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Abstract—Deep learning-based speech enhancement for real-
time applications recently made large advancements. Due to the
lack of a tractable perceptual optimization target, many myths
around training losses emerged, whereas the contribution to
success of the loss functions in many cases has not been investi-
gated isolated from other factors such as network architecture,
features, or training procedures. In this work, we investigate a
wide variety of loss spectral functions for a recurrent neural
network architecture suitable to operate in online frame-by-
frame processing. We relate magnitude-only with phase-aware
losses, ratios, correlation metrics, and compressed metrics. Our
results reveal that combining magnitude-only with phase-aware
objectives always leads to improvements, even when the phase
is not enhanced. Furthermore, using compressed spectral values
also yields a significant improvement. On the other hand, phase-
sensitive improvement is best achieved by linear domain losses
such as mean absolute error.

Keywords—speech enhancement, noise reduction, recurrent
neural network, loss functions

I. INTRODUCTION

Speech enhancement using neural networks has seen large
attention and success in the recent years [1]. While classic
single-channel statistical model-driven speech enhancement
techniques used in practical systems often only leverage signal
models for quasi-stationary noise [2], neural networks can
potentially learn more complex speech characteristics, which
also allows reduction of highly non-stationary, transient noise,
and non-speech sound sources.

Unfortunately, state-of-the-art deep learning (DL) based
noise reduction performance is currently only achieved by
architectures requiring large look-ahead, large amounts of
temporal context data input [3]–[5], or computationally ex-
pensive network architectures [3], [6]–[9]. As the performance
seems to scale with the network size this often prohibits the
use in real-time speech communication systems such as live-
messengers or mobile communication devices.

However, the training loss function is independent of the
inference complexity, and has therefore potential to improve
performance at no cost. Although the most popular choice
for regression-based DL is the mean-squared error (MSE),
this might arguably be not the optimal choice for speech
enhancement. Loss functions and training targets for speech
enhancement have shifted from the MSE between several
versions of enhancement filters or masks [3], [10] to signal-
based metrics, such as spectral magnitude-based MSE, phase-
sensitive MSE [11] and finally the complex spectral MSE [6].
Approaches originating from a source separation background

often use the time-domain MSE or signal-to-distortion ratio
(SDR) loss [5], [12].

While recent attempts were made integrating perceptually
motivated metrics in the loss function [13], [14], optimizing on
perceptual metrics alone is often insufficient, and is therefore
combined again with lower-level criteria such as the spectral
magnitude MSE. It is often observed that optimization on some
objective metrics like perceptual evaluation of speech quality
(PESQ) or short-time objective intelligibility (STOI) improves
the test results for the optimized metric, but fails to outperform
other baselines in terms of other metrics [13], [14]. While
the log-energy sigmoid weighting proposed in [15] does not
generalize as it is highly heuristic and signal level dependent,
we also could not verify improvements using a noise shaping
weighting as proposed in [14] for our tested networks and
data. Therefore, we take a step back and investigate different
basic signal distance metrics as optimization criteria, which
does not exclude the possibility to add perceptually motivated
weightings.

As in the last years a large variety of speech enhancement
loss functions have been proposed, it is impossible to quantify
their individual contribution to success due to the use of
different enhancement systems and datasets. The study in [16]
compares a selection of loss functions for a convolutional time-
domain network. These results may differ greatly from our
study due to a complex network architecture with larger delay,
an inference complexity more than 30 times larger than our
network, and training/evaluation on non-reverberant speech,
which is rarely encountered in practice. In this work, we com-
pel an overview and comparison of different frequency-domain
optimization criteria using a small recurrent neural network
suitable for on-the-edge real-time inference. We classify the
losses based on their distance metric in spectral magnitude and
complex losses, propose some new losses closing gaps in this
systematic search, and point out interesting relations. We show
that the best performing of the tested loss functions are the
compressed MSE, closely followed by the mean absolute error
(MAE), which can be attributed to a better match to the signal
distributions. We furthermore show that linear combination
of magnitude and complex losses leads to improvement in
all cases. Another interesting finding is that our results on a
reverberant speech dataset did not confirm advantages of the
recently proposed speech distortion-weighted (SDW) [17] and
noise shaping losses [14].
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II. SIGNAL MODEL

In a pure noise reduction task, we assume that the observed
signal is an additive mixture of the desired speech and noise.
We denote the observed signal X(k, n) directly in the short-
time Fourier transform (STFT) domain, where k and n are the
frequency and time frame indices as

X(k, n) = S(k, n) +N(k, n), (1)

where S(k, n) is the potentially reverberant speech, and
N(k, n) is the disturbing noise signal. The objective is to
recover a speech signal estimate Ŝ(k, n) by

Ŝ(k, n) = G(k, n)X(k, n). (2)

where G(k, n) is a filter that can be either a real-valued
suppression gain, or a complex-valued filter. In this work, we
consider only a suppression gain.

