
Learning Patterns in Configuration
Ranjita Bhagwan
Microsoft Research

bhagwan@microsoft.com

Sonu Mehta
Microsoft Research

someh@microsoft.com

Arjun Radhakrishna
Microsoft

arradha@microsoft.com

Sahil Garg
University of California, Berkeley

sahil_garg@berkeley.edu

Abstract—Large services depend on correct configuration to
run efficiently and seamlessly. Checking such configuration for
correctness is important because services use a large and contin-
uously increasing number of configuration files and parameters.
Yet, very few such tools exist because the permissible values for
a configuration parameter are seldom specified or documented,
existing at best as tribal knowledge among a few domain experts.

In this paper, we address the problem of configuration pattern
mining: learning configuration rules from examples. Using pro-
gram synthesis and a novel string profiling algorithm, we show
that we can use file contents and histories of commits to learn
patterns in configuration. We have built a tool called ConfMiner
that implements configuration pattern mining and have evaluated
it on four large repositories containing configuration for a large-
scale enterprise service. Our evaluation shows that ConfMiner
learns a large variety of configuration rules with high precision
and is very useful in flagging anomalous configuration.

I. INTRODUCTION

Configuration management is an integral part of the de-
velopment and deployment of large services. These services
depend heavily on correct configuration to run uninterrupted,
be flexible to changing environments, and to scale seamlessly.
This ubiquitous use of configuration in services poses several
daunting challenges, one of which is to ensure that every
configuration parameter is set to a suitable value. To make
matters worse, the amount of configuration that a service
needs to manage grows significantly with time as the service
scales out and as developers add new features and capabilities.
For instance, the Microsoft 365 email service [1] more than
doubled the number of configuration files in just a period of
six months.

Unlike code, for which compilers and static analysis tools
catch several types of errors well before the developer commits
their changes, very few tools exist to perform such checks on
configuration. This is because rules governing which config-
uration values are appropriate for a particular configuration
parameter are very specific to the scenario in which the service
uses the configuration value. For instance, a configuration
value may capture a timeout for a particular microservice
which the microservice expects to be a few minutes. If a
developer were to set this timeout value to a few milliseconds
by mistake, while she would be syntactically correct, the
microservice may fail because of a lower-bound check on the
timeout value. Worse, if no such check exists, the microservice
would start timing out much too soon in deployment and
thereby cause service disruption. Such requirements of config-
uration correctness are seldom documented. Very often they
are subtle, very specific to the context in which they are used,

and difficult to catch through specification and hard-coded
rule-based checking. Consequently, misconfigurations in large
services occur much too often, cause build and test failures,
and sometimes significant disruption and data breaches [2],
[3], [4], [5]. For instance, in January 2020, Microsoft exposed
250 million customer records inadvertently because a database
specified personally identifiable information (e.g. email ad-
dresses) in an anomalous format [6].

Towards addressing this, we observe a unique opportunity
driven by two recent trends. First, modern services maintain
configuration in files separate from code, such as yaml, json,
or xml files. Engineers process configuration changes similar
to code changes: they commit changes to the configuration
through a version control system. We can therefore treat
configuration-as-data by tapping into the version control sys-
tem. Through commit logs and file histories, we have access to
a rich history of configuration file snapshots and changes from
which we can learn patterns in configuration values. Also,
since configuration is gated by version control systems, we
also have the opportunity to automate configuration checks at
commit time and catch errors early, well before deployment.

Second, the field of program synthesis for data processing
has seen rapid progress in recent years. Tools like FlashFill
learn programs that capture patterns in values, structure and
sequences and have been used successfully in various domains
such as automated manipulation of tabular data [7], [8], [9],
[10] and semi-structured data extraction [11], [12].

In this paper, we bring the ideas of program synthesis and
configuration-as-data together to perform configuration pattern
mining. We introduce a novel program synthesis-based string
profiling procedure to learn regular expression based rules
that capture patterns in configuration values. This procedure is
based on the techniques presented in [13], but is significantly
more efficient and robust to noise. For instance, given enough
examples, the string profiling procedure can learn that a
timeout value in a configuration file is always specified as a
number followed by the character, “s" (the regular expression
[0-9]+s). If a developer erroneously specifies a timeout
value of “1ms” or a timeout value of “10” without specifying
the units, it will not match the learned regular expression and
hence, we can flag the mismatch as a potential configuration
error.

