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Abstract

Interaction event networks, which consist of interaction events among a set of individ-

uals, exist in many areas from social, biological to financial applications. The individuals

on networks interact with each other for several possible reasons, such as periodic contact

or reply to former interactions. Regarding these interaction events as expectations based

on previous interactions is crucial for understanding the underlying network and the cor-

responding dynamics. Usually, any change on individuals of the network will reflect on

the pattern of their interaction events. However, the causes and expressed patterns for

interaction events on networks have not been properly considered in network models. This

paper proposes a dynamic model for interaction event networks based on the temporal

point process, which aims to incorporate the impact from historical interaction events on

later interaction events considering both network structure and node connections. A net-

work representation learning method is developed to learn the interaction event processes.

The proposed interaction event network model also provides a convenient representation

of the rate of interaction events for any pair of sender-receiver nodes on the network and

therefore facilitates monitoring such event networks by summarizing these pairwise rates.

Both simulation experiments and experiments on real-world data validate the effectiveness

of the proposed model and the corresponding network representation learning algorithm.

Keywords: temporal point process, network monitoring, network representation learning,

interaction event, network model
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1 Introduction

Network data widely exist nowadays, such as biological networks, financial networks, and aca-

demic networks. The most commonly seen example is social networks. On such networks,

individuals interact with each other through interaction events, such as mention, comment,

sending messages, or forwarding content to others. These interaction events are often collected

and recorded for a number of social networks, which we refer to as interaction event networks

(Lerner et al. 2013). To fully understand the dynamics of these networks, it is crucial to incor-

porate the triggering motivations for these interaction events into the network model. In reality,

these interaction events can be motivated by a number of different reasons, such as periodic

contact or reply to a former interaction event. However, these dynamic interactions are mostly

aggregated as simple edges over nodes of individuals on networks (Newman et al. 2002) in

previous studies. Such a simplification operation completely ignores the rich information in the

occurring orders, the time intervals between related events as well as the motivation for each

interaction event. It is therefore important to develop methods to characterize the occurring

process without losing these types of information for interaction events in network models.

Figure 1 shows an example of an interaction event network: an email network inside an

organization, with corresponding email records in Table 1. In this example, 7 individuals from

A to G send emails on the network at several time stamps from t1 to t6. Each email records the

sender, receiver, and the sent time of the email. In such a network, routine information of the

organization usually spread over through fixed sub-networks, and therefore these interaction

events can well reflect the running status of the underlying organization.

Intuitively, for a specific sender, the interaction event of sending an email is probably caused

by a former received email. For example, in Figure 1, the email sent from A to F at time t6 is

probably a reply to the email A received from F at time t4. Moreover, the behavior of sending

an email can also be a custom, such as the emails sent from B to E at time t1 and t3 in Figure 1.

The above observations indicate that considering the influence of related historical interaction

events on each new interaction event is desirable for modeling interaction event networks.

To effectively incorporate the influence from historical interaction events on later ones and

understand the dynamics on networks, we propose a temporal point process network model

for interaction event networks, which explicitly models the rate of interaction events on the
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Figure 1: Example of an interaction event network.

Table 1: Email network in Figure 1.

Sender Receiver Time

B A t1
B C t1
B E t1
D C t2
D E t2
B E t3
B F t3
B G t3
F A t4
F G t5
A G t6

...... ...... ......
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network with the information from related historical events and related nodes. A temporal

point process describes how a series of events happen, and therefore is used in this work to

model the rate of interaction events between a sender-receiver pair of nodes on the network.

We also inherit the assumption of latent space network models (Hoff et al. 2002) that each

node on the network can be projected into a latent space where the node information can be

well preserved as the position in that latent space. To learn the model parameters and the node

representation vectors (latent positions) of the network, we propose a network representation

learning algorithm that is effective and efficient for the task. On one hand, the proposed

model can effectively preserve the structural information of the network by node representation

vectors; on the other hand, the event dynamics on the network can be well explained by the

pairwise rate of interaction events over all the node pairs on the network. The proposed model

also facilitates the network monitoring task by providing the rate of interaction events between

each possible sender-receiver node pair. Simulation experiments and experiments on real-world

data show that the proposed model can well characterize the influence from past events on later

ones, and the proposed network representation learning algorithm can preserve sufficient node

information for downstream tasks.

The remainder of the paper is organized as follows. Section 2 reviews research works in

related fields, including temporal point process models, network representation learning, and

network monitoring. In Section 3, we introduce the temporal point process network (TPPN)

model which incorporates the pairwise rate of sender-receiver node interaction events into a

latent space network model. Section 4 describes the network representation learning algorithm

for learning the node representation vectors on such networks. In Section 5, both simulation

experiments and experiments on real-world datasets validate the effectiveness of the proposed

model and its corresponding learning algorithm. Finally, we conclude this work and propose

future research directions in Section 6.

2 Literature Review

Rich works have been done in related fields, including in temporal point process models, network

representation learning, and network monitoring. In this section, we review relevant works in

the above fields and point out opportunities for this research to contribute.
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2.1 Temporal Point Process Models

A temporal point process is a stochastic process that characterizes the rate of events occurring

along the timeline. The key component of such a process is the conditional intensity function

(CIF) characterizing this rate for each type of event. Due to the prevalence of such event

data, the temporal point process has a lot of applications in the real world for event sequence

modeling (Daley et al. 2008). These events can be seismic events, purchase events, device

failure, communication activities, and many others.

