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ABSTRACT
Knowledge bases, such as Google knowledge graph, contain mil-
lions of entities (people, places, etc.) and billions of facts about them.
While much is known about entities, little is known about the actions
these entities relate to. On the other hand, the Web has lots of infor-
mation about human tasks. A website for restaurant reservations,
for example, implicitly knows about various restaurant-related ac-
tions (making reservations, delivering food, etc.), the inputs these
actions require and their expected output; it can also be automated
to execute those actions. To harvest action knowledge from websites,
we propose Etna. Users demonstrate how to accomplish various
tasks in a website, and Etna constructs an action-state model of
the website visualized as an action graph. An action graph includes
definitions of tasks and actions, knowledge about their start/end
states, and execution scripts for their automation. We report on
our experience in building action-state models of many commercial
websites and use cases that leveraged them.

CCS CONCEPTS
• Information systems → Web mining; • Human-centered
computing;

KEYWORDS
Action graphs; graphical user interfaces; web; programming by
demonstration; UI automation.

ACM Reference Format:
Oriana Riva and Jason Kace. 2021. Etna: Harvesting Action Graphs from
Websites. In The 34th Annual ACM Symposium on User Interface Software
and Technology (UIST ’21), October 10–14, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 20 pages. https://doi.org/10.1145/3472749.3474752

1 INTRODUCTION
Extracting machine-understandable knowledge from the web has
been a long-standing research goal [22, 117]. Techniques for auto-
matically extracting entities from websites have been investigated
extensively [9, 12, 23, 28, 89, 109, 116]. This enabled the creation of
knowledge bases such as Bing and Google’s knowledge graphs that
today include many millions of entities (people, places, organiza-
tions, etc.) with billions of facts about them (attribute values and
relationships with other entities). In contrast, understanding and
representing a website in terms of the functionality or actions it
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supports has received little attention. The only action-related infor-
mation found in even the largest knowledge graphs [2, 16, 30, 43]
consists of general action verbs that may be associated with an
entity, e.g., the verb “play” is related to the entity “video”. Informa-
tion on the input parameters an action supports or how an action
relates to other actions is completely missing. More importantly,
while the value of an entity fact lies directly in the information it
stores (e.g., Robert De Niro is an actor born in 1943), the value of an
action lies also in the output it generates upon execution. Hence,
besides its name, scheme, and relationships, we must also capture
information on how to execute an action (by calling a service or
interacting with an application) and on the expected output.

Action-related knowledge can benefit many user experiences.
Users use search engines to acquire information but also to com-
plete tasks. Generating actionable outputs can increase user satis-
faction [14]. For example, if a user searches for “price of a ride to
Boston airport”, today’s search engines will likely return links to
the Uber price estimator and various transportation websites. Now
imagine if the engine knew about a “get-ride-estimate” action that
could be executed on the Uber website by supplying an “origin”
and “destination” as inputs. It could then map the user’s query to a
parametrized action, execute it by automatically driving the website
UI, and either return the price sheet or re-direct the user to the
result page. Knowing the actions a website supports can also benefit
AI assistants and chatbots by adding flexibility and expanding their
capabilities beyond API-based functionality, as demonstrated by
Google’s Duplex on Web [112], a voice assistant that makes car
reservations by controlling the UI of a car rental website.

To extract action-related knowledge from a website, one may
leverage automatic methods ranging from unsupervised to super-
vised learning models. A reinforcement learning agent can, in prin-
ciple, learn correct sequences of UI interactions to complete a task
in a website by trial and error. However, such an agent may take a
long time to converge unless it executes in simplified environments
and is pre-trained using expert demonstrations [34, 71]. Further,
rewarding an agent based on task completion is challenging to
automate [65], and accuracy is likely to unacceptably degrade with
complex tasks or an increasingly diverse set of websites. Graph neu-
ral networks [122] and action learning techniques [36, 66] could
also be leveraged. However, these approaches typically require
large amounts of labeled interaction traces, which developers are
often unwilling [52] or unable [87] to provide. Thus, their precision
may be insufficient for reliable action execution. Crowdsourcing
data collection is an option in some cases [24, 25], but it requires
infrastructure and has cost implications.

Challenges and overview. In this paper, we focus on the prob-
lem of how to enable developers to extract action-related knowledge
from websites in diverse domains by providing a handful of task
demonstrations. To this end we leverage programming by demon-
stration techniques which have been relatively successful at support-
ing web UI automation and data scraping [4, 18, 40, 46, 57, 58, 98, 99].
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Figure 1: Etnaworkflow: (i)Users demonstrate tasks using thewebsite UI; (ii) Froma task demonstration Etna builds a timeline
of states and transitioning actions, which users can modify; (iii) From trace timelines Etna constructs an action-state model,
represented as an action graph; (iv)Users use the extracted action knowledge and execute actions through the executor service.

These techniques allow a user to record a task interaction in a web-
site as a sequence of UI events, and to obtain a UI script to replay it.
This is a natural form of programming, since users perform the ac-
tions in their familiar environment [59]. However, these techniques
come with limitations. First, they lack semantic representation and
generalization: actions are usually represented at the level of raw
UI events (clicks, text inputs, selections, etc.), and do not generalize
into parametrizable functions. Some of these tools can capture ac-
tion semantics [20], but only by using application instrumentation.
Second, they lack the concepts of start and end states, and assume
that replaying the same sequence of recorded UI events will always
produce the same outcome, which is often not the case (e.g., making
a shuttle reservation at different times may lead to a different list
of results depending on schedule and availability). Overall, content
variability together with periodic updates to websites leads to poor
robustness in action replay.

To address these issues, we propose Etna, a programming by
demonstration approach for extracting action-related data from
websites, coupled with an executor service to support execution of
the extracted actions. From task demonstrations in a website of in-
terest, Etna produces an action-state space model of the application,
visualized as an action graph. Every vertex in the graph represents
a unique state in the website (e.g., a page or UI change) and every
edge corresponds to the actions that trigger a state transition. Etna
represents actions as parametrizable functions: they have a set of
required input parameters and each input has a schema (a type and,
if applicable, a set of possible values, such as the sizes of a product).

System design. We designed Etna to operate as summarized in
Fig. 1, with the following principles in mind:
• Partial automation of model building: Ideally, Etna should in-
fer action graphs from task demonstrations automatically. Full
automation, however, inevitably requires many task demon-
strations to resolve possible ambiguities [52]. A one-size-fits-all
approach is also hard when dealing with websites from diverse
domains and with many different UI structures. In automating
the model building process we observed that automation often
caused errors that were hard to debug, while we could have
easily handled them early in the processing pipeline. We there-
fore designed Etna to operate in two stages. First, it transforms
individual interaction traces into timelines of visited states with

transitioning actions. Then, it automatically aggregates time-
lines to build a model and visualizes it as an action graph. While
action graphs can be edited, we expect users to do most of their
edits via the timeline interface, which is more natural than the
abstracted and aggregated view of action graphs, as it resembles
the user’s mental model at recording time.

• Customization and iterative modeling: There is often more than
one way to model a task, and a model may need to be updated
over time. Depending on the intended use of the final model,
one may decide to break down a state into multiple sub-states
to capture an application’s functionality at a finer granularity,
or vice-versa to merge less relevant states. For example, in a
recorded interaction in a shuttle reservation website, a user
may first pick a shuttle route and then select pickup and dropoff
locations. The interaction may be represented as a single ac-
tion with three inputs (route, pickup and dropoff) or as three
consecutive actions (set_route, set_pickup and set_dropoff) to
enforce the order in which inputs must be specified and to allow
for validation. We designed the timeline view such that users
can customize their task flow by creating or merging states
of the automatically-generated flow. Moreover, users can gen-
erate a model from a few traces and later add new ones (or
replace existing ones), thus being able to control the quality
and completeness of the final model and to evolve it over time.

• Robust action execution: The novelty of Etna lies in the com-
bination of action modeling (extracting comprehensive action
knowledge) and execution (executing extracted actions reliably).
To achieve robustness, Etna does the following: (i) it ensures
all input parameters associated with an action are extracted
from demonstration traces by introducing multi-input events
specifically designed to handle nested list selections; (ii) for
every action, in addition to UI scripts, it extracts parameter-
izable deeplinks, which can be faster and more reliable; and
(iii) it introduces semantic ranking, a novel approach to locate
UI elements by progressively limiting the search context us-
ing element attributes, and by searching for text strings (e.g., a
restaurant name) rather than fixed attributes (e.g., a class name).

Contributions. Over the past four years, we have used the data
captured by Etna to support various use cases that we illustrate in
§4. We have used Etna to (i) create APIs for web data extraction,
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(ii) build a runtime to generate chatbots without any coding, (iii)
implement an agent for resilient robotic process automation (RPA),
and (iv) train natural language interfaces for web navigation.

Our goal in this paper is to demonstrate the richness and utility of
action-related web data and to propose a relatively simple workflow
for extracting it. We make the following contributions:
(1) the action graph concept, including action and state labels, ac-

tion dependencies, semantic knowledge for every state in the
graph, and parametrizable action functions which can handle
multi-input events (§3.2 and §3.3);

(2) an automated approach to generate parameterizable deeplinks
and UI scripts along with a semantic ranking technique to reli-
ably execute actions in real-world websites (§3.4);

(3) an implementation that, unlike prior approaches [17, 20], does
not require website instrumentation, and that can work across
a variety of websites; and

(4) an informal evaluation (§5) of how Etna has served our needs
so far and four use cases (§4) demonstrating the utility of Etna’s
action knowledge.