III. LOSS FUNCTIONS

In this section, we review and introduce a wide range of
training loss functions targeting recovery of the speech signal
S(k, n). All considered speech enhancement loss functions
are distance metrics between the enhanced and target spectral
representations. We can classify the loss functions summarized
in Table I in magnitude distances and complex spectral dis-
tances, which also incorporate phase information. The operator
〈Y (k, n)〉 = 1

KN

∑
k,n Y (k, n) denotes the arithmetic average

over frequency and time indices, k and n, per sequence. Newly
proposed loss functions are marked with a †. In the following,
we introduce and discuss the loss functions in Table I.

A. Linear spectral distance norms

The most straightforward choice is the L2-norm or squared
error between estimated and target signals. While this loss is
often only magnitude based as in (3) [18], [19], its complex
counterpart (4) is usually only used in direct spectral mapping
approaches [6], [20], but has strangely never been used in filter
prediction networks so far.

An actually better distance metric for the complex error is
the L1-norm or MAE, as the distribution of STFT bins follow
a more Laplacian distribution rather than Gaussian, as can
be observed in Fig. 1 by the blue curves. The L1-norm of
the magnitude and complex signal error are given by (5) and
(6), respectively, where we define the L1 norm of a complex
number as ‖xR+ jxI‖1 = |xR|+ |xI |. The complex L1-norm
loss (6) has been termed RI loss in [21].

B. Logarithmic spectral distance

To account for the logarithmic perceptual nature of the
human ear, the log spectral distance (LSD) given by (7) can be
used, which was a standard in traditional model-based speech
enhancement for decades [22]. Note that so far, the LSD has
only been proposed in methods directly predicting the log
power spectrum instead of a filter [13], [23], while we use
it to predict a filter. The log compression creates a Gaussian-
like distribution as shown in Fig. 1 by the yellow line.
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Fig. 1. Distributions of linear complex, compressed complex and log spectral
signals for 5 min noisy speech.

To extend the LSD (7) with a phase-error term, we propose
the phase-aware logarithmic spectrum distance (PLSD) by
(8), where ϕS and ϕŜ are the phase angles of S(k, n) and
Ŝ(k, n), respectively. The first term in (8), the magnitude
error, is identical to (7). The second term, the phase error, is
connected to the magnitude error by bin-wise multiplication,
which naturally decreases the phase error at bins with small
magnitude error. The constant 2 ensures that the phase error
lies within the range of [1, 3], preventing vanishing magnitude
error at zero phase error. Note that the cosine phase difference
can be calculated by cos(ϕŜ − ϕS) = <

{
ŜS∗

|ŜS∗|

}
.

C. Weighted logarithmic loss

Due to the logarithmic compression, the standard LSD
suffers from the problem of producing large errors also at low
energy bins, which are perceptually less relevant. As limiting
the log mitigates this problem only suboptimally, we propose
to apply a bin-wise weighting based on the target speech signal
in (9) with

Wlsd(k, n) = |Ŝ(k, n) + γX(k, n)|0.3, (20)

where we chose γ = 0.1 to blend in the noisy signal to prevent
applying zero weights where high noise reduction is achieved,
and apply a compression exponent of 0.3. The same weighting
can also be applied to the PLSD as given by (10).

D. Power-law compressed spectral distance

A similar dynamic compression as the logarithm can be
achieved using power-law compression [24] applied to the
magnitudes by (11) with a compression exponent 0 < c < 1.

A phase-aware compressed loss can be obtained by multi-
plying the phase terms to the compressed magnitudes as given
by (12), which was proposed in [4], [25]. A commonly used
compression exponent is c = 0.3. In contrast to the logarithm,
which has to be lower bounded to prevent undefined values,
the compression produces well-behaved positive semi-definite
values. We can observe in Fig. 1 by the red lines that the
compression broadens the distributions complex compressed
spectra, while values closer to zero occur less frequent.

