
a label or a real value (e.g., if using regression models).
We consider a supervised setting where the goal is to

train a model f such that f (X ,A) predicts Y .

Secure multi-party computation (MPC). MPC lets
parties obtain a result of a computation on their com-
bined datasets without requiring them to share plaintext
data with each other or anyone else. Methods that instan-
tiate it include homomorphic encryption, secret sharing,
secure hardware and garbled circuits [12, 14, 25, 43, 45].
These methods vary in terms of their security guarantees
(e.g., availability of a trusted processor vs. non-colluding
servers) and efficiency. We abstract MPC using an ideal
functionality [43]: a trusted third entity accepts inputs
from the parties, computes the desired function on the
combined data, and returns the output of the computation
to each party. Security of protocols implementing this
functionality is often captured by proving the existence
of a simulator that can simulate adversary’s view in the
protocol based only on adversary’s input and the output
of the computation. Hence, an MPC protocol guarantees
that an adversarial party learns only the output of the
computation but does not learn the content of the inputs
of other parties beyond what it can infer based on its own
data and the output. Since our attacks are oblivious
to the exact technique used for secure computation, we
assume ideal MPC functionality and specify additional
information available to the adversary in the next section.

Multi-party machine learning. Let Dhonest and Dadv

be the datasets corresponding to the data of the victim
parties and Dadv be the data that belongs to the parties
whose data is known to the adversary. For simplicity,
we model it using two parties Phonest and Padv who own
Dhonest and Dadv, respectively. Both Dhonest and Dadv are
sampled from D but may have a different distribution
of A, conditional on some latent variable, for example, a
party identifier. Importantly, distribution of A in Dhonest

is secret and unknown to Padv. Parties are interested in
increasing the utility of their model through collaboration
with each other. To this end, they agree on an algorithm to
train a machine learning model, f , using their combined
datasets Dhonest and Dadv.

The parties use secure multi-party computation to
train f , as they are not willing to share it either due to
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privacy concerns or regulations. Once the target model
is trained using MPC, it can be released to the parties
either as a white- or black-box. In the former, f is sent
to the parties, and, in the latter, the model is available
to the parties through an inference interface (e.g., the
model stays encrypted at the server such that inferences
are made either using secure hardware or cryptographic
techniques [28]). We assume that f is trained faithfully
and, hence, Padv cannot tamper with how f is trained
(e.g., this avoids attacks where a malicious algorithm can
encode training data in model weights [51]).

MPC guarantees that parties learn nothing about the
computation besides the output, i.e., they learn no other
information about each other’s data besides what is re-
vealed from their access to f . The goal of this paper is
to show that even by having black-box access to f one
party can infer information about other parties’ data.

3 Data Modeling

To reason about leakage of A’s distribution in D, we
consider different relationships between X ,Y,A based on
their correlation. We use ∼ to indicate that there is a
correlation between random variables and ⊥ if not. We
consider four possible relationships between Y , X and
the sensitive attribute A.

Y⊥A: If Y is independent of A, and if f is faithfully mod-
eling the underlying distribution, A should not be leaked.
That is, information about A that an adversary acquires
from f (X ,A) and f ′(X) should be the same for mod-
els f and f ′ trained to predict Y . Two scenarios arise
depending on whether the rest of the features are corre-
lated with A or not: (X⊥A,Y⊥A) and (X ∼ A,Y⊥A). We
argue that leakage in the latter case is possible due to
how machine learning models are trained. Below we de-
scribe why it is theoretically feasible and experimentally
validate this in Section 6.

A machine learning model is trying to learn the condi-
tional probability distribution Pr(Y = y|X = x) where X
are the attributes and Y is the target variable. Suppose
there is a latent variable Z, and the observed X is mod-
eled by X = h(Z,A) where h is a function capturing the
relationship between the variables. Even if the target vari-
able Y only depends on Z through a random function g:
Y = g(Z), the conditional distribution Pr(Y = y|X = x)
still depends on A. Thus, machine learning models will
capture information about A. For example, consider a
task of predicting education level (Y ) based on data that
contains gender (A) and income (X). Suppose income
can be modeled by a function of latent variables skill and
occupation, and education level is only associated with

the skill. Though gender is not correlated with education
level (Y⊥A), it could be associated with occupation and
thus correlated with income (X).

The (X ∼ A,Y⊥A) scenario was also noted by Lo-
catello et al. [38] when studying fair representations.
The authors indicated that even if the original data may
not have a bias (i.e., when the target variable and the
protected variable are independent) using the protected
attribute in training can introduce bias.

To model (X ∼ A,Y⊥A) scenario in the experiments,
we use correlation coefficients to determine the split of
dataset attributes into X and A. To have a more con-
trolled experiment, we also carry out experiments where
we introduce a synthetic variable and inject correlations
between it and a subset of attributes in X .

Y ∼ A: We also consider two cases where there is a cor-
relation between the target variable Y and the sensitive
attribute A: (X⊥A,Y ∼ A) and (X ∼ A,Y ∼ A). In the set-
ting of (X⊥A,Y ∼ A), attribute A and a set of attributes X
may be relevant in predicting Y , while being uncorrelated
with each other. For example, a reaction of an individual
to a new drug (Y ) could depend on the age and weight
of an adult, while age and weight may be regarded as
independent between each other.

The final setting of (X ∼ A,Y ∼ A) is the most likely
scenario to happen in practice where the true distribution
and dependence between variables maybe unknown. For
example, consider a task of predicting whether a finan-
cial transaction by an individual is suspicious or not (Y )
based on customer information (e.g., occupation, age,
gender) and their transaction history (X), where their in-
come is the sensitive attribute A. The correlation between
attributes could either belong to cases (X ∼ A,Y⊥A) or
to (X ∼ A,Y ∼ A) since attributes such as occupation
and age are likely to be correlated with income (as also
suggested by the correlations in the datasets we use in
our experimental evaluation in Appendix A).

