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Abstract
Sparsity is becoming arguably the most critical dimension
to explore for efficiency and scalability, as deep learning
models grow significantly larger and more complex. After all,
the biological neural networks, where deep learning draws
inspirations, are naturally sparse and highly efficient.

We advocate a new approach to model sparsity via a new
abstraction called Tensor-with-Sparsity-Attribute (or TeSA) to
augment the default Tensor abstraction, which is fundamen-
tally designed for dense models. TeSA enables the sparsity
attributes and patterns (e.g., for pruning and quantization)
to be specified, propagated forward and backward across
stages, and used to create highly efficient, specialized opera-
tors, taking into account any special sparsity support from
the underlying hardware. The resulting SparGen framework
is flexible in accommodating more than 10 popular sparsity
schemes, is efficient in delivering more than 8x speedup
compared to existing solutions like TVM and cuSPARSE, and
is extensible to incorporate new innovations through new
sparsity attributes, new propagation rules, new optimized
sparse operators, or new sparsity-aware accelerators.

1 Introduction
As deep neural network (DNN) models become large and
complex, they are inevitably getting sparse (or made sparse)
for efficiency, just as manifested in the highly sparse biologi-
cal neural networks [65]. A DNN model is usually modeled
as a data flow graph (DFG), where each node in the DFG is
an operator with one or multiple input and output tensors.
Model sparsity involves introducing some specific sparsity
patterns on the tensors; for example, to quantize some ten-
sors with lower precision (e.g., 16 to 8-bit); to prune the
model by setting the value of some (or all) part of some
tensors to zero (e.g., block sparsity [42, 44] or fine-grained
sparsity [29, 35, 36]); or to apply the combination of quan-
tization and pruning to a model. With careful quantization
and pruning, a DNN model can be compressed into a smaller
memory footprint without losing too much accuracy. With

DNN operators customized for the sparsity patterns, the re-
sulting model will, hopefully, come with a lower inference
latency.
Unfortunately, deep learning systems are not yet effec-

tive in exploiting sparsity: the increase in sparsity does not
translate into corresponding gains in efficiency for a vari-
ety of reasons. First, the computation kernels for general
sparse operations remain far from optimal. For example, cuS-
PARSE [2], the CUDA library for sparse matrix operations,
has been shown to underperform cuBLAS, its dense coun-
terpart, even when the sparsity of the matrices reaches 98%,
albeit at a significant smaller memory footprint. Second, as
DNN computation tends to take multiple stages, the spar-
sity patterns might vary significantly across stages, making
it hard to develop sparsity-aware optimizations for end-to-
end gains. Finally, any effective sparsity-aware optimization
might involve additional support across the vertical stack,
from the deep learning framework, compiler, optimizer, op-
erators and kernels, and all the way to hardware. Insufficient
support at any of the layers could lead to inefficiency.
We therefore propose SparGen, a new framework that

treats sparsity as a first-class citizen, with the following
design principles. The design is customizable and extensible to
accommodate new innovations onmodel sparsity; it is end-to-
end and covers the whole-stack, rather than being limited to
one operator or to one layer; it aims for extreme performance
without sacrificing general applicability; it supports iterative
exploration of different sparsity patterns to find the best.

At the core of SparGen is a new abstraction, Tensor-with-
Sparsity-Attribute or TeSA, which augments the standard ten-
sors with attributes to describe sparsity properties and pat-
terns. Examples include low-precision weights, zero weights,
and block sparsity. A set of TeSA propagation rules guides the
forward and backward propagation of sparsity attributes for
end-to-end coverage. Some of those rules can be generated
automatically (e.g., by inferring how all zero weights are
propagated via operators); others can be specified directly
using domain knowledge.
With the sparse attributes in TeSA, SparGen has the op-

portunity to generate the best execution plan, taking into
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account factors such as sparsity-aware hardware accelera-
tion and special sparse operators/kernels in certain sparsity
patterns and conditions. For each operator, SparGen can
perform code specialization to generate efficient kernels for
individual cases, instead of resorting to generic sparse ker-
nels that are known to be inefficient. This is how SparGen
achieves extreme efficiency without sacrificing generality.
SparGen allows a set of transformation rules to be speci-

fied to produce promising execution plans for consideration.
Those rules enable SparGen to decompose complex sparsity
attributes into a combination of simple ones with known
effective optimizations, and then to make optimal decisions
across the stack by evaluating execution plans.
Because SparGen covers the entire stack all the way to

codegen on accelerators, SparGen is able to provide the
ground-truth performance metrics that can help evaluate
different execution plans given a TeSA with fixed sparsity at-
tributes and also offer valuable feedback for practitioners to
search for the set of sparsity attributes with the ideal tradeoff
between performance and accuracy.

SparGen is highly customizable and extensible.With TeSA,
one can define new sparsity properties and patterns for new
ways of exploiting sparsity, provide new TeSA propagation
rules, and incorporate new sparsity-aware operators, kernels,
and hardware accelerators into transformation rules.
We have used SparGen to implement 19 popular model

sparsity schemes proposed in the deep learning community.
Our experiments on both Nvidia and AMD GPUs show that
SparGen achieves more than 8x speedup, compared to exist-
ing solutions such as TVM and TensorRT. We plan to open
source SparGen to bring the community together in this ex-
tensible and unified framework to accelerate innovations on
model sparsity.

2 Background and Motivation
Various forms of sparsity. Deep learning model sparsity
is an active and extensively studied research topic. Currently,
there are various sparsity patterns being studied. Coarse-
grained sparsity, including channel-granularity sparsity and
block sparsity [37, 40, 42, 44], involves pruning a channel
or a sub-block of tensors (e.g., weight or activation tensor)
associated with some operator. With fine-grained sparsity,
any element of a tensor [29, 35, 36] might be pruned. Quanti-
zation algorithms represent models at different levels of pre-
cision (e.g., binarized models [20], 8-bit models [33, 68]), and
even with different, mixed precision across neural network
layers [24, 38, 55] or within a single tensor [47, 62]. Some
research further combines pruning and quantization in order
to achieve high accuracy under the strict latency and mem-
ory constraints [28, 53, 54, 57, 61, 66]. Overall, pruning and
quantization have been shown effective in reducing the size
and latency of certain deep learning models, sometimes by
more than 10 times, without losing much accuracy [28, 59].

Table 1. Speed of matrix multiplication (1024*1024*1024) in
cuSPARSE and cuBLAS (unit: us).

