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Abstract

Improving multilingual end-to-end (E2E) automatic speech
recognition (ASR) systems have manifold advantages. They
simplify the training strategy, are easier to scale and exhibit
better performance over monolingual models. However, it is
still challenging to use a single multilingual model to recog-
nize multiple languages without knowing the input language,
as most multilingual models assume the availability of the in-
put language. In this paper, we introduce multi-softmax model
to improve the multilingual recurrent neural network transducer
(RNN-T) models, by having language specific softmax, joint
and embedding layers, while sharing rest of the parameters.
We extend the multi-softmax model to work without know-
ing the input language, by integrating a language identification
(LID) model, that estimates the LID on-the-fly and also does the
recognition at the same time. The multi-softmax model outper-
forms monolingual models with an average word error rate rela-
tive (WERR) reduction of 4.65% on Indian languages. Finetun-
ing further improves the WERR reduction to 12.2%. The multi-
softmax model with on-the-fly LID estimation, shows WERR
reduction of 13.86% compared to the multilingual baseline.
Index Terms: multilingual, RNN-T, end-to-end, language iden-
tification, streaming ASR

1. Introduction
There are about 6900 languages in the world and about 99% of
them are under-resourced for building ASR systems [1]. The
problem of low resource language is well addressed by multi-
lingual ASR systems. It is now a common practice to train mul-
tilingual acoustic models (AM) by pooling data from multiple
languages [2,3]. A single multilingual model often outperforms
monolingual models [4]. Moreover, it simplifies the training
and maintenance process as the same model can be deployed
across multiple languages. Meanwhile, end-to-end (E2E) ASR
models are emerging as a popular alternative to conventional
hybrid ASR, as they simplify the ASR systems by directly trans-
lating the input speech sequence to an output text with a single
neural model. Recurrent neural network transducer (RNN-T)
[5–10] is a popular streaming E2E model suitable for real-time
applications. Hence, there is a significant interest in advancing
the performance of multilingual RNN-T models [4, 11–15]. In
this work, we aim to advance the multilingual RNN-T model
performance with the proposed architecture.

With increasing adoption of voice assistants, newer scenar-
ios arise. Users now expect a truly multilingual experience,
where they interact with voice assistants in any language, inter-
changeably, without explicitly setting the language of the con-
versation, and also expect the response in real-time. This is
challenging with the current multilingual systems (both hybrid

and E2E), as most multilingual models need to know the in-
put language before inference, otherwise the recognition accu-
racy significantly drops [4]. A common approach to provide a
truly multilingual experience is by running multiple monolin-
gual models, along with language identification (LID) model in
tandem. Such an architecture with so many monolingual mod-
els, is not only cumbersome to maintain, but also not suitable for
on-device applications, as the model size increases linearly with
the addition of languages. This can be alleviated by designing a
multilingual ASR model, which does not require the LID input
beforehand, and is streaming in nature. We refer to such a model
as LID-free streaming multilingual ASR model. In this work,
we also propose a novel multilingual RNN-T model which is
LID-free, streaming and multilingual.

We propose a streaming multilingual RNN-T model with
language specific softmax, joint and embedding layers, while
sharing encoder and prediction layers across languages. We re-
fer to this configuration as the multi-softmax model. We further
extend the same model to LID-free version, by embedding the
LID model into the multi-softmax model. The combined model
is able to estimate the LID on-the-fly and also produce text out-
put in real-time.

2. Relation to prior work
Several studies have focused on building multilingual or mul-
tidialectal AMs using the hybrid modeling pipeline [16–27].
These can be classified into three categories: transfer learning,
multi-task learning and ensemble learning. In transfer learn-
ing [19, 20], a well trained AM from high-resource language is
used to bootstrap the target language AM. In multi-task learn-
ing [21–24], multiple languages are pooled together and trained
jointly with distinct output layers for each language. In ensem-
ble learning [25–27], output posterior probabilities of multiple
pretrained models are combined to generate a single output.