According to the form of conditional intensity functions, the temporal point process has dif-

ferent types, such as the homogeneous Poisson process, the non-homogeneous Poisson process,

and the Hawkes process. Among them, the Hawkes process (Hawkes 1971) is a self-exciting

point process, where historical events have a positive exciting influence on later events. This

characteristic fits well in a lot of realistic scenarios in many different fields, including financial

trades, information systems, and social networks. Therefore, a lot of variants of the Hawkes

process have been proposed for different applications.

For example, Hawkes process has been used in social network modeling (Li et al. 2014),

ATM failure prediction (Xiao et al. 2017), information system analytics (Yan et al. 2015) and

patient flow prediction (Xu et al. 2017). One key difference between the temporal point process

and traditional time series is that a temporal point process preserves all the specific time when

each event happens, compared to the underlying hypothesis of uniform sampling in time for

time series. By preserving the exact timestamp when the event occurs, this kind of temporal

point process can well capture the time intervals between events in the model.

For event sequences on networks, there are also several works modeling dynamic networks

with temporal point process. For example, Perry et al. (2013) proposed to use temporal point

process to characterize the repetitive directed interaction events on networks; Linderman

et al. (2014) developed a probabilistic model combining mutually-exciting point processes with

random graph models; Hall et al. (2016) proposed an online learning framework of multivariate

Hawkes process model to track the network structure of social networks as it evolves; Mei et

al. (2017) relaxed the positive influence assumption of the Hawkes process, and constructed a

neurally self-modulating multivariate point process which can be learned through a continuous-

time LSTM neural network; Junuthula et al. (2019) combined the stochastic block model

with Hawkes process as a block point process to incorporate the community structure in social
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network; Zuo et al. (2018) integrated the neighborhood formulation process as Hawkes process

into network embedding so as to capture the influence of historical neighbors on the current

neighbors. However, these works either neglected the structural positions of nodes on the

network or did not consider interaction events on the network.

2.2 Network Representation Learning

Network representation learning is becoming popular for its powerful capability in processing

large networks efficiently in the recent decade. From the model perspective, network represen-

tation learning is based on a latent space assumption, assuming each node has a latent position

in the latent space where the distance between nodes in that space should correspond to the

dissimilarity of these nodes in the actual application scenario.

To analyze networks more effectively, proper representation forms of networks are required.

However, simply using the adjacency matrix tends to neglect the complex and high-order rela-

tionships on the network, such as paths and frequent sub-structures. Network representation

learning helps to embed the network information into a latent space, where traditional machine

learning algorithms based on vectors can be adopted conveniently for subsequent analyzing

tasks, such as node classification and link prediction.

Early network representation learning originated from spectral clustering (Brand et al.

2003) and manifold learning (Tenenbaum et al. 2000; Roweis et al. 2000), conducting eigen-

decomposition on the adjacency matrix of the network or preserving distances with neighbors

to find a low-dimensional representation of the network. Recently, by virtue of the word2vec

(Mikolov et al. 2013) and skip-gram model in natural language processing, many methods

such as DeepWalk (Perozzi et al. 2014), LINE (Tang et al. 2015) and node2vec (Grover

et al. 2016) have been proposed to learn node representation from a static network structure.

As Qiu et al. (2018) and Liu et al. (2019) showed, these methods based on static network

structure can be treated as a matrix decomposition task, which is equal to optimizing two

objectives: making embedded vectors of similar nodes as close as possible in the latent space

and making embedded vectors of different nodes as far as possible in the latent space. Based

on the learned node representation vectors, many tasks related to network analytics can be

conducted, including node classification (Bhagat et al. 2011), link prediction (Liben-Nowell

et al. 2007), clustering (Newman 2006), visualization (Maaten et al. 2008) and so on.

6



There are still some main challenges for network representation learning, including preserv-

ing network structure and context information, dealing with data sparsity and scalability to

large-scale networks (Zhang et al. 2017). Recently, more and more works focus on network

representation learning from different perspectives, such as heterogeneous network embedding

(Chang et al. 2015), network representation learning based on deep neural networks (Li et al.

2017), representation learning on directed networks(Ou et al. 2016) and so on.

For dynamic networks, a stream of works based on connectivity, spanning tree (Holme et al.

2012), and graph streams (McGregor 2014) have been proposed. Usually, dynamic network

models create a series of static network slices according to a fixed period (Kumar et al. 2006).

For example, Nguyen et al. (2018) learns node embedding for dynamic networks, where time

is only used for identifying the order of edges, neglecting the specific time difference between

two events. Generally, the dynamics on networks have not been fully considered as events with

their specific timestamps in dynamic network models. In our work, we try to accommodate the

specific time of events in the model and explicitly characterize the influence of historical events

on later events in the network.

2.3 Network Monitoring

Network monitoring aims to monitor a network system and raise an alarm once the network

goes out of control. It is also referred to as anomaly detection and treated as a change-point

problem (Antoch et al. 1993). Savage et al. (2014) reviewed anomaly detection works on

online social networks and classified these works by the target network is static or dynamic,

whether there are node labels in the network. Another review of social network monitoring by

Woodall et al. (2017) showed the relationships between network monitoring and engineering

statistics or public health surveillance.

