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Abstract—The monumental increase in online social interaction
activities such as social networking or online gaming is often
riddled by hostile or aggressive behavior that can lead to
unsolicited manifestations of cyberbullying or harassment. In
this work, we develop an audio-based toxic language classifier
using self-attentive Convolutional Neural Networks (CNNs). As
definitions of hostility or toxicity can vary depending on the
platform or application, in this work we take a more general
approach for identifying toxic utterances, one that does not
depend on individual lexicon terms, but rather considers the
entire acoustical context of the short verse or utterance. In the
proposed architecture, the self-attention mechanism captures the
temporal dependency of the verbal content by summarizing all
the relevant information from different regions of the utterance.
The proposed audio-based self-attentive CNN model is evaluated
on a public and an internal dataset and achieves 75% accuracy,
79% precision, and 80% recall in identifying toxic speech
recordings.

Index Terms—toxic language detection, self-attention, hate
speech, sentiment detection, cyberbullying

I. INTRODUCTION

Multiplayer online gaming is a world-wide growing social
networking platform that provides entertainment, enjoyment,
and engagement for its users [1]. However, since most of
the online games are highly interactive and competitive, they
have the potential to cause destructive interactions among
gamers [2]. Cyberbullying [3], cyber-harassment [4], abuse
[5], hate speech [6], and toxic language [7] are examples of
common negative online behavior on different social network-
ing platforms. To identify such detrimental online behavior,
many social networking platforms employ approaches such
as manual moderating and crowdsourcing [8]. However, these
approaches may be inefficient and not scalable [9]. Therefore,
there has been an urge to develop methods to automatically
detect toxic content [10], [11].

In the past decade, a variety of methods and techniques have
been proposed to detect toxic language. Google and Jigsaw
launched a project called Prospective, which employs Machine
Learning techniques to rate toxicity of text comments [12].
Since lack of public datasets has always been a challenge
for this application, authors in [13] collected 15M comments
from public accounts on Instagram to forecast the presence and

* The first author performed this work during an internship at Microsoft.

intensity of hostility using linguistic features. In another study,
Martens et al. used chat-logs of Multiplayer Online Battle
Arena (MOBA) games to develop a text-based toxic language
detection for online gaming [14]. More recently, a number
of studies have explored toxicity detection by multi-modal
means and interactions [11], [15], [16]. These studies collected
and annotated large corpora that contain text embedded in
images from various social networking platforms. Multiple
deep learning approaches were then used to fuse the visual
and textual information for detecting hate speech.

So far, most of the developed toxicity identification methods
work with either text or text embedded in images, and research
on audio and video-based methods is very scarce [17], [18].
This is because toxicity usually happens in discussions and
comment sections of most social platforms. Information from
audio-based modalities can, in turn, be converted into text
information using a robust Automatic Speech Recognition
(ASR) or image captioning systems. However, in scenarios
where the recorded audio contains different background noise,
reverberation, overlapping speech, different languages, and
diverse accents, the performance of ASR system drops signif-
icantly [19], and the derived text can therefore be deemed un-
reliable. Besides, there are many acoustic, tonal and emotional
cues that could be lost in the recognition process, resulting in
a degraded performance.

To address the aforementioned issues, this work proposes
an audio-based toxic language classifier using self-attentive
CNN. To the best of our knowledge, this is the first audio-
based toxicity classification system in the literature, which
relies primarily on the acoustic modality to classify toxicity
in speech. The contributions of our work are threefold, (i)
an audio-based toxic language classifier is proposed, (ii) the
effect of two different attention mechanisms is studied on the
classification performance, (iii) the proposed architecture is
evaluated on an internal toxic-based corpus and on the public
dataset IEMOCAP, originally annotated for sentiment detec-
tion, showcasing generalization of the proposed architecture.

The reminder of this paper is as follows. In Section II details
of the internal dataset are presented. The proposed architecture
is introduced in Section III; experiments and results are
explained in Section IV, followed by the conclusions of this
work in Section V.



Fig. 1. (A) Utterance length. More than 20% of the utterances are < 4 sec long, mostly attributed to accidental recordings. (B) Word clouds.

II. PROBLEM SETUP

The objective of this work is to identify whether a short
audio-clip recording is toxic or not. For this purpose, toxicity
has been defined as any language or tone that might discomfort
the audience by containing traces of hate speech, direct bully-
ing, or using a directly offensive language. Data used in this
work come from online multi-player gaming platforms, which
we call herein, Corpus A. Data comprised of short audio clips
recorded during game playing, where users had the ability to
report a part of the conversation as toxic behavior.