Sparsity Ratio 50% 90% 95% 99%
cuSPARSE 1652.5 633.9 463.0 181.7
cuBLAS 208.3 208.3 208.3 208.3

The myth of FLOPS. Model sparsity does not translate
directly into performance benefits. The practice of using
“proxy metric” (e.g., FLOPS, or Floating point operations per
second) to evaluate the effect of their proposal such as model
inference latency is flawed and leads to inaccurate results.
For example, when an operator’s weight is pruned by 50%
with fine-grained sparsity, even though in theory its FLOPS
can be reduced by half, the actually model inference latency
may even become higher with a default sparse kernel.

One of the reasons is that the current generic sparse kernel
implementation is sub-optimal. A sparse kernel tends to set
a threshold (e.g., 90%) to decide whether or not a tensor
or a row/column is sparse or dense [2, 34]. Such a coarse-
grained sparsity assumption provides limited optimization
opportunities to a sparse kernel. For example, one can only
use sparse encoding (e.g., Compressed Sparse Row [15]) to
reduce memory usage. As a result, a generic sparse kernel
library like cuSPARSE [2] can outperform cuBLAS, its dense
counterpart [1], only in some extreme sparse case (98%), as
shown in Table 1.
Thediminishing end-to-end return. Sparsity algorithms
often focus on exploring the sparsity of a certain DNN op-
erator (e.g., convolution [45]). However, when placed in an
end-to-end deep learning model, the sparsity pattern across
the whole model can be impacted by each of the operators
in the model, which may introduce sophisticated sparsity
patterns that are difficult to understand or optimize, leading
to diminishing end-to-end return from sparsity.
As shown in Figure 1, the tensor 𝑊2 illustrates a fine-

grained sparsity pattern (63% sparsity) Even without further
complication, the initial sparsity pattern of𝑊2 incurs ripple
effects.𝑊2 would propagate its sparsity attribute to the down-
stream and up-stream tensors, including𝑊1, 𝑇2, 𝑇3, 𝑇4, 𝑇5,
and𝑊5. For example, because the second column of𝑊2 is
pruned, the second column of 𝑇3 is destined to be all zero,
hence can be pruned too (as 𝑇2 ×𝑊2 = 𝑇3). Likewise, as the
third row of𝑊2 is pruned, the third column of𝑇2 can also be
pruned. It is therefore desirable for a deep learning compiler
to understand such propagation of sparsity so as for further
sparsity-aware optimization end-to-end.
Across-stack sparsity innovations in silos. Model spar-
sity innovations tend to work in silos due to lack of a com-
mon foundation to build on. Machine learning practitioners
often have to implement their sparsity algorithms end-to-
end manually [28, 55]. Such individual solutions are hard to
be extended to or combined with other proposals. It is also
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Figure 1. The sparsity attribute of one tensor can be propa-
gated along the deep learning network.
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Figure 2. The system architecture of SparGen.

difficult for them to be further enhanced with new special
hardware primitives (e.g., the DP4A feature in NVIDIA GPU
that supports mix-precision computation [7]).

3 Design
We design SparGen, a deep learning system that provides
full-stack support to model sparsity. Figure 2 summarizes
the overall architecture of SparGen. At the core of SparGen
is the TeSA abstraction, which augments the existing tensor
abstraction with sparsity attribute (§3.1). An algorithm de-
signer can specify arbitrary sparsity patterns in any tensor of
a deep learningmodel by setting the sparsity-attribute values.
These sparsity attributes set by the algorithm designer serve
as the input to SparGen (marked as Initial Tensor Sparsity
Attribute in Figure 2).

Given the initial sparsity attribute, SparGen will perform
attribute propagation to infer the sparsity attributes of all
other tensors in the deep learning model, according to the
propagation rules defined automatically or by domain spe-
cific knowledge (§3.2). Sparsity attribute propagation ex-
poses more optimization opportunities across the model than
the original sparse tensor, as shown, for example, in Figure 1.
When the sparsity attribute of all tensors in the DNN

model is derived, SparGen will run a multi-pass compilation
process to generate efficient end-to-end kernel code. Com-
pared to a traditional DNN compiler, there are two additional
compiling passes SparGen conducts to exploit model spar-
sity fully. The first pass performs execution-plan transforma-
tion (§3.3). When generating an execution plan for the DNN
model, SparGen may transform the original execution plan

into a new one with the given sparsity pattern. For example,
it may decouple one tensor into two, each with a different
sparsity attribute to use different quantization schemes (e.g.,
16-bit vs. 8-bit quantization). Correspondingly, the decou-
pled tensor will require rewriting the original operator into
two new operators, each leveraging different hardware for
efficient computation.

With the transformed execution plan, SparGenwill further
run a compilation pass to perform sparsity-aware code spe-
cialization (§3.3). The awareness on the sparsity pattern of
any tensor gives SparGen an opportunity to generate highly
customized code specifically tailored for the observed spar-
sity pattern. For example, any pruned element in a tensor
could lead to dead code elimination for the corresponding
part of computation involving the particular element.
Finally, with the generated end-to-end DNN code, the

sparsity algorithm designer is able to profile the DNN model
to obtain the trustworthy performance feedback, including
memory consumption and inference latency for the whole or
a particular part of the DNN model. Given the feedback, the
algorithm designer may further update the sparsity attribute
in some tensors and repeat this process iteratively. Thus
SparGen provides a feedback loop to the end user so as to
facilitate the innovation of model sparsity.
In the rest of this section, we will elaborate TeSA and

introduce each component in SparGen in more details.

Values Sparsity Attribute
TeSA: Tensor with Sparsity Attribute

0.5

0 0 0

1.9

4 4 4

0 0 0

4 4 8
4: unit4
8: unit8
0: pruned

Figure 3. An example of TeSA abstraction. Sparsity At-
tribute denotes the quantization scheme, 4 means uint4, 8
means uint8, and 0 means the element is pruned.

3.1 The TeSA abstraction
TeSA is a simple yet powerful abstraction. Figure 3 shows an
example of TeSA. In addition to the traditional tensor, TeSA
further provides Sparsity Attribute, which is an additional
tensor where each element represents the sparsity attribute
of the corresponding element in the original tensor. This al-
lows a user to specify an arbitrary sparsity pattern in a tensor.
For example, one can use 8-bit to represent the bottom-right
element and prune the second row in the tensor. Algorithm
designer is required to specify at least some sparsity attribute
of some TeSAs before running the system. Therefore, it is
possible for SparGen to understand the sparsity pattern at
compile time, which enables further optimizations.
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3.2 Sparsity Attribute Propagation
Since the number of tensors in a deep learning model is
usually large, a user may only set the values of the sparsity
attribute for a subset of tensors. To maximize model sparsity,
SparGen will perform attribute propagation to derive the
sparsity attribute of all tensors in the DNN model.