4 Threat Model and Attack

The goal of the adversarial party Padv is to learn
population-level properties about the rest of the dataset
used in the multi-party machine learning setting (e.g., in
the two-party setting this corresponds to learning prop-
erties of the other party’s dataset). Since Padv is one of
the parties, it has black-box access to the joint model f
trained (e.g., via MPC) on the data of all the parties (i.e.,
Dhonest and Dadv). Given this query interface to f , the
attacker wants to infer how sensitive attribute A is dis-
tributed in honest parties’ dataset Dhonest. Throughout
the paper, we use attribute and feature interchangeably.
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We model dataset property leakage as follows. Let
ahonest denote attribute values of A for all records
in Dhonest (for example, if the sensitive attribute is gen-
der, then ahonest is a vector of gender values of all records
in Phonest data). We define p(ahonest) to be the property
or information about ahonest that the adversary is trying
to infer. For example, the property could be related to
determining whether there is a higher presence of female
patients in the dataset Dhonest or learn the exact ratio of
female patients.

The attacker, besides knowing its own dataset Dadv and
having black-box access to the model f , is assumed to
have auxiliary dataset Daux that is distributed according
to D. Similar to [50], an auxiliary dataset can be gen-
erated either via (1) model-based synthesis approach —
feeding synthetic data to f and using its output to guide
the search towards data samples on which the model
returns predictions with high confidence, (2) statistics-
based synthesis that uses information about marginal
distribution of the attributes, or (3) using a (publicly avail-
able) dataset of similar distribution. The attacker can use
approach (1) by merely using f , while Dadv provides it
with statistics for (2). The availability of a dataset that
follows similar distribution to D depends on the setting.
Consider the anti-money laundering use case in the intro-
duction. A party may have access to billions of financial
transactions that it can use either for approach (2) since
record-level marginal distribution between demographic
features, income, education level is likely to be similar
between the parties, or for approach (3) by dividing its
dataset into Daux and Dadv.

The attack follows the shadow model training ap-
proach [7, 50]. However, we modify the attack vector
to measure the signal about the distribution of a sensitive
attribute in a whole dataset. Our attack strategy is de-
scribed below; Figure 1 shows graphical representation
of how the attack model is trained and Figure 2 shows
the execution of an attack on target model f .

We make an observation that to infer global properties
about training data, the attacker needs to combine infor-
mation from multiple inferences made by f . To this end,
the attacker measures how f performs on a sequence of
k records, called Dattack, as opposed to a single record
used in work on attribute and membership inference. We
obtain the “attack feature” sequence F by setting it to
the posterior probability vector across classes returned
by f on Dattack. Hence, if f is a classification model over
l classes F consists of k× l values. In the experiments,
we construct Dattack by sampling from Daux at random.
We leave open a question of whether more sophisticated

methods of constructing Dattack can lead to better attacks.

Shadow models and attack meta-classifier. The at-
tacker relies on shadow models in order to determine
whether F is generated from f trained on a dataset
with property p or not. To this end, the attacker trains n
“shadow" models that resemble f . In particular, it gen-
erates training datasets Di

shadow, half of them exhibiting
the property and half not, labeled as p and p̄ accord-
ingly. These datasets could be obtained by resampling
from Daux. Each shadow model f i

shadow is trained on a
dataset Di

shadow∪Dadv using the same way as the target
central model f . Once f i

shadow is trained, the attacker
queries it using Dattack and combines inference results to
form a feature vector Fi associated with p or p̄, depend-
ing on its training data.

After training all shadow models, the adversary has a
set of features Fi with the corresponding property label
pi ∈ {p, p̄}. The adversary then trains a meta-classifier
on the pairs {(Fi, pi)}i using any binary classification
algorithm. For example, logistic regression is sufficient
for attacks in our experimental evaluation.

The attacker carries out its attack as follows. Once
the target model f is trained on the joined data of the
attacker and honest party, the attacker queries the model
using Dattack to obtains the feature representation of the
target model, F . It then feeds F to its meta-classifier and
obtains a prediction for the sensitive property p(ahonest).

Single-party attack. We explained the attack strategy
for the multi-party case since this is the primary focus
of this work. However, we can easily adapt the attack
to the single-party case: the only change that has to be
made to the attack description above is by setting Dadv

to an empty set. As highlighted in Table 1, besides being
the first attack on property leakage in the centralized
multi-party setting, our attack is also the first to show
that dataset properties can be leaked in the black-box
setting.

Fine-grained attack. The above attack shows how an
adversary can learn whether some property is present
in a dataset or not. The attacker can extend this binary
property attack and distinguish between multiple proper-
ties P= {p1, p2, . . .}. It simply generates shadow training
datasets for each property and then trains a meta-classifier
to predict one of the properties in P based on attack vec-
tor F . For example, P can be a set of possible ratios of
females to other values, and the attack meta-classifier
will try to distinguish whether it is 10:90, 50:50 or 90:10
split. In the experimental evaluation, we show that this
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Figure 1: Attack model pipeline. Half of shadow models are trained with the property p that the attacker is trying to
learn and half without it. Each shadow model f i

shadow is queried on a dataset Dattack. Output probability vectors are
concatenated to form a vector Fi. Finally, the meta-classifier is trained on feature-label tuples of the form {(Fi, pi)}i.
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Figure 2: Execution of the attack on the target model to learn the prediction of the property p(ahonest) in Dhonest, p̂.

attack is effective in learning fine-grained distribution of
sensitive attributes as well as identifying how the distri-
bution of a sensitive attribute has changed after the model
was updated with new data.

Scope. This work focuses on understanding the leak-
age of population-level properties of the training dataset.
Since our threat model is similar to that of the at-
tacker who is able to infer individual record-level at-
tributes [17, 51, 53], our setting allows for record-level
leakage as well. Albeit, the attack strategy needs to
be changed in order to train shadow models that cap-
ture the difference between inputs with different at-
tribute values. Importantly, for both the record-level and
population-level attribute inference attack, the attacker —
here and in [51, 53] — is assumed to know the domain
of an attribute it is trying to infer (e.g., Gender taking
values male, female, or other). Hence, similar to prior
work [18, 39], our attack cannot infer a sensitive attribute
with a large, potentially unbounded, domain (e.g., such as
Name for which the attacker may not be able to enumerate
all possible values).