Each recording was then manually reviewed and labelled
as either toxic or non-toxic by a human annotator. No refined
annotations were available besides a single label per utterance.
Out of all available audio clips 113,252 utterances were
labelled as Toxic, and 25,660 as Non-toxic by an expert
moderator. The duration of each recorded utterance could be
arbitrary, up to a maximum of 15 sec (see Figure 1 (A)).

What is worth noting here, is the similarity in the word
content among the two classes, an observation that further
strengthens and motivates the proposed audio-based approach.
Figure 1 (B) presents a top 100-word cloud visualization for
this corpus. Utterances that were noisy or distorted, of for-
eign language or achieving low transcribing confidence were
temporarily excluded for the creation of the word cloud. Text
from transcribed speech was normalized for abbreviations,
lemmatization, stop-, short- and long-word removal. Profanity
here has been camouflaged in the form of letter sequences;
for e.g. “aaaa” or “bbbb” refer to unique offensive words, and
they refer to the same word for the two classes. One can see
that identifying toxicity goes far beyond identifying individual
swear words; contextual or situational information and other
verbal cues are further needed for a better decision.

Finally, note that Corpus A comprises of naturalistic speech
with utterances recorded by different users. Different micro-
phones types, various room environments, background noises,
background music, and overlapping speech introduce further
challenges in the corpus, especially for any model based on
ASR performance. An audio-based model seems essential for
this type of work, whether part of a multi-modal solution or
a standalone approach.

III. SYSTEM DESIGN

The proposed method is depicted in Figure 2, in which
toxicity classification is carried out in two steps: (i) extracting
features mostly representative of toxic samples (ii) classifying
them into toxic or non-toxic content. The first step is modeled

using a CNN architecture that learns higher level information
from the spectral features of speech. For the second step,
we develop and configure Fully Connected (FC) layers to
classify the extracted features. However, as previously noted,
toxicity seems to manifest not just locally, but throughout a
phrase/sentence, therefore a mechanism is needed to summa-
rize the frame-level feature map into an utterance-level feature
vector. The most straightforward approach to convert a feature
map into a feature vector is to perform average pooling over
time, depicted in Figure 2 as the baseline. Nonetheless, in
many cases, not the entire content of an utterance is toxic.
Hence, in scenarios where toxicity happens only in a small
fraction of time, performing average pooling might decimate
relevant temporal information. In such a scenario, despite the
overall positive or neutral cues in an utterance, the content
is still toxic, and an average pooling operator may wash out
segments of interest. To tackle this challenge, an attention
mechanism is integrated into the network to condense the
feature map into a feature vector without losing relevant
information. The effect of two alternate attention mechanisms
calle “Learnable Query Attention” and “Self-Attention” are
further studied on this task of toxicity identification.

Learnable Query Attention (LQ-Att) – the core idea
of attention is to compress all the important information of
a sequence into a fixed-length vector, so that computational
resources can focus on a restricted set of important elements
[20]. Attention finds the most informative regions in the
feature map, then assigns reasonable weights to those regions
[20]. To find relevant information and to calculate the dynamic
weights for each time step, a (key, value) pair is defined as a
linear transformation of the input [21]:

K =Wkey ×Xfeat (1)
V =Wvalue ×Xfeat (2)

where, K and V stand for key and value respectively. Wkey

and WV alue are two learnable matrices that perform the linear
transformation from input feature map Xfeat. In addition to
the (key, value) pair, attention needs an element known as
Query to search for the relevant information in the input
sequence. That is to say, Query is a pattern that we aim to find
in the feature map, as a representation of toxicity. In this study,
we define the Query as a trainable vector, so that the model
learns a suitable representation throughout the optimization
process. The attention output, depicted as the feature vector in
Figure 2, is calculated as [21]:

Attention(q,K, V ) = softmax(
qK√
dk

)V T (3)



Fig. 2. The proposed architecture for audio-based toxic language classification.

where q is the trainable Query vector, and the scaling factor
dk is the dimension of the key K. According to equation 3,
if a time step in the feature map has a key K similar to
the Query q, the dot product of the corresponding key and
Query will be high, which results in a larger weight for that
specific time step. Next, the matrix value V is multiplied by
the calculated attention weights, and then summed over the
time dimension to form the output feature vector. Finally, the
feature vector calculated at the output of attention is passed
to the FC classifier followed by a Sigmoid activation function
for the final decision. Although this approach is very practical,
learning a robust Query might be very difficult. A weak Query
may results in the loss of toxic-relevant information, which
may impair the final decision.