In SparGen, the attribute propagates bidirectionally. Given
an initial sparsity attribute, it may propagate both down-
stream and up-stream along the data flow graph of the DNN
model, in the granularity of operators. Taking the operator
Matmul (matrix multiplication) in Figure 4 as an example.
In Figure 4(a), the sparsity attribute shows that tensor𝑊2’s
third row and second column are pruned. With attribute
propagation, the second column of the downstream output
tensor𝑊3 has been pruned. Meanwhile, one column in𝑊1
is pruned, due to𝑊2’s sparsity attribute. Figure 4(b) shows
that the sparsity attribute of the downstream tensor𝑊3 can
be propagated back to the upstream tensor𝑊2. Eventually,
a sparsity attribute in a tensor may impact the whole deep
learning model. As will be shown in §3.3, such sparsity at-
tribute can be used to optimize code in the compilation stage.
For example, the entire codes that compute the second col-
umn of𝑊2 in Figure 4 can be removed (dead code elimina-
tion).

Matmul

W1 × W2

(a) (b) (c)

W2W1

W3

Matmul Matmul

W2W1

W3

W2W1

W3

W1 × W2 W1 × W2

Initial sparsity 
attributes

Figure 4. The propagation of sparsity attribute. The gray
blocks are propagated sparsity attributes.

Propagation rules. How a sparsity attribute is propagated
could be operator specific. For example, in Figure 4(b), the
sparsity attribute of a pruned element [0,0] in tensor 𝑊3
cannot propagate to𝑊1 and𝑊2 through the operator Matmul,
while it does propagate through element wise operators like
ReLU and BatchNorm.

The propagation rule could also be algorithm specific. For
example, empirically, an algorithm designer could specify
that the length of the quantization bit of an output tensor
should not be larger than twice of that of its input tensor.
SparGen allows user to register new propagation rules

through the interface register_rule defined in Figure 5.
And Figure 5 also shows an example propagation rule defined
for the operator ReLU. In this rule, the input tensor is of the
type TeSA. No matter whether tensor is input or output,
the propagation rule is the same; i.e., the sparsity attribute
passes through without any change.

1 # interface of propagation rules
2 def register_rule(op_type , attr_prop_func)
3
4 # propagation rule for ReLU operator
5 def prop_relu(tensor: TeSA):
6 attr_tensor = TeSA()
7 for ele in tensor:
8 attr_tensor.attr[ele.loc] = ele.attr
9 return attr_tensor
10 register_rule('ReLU', prop_relu)

Figure 5. Propagation-rule interface: the ReLU example.

Attribute propagation may result in conflicts. For example,
in Figure 4(c), the sparsity attributes in𝑊1 and𝑊3 are set with
conflicting initial values. Such conflicts are detected during
the propagation and resolved through conflict resolution
rules. Currently, for pruned elements, the resolved tensor
is the union of all the pruned elements. For quantization,
SparGen chooses the lower precision. Like propagation rules,
the conflict resolution rule can also be customized.
Automatic rule generation for attribute propagation.
The propagation rules of some operators could be more
complex than ReLU (e.g., Matmul). It is a burden to define
propagation rules for every operator. To alleviate this issue,
SparGen adopts Tensor Scrambling to generate propagation
rules automatically for all operators where the associated
tensors contain pruned elements.
Essentially, Tensor Scrambling detects the invariant ele-

ments of a tensor by scrambling the values of other related
tensors. Specifically, if an input tensor of an operator con-
tains pruned elements (denoted by its sparsity attribute),
SparGen infers the sparsity attribute of the output tensor as
follows. It assigns random values to the input tensor while
keeping the value of pruned elements to 0, and runs the oper-
ator to obtain its output tensor (assuming at least the dense
version of the operator is available). By repeating this pro-
cess sufficiently large amount of times, SparGen detects the
invariant elements across all the output tensors (i.e., 0), these
elements are then pruned by marking the corresponding
sparsity attribute of the output tensor.
The approach above could derive the sparsity attribute

propagation rule from input to output tensor. As for propa-
gation rule from one input to another input, and from output
to input, SparGen leverages the auto differentiation (AD)
of DNN models to infer the rule. An operator usually has
its counterpart backward operator (for back-propagation in
the AD) . Let 𝐼1...𝐼𝑛 and 𝑂1 ...𝑂𝑛 to denote an operator’s in-
puts and outputs respectively. Its backward operator’s inputs
are 𝐼1...𝐼𝑛 , 𝑔𝑂1 ...𝑔𝑂𝑛 , and outputs are 𝑔𝐼1...𝑔𝐼𝑛 . The prefix 𝑔
means the corresponding tensor is a gradient. To infer the
sparsity attribute from 𝐼2 to 𝐼1, SparGen again uses tensor
scrambling. It assigns random values to all the inputs of the
backward operator, and the pruned elements in 𝐼2 are set to
0. Then, the system detects invariant elements in 𝑔𝐼1, which
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are 𝐼1’s sparsity attribute. Similarly, for inferring sparsity
from 𝑂1 to 𝐼1, we assign the pruned elements in 𝑔𝑂1 to 0
(the sparsity of 𝑂1 and 𝑔𝑂1 are the same) while setting the
value of other elements randomly. The invariant (zero-value)
elements in 𝑔𝐼1 are the pruned one of 𝐼1.
With the propagation of sparsity attribute, SparGen can

derive certain sparsity patterns across the whole deep learn-
ing model. Next, we show how such sparsity information
enables SparGen to perform sparsity-aware optimizations.

3.3 Generating Efficient TeSA Code
The sparsity pattern of a tensor could be complex [28, 38,
53, 62] with a mixture of different sparsity patterns, making
it challenging to generate an efficient, customized operator
kernel for a tensor with a specific sparsity pattern. SparGen
therefore first transforms the tensors with a complex sparsity
pattern to the combination of simpler sparsity patterns, and
then generates an efficient kernel for each simplified sparsity
pattern. Correspondingly, the execution plan of the operator
needs to be rewritten to accommodate the new operators to
compute the newly transformed tensors. Finally, SparGen
performs code generation for the transformed execution
plan, with sparsity-aware specialization. The overall two-
pass compilation process is shown in Figure 6.

Operator

Execution Plan 
Transformation

Code Generation

Kernel 
Implementation

Weight 
(𝑊)

Input 
(𝐼)

X

X X

void matmul_block_sparse_unit8(
float *A,float *B, float *C){

… …
}

void matmul_sparse_float32(
float *A,float *B, float *C){

… …
}

8 bits values 32 bits values

𝑊1 𝑊2

Figure 6. The two-pass compilation process to generate an
efficient kernel implementation for an operator.