5 Experimental Setup

The goal of our experiments is to evaluate the efficacy
of the attack in Section 4 to learn population-level prop-
erties about a sensitive attribute in the multi-party and
single-party machine learning setting. We then aim to
understand how the difference in machine learning mod-
els (e.g., logistic regression and neural network models),
dataset type (e.g., tabular data, text or graph), access to
the model through its weights or inference interface, and
attribute correlation influence attack accuracy.

5.1 Benchmark Datasets
We evaluate our attack on five datasets described be-

low. The datasets, sensitive attributes, machine learning
model tasks, and the type of correlations between the
sensitive attribute, other attributes, and the final task are
summarized in Table 3.

Health [3] The Health dataset (Heritage Health Prize)
contains medical records of over 55 000 patients. Sim-
ilar to the winners of the Kaggle competition, we use
141 features with MemberID and Year removed. We
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group the DaysInHospital attribute into two classes.
The task, Y , is to predict if a patient will be dis-
charged, DaysInHospital = 0, or will stay in the hos-
pital, DaysInHospital> 0. We consider two sensitive
attributes to perform our attack on learning their distri-
bution in the dataset of the benign party: Gender and the
number of medical claims ClaimsTruncated.

Adult [33, 37] The Adult dataset contains US cen-
sus information including race, gender, income, and
education level. The training dataset contains 32 561
records with 14 attributes. We group the education level
into four classes: ‘Low’, ‘Medium-Low’, ‘Medium-High’,
‘High’. We use 12 features with Education and Fnlwgt
removed. The task is to predict the class of the
EducationLevel (i.e., variable Y for this dataset). We
again consider two sensitive features whose distribution
the attacker is trying to infer: Gender and Income.

Communities and Crime [37] The Communities and
Crime dataset contains 1 994 records with 122 features
relevant to per capita violent crime rates in the United
States, which was also used for evaluating fairness with
respect to protected variables [11]. We remove the at-
tributes that have missing data, resulting in 100 attributes.
The classification task is to predict the crime rate, i.e., the
Y variable is CrimesPerPop. We group the crime rate
into three classes based on ranges: ‘< 0.15’, ‘[0.15,0.5]’
and ‘> 0.5’, and the task is the multi-class prediction for
the crime rate. We consider total percentage of divorce
TotalPctDiv and Income as sensitive features.

Yelp-Health [4] The Yelp dataset contains 5 million
reviews of businesses tagged with numerical ratings (1-5)
and attributes such as business type and location. We
extract a healthcare-related subset that has 2 384 reviews
for pediatricians and 1 731 reviews for ophthalmologists.
The classification task is to predict whether the review
is positive (rating > 3) or negative (rating ≤ 3). The
attack aims to predict the dominant value of the doctor
Specialty of the benign party.

Amazon [1, 35] The Amazon product co-purchasing
network dataset contains product metadata and reviews
information about 548 552 different products such as
books and music CDs. For each product, the following
information is available: the similar products that get
co-purchased, product type, and product reviews. We
use a subset of 20 000 products and construct a product
co-purchasing network, where each node represents a
product and the edge represents if there is at least one re-
viewer who rated both products, indicating that products

are bought by the same user [36]. Each node is associ-
ated with one of 4 product types and an average review
score from 0 to 5, including half-score reviews (i.e., 11
possible scores in total). The classification task (for a
recommendation system) is to predict the average review
score of the node given the co-purchasing network and
the product types. Depending on the classification task,
we split reviewer scores into 2 classes: positive vs. neg-
ative review, 6 classes: rounded integer review between
0,1.., 5 and 11 classes: the original review score. The
attack aims to predict whether the dominant value of the
attribute ProductType of the benign party is “books”.

5.2 Evaluation Methodology
Target model f . We train different target models de-
pending on the dataset type. For tabular data, i.e., Adult,
Health, and Crime, we train multinomial logistic regres-
sion and fully-connected multi-layer perceptron neural
networks (MLP). For the Adult and Crime datasets, we
use an MLP network with one hidden layer of size 12 and
the last layer with 4 and 3 output classes, respectively. For
the Health dataset, we use an MLP network with one hid-
den layer of size 20 and binary output. In later sections,
a neural network model for tabular datasets always refers
to an MLP network. In training our target models, we use
the Adam [30] optimizer, ReLu as the activation function,
a learning rate of 0.01, and a weight decay of 0.0001. For
the Yelp-Health dataset, we use the pre-trained glove em-
bedding of dimension 50, a bidirectional LSTM layer of
dimension 50. We then use one hidden layer of size 50
and dropout regularization with parameter 0.1 between
the last hidden layer and the binary output. For the Ama-
zon dataset, we train the target model using the Graph
Convolutional Networks (GCN) [31] with 1 hidden layer
of 16 units, Adam as the optimizer, ReLu as the activa-
tion function, a learning rate of 0.01, and a weight decay
of 0.0005. Each experiment is repeated 100 times, and all
attack accuracies are averaged over these runs. As noted
in Section 2, our attacks are oblivious to how f is trained,
hence, in the experiments training is done in the clear.

Dataset split. In the multi-party setting, we consider
two parties that contribute data for training the target
model where one of the parties is trying to learn infor-
mation about the data of the other party. For Adult and
Health datasets, each party contributes 2 000 samples. We
use 10 000 or 4 000 samples as Daux to train the shadow
models and the attacker uses 1 000 samples in Dattack
to query the model and obtain the attack vector for the
meta-classifier. Table 2 summarizes the splits for all other
datasets. In Section 6.4 we show that a small number of
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Datasets #Dadv, #Dhonest #Daux #Dattack

Health [3] 2 000 10 000 / 4000 1 000

Adult [33, 37] 2 000 10 000 /4000 1 000

Crime [37] 200 1 500 / 400 94

Yelp-Health [4] 1 000 1 200 200

Amazon [35] 5 000 10 000 1 000

Table 2: Dataset split during the attack where #Dattack is
the number of inference queries the attacker makes to the
model.

samples in Dattack can lead to high attack accuracy as
well (e.g., 200 vs. 1 000 for the Amazon dataset).