2 BACKGROUND AND RELATEDWORK
In this section, we review both programming by demonstration and
ML techniques that studied how to model application tasks and
automate their execution.

2.1 Programming by demonstration tools for
UI automation

Programming by demonstration (PBD) tools for UI automation [4,
40, 46, 50, 57, 58, 70, 98, 99, 107, 113] allow users to synthesize
UI scripts from recordings of task interactions (demonstrations),
without writing any code. With a few exceptions [54, 63, 64], these
tools have been used primarily for testing andweb data scraping [18,
55, 67]. Recently, they have found new application in the area of
RPA (robotic process automation) [6, 11, 111, 114] where they are
used to automate repetitive tasks such as invoice processing, payroll
operations, and other back-office operations [51]. UI automation is
also relevant to AI assistants to execute user tasks directly through
web interfaces, as an alternative to connecting to APIs [112].

Etna is a PBD tool, and RPA and AI assistants for web navigation
are two areas we explored using it. To execute actions, Etna gener-
ates UI scripts, but, as UI scripts can fail due to layout changes and
content updates, for more robustness it takes an approach similar to
Ringer [7] and extends it with semantic ranking (§3.4). A fundamen-
tal difference between Etna and prior PBD tools is Etna’s concept of
application state as the basic building block of action-state models.
Traditional PBD tools represent a task as a sequence of UI events
and implicitly assume that replaying them will result in the same
state as in the recorded process. This is often not true. For example,
specifying different values for an input parameter may “branch”
the application into different states supporting different actions.
Different input values may also lead to error states. The concept
of application state and the data that Etna collects to characterize
states allowed us to design more robust RPA (§4.3).

Another difference between Etna and prior PBD automation
tools is that Etna processes recorded UI events not only to produce

replayable UI scripts. It semantically represents events into high-
level actions and inputs, and generalizes them into parametrizable
functions. For example, a traditional PBD tool may record that a
user clicked on Hard Rock Cafe in a list; instead, Etna aims to infer
that the user selected a restaurant name and learn the sequence
of UI interactions necessary to select any other restaurant name
in the same list. Some PBD tools have tackled a similar challenge.
SUGILITE [63], Peridot[86] and CoScripter [57] use simple heuris-
tics to achieve generalization, but they have limited applicability.
Others use AI-based program synthesis techniques [33, 53, 81], but
end up requiring many task demonstrations and producing results
that may be hard to interpret. APPINITE [59] and PUMICE [60]
semantically represent data inputs by asking users to express their
intentions in natural language. Inspired by lessons learned for us-
able AI [52], Etna compromises between the demonstration effort
and the level of automation achievable; it generalizes task flows
through a structural and semantic analysis of the DOM tree and
allows users to control the final model through a timeline interface.

Computer-vision-based UI automators have also been pro-
posed [42, 101, 119]. Vasta [101], for example, records bounding
boxes of interacted UI elements during user demonstration and
uses the RetinaNet [68] object detector to lookup UI elements at
replay time. Bernal-Cárdenas et al. [8] replay video recordings. Etna
currently relies only on OCR for visual features, but ongoing work
is exploring how to integrate computer vision techniques [92, 93].

2.2 Inferring task models from UI traces
Prior work has studied how to infer general task models from inter-
action traces collected through crowdsourcing or expert demonstra-
tions, for various purposes including (i) task completion [17, 62],
(ii) automated testing [20, 21, 69, 76], and (ii) UI design [24–26].

Task completion. Kite [62] mines Android interaction traces
to extract task templates, and represents them as graphs of actions.
Task templates are used to bootstrap the logical flow of a dialogue
system. Unlike Etna’s action graphs, Kite’s graphs are not exe-
cutable. Moreover, Kite’s states correspond to Android Activities,
while Etna defines states at a finer granularity (e.g., a shopping cart
page may correspond to two states with different actions, depend-
ing on whether the cart is empty or filled). W-graphs [17] encode
multiple demonstrations of a fixed 3D design task in a workflow
graph. At the high-level W-graphs are similar to Etna’s graphs but
serve a different purpose. W-graphs can be used to provide sug-
gestions on how to perform portions of a complex task for which
alternative methods exist or to identify the most efficient way to
complete the task. W-graphs require application instrumentation.
In contrast, Etna is a general-purpose tool (no instrumentation
required) aimed to support task modeling but also task execution.

Testing. Techniques have been proposed to model the behav-
ior of a GUI as event-flow graphs [15, 20, 27, 80], finite state ma-
chines [88, 102], and Petri nets [95]. These models are used to
automatically generate GUI test cases. As their goal is testing, un-
like Etna’s action graphs, they tend to be low-level, and do not
include state/action semantics or action/input schemes. To name a
few, SwiftHand [21] learns “approximate” models of Android apps
where state transitions consist of low-level UI actions (scroll, type,
click, etc.) and two UI screens are considered equivalent (the same
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state) if they present the same set of enabled user inputs. State iden-
tification in Etna considers many more features, thus being more
accurate (see §5.2 for a comparison), and state/actions are seman-
tically represented. Ermuth and Pradel [27] define macro events
that summarize sequences of low-level UI events corresponding
to a single logical step (e.g., selecting an item from a menu), but
these are still low-level actions and not parameterizable functions
as in Etna. Chen et al. [20] provide application testers with an in-
teractive event-flow graph that tracks and aggregates every tester’s
interactions with the goal of summarizing the navigation paths
that have already been explored. In this case, state transitions are
represented as high-level intents similar to Etna’s actions. However,
building the event-flow graph requires manually instrumenting a
target web application to capture events for certain DOM nodes,
thus hindering scalability (only 3 web applications were instru-
mented). In contrast, Etna is distributed as an app-agnostic web
extension, which does not require instrumentation.

UI design. ERICA [24], Rico [25], and ZIPT [26] mine user in-
teraction traces of Android apps to infer task flows and UI design
patterns. Similar to Kite, they assume application states correspond
to Android Activities. Moreover, they model only atomic tasks. For
example, while Etna models the task of booking a hotel, they model
the tasks of searching a term or adding a new user to a contact list.

2.3 Action learning and GNNs
ML techniques have been proposed to automatically learn actions
from a variety of data inputs including text [5, 13, 29, 45, 74, 79, 104],
videos [96, 121], and images [47, 75]. Human action recogni-
tion enables many applications, including action-centric video
retrieval [31], intelligent visual surveillance [32], code extrac-
tion [121], and cooking recipe captioning [108]. In much of this
work the focus is on recognizing and modeling actions, but not
on executing them. For example, one approach uses text appear-
ing in recipes to construct an action graph of the recipe describ-
ing what actions should be performed on which ingredients in
sequence [48, 84]. The concept of action graph in Etna is substan-
tially different; Etna’s goal is not only to obtain action descriptions
but also parametrizable and executable action procedures.

Related to Etna is work on learning actions defined as executable
UI workflows. Li et al. [66] and He et al. [36] learn action proce-
dures from large collections of crowdsourced (Android) interaction
traces. Branavan et al. [13] use reinforcement learning to extract
action procedures for a Windows application and a puzzle game,
but rely on a custom reward function. More recently, reinforce-
ment learning agents that learn to navigate the web [34, 71, 103]
have been proposed. Overall, the data required for training these
models (10–200 demonstrations per each task to learn [71, 103])
is not feasible in many cases, when developers are unwilling to
provide enough demonstrations [52] or unable to provide samples
that are sufficiently different from each other [56, 87]. Another
issue with some of this work is that it assumes restricted execution
environments, such as single applications [13] or simplified set-
tings (MiniWob consisting of static HTML pages with only 10–50
UI elements [103]). On the other hand, we borrow from this work
the idea of modeling websites as action-state spaces.

Graph neural networks (GNNs) [122] could be used to build
action graphs. However, GNNs require millions of labeled items to
train a dedicated model for each graph dataset (a website in our
case) which is not usually transferable to out-of-domain data [91].
Learning GNNs with self-supervision [49, 118] would still require
large amounts of data to capture the dynamism of web content and
all combinations of inputs a user may submit during interaction.
Instead, we target scenarios in which developers may be able to
provide only small amounts of demonstrations. Work on GNN
pre-training [39, 91] could enable pre-training of domain-specific
GNNs (e.g., the restaurant domain) and fine-tuning on specific
websites in that domain. However, learning domain-specific GNNs
can be challenging without manual data alignment because actions
supported by different websites in the same domain manifest with
different representations and parameter sets (e.g., in OpenTable the
“search-restaurant” action supports four parameters while in Yelp
it requires two parameters of different types) [77].

2.4 Action knowledge graphs
An action knowledge graph could benefit many services includ-
ing search engines that need to detect user intent from search
queries [10]. At present, such action knowledge graph does not
exist. Even in enterprise knowledge graphs [16, 30], actions appear
only in the form of entity-related verbs. Schema.org [2], which is a
vocabulary of entity types used to annotate webpages with struc-
tured data, contains definitions of some generic action verbs (e.g.,
buy, read, order, etc.), which are not as fine-grained and as com-
prehensive as Etna’s action definitions. Commonsense knowledge
graphs, such as ConceptNet [106] and Atomic2020 [41] as well as
E-Commerce knowledge graphs [3, 73], contain textual descriptions
of entities and events, and do not focus on actions either.