Self-Attention (Self-Att) – this approach is proposed to
tackle the challenge of learning a universally robust Query.
Self-attention was first introduced in Neural Machine Trans-
lation [21], but it has also been very successful in abstractive
summarization [22]–[24], and image description generation
[25]. In Self-attention, different positions of a single sequence
interact with each other to compute an abstract summary of
the input sequence. Thus, in this way, Query is captured by
the input sequence, by a linear transformation as:

Q =Wquery ×Xfeat, (4)

In equation 4, Query Q is a matrix, meaning that each
time step has an assigned Query vector q. For all possible
combinations of two frames, say frame i and frame j, the
query qi of the first time step is compared to the key kj of
the second time step. The Softmax of the dot product of qi
and kj is the attention weight αij which specifies how much
the network should attend to region j while processing region
i. Therefore, this approach is capable of capturing the entire
context of the feature map and summarize it into a feature
vector. Therefore, equation 3 is modified as:

Attention(Q,K, V ) = softmax(
QK√
dk

)V T (5)

Self-attention is a powerful mechanism that generates the
Query from the input (“self”) and summarizes the entire
information flow in the input sequence into a fixed-length
feature vector.

IV. EXPERIMENTS AND RESULTS

We first investigate the performance of the proposed meth-
ods on Corpus A, as introduced in Section II. To allow for
low to moderate computational resources, we randomly select
20K utterances from both Toxic and Non-toxic classes while

relatively restricting the utterance to within 4-8 seconds. The
utterances were split into 15K for train (tr), 2.5K for cross-
validation (cv), and 2.5K for testing (tt). Three separate sets of
tr/cv/tt subsets were created by randomly shuffling the original
utterances, creating 3 independent Monte Carlo runs. Average
performance results are reported over all 3 runs.

Performance evaluation – the evaluation metrics used
in this work are based on the confusion matrix: Accuracy
(Acc), Weighted Accuracy (WAcc), Precision (Prec), Recall
(Rec), and F-score (Fsc). Additionally, Receiver Operating
Characteristic (ROC), Precision-Recall curve and the area
under those two curves are reported for all the methods.

Model – Logarithmic Mel-Filter Banks (LMFB) were em-
ployed as the input of the model with audio data sampled
at 16KHz. The 512-dim magnitude spectra were computed
over a frame size of 25 ms with 10 ms of frame shift. A set
of 40 triangular filters were introduced on the energy of the
frame spectra and the logarithm of the output was calculated,
comprising the final LMFB features.

We tuned the hyper-parameters of the baseline network
using the cv subset. The choice of L = 4 2-D convolutional
layers with C = 32 output channels, kernel size (K) of 5*5,
and 2 FC layers with 256 neuron each is found optimum
over a small parameter search of L ∈ [3, 5], K ∈ {3, 5, 7},
and C ∈ {32, 64}. Kaiming initialization is used for all the
layers in the experiments [26]. The output of the classifier is
passed to a Sigmoid activation function for the final decision.
The network parameters are updated by the the gradients
of Binary Cross Entropy loss (BCEloss) using Stochastic
Gradient Descent (SGD) optimizer with the initial learning rate
LR = 0.01. The training process is completed by performing
early stopping [27]. The maximum number of epochs is set to
200, batch size BS = 32 after a search in BS ∈ {32, 64, 128};
rate LR is set to a 0.7x decrease if the cv loss improvement
is less than 0.001 for 2 successive epochs. No dropout layers
were used. The early stopping is performed if no improvement
is observed on the cv loss once the learning rate has decayed
4 times. The training and cross validation loss plots reveal
a drastic drop during the first 10 epochs and commence
plateau-ing after epoch 50 (not shown here), which depicts
the ability of the network to generalize to unseen utterances
in the development phase.

Table I shows the average performance on the 3 Monte
Carlo runs. Performance of the Learnable-Query Att. is very
close to the baseline, which may be expected due to the
inexplicit or ambiguous nature of toxic content manifestation.
The Self-Attention mechanism appears to learn more mean-
ingful representations, noticeable by almost an 5% absolute



Fig. 3. ROC for Corpus A Fig. 4. Pre-Rec curve for Corpus A
Fig. 5. Data augmentation on IEMOCAP

Corpus A Acc WAcc Prec Rec Fsc
Baseline 71.33 69.36 73.87 79.96 76.79
LQ-Att 71.90 70.07 74.57 79.89 77.13
Self-Att 75.87 74.80 79.16 80.51 79.82