The distribution of the values of the sensitive at-
tribute A in datasets is determined as follows. We con-
sider the default split of 33:67 in the attacker’s data Dadv

(e.g., 33% of records are books). The attack is evalu-
ated against several Dhonest datasets for each possible
split. For example, we evaluate our attack on 100 Dhonest

datasets: half with 33:67 split and half with 67:33 split
in Sections 6.1 and 6.2. Throughout all experiments, the
Daux always has 50:50 split.

Attack setting. We report our main results on attack
in the black-box setting; white-box results are deferred
to Appendix B. We use two different meta-classifiers
depending on the target model. For multinomial logistic
regression, LSTM and GCN, the meta-classifier model is
a binary logistic regression model. For MLP as the target
model, we use a two-layer network with 20 and 8 hidden
units and a learning rate of 0.001. The meta-classifier
models are trained using Adam optimizer.

We perform the attack when the model is trained with
the sensitive variable (A) and without it (Ā). For the Ā set-
ting, the attribute A is omitted from the machine learning
pipeline, including the shadow model training and con-
struction of Dattack. This setting allows us to understand
the risk of leaking a sensitive attribute, even when that
attribute is censored during training. For Yelp-Health, we
report only Ā results as LSTM takes the text data, and A
would be an additional feature.

Types of experiments. We study how correlations be-
tween attributes affect the attack. We show that informa-
tion is leaked even when A is not correlated with the final
task. We demonstrate our attack on attribute correlation
as present in real dataset distributions (shown in Table 3)
as well as artificially injected correlation using a syn-
thetic sensitive variable. The latter allows us to control
the correlation between the variables.

Real Data. For the experiments where all features are
from the real data, including the sensitive variable, we set
different variables as sensitive (A) for each dataset and
perform a black-box attack using a default split of 33:67
for the sensitive attribute in the attacker’s data (Dadv).

We compute the pairwise correlation among all the
variables using Pearson correlation coefficient [44] for
numerical-numerical variables, Cramer’s V [10] for
categorical-categorical variables, point-biserial correla-
tion coefficient [49] for binary categorical-numerical vari-
ables, and ANOVA for multi-level categorical-numerical
variables. Based on the observed correlations, for each
dataset, we identify the case among those introduced
in Section 3. Most scenarios correspond to X ∼ A,Y ∼ A.
Details on correlation factors for all datasets are deferred
to Appendix A.
Synthetic Data. For synthetic experiments, we create a
new synthetic attribute as our sensitive variable A for
the Adult and Health datasets. We add a correlation
of A to a subset of variables in the dataset, denoted as
X ′ ⊆ X , and the target variable Y , depending on the cases
outlined in Section 3. We introduce the correlation by
replacing attribute values in X ′ and/or Y for each record
with values that have an injected correlation with A. For
Adult dataset, X ′ is Income, for Health dataset, X ′ =
{DrugCountAve,LabCountAve,ClaimsTruncated}.
The variable A takes values < 5 or > 5 that are split
using 33:67 ratio in the adversarial party’s dataset.
The honest party has two possible splits: 33:67 ratio
and 67:33 ratio. The attacker’s goal is to guess the
distribution of A in the data of Phonest.

6 Attack Results
We evaluate for attribute leakage in the following set-

tings: the single-party case where an attacker learns the
distribution of an attribute in the training set and the
multi-party case where an attacker learns the distribution
of an attribute in the data of the honest party. Apart from
inferring the dominant attribute (e.g., there are more fe-
males than males in a dataset), we perform a fine-grained
attack that learns a precise distribution of the two attribute
values (e.g., 70% of the dataset are females). We further
use this fine-grained attack to infer the change in the at-
tribute distribution in a model update scenario where the
model is updated either due to a new party joining or new
data arriving. Attack accuracy higher than the probability
of a random correct guess is considered successful as
this indicates that confidential property (i.e., information
about Phonest’s data) will be leaked to the attacker in the
majority of cases.

We report our attack results in the stronger black-box
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Datasets Sensitive attribute A Task Y Correlation

Health [3] Gender
DaysInHospital X ∼ A,Y⊥A

ClaimsTruncated

Adult [33, 37] Gender
EducationLevel

X ∼ A,Y⊥A
Income X ∼ A,Y ∼ A

Crime [37] TotalPctDivorce
CrimesPerPop X ∼ A,Y ∼ A

Income

Yelp-Health [4] Specialty ReviewRating X ∼ A,Y⊥A

Amazon [35] ProductType ReviewScore X ∼ A,Y ∼ A

Table 3: Datasets, tasks and attribute-label correlation where∼ and⊥ indicate correlation and no correlation, respectively.

setting for real, synthetic, and fine-grained experiments.
We evaluate the white-box attack, where the attacker has
access to model parameters, only on the synthetic data.
We summarize our key findings below:

• Leakage of sensitive dataset properties in honest
party’s data is possible even when the sensitive at-
tribute itself is dropped during training and has low
or no correlation with the final task. We show that
the attack accuracy drops only by a few percent
when A is not present in many cases.
• An adversary can learn the attribute properties of

the honest party’s data irrespective of whether it
contributes data (multi-party) or not (single-party)
to the training dataset.
• For the models and datasets considered in this paper,

our property leakage attack is dataset and model-
agnostic and works on tabular, text, or graph data.
• Fine-grained attacks can be used to predict a pre-

cise distribution of the attribute as well as learn the
change in data distribution during model updates.

6.1 Multi-Party Setting

Real Data. Table 4 shows the attack accuracy for cor-
relations observed in the real distribution of datasets, with
the larger size of Daux as listed in Table 1. The attack
accuracy with the smaller size of Daux is deferred to Ta-
ble 12 in Appendix B. We see that the attack accuracy
is always better than a random guess in all experiments,
regardless of whether the sensitive attribute is included
in the training data or not.

We make the following observations. The attack accu-
racy for Adult data with Income as the sensitive attribute
is the highest with 98% and 96% when the target model is

trained with and without A, respectively. Overall, the at-
tack accuracy ranges between 61-98% when trained with
sensitive variable (A) and 59-96% without (Ā), respec-
tively. The results for Ā are always lower than with A
but are, however, above the random guess baseline of
50%. For the Amazon dataset, we observe that attack
accuracy is higher for fewer output classes. We confirm
this observation later in Figure 4. We also note that the
attack accuracy decreases as the size of Daux decreases
as shown in Appendix B.