Generally, one stream of network monitoring methods is based on community structure (Jun

et al. 2009), including monitoring based on variants of the stochastic block model (Wilson et

al. 2016; Dong et al. 2020). These methods monitor the pairwise model parameters of different

communities to reflect the overall status of the network. Another stream of methods monitors

networks through representative network metrics. For example, Priebe et al. (2005) used scan

statistics to detect anomaly events in email networks. Cheng et al. (2013) not only monitored

scan statistics but also used cross-correlations between scanned network metrics in the moving
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window to detect changes on the network. Furthermore, traditional monitoring methods in the

field of statistical process control are also used for network monitoring, conducting exponen-

tially weighted moving average (EWMA) or cumulative sum (CUSUM) control chart based on

network metrics such as average betweenness and average closeness (Noorossana et al. 2018).

Neil et al. (2013) used a scan statistic for both time windows and sub-graphs to detect anoma-

lous subgraphs in computer networks. Azarnoush et al. (2016) proposed a network monitoring

method based on the likelihood function combining the existence of edges with node attributes.

However, these methods do not explicitly consider the dynamics of events on the network in

the monitoring scheme.

There is still a great need for effective models and monitoring methods on networks in-

corporating the dynamics of interaction events, especially explainable motivations for these

interaction events. In the following section, we will introduce a network event model that can

well characterize the continuous dynamics of interaction events on the network, with an effec-

tive network representation learning method that can learn the structural information as well

as the dynamics of interaction events on the network.

3 Network Event Model Based on Temporal Point Pro-

cess

To effectively characterize the dynamics of interaction event networks, we propose a model for

events on networks based on the temporal point process. The major contribution of this work is

as follows: First, we develop a network model incorporating the influence of historical events on

later events for interaction event networks, which is largely ignored in previous works; Second,

the proposed model can be easily learned with the proposed network representation learning

technique, which also provides convenient representations of nodes preserving structural in-

formation of the whole network and can perform well for classic network tasks such as node

classification and link prediction; Last but not least, the proposed model can well restore the

rate of all the possible events on the network and thus facilitate monitoring for such interaction

event networks.

Figure ?? shows an example of an interaction event network. In Figure ??, each node can

be treated as an email account in an email network, and each edge is an event sending an email

8



from a sender to a receiver, with the specific sending time recorded. The emails sent at time

tk and tk+1 are shown in red arrows. Assume that we are concerned about the email-sending

behavior of account F to A, B to E, and B to F, it is convenient to express the rate of the

sending behavior of these pairs along the timeline in a functional curve as is shown in Figure ??.

This is the main motivation of the proposed model. From the perspective of formulating the

event rate, it is straightforward to consider the influence of historical events effective on later

events. In the above email case, as well as in other communication or purchase applications,

each individual’s interaction behavior is highly dependent on the others around in the network,

thus the rate of interaction events should also be influenced by past events related to the current

individual’s network structure. Our work is based on this intuition and uses a temporal point

process to characterize the influence of past events. Parameters of this temporal point process

are learned by network representation learning.

For a given series of interaction events H = (si, ri, ti)i=1,2,..., we aim to model the dynamics

of these interaction events by explicitly express the rate of events through temporal point

processes. A one-dimensional temporal point process is a random measure that maps each

Borel set on R+ into a positive integer. Intuitively, we use N{(a, b)} to represent the number

of points (events) during the time period (a, b), where N(t) is a counting process.

The above one-dimensional case is easily extended to a multi-dimensional case. Specifi-

cally, a multivariate temporal process can be represented by several counting processes N =

{Nc(t)}c∈C, where Nc(t) is the number of type-c events happened until time t. For each pro-

cess Nc(t), we note the immediate occurrence rate as λc(t), which is the conditional intensity

function:

λc(t) =
E[dNc(t)|Ht]

dt
, Ht = {(ti, ci)|ti < t, ci ∈ C}, (1)

where Ht represents all the historical observations before time t. Under rather mild conditions,

a temporal point process can be determined by a specific conditional intensity function uniquely.

For the interaction events on a network, we record the event history as a triplet H =

{(sk, rk, tk)}, where sk and rk represent the sender and receiver of the event k, and tk is the

time of the event. In our proposed model, the conditional intensity function of the temporal

9



point process from one node u to another node v on the network is:

λuv(t) := g

(
µuv +

K∑
k=1

[Irk=u (f1(hsk ,hu, t− tk)) + Isk=u,rk=v (f2(hu,hv, t− tk))]

)
(2)

where µuv represents the base rate, I is the indicator function and only when the content meets

the condition does this term equals to 1 and otherwise 0; h· is a D-dimensional representative

vector of the specific node in the latent space. Assume that there are K interaction events up

to time t, and for each event k, it has the sender sk, receiver rl. f1, f2 are mapping functions

of RD × RD × R→ R, and g is an R→ R function.

The first term in the summation part in (2) represents the influence from all the historical

events when node u has appeared as a receiver on the current u-to-v event. In the example

shown in Figure 2, to evaluate the conditional intensity of u-to-v event at time t3, then the first

term in (2) represents the influence from the past two events at t0 and t2 when node u was a

receiver node.