Execution-plan transformation. In the first pass, Spar-
Gen leverages a traditional deep learning compiler (e.g.,
TVM [18]) to generate an execution plan that is sparsity
unaware. SparGen then inspects the sparsity attribute on
each given tensor. If the sparsity pattern is “irregular”, Spar-
Gen transforms the tensor into the sum of multiple tensors,
each with a simpler, more regular sparsity pattern. For exam-
ple, the weight tensor𝑊 in Figure 6 is a mix-precision tensor,
where two coarse-grained blocks use 8-bit quantization and
one fine-grained element uses 32-bit. SparGen transforms

𝑊 into𝑊1 and𝑊2, each using its own quantization scheme.
Consequently, SparGen introduces two operators to handle
𝑊1 × 𝐼 and𝑊2 × 𝐼 , respectively, each with the proper hard-
ware instruction leveraging the corresponding quantization
scheme. As a result, the original execution plan with one ten-
sor operation has been transformed into a new one, where
two more tensor operations are required.
SparGen supports different policies for execution-plan

transformation. It also allows policy customization. Figure 7
illustrates three example policies. In the figure, the sparsity
attribute in each element of a tensor can be 32-bit, 8-bit,
or zero (pruned). The left tensor contains only one 32-bit
element and the rest are all 8-bit. In this case, SparGen trans-
forms it into two tensors, one is an 8-bit dense tensor (except
that the value of one element is always zero), the other is
a 32-bit sparse tensor. SparGen can therefore use different
code specialization policies to handle the dense and sparse
tensor differently (e.g., less loop unrolling for the dense ver-
sion). SparGen can also compute the 8-bit tensor with the
8-bit hardware instruction if available.

The middle tensor in Figure 7 has a mixture of block spar-
sity and fine-grained sparsity patterns. Similarly, the tensor
is decomposed to two tensors for the code generation pass
to leverage block sparsity and fine-grained sparsity respec-
tively.

Finally, the right tensor in Figure 7 assimilates the “minor-
ity” elements to construct a regular sparsity pattern. In this
case, although the top element of the tensor is pruned, its
sparsity attribute is changed back to 32-bit quantization so
as to construct a more regular block sparsity pattern.

0
+ +

0

32-bit 8-bit Pruned

Figure 7. Examples of transformation policies.

In practice, given a sparsity pattern, SparGen may use dif-
ferent transformation policies to generate multiple execution
plans, perform code generation, and select the best result.
Figure 8 shows an example to transform the execution plan
on matrix multiplication (matmul_transform in line 11). To
generate a good execution plan for the matrix multiplication
of two tensors 𝐴 and 𝐵 (𝐴 × 𝐵), for each tensor 𝐴 and 𝐵,
SparGen first generates several candidate transformation
schemas using tensor_transform. This function first de-
composes a tensor into several tensors, each of which has
only one quantization precision (i.e., bit_decompose in line
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3), aligned with the underlying hardware-supported low-
precision instructions. It further decomposes each resulting
tensor by matching block sparsity and fine-grained sparsity
(i.e., sparsity_decompose in line 6). tensor_transform re-
turns a set of schemas, where the sum of the tensors in each
schema is the input tensor (𝐴 or 𝐵). The matrix multiplica-
tion 𝐴 × 𝐵 can then be transformed to 𝐴1 × 𝐵1 +𝐴1 × 𝐵2 +
𝐴2 × 𝐵1 +𝐴2 × 𝐵2, if 𝐴′𝑠 schema is 𝐴1 +𝐴2 and 𝐵’s is 𝐵1 + 𝐵2.
By comparing the results of different schemas, the best plan
is decided and returned.

1 def tensor_transform(T, bits):
2 trans_schemas = []
3 bit_schemas = bit_decompose(T, bits)
4 for schema in bit_schemas:
5 for tensor in schema:
6 sparse_schema = sparsity_decompose(tensor)
7 schema.update(tensor , sparse_schema)
8 trans_schemas.append(schema)
9 return trans_schemas
10
11 def matmul_transform(A, B):
12 specialized_impl = null
13 best_latency = MIN
14 ta_schemas = tensor_transform(A)
15 tb_schemas = tensor_transform(B)
16 for a in ta_schemas:
17 for b in tb_schemas:
18 implement = specialize_matmul(a, b)
19 latency = profile(implement)
20 if latency < best_latency:
21 specialized_impl = implement
22 return best_latency , specialized_impl

Figure 8. An example transformation policy for matrix mul-
tiplication.

TeSA code specialization. With the transformed execu-
tion plan and the sparsity attributes, SparGen can now un-
derstand and leverage the sparsity patterns in a DNN model.
Specifically, SparGen uses the sparsity attributes to special-
ize the code during code generation and performs sparsity-
aware optimizations to generate efficient, custom kernel
code for a given sparsity pattern. With the TeSA abstraction,
SparGen knows exactly which element’s computation can
be eliminated (for zero values) or which tensor operation
might benefit from special hardware instructions (e.g., DP4A
for 8-bit computation), as specified in specialization policies.
SparGen implements sparse_specialize, a specialization

policy for efficient kernel code generation for sparsity-aware
DNN operators. It could generally specialize various sparsity
patterns produced by both pruning and quantization into effi-
cient kernel implementations. sparse_specialize assumes that
a deep learning operator (e.g., Matmul and Conv2d) is im-
plemented with multi-level tiling loops [18, 67] following an
efficient tiling strategy, which can be derived by a traditional
DNN compiler (unaware of the sparsity pattern). An example
tiling loops of Matmul is shown in Figure 9, where there are
six levels of loops, each axis is tiled into two axes (e.g.,𝑚

to𝑚1 and𝑚2). With TeSA, SparGen is aware of the pruned
elements and low precision elements. sparse_specialize then
specializes pruned elements by unrolling loops and applying
dead code elimination (DCE). It specializes low precision
elements by replacing loops with hardware instructions.

for (m1: int, 0, 2)
for (n1: int, 0, 2)
for (k1: int, 0, 2)
for (k2: int, 0, 2)
for (m2: int, 0, 2)
for (n2: int, 0, 2){
O[..] += T[..] * W[..]

