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Abstract

Recurrent neural network transducer (RNN-T) has shown to be
comparable with conventional hybrid model for speech recog-
nition. However, there is still a challenge in out-of-domain sce-
narios with context or words different from training data. In this
paper, we explore the semi-supervised training which optimizes
RNN-T jointly with neural text-to-speech (TTS) to better gener-
alize to new domains using domain-specific text data. We apply
the method to two tasks: one with out-of-domain context and
the other with significant out-of-vocabulary (OOV) words. The
results show that the proposed method significantly improves
the recognition accuracy in both tasks, resulting in 61.4% and
53.8% relative word error rate (WER) reductions respectively,
from a well-trained RNN-T with 65 thousand hours of train-
ing data. We do further study on the semi-supervised training
methodology: 1) which modules of RNN-T model to be up-
dated; 2) the impact of using different neural TTS models; 3)
the performance of using text with different relevancy to tar-
get domain. Finally, we compare several RNN-T customization
methods, and conclude that semi-supervised training with neu-
ral TTS is comparable and complementary with Internal Lan-
guage Model Estimation (ILME) or biasing.
Index Terms: RNN-T, customization, semi-supervised train-
ing, neural TTS

1. Introduction
End-to-end (E2E) models, which adopt a unified neural network
to learn mapping between speech and word sequences, have
been widely used for automatic speech recognition (ASR). In
recent years, significant progress has been made for E2E models
[1, 2, 3, 4, 5, 6]. Among these models, RNN-T is very promis-
ing to replace conventional hybrid models due to its streaming
nature. It has been shown that RNN-T can be optimized to sur-
pass a well-trained hybrid model for large-scale ASR in real
scenarios, in terms of both accuracy and latency [7, 8].

A main challenge for RNN-T is how to deploy the model
into a new domain which has only text data, as customization
is relatively difficult for RNN-T which learns language model
(LM) implicitly and the vocabulary is not explicitly defined.
The RNN-T model suffers from performance degradation in
mismatched target domain with words or phrases unseen from
training data. Researchers have proposed several methods to
leverage text-only data from target domain. The most straight-
forward method is to integrate an external language model (LM)
[9, 10] or do biasing [11, 12, 13] with domain-specific text, as
in traditional hybrid models. LM fusion is further improved by
training with text-only data [14, 15]. The second way is to gen-
erate speech data for the text using neural TTS models and up-
date the RNN-T model using paired speech-text data [7, 16, 17].

All these methods have shown to be helpful in adapting RNN-T
model to new domains or scenarios, using only text data.

In this paper, we explore the semi-supervised training with
neural TTS to leverage text-only data for RNN-T domain adap-
tation. Different from the method of generating speech data
offline, semi-supervised training generates the acoustic features
on-the-fly via integrating a well-trained neural TTS model into
RNN-T training. This kind of paired data generation is faster
and more flexible as no neural vocoder is needed, and it in-
creases data diversity that can be helpful for RNN-T training.
Similar methods have been used in previous studies, which
built a TTS→ASR architecture to leverage large amounts of in-
domain unpaired text for data augmentation [18, 19, 20]. Here,
we borrow the idea to increase the customization capability of
RNN-T. Our main contributions are in the following:

• We verify the effectiveness of semi-supervised training
with neural TTS for domain adaptation using an RNN-
T model well-trained with 65 thousand (K) hours of
anonymized data. The method resolves the challenge for
RNN-T in new scenarios with little performance degra-
dation on our general test set with 1.8 million (M) words.

• We give a comprehensive study on several key points that
lead to the success of semi-supervised training, including
comparison of using different neural TTS models, which
has not been fully investigated in previous studies.

• We combine the proposed method with ILME [10] or
biasing [11] for different tasks to obtain further gains in
new domains, with final ASR accuracy comparable to
that of hybrid models.

To the best of our knowledge, there is few such work reporting
similar significant gains for an RNN-T model pre-trained on a
large-scale training corpus in domain adaptation.

The rest of the paper is organized as follows. Section 2 in-
troduces the methodology of semi-supervised training through
combining neural TTS with RNN-T. Sections 3 and 4 show the
experiments and results on adapting a well-trained RNN-T to
new domains. We give a brief conclusion in Section 5.