The first step in constructing a knowledge graph is to gather data.
Prior work on automated navigation of websites for (deep) web
crawling [35, 37, 44, 78, 94] cannot be directly leveraged to capture
actions. First, these crawlers are programmed to maximize coverage
of content, while a crawler of actions must maximize completion of
tasks. However, automatically verifying task completion without
app-specific assumptions is challenging [65]. Second, web crawlers
navigate by using hyperlinks and in some cases form filling, but
they ignore most of the interactable DOM elements in a webpage,
which are required to support a large range of tasks. Glider [65],
an approach based on reinforcement learning to extract UI scripts
(called tasklets) for web tasks specified in natural language, is a first
attempt towards building a web action crawler. It currently works
only on simple 2-4 step tasks such as performing unit conversions or
filling in a form for flight search, but could otherwise complement
Etna to reduce the demonstration effort and to automatically update
extracted UI scripts.

3 SYSTEM DESIGN AND IMPLEMENTATION
Fig. 1 summarizes the 4-step process a user follows when using
Etna: (i) Using the Etna recorder, the user records a task interaction.
One long recording or many short recordings can be provided,
depending on the task type and complexity. (ii) From the sequence
of UI views and events logged during demonstration, Etna generates
a trace timeline. At this stage, the user can modify the task flow,
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Figure 2: The Etna workflow. Using the Etna recorder, a user demonstrates a task and generates interaction traces. A trace
consists of a sequence of UI snapshots and UI events. Etna processes each UI snapshot to compute various UI and semantic
features (stored in knowledge trees), and uses them to clusterUI snapshots in distinct states. Etna classifiesUI events into input-
or action-related events, and generates corresponding deeplinks andUI scripts for execution. After processing all traces, ETNA
combines them to produce an action-state model of the website visualized as an action graph (accessible via the Etna app or
through a Gremlin API). An executor service is provided to parametrize and execute the extracted actions.

rename states and actions, correct UI event assignments, etc. (iii)
From the trace timeline(s), Etna constructs an action-state model
of the application visualized as an action graph. An action graph
consists of a set of unique states and actions. A state may correspond
to a webpage or a significant UI change in a webpage. An action
causes a state transition and corresponds to one or more UI-level
interactions (click, type, select, etc.). A task consists of a sequence
of actions and corresponds to a path from a start state to a goal
state. (iv) Finally, the user uses the generated model. Through the
graph explorer, a user can browse the action knowledge or select
a path in the graph, parametrize it, and launch its execution in a
browser. Alternatively, the user can access the model from a graph
database or export its knowledge.

Overall, Etna consists of three main components: (i) a recorder,
implemented as a web browser extension in Microsoft Edge, (ii) a
model builder, implemented as a web app hosted in Microsoft Azure,
to process traces and support visualization/editing of timelines and
action graphs, and (iii) an executor service, using the Selenium
WebDriver [99], to execute tasks. In the following, we illustrate
every step in the Etna workflow, including all components and
sub-components involved in the process, as summarized in Fig. 2.

3.1 Step 1: Acquiring task execution traces
In this step, the user (e.g., a developer or a crowdworker) opens the
web extension and starts a demonstration, for which a unique trace
identifier is returned. Etna’s recorder is comparable to those of
prior UI automation tools [18, 99]. In the browser window, the user
demonstrates a task such as searching for a product in a shopping
website by providing a search term and then filtering the results, or
ordering food for pick up by entering data fields in a form. As the
user interacts with the website, the extension collects and reports
UI snapshots and UI events to the model builder service.

UI snapshots. A UI snapshot represents the state of the inter-
action at a single point in time. Soon after a UI event is reported, a
UI snapshot is captured. It consists of a screenshot of the current
webpage and a hierarchical model of all UI elements in the page,
derived from the DOM tree. Each UI element is defined by a set of
properties including: (1) custom identifiers from DOM attributes
such as identifier, classname, etc., (2) text description inferred us-
ing a combination of attributes (text, placeholder, value, etc.), (3)
standardized labels such as HTML data attributes [115], (4) element
type, whether the element is “clickable” or “editable” inferred from
various HTML tags (p, input, button, etc.), (5) x/y/z layout locations,
(6) height and width, (7) visibility/opacity, and (8) style information
such as font color and size.

UI events. Etna logs UI events of the following types: (i) click:
clicking on a UI element such as a button or a hyperlink; (ii) select:
selecting a sub-item of an element, such as an item in a menu; (iii)
type: typing text into an editable UI element such as a text field;
and (iv) enter: submitting the content in an editable element by
pressing the “Enter” keyboard key. Each UI event is timestamped
and tagged with a unique identifier. An event is named after the
attributes of the corresponding UI element (name, placeholder text
or label) or of elements that are close in the UI tree. Later, this name
is used to label the inferred action/input associated with it.

Long vs. short demonstrations. A user can decide to record
one long task interaction or break it down in multiple short traces.
We recommend recording multiple short traces (typically 5–10),
where every trace captures a specific step or aspect of the task.
This approach allows for iterative modeling and makes it easier
to maintain and scale the trace collection. For example, when cap-
turing traces for a restaurant reservation task, a user may proceed
by first demonstrating how to search for a restaurant of interest
by specifying a location or a cuisine. Then, the user may show
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(a) Screenshots of 2 UI snapshots from a hotel website
classified as the same Search Results state.

“Vehicle Length” = “Motorcycle”

“Vehicle Length” = “Vehicle 22 feet and over”

(b) Screenshots of 3 UI snapshots from a ferry reservation website classified as 3
distinct states. Selecting different values for the input Vehicle Length (blue box)
leads to states with different actions (orange and yellow boxes).

Figure 3: Examples of UI snapshot classification.

how to filter search results (e.g., by neighborhood, by price, etc.)
or sort them (e.g., by distance). Third, the user may pick a specific
restaurant and view the menu or query it for availability in the
restaurant profile page. One final trace may capture how to com-
plete the restaurant reservation. Breaking the recording in multiple
traces allows a user to record different parts of the task at different
granularities (e.g., more traces for a page supporting many actions
such as the search results page) and later extend the model with
new states (e.g., canceling a reservation).

To allow the user to have the most natural interaction with the
website, the recorder is optimized to collect data and upload it
asynchronously to the remote service. UI snapshots are captured
seamlessly, any time a UI interaction is detected or every time a
page with a new deeplink is loaded. Finally, back transitions are
allowed and automatically removed at processing time.

3.2 Step 2. Inferring states and actions
During demonstration or once the recorder is stopped, the user can
use the provided trace identifier to look up the generated timeline in
the Etna web app (Fig. 5). The model building service generates this
timeline by processing the captured UI snapshots and UI events with
two goals: (i) clustering the UI snapshots into a set of distinct states
that were traversed during the interaction, and (ii) identifying from
raw UI events the logical actions that connect the visited states.

Snapshot clustering and knowledge trees. A state may rep-
resent a page/view in a website or a significant UI change. This is
an important difference from previous work [62] in which states
correspond to uniquely-named application pages (e.g., Android Ac-
tivity). Fig. 3 illustrates the challenge. In case (a), the 2 snapshots
represent the same state, i.e., a search results page with a different
number of results. In case (b), the 3 snapshots are visually and
structurally similar, but represent 3 distinct states: by selecting a
different value for the input parameter Vehicle Length (in the first
screen) the application “branches” into two different states support-
ing different actions (for a vehicle, but not a motorcycle, the submit
action requires both length and height of the vehicle). Prior work
relies on page identifiers, such as deeplinks and class names [62],
or the set of interactable UI elements [21] to distinguish between

application states. However, deeplinks may not be supported by all
websites and webpages with the same deeplink may correspond
to multiple states (the snapshots in Fig. 3b have indeed the same
deeplink). Comparing the set of UI elements in each webpage may
also be misleading because UI controls may vary depending on the
content (e.g., buttons associated with search results, as in Fig. 3a)
and because developers often hide dead or alternate user views in
the DOM tree.

To provide a robust but also general-purpose solution, for each
recorded snapshot, Etna extracts a combination of textual, visual,
and structural features, including the following:

(1) application-provided labels, such as URLs and deeplink pa-
rameters and page identifiers such as SEO meta-tags [85];

(2) semantic features, extracted from the DOM tree such as
HTML, Open Graph [1] and Schema.org [2] annotations;

(3) set of interactable UI elements, such as buttons and input
fields present in the DOM tree; and

(4) text content, obtained by invoking an optical character recog-
nition (OCR) API to detect content visible to the user.

Each type of feature is computed, in parallel, by a separate
knowledge plugin, and each plugin is responsible for maintaining
a distinct subtree of a hierarchical knowledge tree associated with
every snapshot. Fig. 4 shows the information associated with a UI
snapshot including a knowledge tree snippet.