}

Matmul

T: m*k

O1 = T1T2 * W1W3
O2 = T1T2 * W2W4
O3 = T3T4 * W1W3
O4 = T3T4 * W2W4

Specialize
Specialize

O1 += T1 * W1
O1 += T2 * W3
O2 += T1 * W2
O2 += T2 * W4
O3 += T3 * W1
O3 += T4 * W3
O4 += T3 * W2
O4 += T4 * W4

Pruned elements

Kept elements

T1
T4

W: k*n

W2
T3

T2
W3
W1

W4

O: m*n
O3
O1 O2

O4

Figure 9. Sparsity-aware code specialization: loop unrolling
and dead code elimination.

The idea of specializing pruned elements is that, as the
multi-level loops tile the computation into different sized
computation blocks hierarchically, DCE can be applied to dif-
ferent levels of computation blocks (loops). For the example
in Figure 9, if the top two loops are unrolled, there are four
computation blocks, among which the third computation
block can be eliminated as𝑂3 in the output tensor is pruned.
If the top three loops are unrolled, there are eight smaller
computation blocks. As it matches pruning granularity, DCE
can be more efficiently applied. Specifically, six computa-
tion blocks are eliminated, based on the pruned elements in
both input and output tensors, denoted by sparsity attribute.
Note that specializing pruned elements is complementary
with existing kernel implementations, as the computation
block after kernel specialization can still be implemented
with those implementations. For example, the computation
block 𝑂1 = 𝑇1𝑇2 ∗𝑊 1𝑊 3 can be implemented with dense
matrix multiplication or CSR based sparse matrix multipli-
cation. As seen in the example, there exist multiple choices
to specialize a kernel code. User is allowed to implement
custom specialization policy to evaluate different options.
Unlike specializing pruned elements, which is applied

from the top loop down, specializing low-precision elements
works in a bottom-upmanner. Based on the sparsity attribute,
the system picks the corresponding hardware instruction and
applies the instruction starting from the innermost loop. For
example, if the instruction is a simple element multiplication,
it will replace the code line within the innermost loop. If the
instruction is multiplication and sum of four elements (e.g.,
DP4A), it will replace the innermost loop. If the instruction
is a small matrix multiplication (e.g., mma_sync of Tensor
Cores), it will replace the two innermost loops.
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The kernel code specialization is also affected by the
operator-tiling strategy (i.e., the term schedule used in TVM).
For example, if the tiling is not aligned with the block size of
block sparsity, code specialization may become sub-optimal.
Similarly, if the tiling does not align the innermost loops with
the computation granularity of hardware instruction, spe-
cializing low-precision element would not work. In practice,
SparGen treats the joint tiling and kernel code specialization
as a search problem; i.e., using a certain search policy to find
a reasonable solution.

4 Implementation
We implemented SparGen using DenseGen [41], an open-
source, light-weight, and flexible DNN compiler that gen-
erates high-performance executable. Specifically, SparGen
takes a TeSA-based deep learning model, propagates the
sparsity attribute across the model, and automatically gen-
erates kernels for sparse operators. SparGen feeds a DNN
model graph in the ONNX [8] format to DenseGen, and
adds an additional compiler optimization pass for execution-
plan transformation, which induces necessary graph rewrite,
and injects the generated kernels into DenseGen’s kernel
db. After DenseGen completes all the optimization passes,
including common compiler optimizations, such as kernel fu-
sion and memory planning, an executable binary is produced
for model inference.
Kernel code specialization is implemented following the

design of kernel schedule in TVM. SparGen abstracts the ker-
nel specialization into two new schedule primitives: dismantle
and comp_unit. Primitive dismantle is for dead code elim-
ination, enabled by the sparsity-aware specialization. It is
applied to a certain level of loop (i.e., axis). The usage of
dismantle is similar to the split primitive in a TVM sched-
ule. It means that loop and all the loops out of that loop
should be unrolled, where the dead computation blocks in-
dicated by the sparsity attribute are eliminated accordingly.
Loop unrolling sometimes introduces a large amount of ker-
nel code. This problem can be mitigated if degree of sparsity
is high. Another way to reduce kernel code is to order loops
(i.e., axes) properly. For example, for sparse-dense matrix
multiplication, setting the sparse tensor’s axes as outer loops,
the sparsity-aware specialization can be done by unrolling
only those outer loops. comp_unit is for specializing hard-
ware instructions in kernel implementation. It is similar to
Tensorize in TVM. We wrap hardware instructions, which
reorganize data if necessary, as a basic computation block,
and rely on a tiling strategy to align a certain level of tiling
blocks to such basic blocks.
SparGen has supported 19 model sparsity algorithms, in-

cluding both pruning and quantization. Those algorithms
can run on SparGen with little code modifications, and ben-
efit from SparGen not only on sparsity exploration but also
on model fine tuning, which will be demonstrated in §5.3.

5 Evaluation
We conduct extensive experiments to evaluate SparGen un-
der various DNN sparsity patterns using NVIDIA and AMD
GPUs, and compare SparGen’s performance against the state-
of-the-art DNN inference engines like TVM [18], a general
purpose DNN compiler, and TensorRT [10], a highly opti-
mized vendor-specific DNN library. The key findings from
the experiments are the following:

• SparGen can significantly improve the inference per-
formance for TeSA-augmented DNN models, achiev-
ing up to 8.7x speedup compared to TVM and up to
3.7x speedup compared to TensorRT.

• SparGen can generate high-performance kernel im-
plementations that efficiently exploit diverse sparsity
patterns expressed by TeSA, including fine-grained
and coarse-grained sparsity, different precision, mixed
sparsity and precision.

• SparGen greatly facilitates the development and ex-
ploration on modern model sparsity algorithms, helps
producing DNN models with lower inference latency
and/or higher accuracy.

5.1 Speeding up TeSA-augmented DNN Models
We first evaluate how SparGen can reduce inference latency
for sparse DNNmodels. We apply the following four sparsity
patterns to three popular DNN models, Multi-Layer Percep-
trons (MLP) [43], MobileNet [32], BERT [22], respectively.

• Coarse-grained sparsity: Model weights are randomly
pruned in the granularity of column, row, and chan-
nel [30, 37, 40] to reach 60% model sparsity.

• Fine-grained sparsity: Model weights are randomly
pruned in the granularity of elements [29, 35, 36] to
reach 95% model sparsity.

• Coarse-grained sparsity + 8-bit quantization: Applying
8-bit quantization to a coarse-grained sparse model
with 60% model sparsity [56].

• Block sparsity + 8-bit quantization: Applying 8-bit
quantization to a model being pruned with block gran-
ularity (60% sparsity) [57].