To understand how the correlation between A and other
features influences the attack, we determine which at-
tributes X ′ ⊆ X are correlated with A. We set X ′ to vari-
ables based on their correlation factors. Details on how
X ′ of each dataset was determined based on correlation
factors is deferred to Appendix A. In Table 4, # X ′ de-
notes the number of attributes correlated with the sensi-
tive attribute A. We note that simultaneously controlling
the number of correlated attributes and their correlation
strength is hard on real data, so we also use synthetic
datasets. We observe that, for the same dataset, the attack
accuracy increases with a higher number of correlated
attributes X ′ and the sensitive attribute A.

We show the accuracies for both the pooled model and
the honest party’s local model in Table 11 in Appendix B.
Across all these experiments, we observe a utility in-
crease ranging from 0.58% and 5.90% for the honest
party, which motivates the honest party to collaborate
and train a joint target model with the other party.

Synthetic Data. Table 5 shows our results with a syn-
thetic variable A introduced in the Adult and Health
dataset for the multi-party setting. Here, we train the
same dataset using both logistic regression and the neural
network model (MLP). Recall that the synthetic attribute
is introduced to imitate a sensitive variable to control its
correlation with other variables. To this end, we create
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Datasets
(Output Classes)

Model Type Attack Accuracy
A # X ′

A Ā

Health (2) Multi-layer Perceptron .61 .59 Gender 24/139

.75 .71 ClaimsTruncated 54/139

Adult (4) Logistic Regression .83 .81 Gender 5/11

.98 .96 Income 9/11

Crime (3) Multi-layer Perceptron .61 .59 TotalPctDivorce 26/98

.78 .60 Income 38/98

Yelp-Health (2) LSTM - .74 Specialty review text

Amazon (2) GCN .86 .72 ProductType graph

Amazon (6) GCN .62 .63 ProductType graph

Amazon (11) GCN .67 .61 ProductType graph

Table 4: Multi-Party Setting: Black-box attack accuracy for predicting the value of the distribution of sensitive variable A
in the dataset of Phonest. The attacker tries to guess whether values of A are split as 33:67 or 67:33 in Dhonest when its
own data Dadv has 33:67 split. Columns A and Ā report the accuracy when the sensitive variable is used for training
and not, respectively. X ′ indicates with which features in the dataset and with how many of them A is correlated. Since
attack accuracy based on a random guess is 0.5, the attacker is always successful in determining the correct distribution.

datasets for different correlation criteria among the sensi-
tive variable A, the output Y , and the remaining variables
X . We report two findings.

First, logistic regression models appear to be at a
higher risk, with average attack accuracy being higher as
compared to neural network models: 84.5% vs. 71.3%
for Adult and 80.2% vs. 70.8% for Health datasets. We
suspect that this is mainly due to their simple architecture,
which is easy to learn using a meta-classifier.

Second, the attack works well (greater than 74%) when
the sensitive variable A is correlated with the target vari-
able Y irrespective of its relation with X , i.e., cases where
Y ∼ A. The attack accuracy is almost equal to a random
guess when Y⊥A. Recall that in the case of X ∼ A, not
all features used for training are correlated with A but
only those in a subset of X , X ′. To understand this sce-
nario further, we reduced the number of features used
during training to 3 (we refer to this setting as R in the
tables). As the number of training features decreases, the
correlation signal between A and X ′ becomes stronger,
and the logistic regression model can capture that.

Our experiments for the case when both X and Y are
independent of the sensitive variable A exhibit attack
accuracy that is close to a random guess. This is expected
as the variable has no correlation that the model can
memorize, and hence we exclude them from Table 5.

6.2 Single-Party Setting

In addition to our motivating scenario of the multi-
party setting, we evaluate the efficacy of our attack in the
single-party setting where the attacker does not contribute
towards the training data. For example, this corresponds
to a scenario where a model is trained on data from only
one hospital and is offered as an inference service for
other hospitals. Table 6 shows the result for our attack
using synthetic data for the Adult and Health dataset
when the model is trained using both logistic regression
and neural networks. We see that the attack in the single
party setting is stronger since the adversary does not
provide its own data, which may dilute the signal from
the other party. For the case where Y ∼ A, the attack
accuracy is higher than 90%, even if the attribute itself
is not used during training. This shows that our attack
is highly successful even when the attacker does not
participate in the training process.

6.3 Fine-grained Attack

Information leaked about attribute values can be either
in terms of a binary signal, i.e., which attribute value
is dominant in the dataset or an exact distribution. The
results above show the leakage of the former. To learn
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Model Logistic Regression Neural Network

Datasets Adult Health Adult Health

Synthetic Variable A Ā A Ā A Ā A Ā

X ∼ A,Y ∼ A 1.00 1.00 1.00 1.00 .90 .84 .79 .95
X⊥A,Y ∼ A 1.00 1.00 .99 1.00 .98 .98 .74 .98
X ∼ A,Y⊥A .65 .57 .52 .41 .52 .52 .52 .51
X ∼ A,Y⊥A (R) .79 .75 .78 .72 .51 .45 .54 .63

Table 5: Multi-party setting: Black-box attack accuracy
for predicting whether the values of (sensitive) synthetic
variable A in the data of the honest party are predom-
inantly < 5 or > 5. The attack accuracy is evaluated
on 100 Dhonest datasets: half with 33:67 and half with
67:33 split. A synthetic correlation with A is added to the
variables X and Y depending on the specific case. R cor-
responds to the setting where only 3 attributes are used
for training instead of all data. Attack accuracy based on
a random guess is 0.5.