The second term in the summation part in (2) represents the influence from all the historical

events that have the same pattern, i.e. have the same sender node and receiver node as the

current sender-receiver pair. In Figure 2, this term corresponds to the influence of the event

occurred at time t1 which is also an event from u to v.

u x2

vx1

t0

t2

t1
t3

Figure 2: Illustration of the conditional intensity function of u-to-v event at time t3.

By decomposing the conditional intensity function into external transitional influence and

repeated pattern influence (corresponding to the first term and second term described above),

this conditional intensity function is able to characterize the event occurrence process of inter-

actions between all the node pairs on the network.
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More details of the model form in (2) are as follows. The base rate µuv shows the affinity

between the sender node and the receiver node in the latent space, so we use a negative squared

Euclidean distance in this base rate:

µuv = −‖hu − hv‖2 (3)

where hu and hv represent the representation vector of node u and node v in the latent space

respectively. Functions f1, f2 and g are:

f1(hsk ,hu, t− tk) = f2(hsk ,hu, t− tk) = αsk,uκ(t− tk) (4)

g(·) = exp(·) (5)

And κ(t− tk) is the influence from past events on the current time which decays with time:

κ(t− tk) = exp(−δsk(t− tk)) (6)

where δsk is a decay parameter that depends on the sender node, indicating that in each

historical interaction event, different sender nodes have different influence on later events. αsk,u

is a coefficient that depends on the distance between the sender and receiver in historical events,

so we also adopt the negative squared Euclidean distance as the metric:

αsk,u = −‖hsk − hu‖2 (7)

For all the historical events until time T , we can thus calculate the conditional intensity

function for any sender-receiver node pair at any time 0 ≤ t ≤ T using (2). In this way, all the

interaction events on the whole network are incorporated in this model. In the next section,

the network representation learning method using historical events on the network to learn the

model parameters will be introduced.

4 Model Inference and Event Network Monitoring

In our proposed model, the key parameters that need to be estimated include {hi, i = 1, ..., N}

and {δi, i = 1, ..., N}. In this section, we introduce a network representation learning method
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to inference these parameters.

For a specific sender of an event u, the probability that the receiver of the event is v is:

P(v|u,H(t)) =
λuv∑

v′ λuv′(t)
. (8)

Based on (2), we can obtain the conditional intensity function of all the observations of in-

teraction events on the network up to time T , and the log likelihood function if these events

are:

logL =
∑
u∈V

∑
v∈H(T )

logP (v|u,H(T )) . (9)

To learn high-quality vector representations of nodes on the network, we adopt the negative

sampling method to approximately optimize the log-likelihood function (Mikolov et al. 2013).

Negative sampling can help to avoid the the in huge amount of calculation brought by summing

over all nodes in (9). In this setting, the objective function corresponds to a sender node u and

a receiver node v can be calculated as:

log σ(λ̃uv(t)) +
M∑

m=1

Euk∼Pn(u)[− log σ(λ̃ukv)(t)] (10)

where M is the number of negative samples for node v, which is set to follow a distribution

Pn(u), such as Pn(u) ∼ d(u)3/4 where d(u) is the degree of node u. σ(x) is the sigmoid function:

σ(x) = 1/(1 + exp(−x)) (11)

Additionally, the number of historical events considered in the calculation will have an impact

on the computation load of the conditional intensity function λuv(t), and the impact from far

early historical events is so trivial that can be neglected. Therefore, in the model inference

procedure, the maximum number of related historical events h is fixed, which means we only

preserve the most recent h valid related historical events in the optimization of the objective

function.

Classical optimization strategies can be easily adapted to optimize the objective function in

(10), such as stochastic gradient descent (SGD) and Adam (Kingma et al. 2014). Without loss
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of generality, we use the classic SGD optimizer, which can also be replaced by other off-the-shelf

optimizers. The complete algorithm is shown in Algorithm 1.

Algorithm 1 TTPN Algorithm

Require: Network G = (V,E); Set of events H; Sampling sizew; Fixed length of historical
eventsh;

Ensure: Node representations H = {hv}v∈V , node attribute {δv}v∈V ;
1: Initialization: Let t = 0; Randomly initialize H ad δ = [δ1, ..., δN ];
2: for i=1,...,w do
3: Sample in H and obtain node u, node v, time t and related event history Huv;
4: Generate number of negative samples according to Pn(u) and conduct negative sampling;
5: Calculate the value of the objective function according to (10);
6: end for
7: for b=1,2,,,B do
8: Conduct SGD to optimize the objective function;
9: end for

10: if SGD result does not converge then
11: Back to step 7;
12: else
13: return H = {hv}v∈V and {δv}v∈V ;
14: end if

Based on the network representation learning results, we can establish the conditional in-

tensity function between each sender-receiver node pair on the network:

λuv(t), u, v = 1, ..., N, u 6= v (12)

Given all the conditional intensity over the network, we can monitor either some specific

local structures or the whole network. As a demonstration of model usage, we introduce two

straight-forward methods for global monitoring of the whole network. In these methods, the

summation and the maximum value for all the sender-receiver node pairs on the network are

monitored separately:t

s1(t) =
N∑

u=1

N∑
v=1

λuv(t), u 6= v (13)

s2(t) = max
u,v

λuv(t), u 6= v (14)

The above two types of monitoring strategies emphasize different aspects of the network: the

summation method tends to characterize the overall status of the network, while the maxi-

mum value emphasizes more on the event intensity on active nodes. We will demonstrate this
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difference through extensive experiments.