We use two types of input data (or examples) to the string
profiling algorithm to learn to different kinds of rules for
configuration values. First, we learn history-based rules by
using versions of the same configuration value in previous

commits and detect patterns in them. Second, we learn file-
based rules that learn patterns in different configuration values
within the same version of a single configuration file. We find
that both rule types capture various configuration patterns and
can be used to flag misconfigurations, auto-suggest correct
values to developers as they edit configuration, and thereby
contribute to improving configuration management.

We have built ConfMiner, a tool that uses the algorithms
described here to implement configuration pattern mining. We
have evaluated ConfMiner on 4 repositories that are used
to manage configuration for a large-scale enterprise service
used by hundreds of millions of users. Our results show that
ConfMiner is very generally applicable and learns a wide
variety of rules. We also observe that ConfMiner’s rules
catch many different kinds of misconfigurations very early
in the development process. This can help accelerate the
development cycle of services and improve service reliability.

This paper makes the following novel contributions.
• We introduce the problem of configuration pattern min-

ing, i.e. learning patterns in configuration from examples
that we get from file version histories and commit histo-
ries. To the best of our knowledge, this is the first work
to target the problem of pattern mining in configuration
values. We describe two types of configuration pattern
mining: value-based and structure-based.

• We develop a novel program synthesis string profiling
procedure and apply this to configuration-as-data to learn
value-based rules pertaining to configuration. This pro-
cedure outperforms the state-of-the-art string profiling
algorithm by 3.3X and is of independent interest outside
the context of configuration mining.

• We have built a tool called ConfMiner that implements
our algorithms for value-based rule mining. We have
evaluated it on 4 configuration repositories for a large,
popular service. Our results show that ConfMiner is in-
deed effective in learning patterns in configuration values.

The rest of the paper is organized as follows. Section II
describes the problem of configuration pattern mining, outlines
our solution, and describes the scope of this work. Section III
describes the algorithm and system components in detail.
Section IV presents our evaluation of ConfMiner and the string
matching algorithm. Section V discusses threats to validity.
Section VI discusses related literature and section VII provides
a conclusion to the paper.

II. PROBLEM DEFINITION AND SCOPE

In this section, we first explain configuration pattern mining
with an example configuration file. Next, we provide an
overview of how ConfMiner performs configuration pattern
mining and how applications can use these patterns. Finally,
we discuss the scope of our work and bring out its inherent
limitations.

A. Configuration Pattern Mining

Any configuration file, be it in json, xml, yaml, or any other
format, can be expressed as a hierarchical tree structure. Each

Google App Engine application config file

application: foobar
version: 5
runtime: php55

Manifest files

- url: /(.+(̇appcache))
static_files: \1
upload: static/(.+(̇appcache))
mime_type: text/cache-manifest
expiration: "0s"

- url: /(.+ẇebapp)
static_files: \1
upload: (.+ẇebapp)
mime_type: app/x-web-app-manifest+json
expiration: "5s"

CSS, Javascript, text etc

- url: /(.+(̇css|js|xml|txt))
static_files: \1
upload: (.+(̇css|js|xml|txt))
expiration: "5m"

HTML pages

- url: /(.+ḣtml)
static_files: \1
upload: (.+ḣtml)
expiration: "10m"

Fig. 1. Example configuration file derived from Google AppEngine’s
app.yaml. We have modified this file for illustrative purposes here.

node is a key-value pair, where the key is the configuration
parameter and the value is the value that the configuration
parameter is set to. An edge connecting two nodes captures
a parent-child relationship between configuration parameters.
Given this, we envision two types of configuration pattern
mining: value-based and structure-based.