2. Methodology
In this section, we describe the semi-supervised training frame-
work via combining neural TTS, to improve the performance of
RNN-T model in new scenarios.

2.1. Semi-supervised Training

We adopt a similar architecture like TTS→ASR chain for RNN-
T domain scaling, in which semi-supervised training is used to
leverage text-only data from a new target domain [19, 20]. It
consists of neural TTS and RNN-T as in Figure 1. The output



Figure 1: Diagram of semi-supervised training with neural TTS.
The red line represents data flow in training with text-only cor-
pus, the blue line represents training with paired TTS/ASR data.

of neural TTS is feed into RNN-T directly for joint optimization
of both models.

We first pre-train both neural TTS and RNN-T models on
separate general paired corpus, which includes real speech data
with vast diversity in content and acoustics. Then we use the
well-trained neural TTS model to generate acoustic feature for
text from target domain, with a randomly selected speaker em-
bedding. Finally, the synthetic data is combined with the paired
data to further fine-tune either the RNN-T model or both neural
TTS and RNN-T models using following loss function:

L = αLTTS + βLpaired
RNN−T + γLunpaired

RNN−T (1)

where LTTS is the Transformer TTS loss defined in [21] or
FastSpeech loss defined in [22], depending on which neural
TTS model is used. α is set to 0 if we only update the RNN-T
model. Lpaired

RNN−T is actually the loss used in RNN-T modeling
[1]. And for Lunpaired

RNN−T , the format is the same as Lpaired
RNN−T ,

the only difference is that input speech features are generated
by a neural TTS model instead of extracting from real speech.

Generally, a large amount of paired speech-text data can
be generated if we exhaust all possible permutations and com-
binations of available speakers and sentences from target do-
main. But it’s time-consuming for offline data generation as
neural vocoder is used [7, 16, 17], and some permutations may
not bring meaningful diversity to improve RNN-T on the target
domain. With a neural TTS that generates data on-the-fly, the
combination of speakers and sentences is performed randomly
in each batch, which is more effective in finding the most mean-
ingful combinations that are beneficial for RNN-T training. We
will show the superiority of our method in results part.

2.2. Neural TTS

We use a multi-speaker neural TTS model to generate acous-
tic feature for text-only data in semi-supervised training. The
multi-speaker modeling framework is similar with [23] but no
neural vocoder is used here, as only acoustic feature is needed
in our training. This is much simpler than the offline data gen-
eration pipeline which converts mel-spectrogram to speech and
then extracts new mel-spectrogram. In our work, the E2E model
with encoder-decoder structure is adopted to learn mapping
from phoneme sequences to mel-spectrograms. We try both
Transformer TTS and FastSpeech [21, 22] models for training
to see which one generates data with closer distribution to real
speech, based on the performance of RNN-T. We give a brief de-
scription of both models in experimental setup. Different from
original FastSpeech, we use the forced alignment from a pre-
trained ASR model to get the duration, instead of the teacher-
student training pipeline.

In multi-speaker neural TTS, a speaker embedding is ex-

tracted from an internal speaker model, which is pre-trained on
7363 speakers from VoxCeleb [24, 25]. We use different strate-
gies to add speaker embedding to different neural TTS systems:

• Multi-speaker Transformer TTS: the speaker embedding
is concatenated to the encoder output, before being fed
to the decoder.

• Multi-speaker FastSpeech: besides concatenating the
speaker embedding with the encoder output, we also ap-
ply conditional layer normalization to both encoder and
decoder with speaker embeddings determining the scales
and biases [26].

During training with paired corpus, the speaker embedding vec-
tor is extracted from the speech in each text-speech pair. For
unpaired corpus with only text, we select an utterance randomly
from the paired corpus to get the speaker embedding.

2.3. Adapting RNN-T to New Domain

The RNN-T model [1] consists of an encoder, a predictor and
a joint network. The encoder converts an acoustic feature x(t)
into a high-level representation henc(t). And the predictor pro-
duces another high-level representation hdec(u), based on the
previous non-blank target y(u − 1) predicted by the RNN-T
model. The joint network is a feed-forward network that com-
bines the encoder and predictor output to get z(t, u), which is
used to calculate the final posterior of each output token, with a
linear transformation followed by a softmax.