Given N features { f1, ..., fN } the snapshot similarity between
snapshot sj and sk is then computed as follows

snapSim(sj , sk ) =
1
Na

N∑
i=1

wi × simScorefi (sj , sk ) (1)

where simScorefi is the similarity score computed based on fea-
ture fi and wi ∈ [0, 1] is the associated weight. Each simScorei
is computed differently for each type of feature. For application-
specific labels and SEO tags, similarity is based on exact match. For
HTML, Open Graph and Schema.org annotations as well as textual
content the similarity score measures the percentage of overlap-
ping annotations or texts, respectively. For the sets of interactable
UI elements, the similarity score measures the percentage of over-
lapping UI elements but each percentage is weighted differently



Etna: Harvesting Action Graphs from Websites UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 4: Information associated with a UI snapshot, including screenshot, UI tree, and knowledge tree.

depending on the UI element type such that the presence/absence
of uncommon UI elements (e.g., radio buttons, sliders, etc.) has
a higher weight compared to that of common UI elements (e.g.,
buttons, text fields, etc.). If some features are not applicable to some
snapshots (e.g., Schema.org annotations are often not present) the
similarity score is 0. To account for that, snapSim is normalized
over the number of applicable features Na ≤ N .

Empirically, we found how to weigh the different features
(wi weights). Deeplink parameters as well as Open Graph and
Schema.org annotations are usually highly reliable similarity clues,
but they are not always present. Matching texts is generally noisy
because of dynamic content. Relying on the presence/absence of
interactive UI elements can work well, especially if uncommon
element types are present. These simple heuristics allowed us to
outperform prior approaches (see §5.2) without the need to collect
a labeled dataset for training. If developers are willing and able to
provide more data, a screen embedding model [61] could be trained.

In summary, Etna receives snapshots from the recorder, com-
putes their knowledge trees, and then clusters them based on their
timestamps and pairwise similarity. If a subsequent snapshot has
similarity higher than a set threshold (e.g., 0.6) with the previous
one, it is considered as part of the same state, otherwise, a new
state is created. The trace timeline is then segmented into ordered
states. A portion of a timeline with two states is shown in Fig. 5.

UI event classification. After state classification, Etna pro-
cesses UI events to identify the logical actions that connect the
states. A logical action may correspond to multiple subsequent UI
events. For example, the 9 UI events shown in Fig. 6 correspond
to the logical action of “finding a table at a restaurant”. Executing
this action involves multiple sub-steps: the first two UI events cor-
respond to selecting a reservation date (one event corresponds to
opening the time menu and one to selecting an item), the third
and forth UI events to selecting a time, and so forth. Etna’s goal
is to distinguish between input-related events that are responsible

for setting input parameters associated with a logical action, and
action-related events that are responsible for submitting or conclud-
ing the actual action. For the example in Fig. 6, Etna aims to infer
that the ninth event is action related and the other 8 events are
related to 4 different input parameters (date, time, party size and
search term). Further, Etna needs to name action and inputs in a
meaningful way (e.g., the input corresponding to the 7-8th events
should not be named “Tilth” but something more general).

This classification process is challenging especially for two rea-
sons. First, UI traces are inherently noisy, containing duplicate or
unrelated UI events. To be a practical and general-purpose tool,
Etna cannot rely on many task demonstrations or on application
instrumentation to clear possible ambiguity. To deal with this chal-
lenge Etna leverages and extends prior work [38, 62] by discarding
UI events that are associated with empty or invisible content or
that are irrelevant to the current flow based on spatial locality. Like
Ringer [7], Etna ignores high-frequency mouseover, mousemove
and mouseout events, which can generate delays and are usually
unnecessary to action replay. The second problem is specific to
Etna. Etna’s goal is to extract not only action definitions, but ex-
ecutable action functions, which means it cannot afford to miss
any parameters. This is problematic because not only multiple UI
events may correspond to a single input parameter but also a single
UI event may correspond to multiple parameters. To cope with this
Etna introduces the concept of multi-input events.

For each recorded UI event, first, Etna searches the timeline
forward from the time of the event and associates it with the first
state which contains the UI element corresponding to the event.
Second, it uses the DOM tree structure and element attributes to
group all UI events into candidate input clusters (e.g., event 1 and 2
in Fig. 6 belong to the “date” input cluster). Input clusters can be of
one of three types: (a) simple input interactions, such as entering
text in a form field or selecting an element from a menu, which can
be easily recognized using DOM attributes; (b) simple list selections,
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text input events

action event

1st state

2nd state

Figure 5: Trace timeline for opentable.com showing a transi-
tion from the “/” state (home page) to the “/s/” state (search
results page); in the demonstration the user typed “tilth” in
the “Location Restaurant or Cuisine” search text field and
clicked the “Let’s go” button.

2 3 4
5 6

7 98

1

Figure 6: An interactionwith theOpenTable search interface
generates 9 UI events. Etna infers the search action “Let’s go”
with date, time, party size, and search term as inputs.

which require analyzing the DOM tree to identify similar subtrees
to ascertain whether the click is on a list member or on a unique
item (e.g., a submit button at the bottom of the list); and (c) nested
list selections, which require analyzing each level of similar subtrees.

Dealing with list selections can be challenging. In modern web-
pages, it is common to find collection-like UI elements, such as grids
or lists of items, where each item may recursively contain other
collections. Fig. 7 shows an example where in the list of restaurant

O
uter list

Inner list

Inner list

Figure 7: Example of multi-input event. The “7:30 PM” click
event sets 2 inputs: booking time and restaurant name.

items (the outer list) each item includes the restaurant name, var-
ious other details, and the list of available reservation times (the
inner list). When interacting with the restaurant list, a user may
click on the name of a restaurant which triggers a transition to
the restaurant’s details page or they may click on the reservation
time of a specific restaurant (as in Fig. 7), which causes the same
page transition. However, the first case corresponds to a simple
list selection where the user has specified one input (the restau-
rant name); the latter corresponds to a nested list selection where
the user has specified two inputs: the restaurant name (“Black-
lock Soho”) and the reservation time (“7:30 PM”). When a single
recorded UI event is responsible for multiple input selections we call
it multi-input event.1 Prior automation systems did not consider
multi-input events. Even web data scraping tools [18, 90], which
are programmed to iteratively scrape many content entries from a
website, assume all entity attributes to scrape have been clicked in
the user demonstration, hence this problem does not arise.

To handle multi-input events, given a collection-like UI element
(detected using DOM attributes), Etna compares multiple levels of
UI subtrees rooted at the collection node for similar content, loca-
tion, and structure to infer the “maximal repeating UI pattern”, de-
fined as the longest sequence of UI elements that repeats identically,
e.g. the pattern {restaurant-name, ratings, price-cuisine-location,
booked-text, time-list} in Fig. 7. Based on the depth at which the
UI event occurred, Etna generates one (the event occurred at the
outer level) or more (the event occurred at an inner level such as
the time-list) input slots. Likewise, at replay time, all input slot
values are used to configure a single UI event to replay.

At the end of this process, some UI events will be grouped into
input clusters and some others will remain isolated. Isolated events
that are classified as inconsequential to the overall task (e.g., a touch
event on the opposite side of the screen) are deleted. To recognize

1Note that even if instructed, in this scenario, users cannot produce an event for every
input because they cannot click on the restaurant name or the reservation time without
causing a page transition.

https://www.opentable.com/
https://www.opentable.com/
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State’s knowledge tree

Home page

Search results page

Actions for /->/s

Parameters 
(type, values)

Execute 
action

View knowledge tree

Action graph

……

Action’s UI scripts

Figure 8: The Etna graph editor showing the action graph for opentable.com. By selecting an edge, one can browse the asso-
ciated actions. Each action has a name (e.g.,“Let’s go”) and input parameters. Each parameter has a name, a type and a set of
valid values (in the “Show Examples” window). By selecting a vertex such as restaurant, one can view the aggregated knowledge
tree for this state (upper right) or the knowledge trees of individual snapshots (not shown). To execute an action (lower right),
a user selects the action from the graph , obtains the associated UI script(s) (which can be edited), and executes them (upon
starting the Etna executor service).

action-related events, the data analysis works backward in time
from the last event in every state. If the last event is an isolated
event that has features that comply with an interactive UI element
(e.g., button attribute), it is classified as action related. Otherwise,
the last input cluster is labeled as action related. All remaining
candidate input clusters are labeled as input related. Finally, actions
and inputs are named after the names of the UI events associated
with them (name, placeholder text, value, etc. of the corresponding
UI elements). As our evaluation shows (§5.1), naming in Etna is not
yet optimal, and could be improved by leveraging screen under-
standing techniques [19, 72, 97, 120], which use object detection
models to locate and classify UI elements in a screen.

Trace editing. Ideally, at the end of this analysis, all recorded
UI events should be either deleted or classified as action or input
related. In practice, Etna may not always be able to classify all
events with enough confidence because UI interactions may be
noisy or lack important details (e.g., missing DOM attributes). In the
Etna timeline interface (Fig. 5) we found that detecting incorrectly-
classified UI events was generally harder than manually classifying
unassigned events. Hence, in case of low confidence, Etna makes a
conservative decision and leaves the UI event unassigned. Using the
timeline editor, a user can drag & drop an unassigned UI event under

the correct input/action or create a new cluster. In Appendix A
(Fig. 13) we provide an example of this process. Other modifications
that users can make using the timeline editor include: (i) creating
a new state or cloning a state (using the “New state” and “New
instance” buttons), (ii) removing a state, (iii) deleting an input or
an action, and (iv) creating new inputs.