Model Logistic Regression Neural Network

Datasets Adult Health Adult Health

Synthetic Variable A Ā A Ā A Ā A Ā

X ∼ A,Y ∼ A 1.00 1.00 .98 1.00 .98 .99 .92 .95
X⊥A,Y ∼ A 1.00 1.00 .98 1.00 .99 1.00 .89 .98
X ∼ A,Y⊥A .67 .60 .48 .53 .56 .52 .52 .49
X ∼ A,Y⊥A (R) .86 .74 .61 .62 .68 .66 .54 .61

Table 6: Single-party setting: Black-box attack accuracy
with synthetic data.

information about the exact distribution, we present a
variation of our main attack called the fine-grained attack.
For this attack, we train a 5-class meta-classifier model
that outputs whether a particular value of the sensitive
attribute appears in 10%, 30%, 50%, 70%, or 90% of the
dataset. Note that we train only one meta-classifier model
with 5 output classes, but the attacker can perform a more
systematic binary search over the distribution by training
multiple meta-classifier models. We apply this attack in
two settings.

Leakage of Attribute Distribution. We evaluate on
the Adult dataset using a synthetic variable A as well as
the gender variable. Table 7 shows the results for our
fine-grained attack for predicting the precise distribution
of the sensitive variable. The row 30 : 70 corresponds
to the setting where 30% of records in Dhonest have the
value of the sensitive attribute A less than 5. Here, the
attacker tries to guess the split of 30 : 70 among five pos-
sible splits of 10 : 90, 30 : 70, etc. The baseline accuracy
is 20% because the attacker wishes to distinguish be-

Distribution
of A in Dhonest:

LR
Synthetic A

NN
Synthetic A

LR
A: Gender

A Ā A Ā Ā

10 : 90 .994 .998 .84 .89 .44
30 : 70 .993 .991 .79 .79 .59
50 : 50 .999 .997 .79 .73 .50
70 : 30 .997 .989 .73 .71 .46
90 : 10 .993 .998 .72 .77 .53

Table 7: Fine-grained attack accuracy for predicting the
precise distribution of sensitive variable A in Dhonest in
the synthetic setting X⊥A,Y ∼ A, and real data setting
when A is Gender on the Adult dataset. Attack accuracy
based on a random guess is 0.2.

tween 5 splits. Since the attack accuracy is always higher
than the random guess, the attacker can successfully find
the correct ratio by training a meta-classifier that distin-
guishes between different splits of the sensitive attribute
values. Similar to the observation in Section 6.1, we ob-
serve that logistic regression has higher attack accuracy
than neural networks. The attack accuracy for the real
data with gender as the sensitive attribute is consistently
greater than the 20% baseline for random guessing for
all the distributions.
Model Update Setting. We apply the fine-grained at-
tack to learn the change in the distribution of an attribute
value given access to an updated version of a model. In
this attack, the malicious party initially obtains a model
that is jointly trained on Dhonest1 and Dadv. Later, another
honest party Dhonest2 joins, and a new model is trained
on the three parties’ data. The attacker tries to infer the
dominant value of the sensitive attribute of Phonest2 given
the original and the updated model. It uses a fine-grained
attack against both models, as result learning a dominant
value in Dhonest1 and Dhonest1∪Dhonest2. It then compares
the two and infers how Dhonest2 has affected the distribu-
tion. If the split is dominated by the same attribute value
in both models, the attacker uses this attribute value distri-
bution as its guess. Otherwise, the attacker makes a guess
that the other attribute value is dominated in Dhonest2.
Table 8 shows the results for our attack in the model
update setting using synthetic data for the Adult dataset.
The attack accuracy is almost close to 100% for the syn-
thetic case and ranges from 63% to 86% for the Gender
variable which is higher than a random guess of 50%.

6.4 Attack Parameters
We perform ablation experiments to understand the

effect of varying the number of queries, distribution of
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Distribution
of A in Dhonest1:

Distribution
of A in Dhonest2:

LR
Synthetic A

LR
A: Gender

30:70 30:70 1.00 .87
70:30 .99 .72

70:30 30:70 .99 .63
70:30 1.00 .85

Table 8: Model update setting: attack accuracy for pre-
dicting the dominant value of sensitive variable A in
Dhonest2 in the synthetic setting X⊥A,Y ∼ A and real
data setting when A is Gender on Adult dataset when A
is removed from the training data. Dadv has 50:50 split.
Attack accuracy based on a random guess is 0.5.
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Figure 3: Attack accuracy for leaking sensitive attribute
ProductType on the Amazon graph data (11 output
classes) as the number of queries to the model increases.

the sensitive attribute and the number of output classes
on the attack accuracy. We use the Amazon graph data
for these experiments where, as before, ProductType is
the sensitive attribute, and ReviewScore is the target.
Number of queries. We compute the attack accuracy
for two different splits of values of the sensitive attribute,
0:100 (all books) and 30:70 (70% books, 30% of other
products), and train the model to predict one of 11 review
scores averaged over 10 runs. Figure 3 shows the effect
of increasing the number of queries on the attack accu-
racy. Note that the number of queries also correspond to
the input features of our attacker classifier. We observe
that changing queries does not significantly impact the
attack accuracy. With 1000 queries, attack accuracy is up
to 80% for the 0:100 split and ≈59% for 30:70 split.

Attribute distribution and number of output classes.
Figure 4 shows the results for the GCN trained on the
Amazon dataset for 2, 6 and 11 output classes for the
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Figure 4: Attack accuracy for the Amazon graph data
when the sensitive attribute ProductType is not used
during training for different numbers of output classes
across different distributions (splits).

review score. We evaluate for all the splits between 0:100
to 100:0. First, we observe that the attack accuracy drops
as the ratio of the sensitive attribute values changes from
0:100 to 50:50 and increases again gradually from 50:50
to 100:0. This is because our primary attack is designed
to identify the dominant attribute value. For inferring
the distribution in the balanced range, the attacker can
perform our fine-grained attack discussed in Section 6.3.
Next, we observe that the attack accuracy is lower for a
higher number of output classes such as 6 and 11 as com-
pared to 2. This could be due to lower number of input
features that are given to the attack classifier when there
are lower number of output classes — the classifier is
able to learn the attribute distribution better when the in-
formation is divided among fewer features thus resulting
in a lower dimension input. Similar trends are observed
in Figure 5 in Appendix when A is used during training.