5 Experiments

5.1 Simulation Experiments

In simulation experiments, we generate interaction events over a network according to our pro-

posed model form and make inference on model parameters based on our proposed network

representation learning algorithm. We aim to serve the following three purposes in this ex-

periment: First, we check the effectiveness of the estimated conditional intensity function by

predicting the sender or receiver for the next event; Second, we evaluate the accuracy of esti-

mated CIFs by comparing the estimated values with true values; Third, we show the potential

for network monitoring with the proposed model and monitoring strategy.

The hardware environment of experiments in this work is an Azure NC6 instance virtual

machine, with a CPU of Intel Xeon E5-2690v3, 2.60GHz, and 56GB memory of 8 cores.

The generation process of the simulated interaction events on the network is described in

Algorithm 2. We generate events and train the model with the first 90%, test the performance

of the model with the rest 10%.

Algorithm 2 TTPN Simulation Algorithm

Require: Number of nodes N ; Dimension of representation vectors d; Number of events E;
Start time t0; Number of communities K;

Ensure: A series of interaction events on the network, each event includes a sender s, a receiver
r and the time t;

1: Initialization: For each node in each community, randomly set the node representation to
be a vector of length d;

2: for i, j = 1, ..., N, i 6= j do
3: According to the thinning algorithm (Ogata1981), generate the proposed time τij for

the first event between each node pair;
4: end for
5: for k = 1,2,...,E do
6: Let (sk, rk) = argmin{τij}, tk = min{τij};
7: Append (sk, rk, tk) to the network event sequence;
8: Update related proposed time for next event τskrk and τrkj, where j = 1, ..., N, j 6= rk;
9: end for

10: return {(s1, r1, t1), (s2, r2, t2), ..., (sE, rE, tE)}

14



5.1.1 Next Event Prediction

A direct application of the learned conditional intensity function is to predict the next interac-

tion event for a specific node, including predict the receiver of the next event when the specific

node is the sender, and predict the sender of the next event when the specific node is the

receiver. These two tasks are also useful in real-world applications, such as predict to whom a

specific user will next send an email.

For a specific node i as a sender in the network, the prediction of the next receiver is

arg max
j 6=i

P(j|i,H(t)) (15)

Combining with (8), this prediction is

arg max
j 6=i

P(j|i,H(t)) = arg max
j 6=i

λij(t) (16)

Similarly, we can predict the sender of the next sender for a specific node as receiver:

arg max
j 6=i

P(j|i,H(t)) = arg max
j 6=i

λji(t) (17)

With the simulation method described in Algorithm 2, we simulate 20,000 interaction events on

a network of 30 nodes. To mimic the phenomenon that individuals in a network tend to form

communities (Newman 2006), we divide these nodes evenly into K communities, K = 1, 2, 3.

The dimension of representation vectors for each node is set to 32, with values 0.02×n+0.5×q,

q = 1, 2, ..., K. The first 18,000 events are used as the training set and the rest 2,000 events

are used as the testing set. The evaluation metric is the proportion of successful prediction of

the top r results: if the true sender or receiver of the next event falls in the top r candidates

of the prediction, then this prediction is treated as a success.

We compare the above evaluation metric of the proposed network representation method

with the following methods:

• HTNE (Zuo et al. 2018), its model formulation is similar to our proposed model, but it

focuses on the neighborhood formation mechanism instead of transmission of influence.
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its conditional intensity function is

λ̂v|u(t) = µu,v +
∑
th<t

αh,vκ(t− th) (18)

• DeepWalk (Perozzi et al. 2014), it is a network representation learning method for static

networks, which conducts random walks on the network to get contexts and use word2vec

(Mikolov et al. 2013) to learn node representation vectors.

• node2vec(Grover et al. 2016), it is also a network representation learning method for

static networks. It is similar to DeepWalk, but it better balances the depth-first search

and breadth-first search in the path sampling step.

In the last two methods for static network representation learning, the prediction is conducted

only on the distance between learned node representation vectors, also choose the top r can-

didates to evaluate the performance. Moreover, the true node representation vectors are also

evaluated (called True method in the experiment) as the upper bound of a successful prediction

rate in this experiment.

The experiment result of the next receiver prediction when the current node is the sender is

shown in Table 2. From this result, we can find that the True method performs best as expected,

and our proposed TPPN method outperforms the other three methods when r = 2, 3, 5, and

performs close to the True method. Moreover, the difference between TPPN and True becomes

larger as the number of communities increases. Static network representation learning methods

perform better when the number of communities is larger, but still not as good as those methods

based on temporal point process.