3.3 Step 3. Constructing the action-state model
Once traces have been processed to identify states, actions and
inputs, generating the action-state model is straightforward. Etna
represents the model as an action graph where vertices correspond
to the application’s states and edges to the transitioning actions.
Fig. 8 shows the action graph generated for the restaurant reser-
vation task in opentable.com. It consists of 9 states and 28 actions.
The actions Let’s go and Top Cuisines Near You go from the home
state (/) to the search results state (/s/); this state has a self-loop
action to filter a list of restaurants by cuisine, region, price, etc.
From here, selecting a restaurant name takes to the restaurant state
(restaurant), and then selecting a reservation time leads to filling a
restaurant reservation form (/book/details vertex), and so forth.

Etna’s action graphs are reminiscent of knowledge graphs [16,
43] and other task models [17, 62]. However, a main difference is

https://www.opentable.com/
https://www.opentable.com/
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Table 1: Etna’s action knowledge.

Info type Content

Graph States, Actions
Action Name, Inputs, UI script, Parametrizable deeplink
Input Name, Type, Input-values, UI script
UI script Interaction type, Target element, Value, etc.
State Name, State knowledge tree, UI snapshots
UI snapshot DOM tree, Screenshot, Snapshot knowledge tree
Snapshot/state URLs, Deeplink parameters, SEO meta-tags,
knowledge Semantic annotations (Open Graph, Schema.org,
tree HTML data-attrs), OCR-texts, Immutable texts∗,

Set of interactable UI elements, Error texts∗
∗Aggregated feature, present only in state knowledge trees.

that Etna’s edges do not only represent static relations between
states, but instead parameterizable and executable actions (ex-
ecution is explained in §3.4). Each action is formalized as a function
with input parameters (e.g., the action Let’s go in Fig. 8). From
the input-related UI events Etna extracts a schema for the input
parameter consisting of name, type, and a set of possible values (if
applicable). Parameter values can be texts entered during demon-
stration or strings scraped from selection-like elements (e.g., avail-
able reservation times scraped from a time selection menu).

Each state in a trace timeline will typically contain multiple
snapshots, each with a knowledge tree associated. The individual
knowledge trees are used to compute an aggregated knowledge
tree for each state in the model (Fig. 8, upper right). Frequency
counts are computed for all features, then aggregation-only features
are added. Examples of these include Immutable texts capturing
texts that recur in the same UI tree position in most snapshots asso-
ciatedwith a state, and Error texts capturing errormessages that one
may encounter in this state (inferred using keyword matching and
font/color properties). Overall, the goal of aggregated knowledge
trees is to capture what states are about and which functionality
they support, which is useful for state validation (see the RPA sce-
nario in §4.3). Knowledge trees could also be connected to external
knowledge bases [16, 41, 73, 106] for richer semantic annotations.
Table 1 summarizes the knowledge stored in action graphs, which
can be accessed through the graph editor app, queried using a
Gremlin API [83], or exported to file system.

As mentioned earlier, instead of recording one long interaction
trace, Etna allows users to record multiple short traces and merge
their action graphs into one graph. The merge works by first iden-
tifying equivalent states across multiple graphs and then merging
their actions, inputs, and knowledge trees. To compute state equiv-
alence we introduce a state similarity function. This is analogous
to the snapshot similarity function of Eq. 1, but, instead of compar-
ing snapshots using features computed based on each snapshot’s
knowledge tree, it compares states using features computed based
on each state’s aggregated knowledge tree.

To conclude, Fig. 9 shows three action graphs obtained by merg-
ing multiple interaction traces, as reported in the accompanying
table. The number of states in a graph varies from 7 to 28, and the
number of actions from 25 to 34. In general, the size of a graph
varies with the complexity of the website and the modeled tasks.

3.4 Step 4. Executing parametrized actions
Action graphs capture not only static action knowledge, but also
dynamic knowledge by supporting action execution. For execution,
Etna automatically extracts parameterizable deeplinks and gen-
erates UI scripts for all actions, and provides an executor service.

Traditional UI automation tools [18, 57, 99] rely on UI scripts
for action execution. Etna introduces parameterized deeplinks for
action replay. It computes them by comparing path and query
string of the captured snapshot URLs to extract a parameter
set along with captured values and inferred types. For example,
from URLs of various restaurant profile pages using the scheme
www.opentable.com/r/[str]?corrId=[str], it infers a deeplink taking
a string (extracted from the URL path) and corrId (extracted from the
URL query string and whose presence is immaterial to get the cor-
rect result). Deeplinks can guarantee a reliable and fast execution of
actions, but they may not always exist (many websites hide param-
eters from their URLs) or may be hard to reverse engineer without
a large collection of traces. For example, the search action shown in
Fig. 6 which leads to the search results page in opentable.com takes
4 parameters as input; however, the deeplink to the same search
results page has 11 parameters including app/session-specific ones
such as metroId, latitude, longitude, regionIds, pageType, etc.

Etna complements deeplinks with UI scripts. UI scripts (Fig. 8,
lower right) are less reliable but can always be extracted. A UI
script specifies all UI interactions necessary to set an action’s inputs
(if any) and perform the final submit-like interaction (e.g., filling
in some data fields and then clicking a “Go” button). Each replay
interaction is specified using a set of pre-compiled replay commands
(find, child, click, select, ...), similar to Selenium commands [99] but
custom to Etna. This makes human-editing of the UI scripts easier.

With this setup Etna’s executor service executes actions in two
possible ways. If the action supports a deeplink, then it parametrizes
and opens it in the browser. Otherwise, it falls back to action replay:
it loads the URL of the webpage corresponding to the start state of
the action and replays all UI interactions listed in the UI script.

Replaying an interaction involves locating the most probable
UI element for the interaction and executing it. Since identifying
an element in the UI tree relies on specific attributes, a change to
those attributes may result in a failure to locate it. These changes
may occur due updates or variability in the website UI caused by
different platforms (web browsers), screen sizes (reactive layout) or
A/B tests (different users see customized UIs). In general, a single
UI element is unlikely to match all the element attributes observed
at recording time also because there will be differences between the
parameter values specified at execution time and at recording time.
Fully solving this problem would require collecting traces from a
large set of application environments and conditions, dramatically
increasing the demonstration overhead. As in related work [7],
Etna locates UI elements using a wide set of both specific (identifier,
classname, etc.) and broad (type, color, etc.) element attributes, so to
withstand small changes to individual attributes. Yet, an element’s
attributes may not be enough for actions that involve selecting
one of many similar elements (e.g., a list of business names that
share the same text header but have different addresses as sub-field).
Hence, Etna also uses the surrounding context consisting of text and
attributes of nearby UI elements.

https://www.opentable.com/
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a) hotels.com

b) ebay.com

c) campus shuttle

Traces Snapshots States Actions Input Parameters (Input values) Size (MB)

hotels.com graph 5 126 7 25 50 (466) 128
ebay.com graph 8 133 10 29 60 (616) 134
campus shuttle graph 16 141 28 34 49 (160) 60

Figure 9: Three action graphs built by merging multiple traces. The table reports the number of traces and UI snapshots, the
number ofmodel’s states, actions, input parameters/values, and the graph’s exported size on disc (excluding snapshot images).

A key novelty in Etna is to use all these attributes to identify
the best-guess element through a semantic ranking approach.
The idea is to search for matching UI elements by progressively
limiting the search context using element attributes, but search for
text strings (e.g., a restaurant name) rather than fixed attributes (e.g.,
a class name). The find command, specified in the UI script, takes
a list of attribute-based filters and runs them in order against the
DOM tree (Fig. 8 shows two examples of filters based on xpath and
name attributes). If a filter matches a unique element, that element
is selected. If a filter matches multiple elements, subsequent filters
in the list are run to attempt to reduce the matching set. This
approach allows Etna to use modular filters. An example where
this approach is essential is selecting items from dynamic lists. A
filter is used to locate the sub-tree that contains the list results
(e.g., hotels list), another to locate a sub-tree within the list which
contains the desired text (e.g., hotel name), then another to locate
the button within the item itself (e.g., room type). A search-based
approach like this adds lots of flexibility by not pre-determining
where content is within the DOM tree, and makes action replay
more robust than with approaches that use fixed selectors (like
Selenium, §5.3). Text search is currently based on exact match; it
could be improved by supporting fuzzy matching.

4 USE CASES
Etna can work out-of-the-box with existing websites. While it pri-
marily targets developers of UI automation experiences such as
robotic process automation (RPA) (§4.3) and AI assistants (§4.2,
§4.4), it can also be used for data collection, to generate data for
NLP research (§4.4) or to scrape data from websites (§4.1). In the
following we give an overview of four use cases that fall into these
categories. Fig. 10 summarizes them and highlights which aspects
of Etna they leverage. Prior PBD tools for web automation, which
focus on generating UI scripts for action replay, would have been
able to support only the first use case on data access APIs.

4.1 Data access APIs
We used Etna to generate APIs to access web data for which official
APIs either did not exist or did not meet the data formats we needed.
A path in an action graph, which can be executed through one or
multiple UI scripts, can be considered anAPI request. Etna’s executor
service did not provide an API response so we extended it to do so.