Adaptation [27] is usually applied to fit speech models to
new scenarios or speakers. There have been detailed investiga-
tions on which components of the RNN-T model should be up-
dated to get the best results for different tasks [7, 28]. Following
previous studies, we adapt an RNN-T model to new domains by
updating different components of RNN-T without losing per-
formance on the general domain test set.

2.4. Training Strategy

Our semi-supervised training is implemented using the objec-
tive function defined in Eq. (1) by combining both paired and
unpaired data. We use the corpus for model pre-training as
paired corpus, and LTTS is calculated for batched data from
TTS corpus, Lpaired

RNN−T is calculated for batched data from ASR
corpus. The paired data is added to prevent the adapted models
from straying too far away by synthetic data, which has a dis-
tribution different from that of real speech [19]. Here, the con-
sistency loss is not used as it provides only slight improvements
for a well-trained ASR model [20], which is also observed in
our experiments.

In our work, we adopt the iterative training method to lever-
age both paired and unpaired data, that is, using paired data in
one batch and unpaired data in the following batch. The switch-
ing frequency can be tuned to make a trade-off in performance
between source and target domain. We compare the iterative
training with other methods which mix paired and unpaired data
in one batch, and find that there is no difference in performance
when training converges. But our method can be used to avoid
the effort of tuning weighting coefficients in Eq. (1), as it’s a
bit tricky to pre-define the coefficients without knowing the nu-
merical range of each loss before training. We just use paired
and unpaired data in an iterative way, letting the model learn by
itself during training until converge.

There are always robustness issues in speech generated by
neural TTS models, especially for Transformer TTS in which
attention is used. We introduce a data filtering mechanism to



remove bad data on-the-fly, based on the focus rate which mea-
sures how an attention is close to diagonal [22]. Here, we use
the maximal focus rate of all heads at all layers to do filter. The
threshold for filtering is obtained based on a development set.
We also set a lower bound on the number of samples to be used
in each batch, to avoid filtering too many utterances. The data
filtering mechanism is only applied on Transformer TTS, not on
FastSpeech which has few robustness issues as shown in [22].

3. Experimental Setup
3.1. Datasets

In our experiments, the RNN-T model is well-trained on 65
thousand (K) hours of transcribed Microsoft data until full con-
vergence [7]. The neural TTS model is well-trained on about
1K hours of data including our internal TTS corpus, LibriTTS,
VCTK and LJSpeech [29, 30, 31]. We evaluate the effectiveness
of our method on two different test sets: one has 800 utterances
from a new domain consisting of common words but with out-
of-domain (OOD) context (OOD task); the other has 11K utter-
ances from conversational data containing significant amount of
out-of-vocabulary (OOV) words (OOV task). All training and
test data are anonymized data with personally identifiable infor-
mation removed.

The domain-specific text data are prepared based on the
characteristics of different tasks. For the OOD task, the train-
ing texts are obtained by randomly parsing the grammar in the
new domain and also using the crowd sourcing method as de-
scribed in [32], 75K sentences are generated for training. For
the OOV task, we pre-define two lists: one is an OOV word list
with 2.5K names of entities, the other is a pattern list with 509
frequently used patterns. We generate in total 1.27 million (M)
sentences by doing all possible permutations and combinations
of the OOV words and patterns. We also enlarge the OOV word
list and show the impact in results part.

3.2. Model Configurations

The baseline RNN-T model consists of a 6-layer unidirectional
LSTM for the encoder and 2 layers of the same structure for
the predictor. The LSTM layer has 1024 hidden units in each
layer for regular-sized model and 768 hidden units with singular
value decomposition (SVD) [33] for a small-sized model. The
acoustic feature for the encoder is formed by stacking eight 80-
dimension log Mel filter bank features calculated for every 10
milliseconds (ms) speech. The output layer in joint network
models 4K word piece units.