7 Defenses
In the previous section, we saw that removing the sen-

sitive attribute from the dataset is not an effective solution
due to the correlations that exist between the attributes.
Disentangling data representation through variational-
auto-encoders [11, 23, 56] allows one to obtain mutu-
ally independent variables for representing the data. Intu-
itively, the removal of this variable before decoding the
record for further down-stream tasks would lead to better
censorship. Similarly, adversarial learning has also been
proposed for learning a privacy-preserving data filter in a
multi-party setting [21] and a privacy-preserving record
representation [16]. Unfortunately, such techniques do
not have provable worst-case guarantees and have been
shown ineffective in the privacy context [53].
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Differential privacy [15] guarantees record-level pri-
vacy, that is, whether a particular record is in their dataset
or not. However, differential privacy does not protect
population-level properties of a dataset [9, 15]. In fact, a
differentially private algorithm with high utility aims to
learn population properties without sacrificing individ-
ual privacy. Group differential privacy is an extension of
differential privacy that considers the privacy of a group
of k correlated records, as a result one way of achieving
it is to increase, for example, Laplace noise, proportional
to k. Though it can be applied to preserve the privacy
of all records in each party’s dataset by setting k to the
size of each party’s data, depending on the setting, it can
effect utility as even with k = 1 accuracy of models have
been shown to drop [6, 52].

In settings with more than two parties, where the at-
tacker controls only one party, the signal weakens as it is
harder for the adversary to identify the mapping between
a property and a party whose data exhibits it. This was
also noted by Melis et al. [39] in the federated learning
setting with a small number of parties.

8 Related work
Membership attacks on machine learning models aim

to determine whether a certain record was part of a train-
ing dataset or not [47, 50]. These attacks train shadow
models that are similar to the target model and use their
output (e.g., posterior probabilities over all classes) to
build a meta-classifier that classifies records as members
of the training data or not based on inference results of
the target model on the record in question. A recent link
stealing attack on graphs can be seen as a type of a mem-
bership attack that tries to infer whether two nodes have
a link between them in the training graph [22].

Attribute inference attacks [17, 53], on the other hand,
aim to determine the value of a sensitive attribute for
a single record. For example, the authors of [53] study
leakage of a sensitive value from a latent representation
of a record in the model (i.e., a feature extractor layer);
an attacker can obtain such intermediate record represen-
tations from having access to model parameters. They
show that an attribute of a record, even if censored using
adversarial learning, can be leaked. Hitaj et al [24] show
that a malicious party can construct class representatives
from a model trained in federated learning setting.

The work by Ganju et al. [18] and Ateniese et al. [7]
are closest to ours as they also consider leakage of dataset
properties. Different from this work, their attack is set
in a single-party setting and requires a white-box access
to the model, i.e., its parameters, that may not always
be possible (e.g., when the model access is via cloud-
hosted interface). Since the number of model parameters

in neural networks can be very large (several million),
approaches that are based on sophisticated methods for
reducing network representation are required [18]. We
show that attacks based on a combination of inferences
and logistic regression as a meta-classifier are sufficient
to learn attribute distribution.

Property leakage in a multi-party learning has been
demonstrated only in federated setting [39]. In this set-
ting an attacker obtains a gradient computed on a small
batch of records (e.g., 32) and tries to learn how a sen-
sitive feature is distributed in the batch. This setting is
arguably easier from the attacker point of view: an at-
tacker gains access to a much more granular computation
on the data compared to the access to a query interface
of the final model trained on the whole dataset, as consid-
ered in this paper. Moreover, previous work on dataset
property leakage [7, 18, 39] did not consider the case
when the sensitive attribute is removed from the data and
the effect it has on the success of their attacks.

Recently, Zanella-Béguelin et al. [55] have demon-
strated leakage of text and general trends in the data
used to update next word prediction model. Salem et
al. [46], on the other hand, consider granular leakage
about records used to update the model: record labels
and their features. Similar to our work, Salem et al. use a
probing dataset to query the models to obtain the poste-
rior difference. This output is then given to an encoder-
decoder framework to reconstruct the meaning of the
difference between posteriors of the initial and updated
models. Our model update attack, in comparison, is about
identifying the distribution of a sensitive feature in the
dataset used to update the model and requires a simple
machine learning architecture.

9 Conclusion

We demonstrate an attack, set in the centralized multi-
party machine learning, that lets one of the parties learn
sensitive properties about other parties’ data. The attack
requires only black-box access to the model and can ex-
tract the distribution of a sensitive attribute with small
number of inference queries. We show that trivial de-
fenses such as excluding a sensitive attribute from train-
ing are insufficient to prevent leakage. Our attack works
on models for tabular, text, and graph data and datasets
that exhibit various correlation relationships among at-
tributes and class labels. Finally, we note that existing
techniques for secure computation and differential pri-
vacy are either not directly applicable to protect leakage
of population-level properties or do so at a high cost.
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A Attribute Correlation in Datasets

This section provides information on correlation cases
for the datasets and attributes in Table 3.

Health Dataset. We measure the correlations between
Gender or ClaimsTruncated and the 133 categorical
attributes and 6 numerical attributes by Cramer’s V
scores and point biserial correlation coefficients, respec-
tively. With Gender as the sensitive attribute, we identify
22 categorical attributes that have Cramer’s V scores
greater than 0.15 and 2 numerical attributes that have
point biserial correlation (absolute value) greater than
0.1. The attributes that have the highest Cramer’s V are
sp10 (0.218), noSpecialities (0.212), noProviders
(0.208), noVendors (0.201). To give a overview of corre-
lations including weak correlation with other attributes,
we identify 17 attributes that have Cramer’s V scores
within the range [0.1,0.15] and 37 attributes Cramer’s V
scores within the range [0.5,0.1]. The Cramer’s V score
between DaysInHospital and Gender is 0.09, and thus,
we deem them as uncorrelated. With ClaimsTruncated
as the sensitive attribute, we identify 50 categorical at-
tributes (e.g., sp1 (0.42), sp2 (0.51), pcg1 (0.41), etc.)
that have Cramer’s V scores greater than 0.15, and 4
numerical attributes that have point biserial correlation
(absolute value) greater than 0.1. The score between
DaysInHospital and ClaimsTruncated is 0.13, and
we set them uncorrelated.