We built a simple interface where users can specify API response
schemes listing which resources (texts or images) to fetch. Re-
sources are identified using a regex expression or an xpath, and can
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Figure 10: Etna’s platform and four use cases built on it.

have type “collection” (to scrape sets of items matching a condition,
such as a list) or “single” (to scrape individual items). Then, we
extended Etna’s executor service to launch an API, wait for the
resources to be visible, and fetch them. To make our APIs easy
to use, we extended Etna’s web app to support exporting paths
selected in an action graph in the Swagger API format [110]. Fig. 11
shows two APIs generated in this way (the response scheme is
not shown). After parametrizing the API, the user can launch its
execution directly from the web interface (or invoke it from a script
with conditions, loops, etc.).

4.2 Zero-coding task-oriented chatbots
We used Etna’s data access APIs not only for general data scrap-
ing but also for supporting task-oriented chatbots. Task-oriented
chatbots aim to understand a user request in natural language
(NL) and execute the associated task. They usually consist of three
modules: 1) a control structure, typically hand-designed by devel-
opers, which represents the actions (intents) the system supports
as well as the inputs (slots) required by the actions for execution;
2) a conversational interface that maps NL requests to intents and
slots, and prompts users for missing or incorrect slot values; and 3)
an executor that uses intents and slot values to parametrize APIs
and executes them. We leveraged Etna to build a framework and a
process through which developers can generate chatbots without
writing any code and without requiring access to third-party APIs.

As others have observed [62], action graphs implicitly represent
the control structure of a dialogue system: they embed entire task
flows including states, action dependencies, and parameter schemes.
Hence, with Etna, to build the bot’s control structure (module 1)
and executor (module 3), one can enumerate all one-hop paths in an
action graph and wrap each one in an API, as previously described.

To build the conversational interface (module 2), each path must
be associated with an intent, and a language understanding model
must be trained to map NL queries to every intent. In our frame-
work, we ask developers to write 30–50 utterances for each intent
and use luis.ai for training. Then, for each input parameter in the
action graph, they need to provide a question clause, and we gener-
ate a validator of user answers based on the parameter’s schema
provided by Etna. Alternatively, as in prior work [62], with an ad-
equate conversational dataset, a seq2seq model could be trained,
thus lowering the developer overhead.

(a) rei.com update cart API. (b) hyatt.com hotel search API.

Figure 11: Swagger APIs constructed using Etna.

To glue the tree modules together, we built an application-
independent runtime on top of the Microsoft Bot Framework
SDK [82]. The SDK provides dialogue templates for user conversa-
tion, offers primitives to maintain a conversation stack, and handles
network connections. Our runtime uses the SDK primitives to con-
nect conversational interfaces to Etna’s APIs and executor service,
and to build a dialogue interface to converse with the user.

Using this Etna-based platform, we enabled code-free generation
of chatbots: by providing an action graph and a conversational inter-
face, developers obtain an executable chatbot. Fig. 12 shows screen-
shots of four chatbots we built through this process: searching and
booking restaurants using OpenTable, searching movies and adding
them to a watchlist using IMDB, checking the weather forecast in
Foreca, and searching and buying books with Barnes&Nobles.

4.3 Model-driven RPA
In recent years, UI automation has gained remarkable attention
thanks to RPA [111], to automate repetitive and error-prone tasks
in business applications, such as invoice processing, customer reg-
istration, and payroll operations [51]. For RPA, reliability and cor-
rectness of task execution are paramount. The current best practice
to verify task completion is to specify input/output validation rules,
but ultimately many rely on manual inspection. Using Etna we
implemented a more reliable approach called “model-driven RPA”.

Traditional PBD tools [99] used for RPA have no notion of appli-
cation state. The assumption is that a task completes correctly if all
of its actions are executed. In practice, this is not true. For example,
entering all data in a form and clicking a “Submit” button is not an
indication of success; a form validation error or a similar message
may be displayed indicating that the task is indeed not complete.
Even an advanced tool like Robofox [50], which generates “asser-
tions” to verify whether HTML elements/data that were available
during recording are available during replay, would fail in this sce-
nario. Verifying task completion by inspecting the final application
state is not sufficient either because multiple action sequences may

http://luis.ai
https://www.rei.com
https://www.hyatt.com
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(a) OpenTable restaurant bot (b) IMDB movie bot (c) Foreca weather bot (d) Barnes&Noble book bot

Figure 12: Four chatbots built using Etna’s action graphs.

lead to the same final application state. To reliably verify task com-
pletion, every significant state change which occurred during task
replay must be validated.

To this end we leveraged Etna’s modeling of application states.
We built anRPAexecutor agent that uses action graphs to validate
its actions and recognize errors or wrong paths. Inspired by partially
observable Markov decision processes (POMDPs), after executing
an action, the agent captures an observation of the current UI (i.e., a
UI snapshot) and compares it with the model’s states using Etna’s
snapshot-state similarity function.2 The state most-similar to
the observation represents the agent’s belief state. The “expected”
state is the state the executed action should lead to according to the
action graph model. If the belief state deviates from the expected
state, the agent recognizes one of the following conditions: (i) lack
of progression, where the state remained the same whereas the
model expected the state to change (e.g., clicking on a button has
no effect on the UI); (ii) branching to a known error or another state,
where the agent transitioned to a known state but not the expected
one; or (iii) unknown state, where the observation is not similar to
any known state so the agent cannot proceed. In all these cases the
agent stops, and either logs the error or prompts the user for help.

This model-driven approach provides stronger guarantees on
the correctness of a task execution, and documents every step of it
thus producing a useful log. In §5.2, we evaluate how well Etna’s
snapshot-state similarity function can support this scenario.

4.4 NL-guided web navigation
More recently, we used Etna to build a web navigation experience
similar to that of Google’s Duplex on Web assistant [112]. The
user provides a command in natural language with reference to a
specific website. The system maps it to a task path in the action
graph of that website, and then executes it by driving its UI. Unlike
the previously-described chatbots, in this experience, the output
returned to the user is the webpage the system navigates to.

To execute task paths we leveraged the RPA agent just described.
To train a semantic parser model mapping user commands to
task paths, we used Etna to collect a training dataset.3 We pro-
ceeded as follows. First, we enumerated all task paths present in
2This function is equivalent to the similarity function of Eq. 1, but instead of using the
knowledge trees of individual snapshots, it uses the knowledge tree of the observation’s
snapshot and the aggregate knowledge tree of each state.
3The dataset and code are available at https://github.com/microsoft/flin-nl2web.

the target action graph in the format <start_state, action_name,
input_parameters>. Then, for each triplet we wrote multiple com-
mand templates with the input parameters as placeholders, e.g.,
“Book me the <room_type> room”. Recall that for list and menu-
like elements, Etna collects the set of possible values (e.g., {“1 king
bed”, “2 king beds”, “2 king beds with view”, ...} for the “room_type”
parameter). We used those values and paraphrases of them (e.g.,
“single king bed”) to instantiate a large number of commands. We
applied this approach to 9 websites in the restaurants, hotels and
shopping domains, and generated more than 53k command and
navigation path pairs. This dataset allowed us to train various se-
mantic parsing models with the aim to understand how to build
generalizable models (e.g., training a semantic parser using data
from one restaurant website and applying it to different restaurant
websites). Further details on our approach and performance results
are reported elsewhere [77]. Overall, Etna’s key role was to facili-
tate the creation of a novel dataset by providing definitions of task
flows, actions, and input schemes.

5 EVALUATION
Over the past four years we have used Etna to capture over 1,200
traces from 50+ different websites from various categories (shop-
ping, restaurants, hotels, transportation, etc.). We collected traces
initially for testing and performance purposes, but later to support
the use cases previously described. Etna is a general-purpose tool
which can work with most websites. It does not work on websites
that block the ChromeDriver and does not capture certain UI inter-
actions (see §6 for details). We were particularly interested in using
Etna to model transactional tasks such as reservation, booking or
purchasing tasks rather than information retrieval tasks such as
weather forecasts or news. Transactional tasks tend to be more
complex and consist of longer sequences of actions with interesting
dependencies (e.g., filtering, rebooking, editing, canceling, etc.). Be-
cause of the popularity of search interfaces in these websites, Etna
is optimized to automate multi-level lists, such as those used to
display search results. Etna is not suited to represent and automate
webpages containing tables, maps or calendars. Etna cannot replay
interactions requiring precise timing between subsequent events,
such as in games or online trading. We have used Etna both with
popular websites such as ebay.com, opentable.com or uber.com and
less popular ones, such as our on-campus shuttle booking service.

https://github.com/microsoft/flin-nl2web
https://www.ebay.com/
https://www.opentable.com/
https://www.uber.com/
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Table 2: Effort to manually edit 20 demonstration traces. Changes are classified as create (C), delete (D), rename (R), and move
(M) operations. The table also reports the size of each trace as number of UI snapshots, UI events, states, inputs, and actions.