We follow [21] for the configuration of Transformer TTS.
The encoder and decoder of our multi-speaker Transformer
TTS consists of 6 layers, with 512 hidden units in each layer,
and we use 8 heads in each multi-head attention block. The
model of multi-speaker FastSpeech follows the basic struc-
ture of the original FastSpeech [22], which consists of 6 feed-
forward Transformer blocks in both phoneme encoder and mel-
spectrogram decoder, the number of attention heads is set to 4.
Other model configurations are the same as original papers un-
less otherwise stated. For all neural TTS models, the size of
phoneme vocabulary is 110 and the output acoustic feature is
an 80-dimension log Mel filter bank calculated for every 10ms
of speech. The speaker embedding is a 512-dimension vector
extracted from a well-trained speaker model, which is reduced
to 128 dimensions using a linear projection layer and is then fed
to either Transformer TTS or FastSpeech.

For multi-speaker Transformer TTS, we add guided atten-

Table 1: Performance of semi-supervised training in new do-
mains. WERR is the relative WER reduction. OOD Task has
out-of-domain context; OOV Task has out-of-vocabulary words.

Method WER (%) WERR (%)

OOD Task
Baseline 16.52

+ Semi-supervised Training 6.37 61.4
OOV Task
Baseline 27.50

+ Semi-supervised Training 12.70 53.8

tion loss [34] to stabilize alignment on training data with big di-
versity in acoustics and prosody. As the loss introduces strong
constrain on the attention to fit a diagonal alignment, hurting
prosody, we remove it after the alignment is good enough, and
further fine-tune the model to get more natural synthetic speech.

4. Results
In this section, we conduct evaluations on two different test sets
to verify the effectiveness of semi-supervised training with neu-
ral TTS: one containing out-of-domain context and the other
containing OOV words. We perform beam search inference
with a beam size of 5 for all evaluations. We also give detailed
analyses on several key points: 1) RNN-T updating; 2) natu-
ralness and diversity of synthetic data; 3) relevancy of training
text to target domain. Finally, we do comprehensive study on
different methods for customization, and combine them to get
more gains for each task.

4.1. Adaptation to New Domains

In this experiment, we adopt multi-speaker Transformer TTS
for synthetic data generation, and several common pronuncia-
tions are included for each OOV word. The small-sized RNN-T
model is used for the OOD task, and the regular-sized model
is used for the OOV task. We update the 2 upper layers of en-
coder, all layers of predictor and joint network during training.
From results in Table 1, we observe significant improvements
for both tasks, with 61.4% and 53.8% relative WER reductions
for the OOD and OOV task, respectively, which is comparable
or even better than previous studies [7, 16, 17, 18, 19, 20]. It
shows that semi-supervised training with neural TTS is helpful
in adapting RNN-T to new scenarios with only text data, even
for a well-trained RNN-T model. The consistent improvements
in two scenarios also show that our Transformer TTS model
can generate very natural speech with vast diversity in acoustics
given text with either out-of-domain context or OOV words.

We also compare different methods of synthetic data gener-
ation, and find that on-the-fly generation (WER=6.37%) leads
to more gains than offline generation (WER=9.33%), as more
diversity is introduced when we combine speaker embeddings
and sentences randomly in one batch. Furthermore, we evaluate
the regular-sized model on our general test set with 1.8M words,
there is only slight degradation after using semi-supervised
training, WER increases from 9.64% to 10.26%.

4.2. Method Analysis

We first conduct ablation study in OOV task to verify the ef-
fectiveness of each module when updating RNN-T with syn-
thetic domain-specific data. Table 2 lists the results of fixing



Table 2: Comparison of adapting different modules and their
combinations, only the 2 upper layers of encoder are updated
in all experiments. Y: update, N: fixed.

Encoder Predictor Joint WER (%)

N N N 27.50
Y Y Y 12.70
Y N Y 15.07
Y N N 18.33
N Y Y 19.88
N N Y 16.83
N Y N 26.41

Table 3: Comparison of using different neural TTS models.