The experiment result of the next sender prediction when the current node is the receiver

is shown in Table 3. It is shown that in the next-sender prediction task, neither the real

node representation vectors nor these network representation learning methods perform as well

as the task of the next-receiver task. This systematic difference comes from the form of the

conditional intensity function, which incorporates the influence of the sender of an event on

the receiver more than the other way round. Moreover, the proposed TPPN method performs

better than the rest network representation learning methods and performs even better than

the True method when r = 5. Therefore, the proposed TPPN gives a satisfactory performance

in the next event prediction task.
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Community Number K Method r=2 r=3 r=5

1

True 0.2220 0.3145 0.4945
TPPN 0.2040 0.3035 0.4815
HTNE 0.1455 0.2130 0.3850
DeepWalk 0.0980 0.1620 0.3015
node2vec 0.0580 0.0815 0.1535

2

True 0.2215 0.3285 0.5375
TPPN 0.2015 0.2870 0.5020
HTNE 0.1530 0.2225 0.3285
DeepWalk 0.1360 0.2070 0.3395
node2vec 0.1755 0.2655 0.4195

3

True 0.2855 0.4220 0.6555
TPPN 0.2410 0.3590 0.5790
HTNE 0.2465 0.3590 0.5745
DeepWalk 0.2040 0.3065 0.5550
node2vec 0.2210 0.3510 0.5790

Table 2: Experiment result of next receiver prediction when the current node is the sender.

Community Number K Method r=2 r=3 r=5

1

True 0.1970 0.3145 0.3320
TPPN 0.1840 0.2685 0.4545
HTNE 0.1810 0.2665 0.4475
DeepWalk 0.0905 0.1480 0.2905
node2vec 0.0570 0.0775 0.1495

2

True 0.2105 0.3285 0.4055
TPPN 0.1970 0.3075 0.4660
HTNE 0.1970 0.3060 0.4535
DeepWalk 0.1290 0.2035 0.3525
node2vec 0.1595 0.2415 0.4090

3

True 0.2640 0.4220 0.5065
TPPN 0.2325 0.3510 0.5775
HTNE 0.2220 0.3325 0.5540
DeepWalk 0.2105 0.3335 0.5555
node2vec 0.2120 0.3305 0.5665

Table 3: Experiment result of next sender prediction when the current node is the receiver.
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5.1.2 Evaluation of Conditional Intensity Function

The key component of the proposed network event model is the conditional intensity func-

tion for each possible sender-receiver pair on the network. Ideally, the network representation

learning algorithm should output node representation vectors that can well restore the true con-

ditional intensity function that generates the events on the network. To evaluate the restoration

performance of the proposed network representation learning method, we compare the restored

conditional intensity function with the proposed method with the true conditional intensity on

the network in this simulation experiment.

We simulate 20,000 events using Algorithm 2, with the end time, noted as T , and conduct the

network representation learning algorithm on the first 18,000 events. We consider the case where

the number of communities K is 1, 2, 3 respectively, and the true node representation vectors

are set to be of d = 32 dimension, values are set to 0.02×n+ 0.5× q, where n = 1, 2, ..., d, q =

1, 2, ..., K. Figure 3, 4, and 5 show the visualization result of the first two principal components

from true node representation vectors and learned node representation vectors on the network.

We can see from these figures that the proposed network representation learning method can

cluster the nodes from the same community together, thus is able to conduct node clustering

tasks through network representation learning in real applications on networks.

Figure 3: When K = 1, the principal components of the true node vectors and learned repre-
sentation vectors.

Furthermore, the conditional intensity function in (2) reflects the occurring rate of the next

interaction event from node u to node v, and can be compared with the true conditional intensity

function to evaluate the performance of the learning algorithm. Figure 6 and Figure 7 show the

learned matrix of conditional intensity functions, true matrix of conditional intensity function

and the difference between these two for each node pair when the number of communities is
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Figure 4: When K = 2, the principal components of the true node vectors and learned repre-
sentation vectors.

Figure 5: When K = 3, the principal components of the true node vectors and learned repre-
sentation vectors.
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K = 1 and K = 2 at time t = 0.5T . Generally, the restoration performance of the proposed

method performs well for the conditional intensity function. When K = 1, the performance

looks worse on the intensity between marginal nodes than that between the central nodes; when

K = 2, the intensity between nodes inside the same community is restored better than that

between nodes across communities.

Figure 6: When K = 1, the comparison between the learned conditional intensity function and
the true conditional intensity function.

Figure 7: When K = 2, the comparison between the learned conditional intensity function and
the true conditional intensity function.

For the case with K = 1, we manually add a shift over the network at time T , adding

an extra value following N(0.02, 0.02) normal distribution for each dimension of the last five

nodes. According to the shifted node representation vectors, we further simulate events until

the latest event occurs after t = 2T . Figure 8 and Figure 9 show when t = 1.1T, t = 1.5T, t =

1.9T , the matrix of conditional intensity function learned with the unchanged events and that

calculated from the unchanged true node representation vectors. It is shown that when the

network changes, the learned conditional intensity function will depart largely from that of the

unchanged network, which motivates the idea of monitoring networks through these conditional

intensity functions.
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Figure 8: The learned conditional intensity function matrix on changed network, at t =
1.1T, t = 1.5T, t = 1.9T respectively.

Figure 9: The true conditional intensity function matrix on changed network, at t = 1.1T, t =
1.5T, t = 1.9T respectively.