Similarly transfer learning [14, 15] and multilingual mod-
eling is proposed in the context of E2E ASR models as well
[4, 11–13, 28]. The authors in [4] proposed a streaming multi-
lingual RNN-T model with language specific adapters and uti-
lizing the language ID to improve the performance. On simi-
lar lines, [13] proposed a Transformer-Transducer multilingual
model and is adapted based on the language ID. Audio-to-bytes
[29] used bytes instead of graphemes in order to scale a multi-
lingual model to support a large number of languages without
increasing the size of the softmax. A multilingual sequence-to-
sequence (S2S) model using shared encoder and multiple de-
coders, one decoder per language group, was proposed in [28].
Our proposed method differs from the above in terms of the
model architecture. We have language specific output layers
to disambiguate output units between languages and thus mit-
igating inter-language confusion. Moreover none of the above



approaches is LID-free, while our model is.
Recently, LID-free multilingual models are proposed in

[11] and [12]. [11] introduces LID tokens as part of the symbol
set and adds them to the start and end of the utterance. However,
it is in context of S2S models and is not streaming in nature. Au-
thors in [12] use acoustic LID embeddings along with language
tokens at the output, instead of using a predefined onehot lan-
guage ID. In contrast, we propose a new multilingual RNN-T
architecture, which we extend to LID-free scenario.

3. Multilingual RNN-T model
A RNN-T model [5] has mainly three components namely: en-
coder, prediction network and joint network. Encoder trans-
forms the acoustic feature vector into higher dimensional repre-
sentation. A prediction network transforms the previously pre-
dicted non-blank symbol into higher order representation. The
joint network along with softmax combines the encoder and
prediction network representation to produce posterior proba-
bilities over the symbols. A naive multilingual RNN-T model
can be trained by simply pooling the training data and output
symbols from all languages, referred to as vanilla model. The
vanilla model is simple, yet is a LID-free streaming multilin-
gual model that recognizes multiple languages without need-
ing the input LID. Providing the language information to the
vanilla model, via language specific onehot vector significantly
improve the performance [4] . The resulting model with onehot
embedding at input is referred as the onehot model. The one-
hot model needs to know the spoken language ID apriori and
hence is not LID-free. We use vanilla and onehot models as the
multilingual baselines to compare our methods with.

4. Multi-softmax model architecture
We propose a multi-softmax architecture for multilingual RNN-
T model as shown in Fig. 1. The proposed architecture has mul-
tiple softmax layers (one per language) and each softmax layer
is composed of corresponding language-specific symbols. This
contrasts with vanilla and onehot models which use single soft-
max layer composed of union of symbols from all languages.
Multi-softmax model has language-specific joint and embed-
ding layers, with shared encoder and prediction networks.

During training, each mini-batch consists of data randomly
sampled from a particular language, and hence only the shared
and language specific parameters are updated for that mini-
batch. The language is selected randomly from the distribu-
tion obtained over the number of hours of training data. During
inference, the posterior computation and beam search decod-
ing is done only for the symbols corresponding to the spoken
language. This is in contrast with the vanilla and onehot mod-
els, where the posteriors are computed over entire symbol set.
Multi-softmax model assumes the availability of spoken lan-
guage ID and hence is not LID-free. The multi-softmax model
can be extended to the LID-free version and is discussed in Sec-
tion 4.2. The performance of the multi-softmax model for a
particular language can be further improved by finetuning the
shared and language specific parameters to that language (while
discarding the remaining parameters).

4.1. Multi-softmax with language specific prediction (LSP)
networks

The task of predicting the next symbol, is language dependent,
and hence, we explored having a separate prediction network

Figure 1: The multi-softmax model.

Figure 2: The blue solid box depicts multi-softmax with lan-
guage specific prediction network (LSP) and green dotted box
shows an integrated LID model.

per language as shown in the blue solid box in Fig. 2. This
model is referred to as multi-softmax LSP model. Training and
inference steps are same as done in multi-softmax model.