We compare SparGen to three popular deep learning tools:
PyTorch (v1.7) [48] (we use its JIT version), TVM (v0.8) [18],
and TensorRT (v7.2) [10]. For TVM, each kernel is tuned
with 1,000 trials. To evaluate the end-to-end performance of
cuSPARSE, NVIDIA’s sparse kernel library [2], we construct a
baseline SparGen-cuSPARSE, which replaces SparGen’s own
kernel with cuSPARSE. To understand the performance gain
from SparGen, we introduce another baseline DenseGen,
which uses the same code base as SparGen, but uses the
dense kernels instead of the custom sparse kernels. We run
the experiments on two different GPUs: Nvidia GeForce RTX
2080 Ti [4] and AMD Radeon VII [11] to show that SparGen
can be easily extended to different accelerators. Note that
TVM provides a sparse kernel implementation for matrix
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Figure 10. The end-to-end inference latency of MLP with four different sparsity patterns.
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Figure 11. The end-to-end inference latency of MobileNet with four different sparsity patterns.
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Figure 12. The end-to-end inference latency of BERT with four different sparsity patterns.

multiplication [12]. However, the kernel always crashes in
our experiments. We fix the implementation and find that
the resulting kernel performs worse than cuSPARSE (by
100%). Hence we decide not to include the result in this
paper. Note that TVM does not yet provide a sparse library to
support general sparse models, not to mention the capability
to automatically generate custom kernel implementation for
a specific sparsity pattern.
Experimental results. Figure 10 shows the experiment
results on MLP. SparGen always performs the best on the

four sparsity patterns, achieving up to 2.6x, 6.8x, 2.4x, 2.6x
speedup compared to DenseGen, TVM, TensorRT, and Py-
Torch respectively. DenseGen incurs a latency similar to
that of TensorRT and PyTorch for coarse-grained and fine-
grained sparsity. This shows the performance gain of Spar-
Gen comes from the sparsity-aware optimizations, enabled
by TeSA. TVM performs the worst for coarse-grained spar-
sity because the kernels it tuned performs worse than that
in PyTorch and TensorRT. SparGen-cuSPARSE performs the
worst for fine-grained sparsity, because the general sparse
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kernel in cuSPARSE incurs higher latency than its dense
counterpart.

For mixed sparsity (i.e., coarse-grained + 8-bit, block spar-
sity + 8-bit), SparGen performs the best because it lever-
ages both sparsity and hardware instruction; i.e., Tensor
Cores mma_sync in 2080 Ti and amd_mixed_dot in Radeon
VII. We do not show other baselines in Figure 10c and Fig-
ure 10d, because they do not support 8-bit on GPU (or cannot
run successfully). Falling back to 32-bit kernels would make
it perform much worse than any bar in these two figures.
DenseGen also performs better than TensorRT, because our
automatically tuned kernel fits well on the tensor shape and
the hardware (i.e., fully occupying an SM on GPU), even
without sparsity-aware optimizations.

The numbers on Radeon VII are similar, except that some
baselines are cannot run successfully on Radeon VII, which
also shows SparGen’s flexibility on generating optimized
code on different accelerators.
Figure 11 shows that SparGen also performs the best on

MobileNet, achieving up to 4.3x, 4.2x, 3.7x, and 7.8x speedup
compared to DenseGen, TVM, TensorRT, and PyTorch re-
spectively. For coarse-grained sparsity (Figure 11(a)), each
layer in MobileNet (i.e., Conv1x1, DepthwiseConv, and Lin-
ear) is applied with 60% sparsity; while the speedup of Spar-
Gen against DenseGen is higher than the sparsity ratio, i.e.,
4.3x. This is because the sparsity attribute propagation fur-
ther increases each layer’s sparsity, achieving a global model
sparsity around 87%. PyTorch performs the worst. Because
MobileNet is a small model, which amplifies the runtime
overhead of PyTorch framework. For fine-grained sparsity,
SparGen-cuSPARSE has similar performance to DenseGen,
because MobileNet has only one Linear layer that is able
to use cuSPARSE (which does not support other operators
like conv or depthwise conv). For mixed sparsity, DenseGen
shows a higher latency than TensorRT, because TensorRT
fully optimizes MobileNet on 8-bit, while DenseGen gener-
ated the 8-bit kernels on Tensor Cores on its own. SparGen
outperforms TensorRT by up to 1.9x, due to the sparsity-
aware optimizations, including specialization to use low-
precision instructions. On Radeon VII, SparGen consistently
outperforms DenseGen by up to 3.8x.
Figure 12 shows the results on BERT. Similar to MLP,

BERT model’s main building operators are matrix multipli-
cation. Thus, the trend of the results is similar to that of
MLP. The speedup of SparGen is up to 1.9x, 8.7x, 2.0x, and
2.4x compared to DenseGen, TVM, TensorRT, and PyTorch,
respectively.
Performance breakdown. To understand where the per-
formance gain of comes from, we break down the perfor-
mance number by applying the optimization techniques in
SparGen one by one; i.e., specialization for hardware in-
struction, specialization for sparsity (e.g., DCE), and spar-
sity attribute propagation. Figure 13 shows the performance
breakdown. For coarse-grained sparsity + 8-bit, the latency

decreases when each optimization technique is applied, the
resulting reduction is 35%, 34%, and 13%, respectively. Block
sparsity is more difficult to optimize than coarse-grained
sparsity, thus latency reduction of block sparsity + 8-bit is
less than that of coarse-grained sparsity + 8-bit. For fine-
grained sparsity, the first two bars are the same, because it
uses float32 instead of int8. Specialization and sparsity
attribute propagation bring 22% and 14% latency reduction,
respectively. The breakdown on Radeon VII shows a similar
trend, hence being omitted.
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Figure 13. Performance breakdown of SparGen for different
sparsity patterns of MobileNet on 2080 Ti. Each bar shows
the result of applying the additional optimization labeled on
this bar from the previous one.