E. Signal ratio losses

Commonly used ratios in speech enhancement are the
signal-to-noise ratio (SNR) and SDR. The time-domain SDR
has already been successfully used in DL based speech en-
hancement [26]–[28]. However, this metric is not restricted
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TABLE I. LOSS FUNCTIONS APPLYING VARIOUS DISTANCE METRICS ON MAGNITUDES OR COMPLEX SPECTRA. NOTATION: S = AejϕS .

metric magnitude complex

L2 magMSE
〈
|Â−A|2

〉
(3) cMSE

〈
|Ŝ − S|2

〉
(4)

L1 magMAE
〈
|Â−A|

〉
(5) cMAE

〈
|Ŝ − S|

〉
(6)

log MSE LSD
〈
| log10 Â− log10A|2

〉
(7) PLSD†

〈
| log10 | ŜS | ×

(
2−<

{
ŜS∗

|ŜS∗|

})〉
(8)

weighted log MSE wLSD†
〈
Wlsd | log10 Â− log10A|2

〉
(9) wPLSD† 〈Wlsd (-"-) 〉 (10)

compressed magComp
〈
|Âc −Ac|2

〉
(11) cComp

〈
|Âcejϕŝ −Acejϕs |2

〉
(12)

ratios SNR† − log10
〈A2〉
〈|Â−A|2〉 (13) SDR − log10

〈|S|2〉
〈|Ŝ−S|2〉 (14)

correlation magCorr† − 〈ÂA〉2
〈Â2〉〈A2〉 (15) cCorr† − <{〈ŜS∗〉}√

〈|Ŝ|2〉〈|S|2〉
(16)

speech dist. weight SDW λ
〈
|S−GS|2

〉
+ (1−λ)

〈
|GN |2

〉
(17) –

weighted L2 MSE-AMR
〈
WAMR |Â−A|2

〉
(18) cMSE-AMR

〈
WAMR |Ŝ − S|2

〉
(19)

to the time-domain, and can be equivalently computed in the
frequency domain. We employ here the scale-variant SDR
given by (14), as we believe a scaled output signal as in the
scale-invariant SDR [28] is undesired.

In analogy, computing this ratio from magnitudes is more
commonly termed the SNR, given by (13). Note that the SNR
and SDR losses, (13) and (14), are simply related to the MSE
losses (3) and (4), normalized by the speech power, as was
also pointed out in [29].

F. Correlation based losses

The speech intelligibility index and related objective metrics
[30] are based on signal envelope correlation. Motivated by
this fact, we introduce the magnitude correlation loss given
by (15).

The complex equivalent, the complex correlation coefficient
given by (16), is better known as the coherence. While the
range of (15) is [0, 1], the range of (16) is [−1, 1]. Note that
in [31], the coherence loss (16) has been termed source-to-
distortion ratio. Special properties of the ratio and correlation
based losses is that they are signal-level independent.

G. Speech distortion weighted loss

By using the signal components of speech and noise sep-
arately, the SDW loss [17], [32] given by (17) provides a
trade-off parameter 0 < λ < 1 between speech distortion and
noise reduction. Note that while (17) does not explicitly use
only magnitudes, the decomposed nature and absence of the
noisy signal X(k, n) implies that G(k, n) as zero-phase filter
is optimal. Therefore, the loss is categorized as magnitude
loss. Drawbacks of the SDW loss are that the optimal weight
λ is data dependent, and finding optimal adjustments of λ e.g.
depending on the SNR, are heuristic and difficult to determine.

H. Weighted and combined losses

In [14], a weighting for the MSE based on the AMR codec
is proposed to spectrally shape the noise error. We include this
loss given by (18) and (19), while also other weightings can
be applied to most distance metrics.

Several works have proposed combined losses using linear
combinations of magnitude-only and phase-aware metrics [4],
[8], [24] as

Lmix = (1− β)Lmag + βLcomplex, (21)

where Lmag is a magnitude-based loss, Lcomplex is a complex
signal based loss, and 0 ≤ β ≤ 1 is the mixing factor. We
investigate all useful combinations per row in Table I.

IV. NETWORK AND TRAINING

We use a recurrent network architecture based on gated re-
current units (GRUs) [33] and feed forward (FF) layers, similar
to the core architecture of [8], to estimate the enhancement
filter G(k, n). The architecture was chosen to maintain real-
time constraints without delay and moderate complexity.

The network input is the logarithmic power spectrum P =
log10(|X(k, n)|2 + ε) with online mean and variance normal-
ization [17]. We use a STFT size of 512 with 32 ms square-
root Hann windows and 16 ms frame shift, but feed only the
relevant 255 frequency bins into the network, omitting 0th and
highest (Nyquist) bins, which do not carry useful information.
The network consists of a FF embedding layer, two GRUs, and
three FF layers with rectified linear unit (ReLU) activations
and an output layer with Sigmoid activation. The enhancement
system and network architecture with layer sizes is shown
in Fig. 2, and has 2.8 M trainable parameters. The network
satisfies real-time constraints on typical CPU platforms with
a processing time of the ONNX runtime of 6 ms per second
of audio on a Intel c© CoreTMi7 QuadCore at 3.5 GHz.
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Fig. 2. Network architecture and enhancement system.
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Fig. 3. Optimization of magnitude vs. complex loss weight β and speech
distortion weight λ (see equations (17) and (21)) on validation set.