Adult Dataset. We measure the correlations between
Gender or Income and the 7 categorical attributes and 4
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Attributes Gender Income

Cramer’s V scores

EducationLevel 0.042 0.326

MaritalStatus 0.466 0.448

Occupation 0.435 0.329

Relationship 0.650 0.454

Race 0.119 0.099

NativeCountry 0.059 0.096

Income 0.217 -

Gender - 0.217

point biserial correlation coefficients

Age 0.082 0.229

CapitalGain 0.049 0.221

CapitalLoss 0.047 0.150

HoursPerWeek 0.231 0.230

Table 9: Correlation factors for the Adult dataset.

numerical attributes by Cramer’s V scores and point bis-
erial correlation coefficients, respectively. We list all the
correlation factors in Table 9, as X only has 11 attributes.
For Gender, we identify 4 categorical attributes that have
Cramer’s V scores above 0.15 and 1 numerical attribute
that has point biserial correlation coefficients above 0.1.
The sensitive attribute Income has a high Cramer’s V
score with 5 categorical attributes and the target variable
EducationLevel, as well as high point biserial correla-
tion coefficients with 4 numerical attributes.

Crime Dataset. Since all features are numerical, we
measure the Pearson correlation coefficients. Table 10
shows the number of attributes that have the coefficients
within a certain range. We use 0.4 as the threshold to
determine X ′. The target variable CrimesPerPop is cor-
related with both TotalPctDivorce and Income, with
correlation coefficients 0.553 and −0.424, respectively.

Yelp-Health and Amazon Datasets. For Yelp-Health
dataset, the point biserial correlation coefficients between
Specialty and ReviewRating is 0.009, hence, the sce-
nario corresponds X ∼ A,Y⊥A. The review text is clearly
correlated with the doctor specialty as in Table 4 in [39].
For the Amazon dataset, since the ProductType has 4
levels, we use the ANOVA to test whether the differences
between the means of ReviewScore across different

Range TotalPctDivorce Income

[0.5,1] 15 34

[0.4,0.5) 11 4

[0.3,0.4) 31 22

[0.2,0.3) 4 12

[0.1,0.2) 14 19

Table 10: Correlation factors for Crime dataset.
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Figure 5: Attack accuracy for the Amazon data with the
sensitive attribute ProductType used during training.

product types are statistically significant. The ANOVA p-
value is 7.6e−83. We conjecture that the co-purchasing
graph X is also correlated with the ProductType. and
hence X ∼ A,Y ∼ A.

B Additional Results

We present attack results for Health, Adult and Crime
dataset with smaller size of Daux from Table 2. We show
accuracies for both pooled model and the honest party’s
local model and the utility increase in Table 11. Figure 5
complements results in Section 6.4 on Amazon dataset
trained with the sensitive attribute A.

White-box Attack Results Additionally, we per-
formed experiments where the attacker has access to the
model parameters, i.e., the white box setting. As for the
meta-classifier model, we use a two-layer network with
200 and 50 hidden units and learning rate 0.001. Each
meta-classifier is trained based on 100 shadow models
using Adam optimizer. Here, the meta-classifier takes as
input model parameters as opposed to model inferences.
Table 13 shows the results. For logistic regression, the
results are similar to those in Table 5 for the black-box
setting. However, the attack accuracy for neural networks
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(MLP) reduces significantly. This was noted in the work
by [18]. One reason is that it is hard for a naive meta-

classifier to learn the structure of equivalent symmetrical
weights of neural networks. Indeed, one of their contri-
butions is a technique for identifying this symmetry.
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Datasets
(Output Classes) Sensitive Attribute Pooled Accuracy Local Accuracy Utility Increase

Health (2)
Gender 85.22% 84.64% .58%

ClaimsTruncated 76.63% 73.56% 3.07%

Adult (4)
Gender 73.23% 72.46% .76%

Income 71.14% 70.43% .71%

Crime (3)
TotalPctDivorce 74.52% 72.35% 2.17%

Income 72.81% 71.30% 1.51%

Yelp-Health (2) Specialty 86.28% 80.38% 5.90%

Amazon (2) ProductType 76.80% 76.28% .62%

Amazon (6) ProductType 45.92% 42.50% 3.42%

Amazon (11) ProductType 27.94% 26.09% 1.85%

Table 11: Test accuracies of the model trained on pooled dataset and the model trained only on honest party’s data. The
split in the honest party is 33 : 67 based on the sensitive attribute.

Datasets (Classes)
Model Type

Attack Accuracy
A # X ′

A Ā

Health (2)
MLP

.59 .55 Gender 24/139

. 67 . 56 ClaimsTruncated 54/139

Adult (4)
LR

.73 .76 Gender 5/11

.84 .91 Income 9/11

Crime (3)
MLP

.60 .56 TotalPctDivorce 26/98

.62 .60 Income 38/98

Table 12: Multi-Party Setting: Black-box attack accuracy
for predicting the value of the distribution of sensitive
variable A in the dataset of Phonest. We use smaller size
of Daux listed in Table 2, while all other settings are the
same as in Table 4.

Model Logistic Regression Neural Network

Datasets Adult Health Adult Health

Synthetic Variable A Ā A Ā A Ā A Ā

X ∼ A,Y ∼ A .90 .94 .85 .97 .54 .49 .65 .61
X⊥A,Y ∼ A .95 .93 .81 .80 .57 .53 .63 .56
X ∼ A,Y⊥A .54 .53 .50 .53 .56 .53 .54 .51
X ∼ A,Y⊥A (R) .75 .63 .76 .68 .55 .50 .55 .45

Table 13: White-box attack accuracy for predicting
whether the values of sensitive variable A in Dhonest, the
data of the honest party, are predominantly < 5 or > 5.
The attack accuracy is evaluated on 100 Dhonest datasets:
half with 33:67 and half with 67:33 split and Dadv has
33:67 split. A synthetic correlation with A is added to the
variables X and Y depending on the specific case. R cor-
responds to the setting where only 3 attributes are used
for training instead of all data. Attack accuracy based on
a random guess is 0.5.
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