System WER (%)

Baseline 27.50
Transformer TTS + RNN-T 12.70

FastSpeech + RNN-T 14.59

each component during adaption. From Table 2, we can see
that fixing more components leads to decrease in performance,
especially when we fix encoder or joint network. But there is an
exception that updating predictor & joint network (19.88%) per-
forms worse than updating only joint network (16.83%). This
could be attributed to the training text being generated using
pre-defined patterns, which makes the context in training and
test not fully matched.

Then we analyse if a better neural TTS, which generates
more natural speech with larger diversity, can help reduce the
mismatch between synthetic and real speech. We adopt Trans-
former TTS and FastSpeech for comparison. Table 3 lists the
WER results in OOV task. It can be seen that better perfor-
mance is obtained when using Transformer TTS, about 12.9%
relative WER reduction compared with using FastSpeech. This
demonstrates that attention mechanism contributes to more flex-
ible duration prediction, which helps generating speech with
larger diversity that is closer to real speech. Although there
are a few attention errors, we can remove such data using the
proposed filtering mechanism.

We further study the performance of using text corpus cov-
ering different number of OOV words for the OOV task. The
newly added OOV words are selected randomly from a very
large pool. Table 4 shows that less gain is obtained when we
add more OOV words that are irrelevant to test set. There is only
an 11% relative WER reduction when we use 1M OOV words,
which is enlarged by about 400 times to have very low relevancy
ratio. We can draw the conclusion that text with high relevancy
(the percentage of sentences which include OOV words that oc-
cur in test set) is crucial for our semi-supervised training.

4.3. Comprehensive Study on Customization Methods

Several methods have been proposed to improve E2E models
for customization, such as ILME [10] or biasing [16]. We com-
pare the effectiveness of different methods and combine them
to get more gains in target domain. For the OOD task which in-
cludes out-of-domain context, we apply semi-supervised train-
ing, ILME and splicing data, where splicing data means gener-
ating paired data by searching the speech segment of each word
in general training corpus and concatenating them to form new

Table 4: Comparison of using text corpus covering different
number of OOV words (names of entities). The relevant OOV
words are heavily diluted with many irrelevant OOVs added.

# of OOV Words WER (%)

2.5K 12.70
10K 16.38
50K 19.96

200K 22.97
1M 24.47

Table 5: Comparison & combination of different customization
methods. WERR is the relative WER reduction. OOD Task has
out-of-domain context; OOV Task has out-of-vocabulary words.

Method WER (%) WERR (%)

OOD Task
Baseline 16.52

+ Semi-supervised Training 6.37 61.4
+ ILME 5.71 65.4
+ Splicing Data 5.02 69.2

+ Semi-supervised Training 4.33 73.8
+ ILME 3.74 77.4

OOV Task
Baseline 27.50

+ Semi-supervised Training 12.70 53.8
+ Biasing 11.30 58.9

utterances in the target domain [32]. For OOV task which in-
cludes OOV words, we add biasing that is similar as [35].

All results are shown in Table 5. We have several observa-
tions: 1) semi-supervised training is comparable to ILME (here
we use much less text data for training than ILME, 75K VS
10M). 2) both semi-supervised training and ILME are worse
than using splicing data, which demonstrates that using real
paired data is the most effective method. However, this method
is not always feasible especially when OOV words exist. 3)
the combination of all methods by adding one after another
can achieve more than 10% relative WER reduction from each
method, which demonstrates that the semi-supervised training
is complementary to others via bringing in more meaningful di-
versity that is helpful for RNN-T in target domain.

5. Conclusions
In this paper, we have demonstrated that using semi-supervised
training with neural TTS is an effective way to improve RNN-T
performance in new domains that only text data are available.
There are relative WER reductions of 61.4% and 53.8% for the
tasks with out-of-domain context and OOV words, respectively.
We further investigate some key reasons leading to the signif-
icant improvements. We find that the quality of neural TTS
model and the relevancy of text to target domain are most im-
portant. We finally compare semi-supervised training with other
customization methods, and get more gains after combining all
of them, about 77.4% relative WER reduction for the task with
out-of-domain context, and 58.9% relative WER reduction for
the task with OOV words. In the future, we will further im-
prove our neural TTS on larger corpus with more acoustic and
prosody diversity, and try to combine different TTS models for
multi-agent joint training.
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