5.1.3 Restoration Error of Conditional Intensity Function

To further evaluate the restoration performance of the conditional intensity function by the

learned representation vectors of our proposed method, we also conduct simulation experiments

on this task. In this experiment, we generate networks with N = 30 nodes, 20,000 events and

number of communities K = 1, 2, 3 as described in Subsection 5.1.2. Among them, 90% of the

events are used for learning the node representation vectors, and we evenly sample 200 time

points and calculate the conditional intensity function for each sender-receiver node pair in the

network.

To evaluate the restoration performance of the conditional intensity function, we calculate

the root mean square error (RMSE) of λ̂ for all the nodes in the network compared with the

true λ calculated by the true network representation vectors:

RMSE(λ̂(t), λ(t)) =

√√√√∑u,v=1,..,N,u6=v

(
λ̂uv(t)− λuv(t)

)2
N2 −N

(19)

We compare the performance of the proposed TPPN method with the HTNE method which
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can also deliver the conditional intensity function as an intermediate result. The RMSE of CIF

restoration at 200 time points for these two methods is shown in Figure 13. It is shown that

as the time goes by, the RMSE of TPPN slowly decreases, but increases in the last 10% time

points, because the events during this period are not included in the data for learning the node

representation vectors. Moreover, the result of the HTNE method shows similar trends as the

TPPN method, but the RMSE is much larger than that of the TPPN method. Therefore, it is

useful to use the proposed TPPN method to learn node representation vectors on the network

for downstream tasks when the true node representation vectors are unknown.

5.1.4 Network Monitoring

The proposed model provides a convenient indicator of the activity status over the network,

which can be used to conduct the network monitoring task. As a demonstration, here we

consider using the summation and the maximum value of the pairwise conditional intensity

functions on the network, corresponding to the global rate of interaction events and the maxi-

mum local rate of interaction events:
∑

ij λij(t) and maxij λij(t), i, j = 1, ..., N .

In the experiment, we generate 10,000 interaction events on the network with 30 nodes,

and the true node representation vectors follow that described in Subsection 5.1.2. Based on

the 10,000 events, we add a shift of N(0.02, 0.02) for the last 5 nodes in each representation

dimension and generate 10,000 new events based on the shifted network. The proposed network

representation learning algorithm is conducted with the first 10,000 events on the unshifted

network, and the conditional intensity function matrix is calculated every 10 events for all the

20,000 events across the unshifted and the shifted network.

Figure 11 and Figure 12 show the result of the monitoring chart for monitoring the network

as described. Before and after the shift on network occurs, there shows obvious change in∑
ij λij and maxij λij. Moreover, the summation of CIFs can better detect the change on

several nodes, and the maximum value of CIFs can better reflect the rate of interaction events

between sender-receiver pairs among a small number of nodes. Notably, using the learned CIF

matrix instead of the true CIF matrix for monitoring shows a more obvious signal upon the

shift of the network. In real application scenarios, the true node representation vectors are

mostly unknown, and thus the learned node representation vectors are well suited for network

monitoring in practice.
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(a) When K = 1, the RMSE of λ restoration with TPPN and HTNE.

(b) When K = 2, the RMSE of λ restoration with TPPN and HTNE.

(c) When K = 3, the RMSE of λ restoration with TPPN and HTNE.

Figure 10: The RMSE of CIF Restoration with the proposed TPPN method and HTNE at 200
time points.
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(a) Monitoring the network with learned
∑
λij .

(b) Monitoring the network with true
∑
λij .

Figure 11: Monitoring the network with
∑
λij.

(a) Monitoring the network with learned maxλij .

(b) Monitoring the network with maxλij .

Figure 12: Monitoring the network with maxλij.
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5.2 Experiment on Real-world Data

The effectiveness of the proposed model and network representation learning method is vali-

dated on two real-world datasets: the DBLP co-author network and the Enron email network.

Each node in the DBLP co-author network represents an author, and each event is a co-author

publication. There are 28,085 nodes classified into 10 classes according to the author’s research

direction and 236,894 events. The Enron email dataset contains 184 email addresses, where

each email address as a node, and 38,121 emails among these email addresses, where each email

is an event. Two tasks are conducted in our experiment: node classification and link predic-

tion. These two tasks are two classic tasks for the evaluation of network representation learning

methods. We also show a case study of network monitoring on the Enron email network.

5.2.1 Node Classification

Node classification is a classic task on networks and has a variety of real applications. The

purpose of this task is to identify the classes of unknown nodes according to the network

structure and/or their attributes. The proposed TPPN method is compared with DeepWalk

and HTNE on the DBLP co-author network dataset. The evaluation metrics are Macro-F1

and Micro-F1, which are both integration of precision and recallt1. Macro-F1 treats different

classes equally without emphasis on sample size, and Micro-F1 balance the importance of

different classes according to the sample sizes for each class. Usually, these two metrics are

both evaluated for multi-class classification tasks.

We split the data into a training set and a testing set, and vary the proportion of the training

data from 10% to 90% for this experiment. The experiment result of the three methods on

the node classification task is shown in Table 4. According to the result, the proposed TPPN

method achieves a better score than the other two methods in both Macro-F1 and Micro-F1.