5.2 Micro-benchmarks
We use micro-benchmark to illustrate the details of code
specialization and sparsity attribute propagation in SparGen.
Effectiveness of TeSA code specialization. We evaluate
SparGen’s specialized matrix multiplication kernel under
different fine-grained sparsity ratio, ranging from 50% to
99%. We compare the specialized kernels with cuSPARSE
and TACO [9, 34], Sparse GPU kernels [26], SparseRT [58].
The result is shown in Figure 14. At 99% sparsity, cuSPARSE
outperforms cuBLAS, but incurs 2.2x slowdown at 95% spar-
sity. In most cases, cuSPARSE performs much worse than
cuBLAS on latency, though it has a lower memory footprint
due to encoded sparse tensors. TACO performs worse than
cuSPARSE, which is consistent with the numbers reported
in their paper [34]. It is 15.6x slower than cuSPARSE for 99%
sparsity; the slowdown is reduced to 4.0x when the spar-
sity is 50%. SparGen is up to 6.01x faster than cuSPARSE. It
outperforms cuBLAS when the sparsity is only 70%.
Effectiveness of execution plan transformation. The
sparsity-aware execution plan transformation in SparGen is
powerful in exploiting complex sparsity patterns. We con-
struct two types of sparsity patterns: (1) Mixed precision,
where a tensor has both int8 elements and float32 ele-
ments [62], the ratio of float32 elements is varied from
5% to 0%. (2) Mix of block sparsity and fine-grained spar-
sity [31, 34], there are 1% fine-grained elements, and the block
sparsity ratio varies from 70% to 90%. Figure 15a shows that
decomposing the sparse tensor into one 8-bit tensor and one
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Figure 14. Comparison of cuSPARSE, TACO, and SparGen
on matrix multiplication (1024x1024x1024) with fine-grained
sparsity under different sparsity ratios. The sparsity is ap-
plied on 𝐵 for 𝐴 ∗ 𝐵.

32-bit tensor could speed up the matrix multiplication, as the
8-bit tensor leverages Tensor Cores. The higher the sparsity
ratio of float32 elements is, the faster the operator could
be. Figure 15b shows that decomposing the tensor into the
sum of one block sparse tensor and one fine-grained sparse
tensor could outperform the dense implementation. Note
the system can also treat the tensor as a pure fine-grained
sparsity pattern (i.e., assimilating), where the transformation
does not happen. As stated in §3.3, SparGen may generate
multiple execution plans and select the best one based on
evaluation results.
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Figure 15. The performance of the execution plan trans-
formation in SparGen for mixed precision and sparsity pat-
terns. 𝐵 is sparsified for the matrix multiplication 𝐴 ∗ 𝐵

(1024x1024x1024). “X%-block” means X% block sparsity
mixed with 1% fine-grained sparsity.

Effectiveness on sparsity attribute propagation. We
also study how sparsity attribute propagation in SparGen
works on an end-to-end, real-world deep learning model,
under different sparsity patterns.

In the experiment, we set the four layers in MLP with the
same sparsity ratio and varies the sparsity ratio from 50% to

98%. Also, we experiment with three types of sparsity pat-
tern: block sparsity, fine-grained sparsity, and coarse-grained
sparsity. The sparsity is applied to model weights. Figure 16
shows the experiment results on the MLP model. When ran-
domly setting the layers with block sparsity (Figure 16a), the
two middle layers have a higher sparsity ratio than the pre-
configured one due to sparsity attribute propagation. The
sparsity of layers 1 and 4 increases only a little because they
only accept propagated sparsity attributes from one direc-
tion. Fine-grained sparsity (in Figure 16b), on the other hand,
has a weaker propagation ability. The probability that an en-
tire column or row in weight tensor is pruned is much lower
than block sparsity. Even so, 3.8% of the sparse attribute is
still propagated to layer 3. The propagation ability of coarse-
grained sparsity, as shown in Figure 16c, is the best, because
coarse-grain sparsity prunes tensors in the granularity of
rows and columns. In this experiment, we prune only rows
(no columns) from model weights, the sparsity propagates
in only one direction, i.e., forward propagation. Thus, the
latter three layers have much higher sparsity ratio than the
pre-configured ratio: the ratio is increased by up to 50%.
Due to page limit, we omit detailed results for the other

two models and only briefly describe their high-level result.
Since BERT’s model architecture is similar to MLP, the result
is also similar. MobileNet has a higher chance to propagate
a sparsity attribute across the model (as indicated in Fig-
ure 11a). Thus the propagation increases the overall sparsity
from 60% to 87%.
Sparsity attribute propagation is not limited to pruned

elements (i.e., zero values). We use a micro-benchmark to
illustrate how quantization, another type of sparsity, can be
propagated. Specifically, we first run the Simulated Anneal-
ing algorithm [39], which is a model compression algorithm
that searches the sparsity ratio of each layer. We run the SA
algorithm for 20 iterations to find each layer’s best quanti-
zation setting (i.e., to be either 8 bits or 32 bits), which we
call “Before-propagation”. Then we customize a propagation
rule for quantization, following the paper [38]. Specifically,
given a layer’s quantization bit width 𝑏 and the number of
elements in this layer’s weight 𝑤 , its neighbor layer’s bit
width is 𝑏𝑛 = 𝑏𝑤/𝑤𝑛 , where𝑤𝑛 is the number of elements in
the neighbor layer’s weight. If 𝑏𝑛 is larger than 16, which is
an empirical threshold, the neighbor layer’s bit width is set
to 32; otherwise, it is set to 8. The experiment result is shown
in Figure 17. After propagation, many layer’s bit-width is
decreased from 32 to 8. Accordingly, inference latency de-
creases from 0.85ms to 0.70ms. The accuracy of the two
models are the same, i.e., 93.02% on Cifar10.

5.3 Facilitating Exploration of Model Sparsity
SparGen, as a full-stack solution formodel sparsity, facilitates
the exploration of existing model sparsity algorithms. In this
section, we demonstrate this from following three aspects.
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Figure 16. Propagated sparsity across the layers for different sparsity patterns on the MLP model.
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Figure 17. The quantization (bit width) of each layer in
MobileNet before and after propagation. They have the same
accuracy.

Real latency facilitates sparsity exploration. In this
experiment, we use Simulated Annealing to pruneMobileNet
to reduce 30% and 40% inference latency respectively. Our
baseline uses FLOPS as the metric to filter out disqualified
models: the model whose FLOPS is larger than 70% of the
original FLOPS. In contrast, SparGen uses the real latency
to filter models. The result is shown in Figure 18. The best
sparse models found by the two approaches have similar
accuracy. However, the model found by FLOPS does not
meet the latency target, with 23.8% and 51.4% higher than
the target, respectively. This shows FLOPS cannot faithfully
reflect real inference latency. In contrast, the sparse models
found by the algorithm on SparGen are guaranteed to meet
the latency requirement.
Propagation aware sparsity exploration. Sparsity at-
tribute propagation can discover the sparsity correlation
between different DNN layers. Such discovery sometimes
shows that two layers should be jointly pruned in order to
obtain the best trade-off between accuracy and inference
latency. For example, if two Conv2d operators’ outputs are
summed together and fed into another Conv2d, and the out-
put channels of the first two Conv2d are pruned with the
same sparsity pattern, which will be propagated to the last
Conv2d. However, if the pruned channels are interleaved,
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Figure 18. The comparison of using real latency or FLOPS
as metric to explore sparse models by Simulated Annealing.