IEMOCAP Acc WAcc Prec Rec Fsc
Baseline 66.87 66.58 62.05 74.83 67.58
LQ-Att 67.67 67.52 68.07 71.10 69.54
Self-Att 68.85 68.79 63.79 73.74 68.37
Hval−3 57.30
Pval−3 64.45
Acat−4 71.80

TABLE I
EVALUATION METRICS (%) FOR THE PROPOSED METHODS.

improvement on the weighted accuracy and precision. This
improvement can be attributed to the ability of Self-Attention
to summarize the entire content of the utterance into a single
feature vector without missing on critical relevant information.
The standard deviation for all systems and metrics ranges
∼0.8-2.2% (not shown). The ROC and Precision-Recall curves
are depicted in Figures 3 and 4. The Area Under Curve
(AUC) in both ROC and Precision-Recall curves for Self-
Attentive CNN is relatively 7% higher than the baseline, which
again, shows the ability of Self-Attention to capture relevant
information. The input feature vectors and the feature vectors
extracted using Self-Attentive CNN are visualized by PCA and
t-SNE in Figure 6, where red and blue colors correspond to
the two classes. The Self-Attentive CNN extracts higher-level
features which clearly appear more divisible than the LMFB
features in both PCA and t-SNE plots. The feature space seems
more separable, attesting to a meaningful learnt representation
for toxicity-related tasks.

The proposed work was also evaluated on the IEMOCAP
corpus [28]. Although this dataset is on a different domain,
i.e. sentiment analysis, we hope to provide i) a better demon-
stration on the effectiveness of the proposed architecture,
and ii) a level of comparison by using a publicly available
dataset. Available labels were adjusted to better resemble the
previous setting: emotion categories of happy and excited were
combined into a positive class, while frustrated and angry
were merged into a negative class, using audio recordings
from all scripted and improvised sessions. The recommended
5-fold cross validation was used for training and testing. Since

IEMOCAP is a smaller dataset (3K utterances for training)
compared to Corpus A, we augmented data with spectral Aug-
mentation (SpecAug) [29]. The model hyperparameters were
re-tuned based on the 5-fold validation. SpecAug improves the
results of IEMOCAP by 3-14% across different performance
metrics (Figure 5). The results of the proposed architectures
on the augmented IEMOCAP are shown in Table I. Overall,
both attention mechanisms outperform the baseline where LQ
Att achieves higher performance compared to Self-Att. This
could be due to the fact that (chosen) emotions may present
less variability within a class when compared to a toxicity
task, and a reliable fixed Query may be possible to learn.
For completion, note that SpecAugm showed no significant
benefits for Corpus A, arguably due to the rich acoustical
variety of the realistic recordings.

A direct comparison with prior work on the combined
two-class categorical problem was not possible to the best
of our knowledge. Table I includes prior art on audio-based
sentiment analysis on IEMOCAP. The reader is advised to
interpret the cited work comparison with caution, since they
address a slightly modified problem or number of classes. In
[30] Han et. al demonstrate a VGG-based ordinal classifier
achieving 57.30% in Unweighted Average Recall (UAR) for
a 3-way valence rating on IEMOCAP (Hval−3). In [31]
the authors report 64.45% unweighted accuracy on a 3-
way valence classification, using an Adversarial Auto-Encoder
framework. In [32], authors report 71.80% in UAR for a 4-way
categorical classification (Happy, Sad, Angry, Neutral) using
LMFB features and a deep NN architecture (Acat−4).

V. CONCLUSION

In this work, we propose a Self-Attentive CNN architecture
to detect toxic speech based on acoustical features. The Self-
Attention mechanism compares the content of every possible
pair of time steps in each utterance and calculates a weight
according to the similarity of their content. Therefore, for
processing each time step, the weighted information of other
regions are taken into account. This approach helps with
summarizing the entire feature map into a feature vector while
preserving critical relevant information. We also show that
learning a representation for toxicity can be challenging when
using a trainable Query vector. This could be attributed to
the variable, subjective, situational or unclear nature of what



Fig. 6. Feature space separability visualization for Corpus A.

constitutes toxic content or behavior. Results showed that Self-
Attention may boost the classification performance between
Toxic and Non-Toxic utterances, by almost 5% absolute
improvement for specific metrics, compared to the baseline.
The AUC of the Precision-Recall curve also shows a relative
improvement of 7%. The effectiveness of the proposed archi-
tecture is also studied on the public IEMOCAP corpus for the
task of sentiment classification, which achieved a consistent
absolute improvement of at least 2% over the baseline. Future
work is needed to better understand the potential analogies
and differences between audio-based toxicity and sentiment or
affective domains, for further advancement of this field. The
exploration of the supplemental value of text transcription also
remains to be studied as future work.
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