The HTNE method is better than the static network representation learning method DeepWalk

for the incorporation of the formation process of neighbors on the network. Moreover, the Micro-

F1 scores for these methods are generally higher than the Macro-F1 scores, which indicates that

the network representation learning methods can well take care of the imbalance of different

node classes.

1https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.

html
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Method DeepWalk HTNE TPPN

Metric Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

10% 0.6226 0.6309 0.6530 0.6182 0.6576 0.6712
20% 0.6434 0.6487 0.6371 0.6633 0.6722 0.6806
30% 0.6497 0.6519 0.6466 0.6683 0.6773 0.6842
40% 0.6519 0.6530 0.6503 0.6711 0.6827 0.6877
50% 0.6529 0.6549 0.6533 0.6719 0.6827 0.6870
60% 0.6515 0.6522 0.6581 0.6742 0.6819 0.6859
70% 0.6482 0.6501 0.6514 0.6708 0.6779 0.6847
80% 0.6491 0.6423 0.6491 0.6705 0.6730 0.6835
90% 0.6199 0.6401 0.6402 0.6671 0.6788 0.6867

Table 4: Node classification result on the DBLP dataset.

5.2.2 Link Prediction

Link prediction (Lü et al. 2011) is a task that identifies whether there is a link between two

specific nodes on the network. We adopt the Enron email dataset to evaluate this task. The

methods compared include DeepWalk, node2vec, LINE (Tang et al. 2015), HTNE, and the

proposed TPPN method. For each of these methods, we use 70% of all the emails as positive

samples, and randomly sample pairs of nodes without links in 1:1 ratio as negative samples.

A support vector machine model is used to train a classifier for link identification, and the

performance of the model is tested on the rest 30% links as well as the negative samples in a

1:1 ratio. We record the accuracy and Macro-F1 of the link prediction task for the compared

methods. Table 5 shows the link prediction performance of the experiment. It is shown that

the proposed TPPN method outperforms the other methods in both accuracy and Macro-F1.

Metric DeepWalk node2vec LINE HTNE TTPN

Accuracy 0.7086 0.7944 0.8587 0.8227 0.8753
Macro-F1 0.6830 0.7884 0.8587 0.8227 0.8751

Table 5: Link prediction result on the Enron email dataset.

5.3 Monitoring the Enron Email Network

As is discussed in Section 4, the estimated CIFs for all the possible node pairs on the network

can be used to establish a monitoring scheme for interaction event networks. In the following,
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we conduct a case study on the Enron email network with this monitoring scheme.

The Enron email corpus contains all the email communications among the staff in Enron

Corporation from 1998 to 2002. A scandal was publicized in October 2001, which eventually led

to the bankruptcy of Enron Corporation. This issue was investigated by the Federal Regulatory

Commission of the United States of America, who released this email dataset. The dynamics of

the email network in Enron should show the emergence of illegal activities and the downward

health status of the company.

We apply the inference algorithm on this email dataset including 38,121 emails among 184

unique email addresses and obtain the pairwise CIFs for all the nodes. The email network

was monitored with
∑

i 6=j λij and maxi 6=j λij, and these two monitoring metrics are calculated

for each time stamp when a new email is sent. The monitoring results are shown in Figure

12. We normalize the period into the range of 0 to 1. It is shown in Figure 13a that with

the fraud activities of the company, the emails are sent more and more frequently over the

whole network. After the time when the scandal was publicized, the intensity of activities on

the network sharply increases and reaches a peak after that. Moreover, the max intensity of

interaction events over the network shown in Figure 13b rises quickly in the beginning, reaches

the peak gradually, and remains stable after that. This experiment shows the different features

for the two proposed monitoring metrics: the sum of CIFs emphasizes more on the global status

over the whole network, and the maximum value of CIFs can well characterize the activities

between the most intense pair of nodes.

6 Conclusion

In this paper, we propose a network model for interaction events based on the temporal point

process, which explicitly models the influence of historical events on later events. The rate of

interaction events for a sender-receiver interaction node pair is characterized by the conditional

intensity function of a temporal point process, which is composed of external transitional influ-

ence and repeated pattern influence and the representation vectors for related nodes. We also

propose a network representation learning algorithm to learn the node representation vectors

on such networks. Based on the pairwise rate of interaction events on the network, network

monitoring strategies are also introduced based on a summarization operation on these pairwise
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(a) Monitoring the Enron network with learned
∑
λij .

(b) Monitoring the Enron network with learned maxλij .

Figure 13: Monitoring the Enron Email Network with the proposed model.
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rates of the network. Through simulation experiments and experiments on real-world data, we

demonstrate the effectiveness of the proposed model and representation learning algorithm.

Network representation learning is a popular research topic nowadays. Researchers find

different approaches to preserve the network structure and other useful information with node

representation vectors on the network. Incorporating the dynamics of networks in network

representation learning remains a challenging problem. This paper explores a possible approach

to model the dynamics of networks by model the interaction event sequences. There are also

several directions for future research. First, richer information on the network can be further

utilized for better network representation learning, including node attributes, edge attributes,

and higher-order dynamics on the network. Second, more efficient tools for network monitoring

can be developed based on the rates of interaction events targeting specific types of changes.

Furthermore, the idea of pre-training models and transfer learning can also be adopted for this

field, such as initializing the node representation vectors with a pre-trained model.
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