The network was trained using the AdamW optimizer [34]
with a learning rate of 10−4. The training was monitored
every 10 epochs using a validation subset. The best model was
chosen based on the highest PESQ [35] on the validation set.
Also the optimal weighting factors for β, λ etc. were optimized
by a grid search and choosing the best performing parameter
for PESQ on the validation set.

V. EXPERIMENTS

A. Dataset and evaluation metrics

We used the Chime-2 WSJ-20k dataset [36], which is,
despite only of medium size, a realistic self-contained public
dataset including matching reverberant speech and noise con-
ditions. The dataset contains 7138, 2418, and 1998 utterances
for training, validation and testing, respectively. The target
speech signals are binaural and reverberant, and the mixtures
contain noise recorded in the same rooms. Validation and test
sets are mixed with SNRs in from -6 to 9 dB. For testing, we
used only the left channel. We evaluate the speech enhance-
ment performance in terms of PESQ [35] as an indicator for
noise reduction and speech quality, and scale-invariant signal-
to-distortion ratio (SI-SDR) [28] as a phase-sensitive metric.

B. Results and discussion

Each magnitude and complex loss per row in Table I was
combined by linear mixing (21). The LSD losses were omitted
as the PLSD is already a combined metric. The mixing factors
were determined on the development set. The PESQ results
for the parameter sweeps of β are shown in Fig. 3. We can

TABLE II. PESQ (SI-SDR) ON TEST SET.

loss magnitude complex combined (21)

noisy 2.29 (1.92)

MSE 3.16 (9.57) 3.10 (9.58) 3.17 (9.58 )
MAE 3.25 (9.73) 3.08 (9.68) 3.25 (9.75)
LSD 3.04 (8.59) 3.03 (8.31) –
wLSD 3.19 (9.12) 3.21 (8.88) –
Comp 3.25 (9.45) 2.88 (9.21) 3.31 (9.42)
SNR / SDR 3.15 (9.54) 3.11 (9.62) 3.19 (9.66)
Corr 3.16 (9.56) 3.11 (9.60) 3.16 (9.58)
SDW 3.12 (9.61) – –
MSE-AMR 3.01 (9.39) 2.98 (9.45) –

observe that the combination of magnitude and complex loss
leads to an improvement for all distance metrics. We can
also see that the MAE and compressed losses outperform the
other distance metrics significantly at the optimal weight β.
Furthermore it is interesting, that the combined compressed
loss of (11), (12) achieves the highest performance with
β = 0.3, while for magnitude loss only (β = 0), compressed
and MAE are similar, but for fully complex loss (β = 1),
the compressed loss shows a significant performance drop.
Although we experimented with ”out-of-metric” combinations,
in particular combining magComp with a better complex loss,
e.g. cMAE, this did not lead to an improvement.

The PESQ and SI-SDR results for all losses on the test
set are shown in Table II, where the combined losses in
the right column use the PESQ-optimal weightings. The best
performers are highlighted in bold font. The PESQ results
align well with the development set in Fig. 3, namely that
MAE and compressed loss are good performers. While the
pure LSD is even slightly worse than the MSE, the signal
power-weighted wLSD outperforms the linear MSE. While
the PLSD shows no advantage over the LSD, the wPLSD
gives a slight advantage over the magnitude-based wLSD,
which confirms the importance of attributing low weights to
unimportant frequency bins for the LSD. It is not surprising
that the SNR and SDR perform on par with the L2 norm,
as they are merely normalized versions. The correlation-based
losses are in the same range as well. It is surprising that on
this reverberant dataset, the SDW loss performs significantly
worse than the magMSE or cMSE, which has been shown
differently on non-reverberant datasets in [17], [32]. This
highlights also the data dependency of the speech distortion
weight λ, which varies from 0.3 in [17], 0.5 in [32], and 0.6
in our case. Furthermore, on the reverberant Chime2 dataset,
we also could not confirm the effectiveness of perceptually
motivated weightings, such as the AMR weighting proposed in
[14], which performed significantly worse than the unweighted
MSEs. While the SI-SDR is less correlated with speech quality
than PESQ, it shows the best results mostly for linear losses
such as MAE and SDR. Overall we can say that magnitude
compression and carefully chosen distance metrics according
to the spectral domain’s distribution can lead to more suitable
loss functions.

75



VI. CONCLUSIONS

We have classified several signal-based frequency domain
loss functions for speech enhancement and exploited rela-
tions and performance differences on the reverberant Chime2
dataset. Our experiments showed that for such realistic data,
compressed losses are beneficial and that combined magnitude
and complex losses improve the objective speech quality.
We also showed different findings for weighted losses with
reverberant speech than for anechoic data. Future work has to
be done especially on improved phase-aware losses to further
improve the quality.
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