Website Trace description Num Num Num Num Num State (%) Inputs (%) Actions (%) Events (%)
snapshots events states inputs actions C D R C D R C D R D M

opentable.com Search restaurants & filter 26 26 9 8 8 88.9 0.0 0.0 0.0 0.0 75.0 0.0 0.0 100.0 3.8 11.5
View restaurant times 22 15 7 5 4 14.3 0.0 14.3 0.0 0.0 100.0 0.0 0.0 50.0 6.7 26.7
Make a restaurant reservation 31 28 8 10 7 25.0 0.0 25.0 0.0 0.0 60.0 0.0 0.0 42.9 3.6 14.3

rei.com Add to cart & edit cart 13 9 5 4 4 20.0 0.0 40.0 25.0 0.0 75.0 0.0 0.0 75.0 0.0 0.0
Checkout 23 21 6 7 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 4.8 28.6
Pay 10 9 2 4 1 50.0 0.0 50.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 22.2

hyatt.com Search hotels 17 17 3 8 2 0.0 0.0 66.7 12.5 0.0 37.5 0.0 0.0 50.0 5.9 35.3
View hotel info & features 32 21 9 7 8 0.0 10.0 88.9 14.3 12.5 85.7 0.0 0.0 25.0 4.8 19.0
Search hotels & book 52 55 8 22 7 25.0 0.0 50.0 4.5 4.3 36.4 0.0 0.0 42.9 5.5 23.6

campus shuttle Book on-demand shuttle 12 11 4 3 3 25.0 0.0 0.0 0.0 25.0 33.3 0.0 0.0 33.3 9.1 27.3
Search shuttle’s schedule 7 5 3 1 2 33.3 0.0 0.0 0.0 50.0 0.0 0.0 0.0 0.0 0.0 40.0
Book fixed-route shuttle 11 9 4 3 3 50.0 0.0 25.0 0.0 0.0 33.3 0.0 0.0 33.3 0.0 22.2

macys.com Search shirts & filter 21 18 8 1 7 0.0 0.0 87.5 0.0 80.0 0.0 0.0 0.0 42.9 11.1 33.3
View cart 7 2 3 0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

radissonhotels.com Search hotel & book it 28 29 5 15 4 20.0 0.0 0.0 26.7 6.3 6.7 0.0 0.0 50.0 3.4 34.5
Search hotels & filter 15 9 4 3 2 0.0 20.0 0.0 33.3 25.0 33.3 0.0 0.0 100.0 0.0 33.3

accorhotels.com Search & filter hotels 31 26 11 8 10 45.5 8.3 18.2 0.0 0.0 62.5 0.0 0.0 40.0 3.8 11.5
yelp.com Filter restaurant results 16 9 4 3 3 75.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 11.1
bookatable.co.uk Search restaurants 4 3 2 1 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.3

Book offer at a restaurant 8 5 3 2 2 33.3 0.0 33.3 0.0 0.0 50.0 0.0 0.0 100.0 0.0 20.0

Median 16.5 13.0 4.5 4.0 3.5 22.5 0.0 16.2 0.0 0.0 36.9 0.0 0.0 46.4 3.5 22.9
25th percentile 10.8 9.0 3.0 2.8 2.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 33.3 0.0 13.6
75th percentile 25.5 21.0 7.5 7.5 6.0 33.3 0.0 45.0 8.5 9.4 61.3 0.0 0.0 87.5 5.1 33.3

After describing how we have leveraged Etna in various ap-
plication areas, in this section, we provide more insights on its
performance. A first goal of this evaluation is to give an intuition
on the effort involved in creating action graphs. We do so by de-
scribing our experience in collecting action graphs for our use
cases. While we do not claim our experience to be representative
of a large population of developers, it was driven by real use cases
(rather than the evaluation of the tool itself) so we consider it a
valuable exploration of the expressivity of Etna. A second goal of
this evaluation is to quantify the performance of two of Etna’s core
functionality: (ii) how accurate Etna’s approach to snapshot-state
similarity is, and (i) how reliably it can execute extracted actions.

5.1 Effort in constructing action graphs
To quantify the effort involved in turning demonstrations into
useful action graphs, we selected 9 websites and randomly picked
3 traces for each. We discarded trace that overlapped significantly
in functionality, thus obtaining a total of 20. We compared each
trace before and after being edited. All except 3 traces (on-campus
shuttle traces) were recorded and edited to support the NLP use
case (§4.4). This choice ensured we evaluated unbiased traces.

We classified the observed trace modifications as related to four
entities: (i) states, (ii) actions, (iii) inputs, or (iv) UI events. For each
entity we considered all the operations that a user can perform
using the trace editor. A user can delete (D), create (C) or rename
(R) a state, an action or an input. A user can delete (D) or move (M)
UI events. Appendix A provides examples of move event (Fig. 13)
and rename/create state (Fig. 14) operations.

Table 2 reports the editing effort according to this taxonomy. For
each trace and <entity,operation> pair, it reports the percentage
of entities that were modified. For instance, in the first row, the
number in the last column “Events-M” signifies that out of all 26

UI events contained in the OpenTable “search restaurant & filter”
trace, 11.5% were manually moved.

In terms of input-related and action-related changes, we observe
that most were renaming operations – input creations/deletions
had a 75th percentile of only 9% and action creations/deletions
were totally absent. This implies that Etna’s UI event processing
approach is effective at grouping UI events in input and action
clusters, and at automatically removing irrelevant UI events (i.e.,
we see few UI event deletions). On the other hand, on average,
in 23% of the cases (“Event-M” column), users had to manually
assign unclassified UI events to an existing input/action cluster. As
discussed earlier, Etna takes a conservative approach in case of low
confidence by deferring event assignment to the user.

In terms of state-related changes, state deletions occurred in only
3 traces (“State-D” column). In 13 out of 20 traces, users decided to
split the trace to add a new state (“State-C” column). Creating a state
is usually dictated by a personal preference on how to model the
logical task rather than a processing error. For example, in Fig. 14
(Appendix A), the user decided to split the restaurant state and
classify the snapshot with the dialog box as a separate “restaurant
availability” state. Another user may have chosen to treat these as
a single state with a self-loop action called “show next available”.

Overall, we conclude that the editing effort was affordable. Most
of it dealt with renaming entities (“R” columns). These changes are
up to the taste of the user and dependent on the target use case. For
example, if the action knowledge is intended to be used for an NLP
research project then action and input labels are more relevant than
if it is intended to be used for end-to-end testing of websites. On the
other hand, we acknowledge that there are various optimizations
that Etna could employ to make labeling more precise, such as
using computer vision models to associate text labels with nearby
UI controls [72] or invoking an entity recognition service [105].

https://www.opentable.com/
https://www.rei.com/
https://www.hyatt.com/
https://www.macys.com/
https://www.radissonhotels.com
www.accorhotels.com
https://www.yelp.com/
www.bookatable.co.uk
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Table 3: Success rates for 6 variations of the snapshot-state similarity function. Etna-all is our proposal.

Website # Model # Test traces # Snap-model Etna-all Only Only PageIds+ PageIds+ PageIds+
traces (snapshots) comparisons PageIds InteractEl InteractEl SemAnnot Texts

opentable.com 7 2(23) 161 95.7 65.2 4.4 65.2 82.6 95.7
ferry reservation 1 1(31) 496 74.2 0.0 45.2 74.2 0.0 0.0
campus shuttle 16 3(24) 311 87.5 8.3 41.7 54.2 8.3 33.3
bookatable.co.uk 8 4(42) 294 88.1 38.1 31.0 59.5 54.8 50.0
hotels.com 7 2(62) 372 83.9 0.0 40.3 46.8 0.0 74.2
rei.com 10 1(7) 77 85.7 0.0 85.7 85.7 85.7 71.4
reserve.com 3 1(5) 20 60.0 0.0 40.0 60.0 0.0 0.0
yelp.com 8 1(8) 56 75.0 62.5 12.5 75.0 62.5 75.0

Total/Average 60 15(202) 1787 84.2 18.8 35.7 59.4 27.2 53.5

5.2 Accuracy of snapshot/state classification
Etna provides three similarity functions for snapshot-to-snapshot
comparisons (used to cluster UI snapshots in unique states, §3.2),
state-to-state comparisons (used to merge multiple action graphs,
§3.3), and snapshot-to-state comparisons (used for reliable action
execution, §4.3). All three functions compute similarity using the
same features and weights, but use features stored either in sin-
gle or in aggregated knowledge trees, depending on the usage. A
failure in computing similarity can cause false positives/negatives
in state identification or lead to a wrong belief about an executor
agent’s current state and interrupt its execution. We evaluated our
similarity approach using the snapshot-state similarity function
which compares knowledge trees of single UI snapshots against
aggregated knowledge trees of states. Similar observations hold for
the other 2 functions.

We selected 75 traces across 8 websites. We used 60 traces to
build each website’s model (including aggregated knowledge trees
for all states in the model), and the remaining 15 to create a set
of test snapshots. (The number of traces used for each website
varies depending on the length of each trace, see Table 3.) We
manually ensured the test traces did not overlap with those used
for model building (e.g., different dates, regions, search terms, etc.)
and removed snapshot duplicates. Overall, we obtained 202 test
snapshots. For each website we compared its test snapshots with all
states in its model. The state with the highest similarity score and
above a threshold of 0.4 was considered the predicted state. If no
state could be identified with enough confidence, it was considered
a failure. In total, we performed 1,787 snapshot-state comparisons.