4.2. Multi-softmax with streaming LID

The multi-softmax model is extended to LID-free version by in-
tegrating a LID model. This is done by using LID specific out-
put and softmax layer as shown by green dotted box in Fig 2.
For the sake of convenience, LID integration is shown with
multi-softmax LSP network, however, same can be done with
multi-softmax model, referred to as multi-softmax LID model.

Training and inference: The output symbols of the LID
model is simply the list of all unique symbols representing all
the languages. The LID model is trained jointly with the RNN-
T model using the same training data, except that the output
labels for every frame are replaced with the corresponding lan-
guage symbol. We use cross entropy (CE) loss, applied at every
frame, to train the LID model. The final loss is the addition of
RNN-T and CE loss; however, CE loss only affects the encoder
and LID specific parameters. During inference, beam search



Table 1: Training and test data size in hours. Vocabulary size
(based on graphemes) per language is also shown.

Language En-IN Hi-IN Ta-IN Gu-IN
Train 10077 10591 925 1205
Test 46 19 14.3 14.5

Vocab size 133 59 97 123

decoding is run for every language in parallel. The LID model
is also run in tandem to produce language posteriors at every
frame. As the entire audio is processed in a streaming fashion,
beam-search decoded outputs are produced for every language.
Meanwhile, LID posteriors averaged over all frames are com-
puted for each language. Finally, the output corresponding to
the language with the highest average posterior is chosen as the
ASR hypothesis.

The parsimonious multi-softmax LID model requires lower
memory and fewer computations compared to using a series
of language-dependent monolingual models. First, a new lan-
guage addition adds only a few parameters in the multi-softmax
LID model corresponding to the output and embedding layers
whereas a new monolingual model requires the full network of
parameters. Second, during decoding, the computational com-
plexity is lower for the multi-softmax model as the forward
propagation through the shared encoder is performed only once
for all languages. However, in the case of monolingual models,
each individual model has to perform a separate forward propa-
gation per language. We further attempt to reduce the computa-
tional cost, by switching off the decoders for languages whose
confidence scores fall below a certain threshold and is discussed
in detail in Section. 6.3.

5. Experimental details
We conduct experiments using four Indian languages, namely:
Indian English (En-IN), Hindi (Hi-IN), Tamil (Ta-IN) and Gu-
jarati (Gu-IN). The train and test data size per language is
shown in Table 1. The output vocabulary consists of unique
graphemes from the respective language. Graphemes are dis-
tinct between languages. We also include symbols with B
prefix to be able to convert grapheme sequence into word se-
quence. The final vocabulary for a language includes the re-
spective graphemes, graphemes with B prefix and <blank>
symbol. The vocabulary size per language is shown in Table 1.

All experiments use 80-dimensional log mel filter bank fea-
tures, computed every 10 milliseconds (ms). The encoder is
fed with 640-dimensional features, obtained by stacking 80-
dimensional features from eight frames in the past. The frames
are shifted by 30ms. The encoder and prediction networks are
6 and 2 layer LSTM networks respectively. The LSTM layers
are unidirectional with 1024 units. All models are trained using
PyTorch [30] toolkit.

6. Discussion of results
Tables 2, 3 and Table 4 summarize the experimental results for
monolingual and different multilingual models. We next discuss
these results in detail.

6.1. Results for multi-softmax model

Table 2 compares results for monolingual and different multilin-
gual models that assume the input language to be known. The
vanilla model performance is much inferior compared to mono-
lingual models, and conditioning it with onehot vector signifi-

cantly improves the WER as also reported in [4].
The multi-softmax model performs better than the mono-

lingual models on 3 out of 4 Indian languages, with an aver-
age WERR reduction of 4.65%. It also shows better perfor-
mance than vanilla and onehot models on all languages as seen
from Table 2. The multi-softmax LSP model with separate pre-
diction network for each language improved the performance
marginally on Hi-IN and Ta-IN, while had regressions on the
rest of the languages. Since, having a prediction network per
language does not help much, in future, we plan to experiment
with a separate prediction network for a group of languages as
done in [28] for S2S models.