sparsity cannot be propagated (Dictated by Conv2d’s propa-
gation rule). With sparsity attribute propagation, SparGen
exposes all the layers involved in the propagation as a layer
group. When two layer groups have a common aggrega-
tion layer (i.e., add, concat), the two layer-groups should be
jointly pruned to make sure the sparsity can pass through the
aggregation layer to the most extent. We evaluate AutoCom-
press [39] algorithm on pruning MobileNet and ResNet18
in two modes: (1) being aware of layer groups, (2) pruning
layers independently. The result in Figure 19 shows that,
given the same inference latency, the former obtains higher
accuracy. The accuracy gap becomes larger under a more
strict latency requirement.
Speedingup sparsity exploration. With high-performance
sparse kernel implementation, SparGen can speed up the
exploration process of a sparsity algorithm, which usually
searches for a sparsity pattern iteratively [39, 63]. In each it-
eration, the algorithm “sparsifies” a proportion of the model
(e.g., 30%) and fine-tunes it. It repeats the iteration until
achieving the targeted sparsity (e.g., 90%). In this process,
model fine-tuning consumes significant exploration time.
With SparGen, the model can be accelerated before fine-
tuning. Figure 20 runs Simulated Annealing algorithm,which
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is an iterative sparsity algorithm, on ResNet50. the algo-
rithm prunes 50% of the remaining weights and fine-tune
300 epochs in each iteration. SparGen reduces 31.8% explo-
ration time, compared to the baseline that always uses the
original dense model.
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Figure 20. The exploration time when using SparGen-
accelerated sparse model vs. not using the accelerated model.

6 Related Works
Sparsity support in DNN frameworks and compilers.
The mainstream deep learning frameworks and compilers,
including PyTorch [48], TensorFlow [13], TVM/Ansor [18,
67], all treat model sparsity as an afterthought. They either
rely on vendor-specific libraries like cuSPARSE to provide
sparse kernel implementations [2] or user-provided sparsity
kernel templates [18]. They do not understand the specific
sparsity pattern of a given sparse model. In contrast, SparGen
treats sparsity as a first-class citizen. It proposes TeSA, a
new tensor abstraction to express arbitrary sparsity patterns
and enable various sparsity-aware optimization to generate
efficient sparse kernels.

With TeSA, SparGen is able to incorporate several classic
compiler techniques. For example, sparsity attribute propaga-
tion is similar to type qualifiers [25] and type inference [21].
OpenMP [23] also leverages attribute propagation in a dif-
ferent problem domain with a different mechanism. Code
specialization based on value profiling [16] is also a well-
known technique. Zeroploit [50] and PGZ [52] also use a
similar idea, but focus on gaming applications. SparGen does
not rely on values, but on attributes for code specialization,
which is more general. And SparGen offers a complete frame-
work for DNN model sparsity.

Sparsity acceleration of DNN models. Sparse matrix
multiplication has been studied for decades in scientific
computing [49, 60]. With the emerging accelerators (e.g.,
GPU [4, 11], TPU [3], FPGA [6], GraphCore [5]), some re-
search optimizes sparse matrix multiplication for a certain
type of hardware [14, 15, 26, 60, 70]. Another type of works
study an efficient sparse data format (e.g.,CSR, CSB, and DIA)
to reduce memory footprint and improve cache efficiency.
TACO [19, 34, 51] generalizes various sparse data formats
with an unified expression. It can generate sparse kernel code
based on each specific data format. One data format can ex-
press any sparsity pattern, but with different efficiency on
different sparsity patterns. Unlike TACO, SparGen proposes
to specialize sparse kernel code by fully leveraging a specific
sparsity pattern and even concrete tensor values. Though it
cannot deal with dynamically changed sparsity pattern (or
changed sparse tensor values), it pushes the sparsity opti-
mizations to the extreme, while being widely applicable in
DNN model inference scenario.
To optimize sparse kernels on GPU, SparseRT [58] pro-

poses to embed sparse weight values into kernel code rather
than stored in a sparse data format. It can be seen as a special
case of code specialization in SparGen, i.e., unrolling all the
loops. Hong et. al [31] reorders elements in a sparse tensor
and uses an adaptive tiling strategy to enhance the perfor-
mance of sparsity matrix multiplication. These optimizations
are complementary to SparGen.
Another line of research [17, 64] co-design sparsity al-

gorithm with kernel optimization, which balances sparsity
in a tensor for efficient parallel execution on a GPU. Sim-
ilar design has been incorporated into Nvidia GPU, called
Sparse Tensor Core [69]. There are other works that design
a new hardware to accelerate sparse operators. EIE [27] de-
signs a new data encoding/decoding node and a new Process-
ing Element (PE) to speed up matrix-vector multiplication.
SCNN [46] designs another architecture of PE, which sup-
ports sparse convolution in a compressed format. SparGen
can easily leverage these new accelerators by adding new
transformation and specialization policies.
Sparsity exploration on DNN models. Both the neural
science and deep learning communities find lots of clues [35,
65] implying that a deep neural network is (highly) sparse.
Meanwhile, in the deep learning community, many model
compression algorithms have been proposed to construct
sparse models with little accuracy degradation. Unstructured
pruning (also called fine-grained pruning) prunes weights
without following any specific pattern [29, 35, 36]. The pruned
model is hard to be optimized on hardware accelerators (i.e.,
GPU). To make a pruned model easier to be accelerated,
many research works propose structured pruning, which
prunes DNN models in a regularized granularity, such as in
filter [30], channel [37, 40] in CNN, and block level [42, 44].
Quantization is another way to sparsify a model, such as
single-precision quantization [20, 33, 68], mixed-precision

12



among layers [24, 38, 55], and mixed-precision within each
tensor [47, 62]. Recent works explore mixing pruning and
quantization to make a DNN model even smaller [28, 53, 54,
57, 61, 66]. SparGen is a general framework for model spar-
sity, its TeSA could express the sparsity patterns in all these
papers and generate efficient codes for the sparse model.

7 Conclusion
SparGen takes a principled system approach to model spar-
sity in deep learning, centered on the new TeSA abstrac-
tion. SparGen is designed to accommodate a rich set of spar-
sity patterns, work end-to-end and across the stack to sup-
port propagation of sparsity patterns and the optimizations
that take advantage of those patterns, and leverage com-
piler technology and hardware support, all in an extensible
framework. SparGen can not only contribute to superior
sparsity-induced speedup, but also accelerate model sparsity
innovations within a unified framework, for the first time.
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