Overall, we tested 6 snapshot-state similarity functions, includ-
ing 2 baselines replicating state-of-the-art approaches. With refer-
ence to the knowledge tree features listed in Table 1 (last row),
we tested: (1) Etna-all, Etna’s similarity function that uses all
knowledge tree features, (2) OnlyPageIds, a baseline that deter-
mines similarity using page identifiers and HTML title annota-
tions, representing state-of-the-art systems such as Kite [62], (3)
OnlyInteractEl, a baseline that compares the set of interactable
UI elements appearing in the snapshot and in the state’s knowl-
edge trees, representing state-of-the-art systems such as Swift-
Hand [21], (4) PageIds+InteractEl, a variant of Etna’s approach
which combines the features used by OnlyPageIds and OnlyInter-
actEl, (5) PageIds+SemAnnot, a variant of Etna’s approach with
extends PageIds with semantic annotations (e.g., Schema.org), and
(6) PageIds+Text, a variant of Etna’s approach which extends PageIds

with textual features such as overlapping texts and ImmutableTexts.
For all similarity functions we used the same weights:wPaдeIds=2,
wAnnotations=5, wInteractEl=1 and wtext=2. We measured suc-
cess rate, defined as the percentage of cases in which given a test
snapshot the state most-similar to it was identified (Table 3).

Overall, Etna-all achieved a success rate of 84.2%, largely out-
performing the PageIds and OnlyInteractEl baselines. The ablation
analysis also demonstrated how different features are most critical
to different websites. For example, OpenTable is a website that
makes use of semantic annotations, hence page identifier features
and semantic annotations are sufficient to achieve a high success
rate (82.6%). The same is not true for the ferry reservation website
where the use of the InteractEl feature is essential. We have shown
before screenshots of this website (Fig. 3b), where states may differ
because of one or two different UI controls. We also point out the
poor performance of PageIds+Text. Despite these websites contain-
ing lots of texts, relying only on text similarity can be noisy, unless
a large number of traces relative to the number of states exist (e.g.,
Yelp). Finally, there are complex websites (e.g., campus shuttle) with
large action graphs (see Fig. 9) for which only the combination of
all features can succeed.

Main causes of failures for Etna-all included: (i) misleading nam-
ing of interactable UI elements (e.g., date and time widgets named
as “Tuesday” and “7:00pm”, respectively, resulted in no matches
with snapshots collected on different dates and times), (ii) limited
data affecting aggregated features such as Immutable texts, (iii)
misleading page titles (e.g., a search page and a booking page with
the same HTML title), and (iv) missing semantic annotations.

5.3 Reliability in executing actions
We briefly report on our experience with action replay. As in prior
work [18], we compare Etna’s approach to Selenium IDE [100],
currently one of the most popular UI automation tools. From our
dataset we selected 12 traces for 8 popular websites including
opentable.com, hotels.com and macys.com. We explicitly picked
traces that were 6–12months old to test Etnawithworst case scenar-
ios. We parametrized each action’s UI script with parameter values
different from those observed at record time and executed them
using Etna’s executor service. To test Selenium IDE, we recorded
the same tasks in the same websites using the Selenium recorder,
parametrized with new values anything that in the generated UI
scripts was auto-labeled as “value” (e.g., input texts) or cases where
the exact input string was part of the selector (e.g., a restaurant

https://www.opentable.com/
https://www.hotels.com
https://macys.com
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Table 4: Success rates of Etna and Selenium IDE based on 94
action executions.

Interaction type Etna Selenium IDE

Text input 100.0 100.0
Button/hyperlink click 92.3 92.3
Menu/checkbox select 86.7 80.0
1-level collection select 83.9 9.7
2-level collection select 100.0 0.0
Date pickers 40.0 0.0
Increment/decrement widgets 0.0 0.0

Average 80.9 41.5

name), and replayed them. In case of failure, we replayed the Sele-
nium trace up to 3 times before classifying it as failed. With this
setup, during execution, we observed changes in i) website content
(e.g., list items) due to divergent search inputs and time of day; ii)
location of UI elements, e.g., a recorded trace used “filter by color”
but at replay time we chose “filter by brand” which was located
elsewhere; iii) sets of UI controls, e.g., a “takeout” button added for
COVID-19; and iv) UI trees (e.g., element ids).

Table 4 reports the success rates based on a total of 94 ac-
tion/input interactions. Rather than reporting the results on a per-
website basis, we grouped the interactions based on their types. We
distinguish between selecting an item in a 1-level collection (outer
list) or a 2-level collection (inner list), as defined in §3.2.

Overall, Etna was effective at handling UI changes and input
variability, and achieved an average success rate of 80.9%. With
both systems, text inputs, button clicks and menu/checkbox selec-
tions worked relatively well. However, while Selenium could deal
with form filling and single buttons, it completely failed with list
selections. It was not able to parse the items in a collection, as it
would almost always use a numerical index to pick an item from
a list without any relation to its content. In contrast, thanks to
semantic ranking (§3.4), Etna was able to replay correctly most list
selections – 1-level collection failures were mainly due to timing
issues in loading the collection items. Other interactions failed due
to missing UI events or failures in locating the UI elements. In gen-
eral, replaying even the same recorded trace proved unreliable with
Selenium due to lots of noisy events (mouse over, scroll, etc.) and
due to timing constraints. Etna is optimized to filter out irrelevant
UI events and to search and wait for target UI elements to appear.

The most challenging UI elements were date pickers and incre-
ment/decrement widgets. Failures with date pickers were expected.
Date pickers are hard because of their many implementations and
because the apparently simple task of setting a date actually con-
sists of multiple steps (scrolling across months, picking a month
and picking a day). Etna currently supports selecting a day from
the current month and setting a date in date pickers where dates
can be typed (as text inputs). Increment/decrement widgets are not
difficult to replay as they are equivalent to button clicks, but they
require mapping the specified values to the correct number of clicks
to replay, which we do not support yet. Etna does not support also
sliding bars, counters, and other customized widgets.

6 LIMITATIONS
We discuss current limitations and future work for Etna.

Computer vision and ML. Etna relies on DOM tree analysis
to build application models; it uses OCR and DOM attributes to
detect visible content. Ongoing work is exploring how to train
deep neural models such as Faster R-CNN [93] and Yolo [92] for
screen understanding. A hybrid structural-visual analysis of the
webpage can help with state classification, locating UI elements
for action replay, and labeling actions/inputs. As we collect more
data, it should also be possible to train specialized ML models for
detecting pop-up dialogs, error messages, etc.

Action mining. AI techniques could be used to expand the set
of inferred actions beyondwhat appears in user demonstrations. For
instance, in a real estate website, a user may demonstrate searching
houses by specifying the number of bedrooms and the price range;
additional inputs (number of bathrooms, year of construction) could
be inferred automatically based on the UI layout. It is also possible
to apply Etna to usage logs collected for analytics purposes. How-
ever, this would require dealing with a diverse set of environments
(different screen sizes and website versions) and very noisy traces.

UI script maintenance. To handle website updates, Etna could
automatically test and update UI scripts associated with all ex-
tracted actions. A hybrid approach based on demonstration and
reinforcement learning [65] could automate the update process.

Failure points. Etna supports most common UI elements and
interaction types. It does not model zooming, scrolling, or swiping
interactions, and also does not model some customized widgets
such as date pickers. Etna does not work on websites that block
the ChromeDriver – in our experience, this is frequent with flight
and real-estate websites. Action replay can also fail due to delays
in loading collections, complex widgets or animations. Etna’s pro-
duced timelines can be affected by noisy UI events. Etna currently
handles noise such as back interactions or clicks outside the main
body, but does not handle error-fixing interactions, browsing, or
GUI-exploration actions unrelated to the task.

7 CONCLUSIONS
Web automation has moved beyond traditional testing and data
scraping scenarios to automate critical enterprise processes and
mainstream user experiences such as personal AI assistants. Current
PBD tools for UI automation are insufficient to support this new era
of application automation. We presented Etna, a system comprising
several novel techniques to extract action-related knowledge from
web interaction traces and to execute the extracted actions reliably
in real-world websites. We also described use cases where Etna
has been instrumental. Overall, Etna brings many advantages to
developers who are building modern automation experiences, and
represents a first step towards the goal of expandingweb knowledge
graphs to include information on actions and tasks.
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Figure 13: 3-step process to resolve an unassigned UI event.
The user “drags” the unassigned event under the correct ac-
tion cluster.
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Split & create new state

A new action is automatically created and named based on the event

Figure 14: Editing a trace timeline: a state and an input are
renamed, and a new state is created which automatically
spawns a new action (automatically labeled based on the UI
event as “Show next available”).

the example in Fig. 13. First of all, in the timeline view a user can
easily recognize UI events that do not belong to any cluster (based
on horizontal offset). The user can see the event timestamp and
previous/subsequent UI snapshots which can help locate the event
in the logical flow. For more details about a UI event, the user can
open a separate window including a snapshot of the UI tree with
highlighted where the event occurred (step ➀). In this example, the
user can see that the event occurred in the “sort-filter-menu” (step
➁). Back in the timeline, the user can see that the subsequent event
is associated with the action “A-Z”; they recognize the unassigned
event is part of the “A-Z sorting” action and drag it under it (step
➂).

Fig. 14 illustrates an additional editing example where the user
renamed state #4 by assigning a more general title (“restaurant”),
created a new state called “restaurant availability” which triggered
the generation of a new transitioning action (“Show next available”)
in the previous state, and renamed the “7:00 PM” input as “Select
time”. All these operations are rather simple and accomplished in
few clicks.
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