Table 3 compares the WER of the same monolingual mod-
els (trained from scratch) with monolingual models seeded with
onehot and multi-softmax multilingual models presented earlier
in Table 2. We refer to these as multilingual finetuned models.
The multi-softmax finetuned model is consistently better than
the monolingual and onehot finetuned models, with 12.22%
WERR reduction over monolingual models. Therefore, we pro-
pose to use multi-softmax models as the preferred seed model
to train the respective monolingual models.

Table 2: WER[%] comparison for monolingual and different
multilingual models where the input language is known apri-
ori. The average WER is obtained using word weighted WER.

En-IN Hi-IN Ta-IN Gu-IN Avg. WERR

Monolingual 24.67 16.2 32.92 27.33 23.97 0

Multilingual
Vanilla 35.21 22.94 48.56 28.83 32.45 -35.35

Multilingual
Onehot 25.88 18.88 41.92 27.9 26.7 -11.37

Multi-softmax 23.35 17.2 31.18 23.86 22.86 4.65

Multi-softmax
LSP 23.46 16.84 30.3 24.28 22.73 5.17

Table 3: WER[%] comparison for monolingual models trained
from scratch versus monolingual models trained from multilin-
gual models as seed.

En-IN Hi-IN Ta-IN Gu-IN Avg. WERR

Monolingual 24.67 16.2 32.92 27.33 23.97 0

Onehot
finetuning 23.65 16.64 31.36 26.01 23.24 3.05

Multi-softmax
finetuning 21.93 15 28.45 22.66 21.04 12.22

6.2. Results for multi-softmax with integrated LID

Table 4 depicts results for LID-free multilingual models,
namely vanilla and multi-softmax LID model, that do not need
to know the input language. The multi-softmax LID model per-
forms significantly better than the vanilla model, with 13.86%
WERR reduction on an average. Both vanilla and multi-
softmax LID models are susceptible to errors in identifying
the input language. To measure the impact of LID error rate,
we conduct an oracle experiment where we choose the output
from the decoder corresponding to the known input language as
shown by multi-softmax LID Oracle results in Table 4. We ex-
pected oracle results to be close to multi-softmax results (upper



Table 4: WER[%] for different multilingual models where the
input language is not known.

En-IN Hi-IN Ta-IN Gu-IN Avg. WERR

Multilingual
Vanilla 35.21 22.94 48.56 28.83 32.45 0

Multi-softmax
LID 28.92 20.26 35.83 31.55 27.95 13.86

Multi-softmax
LID Oracle 25 18.71 33 25.30 24.45 24.65

Table 5: LID accuracy on Indian languages for vanilla and
multi-softmax model.

En-IN Hi-IN Ta-IN Gu-IN Avg.

Multilingual
Vanilla 88.7 86.2 90.4 85.5 87.7

Multi-softmax
LID 94 90.2 95.8 83.1 90.09

bound), however, the difference could be due to the LID loss
back-propagating through the encoder network. This could be
avoided by having a separate LID model, which would however
increase the model size.

We also measure the LID accuracy of vanilla and multi-
softmax LID model by computing the percentage of utterances
with matching scripts between hypothesis and transcription.
Since the script is unique for Indian languages, correctly iden-
tifying the script implies correct language identification. The
LID accuracy of both the models are shown in Table 5. The
LID accuracy of multi-softmax LID model is better compared
to vanilla model, owing to an integrated LID model.

6.2.1. Model size and decoding cost

The number of parameters per model is shown in Table 6. The
multi-softmax LID model has comparable model size as vanilla
with 1.6% more parameters. Comparing the decoding cost, the
vanilla model runs a single beam search decoding on a union of
vocabulary, while the multi-softmax LID model runs multiple
beam-search decoding on a smaller language specific vocabu-
lary. Since multiple beam-search decoding is run in tandem,
multi-softmax LID model is expected to have higher computa-
tional cost. Note that encoder forward pass is done only once
and all decoders use the same. We attempt to reduce the com-
putational cost by employing early stopping as discussed next.

6.3. Early stopping for multi-softmax LID decoders

The key idea to early stopping is to switch off the decoders,
whose LID scores fall below a particular threshold. We first
compute the confidence score, sl(t) for each language l at time
t, as follows:

sl(t) =
t∑

t
′
=0

logPt
′ (l) (1)

Table 6: Number of model parameters (in millions) for different
models. Due to space constraints, monolingual model is abbre-
viated as Mono. and multi-softmax as MS

Mono. Vanilla Onehot MS MS
LSP

MS
LID

# of
parameters 67.98 68.95 68.98 68.55 118.94 70.08

where Pt
′ (l) is posterior probability obtained from LID model

at time t
′

for language l. Let slmax(t) denote the score corre-
sponding to the language lmax which has the maximum score at
time t. A decoder is turned OFF if it satisfies the following two
conditions a) t > τ , where τ is the minimum wait time (number
of frames) where all decoders run b) sl(t) < slmax(t) − sth.
The minimum wait time is necessary to have reliable estima-
tions from LID model. τ and sth are tunable parameters. To
measure the decoding cost, we define average decoder time
Tavg as follows:

Tavg =

L∑
l

T off
l (2)

where, L is the number of languages, T off
l =

t
off
l
T

represents
fraction of total frames the decoder l was active. toffl is the
number of frames after which the decoder l was turned off. T
is the total number of frames in an utterance.

Table 7: Trade-off between WER and Tavg for different settings
of τ and sth. The WER is computed on subset of Hi-IN test set
with 3980 utterances.
τ (ms) sth WER Tavg LID accuracy
∞ ∞ 21.84 4 92.4

1000 0.2 21.97 3.96 92.1
100 0.2 22.59 2.92 91.3
30 0.2 25.73 1.52 86
30 0.5 23.14 1.72 90
10 0.2 25.83 1.04 85.7

Trade-off between Tavg and WER with different settings of
τ and sth is shown in Table 7. Setting τ or sth to ∞ corre-
sponds to running all decoders for the entire audio frames and
hence is same as conventional multi-softmax LID model. Re-
ducing τ or sth, reduces Tavg with a marginal increase in the
WER. Let us consider the setting of τ = 30 and sth = 0.5.
Here all decoders run for atleast 30 frames (900ms). Post 30
frames some of the decoders are switched off that satisfy the
switching off criterion. Switching off some of decoders early,
at-times could result in switching off the correct decoder as re-
flected by the marginal increase in WER and reduced LID ac-
curacy. However, there is a significant reduction in Tavg from
4, that is running all 4 decoders, to 1.72, analogous to running
only 1.72 decoders. The above framework can be used to arrive
at an appropriate setting with acceptable computational cost and
WER trade-off. The correspondence between Tavg and CPU in-
ference cost can be obtained by computing CPU utilization met-
rics, with experiments done under identical CPU and memory
profile. We reserve that study for future.

7. Conclusions
This work presents the multi-softmax RNN-T model, show-
ing consistent improvements over monolingual and prominent
multilingual baselines. When finetuned with monolingual data,
we also show that the multi-softmax model serves as a good
seed model which results in an average WERR reduction of
12.22%. Then we proposed the multi-softmax model with an
implicit LID detector which makes it LID-free. This model
yields 13.86% WERR reduction over the multilingual vanilla
model. Finally, we propose early stopping to reduce the decod-
ing cost, resulting in 57% reduction in the Tavg with marginal
increase in the WER.
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