1) Value-based pattern mining: This is the process of
learning patterns in the values of a configuration parameter.
We use regular expression learning to do this. Consider the
app.yaml configuration file in Figure 1 which is an abridged
example of a Google App Engine’s configuration file [14]. The
parameter expiration (highlighted in blue) is set four times
in different sections of the file, and all values follow a certain
pattern: a number followed by an ‘s’ (for seconds) or an ‘m’
(for minutes). From this, we can learn patterns for the value
(or a rule) as the regular expression [0-9]+[s|m]. Since we
learn this rule based on the contents of the file alone, we call
this a file-based rule. Now, notice the parameter version
(highlighted in red) on the second line. This is specified only
once in the file as 5, but say previous values of this parameter
in earlier revisions of this file were 1, 2, 3 and 4. From
all these values, we can learn that this parameter is always
a number, i.e., follows the pattern specified as the regular

Fig. 2. ConfMiner System Overview

expression [0-9]+. We can learn this rule from a history
of commits to this specific configuration parameter. We call
this a history-based rule.

Notice that the generalizations these rules provide are not
unique. For any given set of values, we can learn multiple regu-
lar expressions. For instance, in the case of the expiration
parameter, we could learn a more general expression such as
[0-9]+[a-z] which allows any letter, not just ‘s’ or ‘m’.
Or, we could learn a more specific regular expression e.g.
[0|5|10][s|m] which only allows numbers 0, 5 and 10.

2) Structure-based pattern mining: Configuration files have
a rigid structure. In Figure 1, the file specifies a list of four ele-
ments: each element is prefixed by a ‘-’. Each list element has
a specified set of configuration parameters. All four elements
have parameter expiration specified (in blue), whereas,
only two out of four elements have mime_type specified
(in green). From this, we could infer that expiration is
potentially a mandatory parameter whereas mime_type is
not. Another form of structural pattern is that there may
be an implicit ordering requirement of parameters. Certain
parameters may have to be specified before others. A common
example of this is firewall configurations, where the configured
rules are applied in order to determine whether a network
connection should be allowed or denied. Each rule overrides
all other rules that appear after it in the ordering. This
paper concentrates on value-based mining; we leave work on
structure-based pattern mining algorithms to future work.

B. System Overview

ConfMiner’s goal is to learn patterns for configuration that
can be used by several applications to detect misconfiguration,
suggest changes, and build automatic checkers. Figure 2 shows
an overview of the system. First, ConfMiner runs a string
profiling procedure on a specific file’s contents to generate
file-based rules for every configuration parameter that has a
large enough number of example values in the file (e.g., the
parameter expiration in Figure 2). Next, ConfMiner uses
commit histories for a specific configuration parameter to learn
history-based rules in a similar manner. All learned rules,
their confidence and support are stored in a database. The
rule-learning algorithm runs periodically on file contents and
histories, e.g. in our deployment, ConfMiner learns rules once
a day.

Applications query ConfMiner through a simple interface
which, given a parameter and its value, return all rules
that match that value. Applications can use this interface in
multiple ways. For instance, an auto-checker can, at review

time, post an automated comment if a commit to a particular
parameter does not match any of the learned rules. This
application is similar to commit recommendation systems such
as Rex [15]. An IDE can also use the rules to suggest changes
to configuration parameters as the developer starts to type
in the change. This scenario is similar to IntelliSense in
VisualStudio [16] or Content Assist in Eclipse [17]. A third
application is to enable building automated configuration com-
pilers and verifiers which can run along with code compilers,
perhaps as plugins, to generate warnings, etc. This usage is
similar to StyleCop [18].

C. Scope

We believe that configuration pattern mining is a vast subject
which needs to be tackled through a significant body of re-
search. In this paper, we concentrate primarily on value-based
patterns that can be captured through regular expressions. Here
is what the paper does not try to achieve.

1) Building a sound, complete system: ConfMiner is funda-
mentally a best-effort system, and since it learns from example
values, it cannot be sound or complete. Notice that given a set
of sample configuration values, our example in Section II-A
showed that ConfMiner could learn more than one valid
regular expression given a set of inputs. An application’s
efficacy will vary depending upon how specific the rules are.
The more specific the rules, the more strict an application
will be in enforcing them. The more generic the rules are,
the application will be less strict but may miss out on valid
misconfigurations. To handle both scenarios, ConfMiner learns
a combination of rules that are very specific as well as very
generic. An application can then use thresholds to select more
specific or more general rules depending on its tolerance to
false-positives and false-negatives.

2) Going beyond regular expressions: Our work concen-
trates only on patterns that can be captured via regular ex-
pressions. Not all value-based rules can be captured by regular
expressions. For instance, values of different parameters could
be correlated. Or, in certain cases, the value of a particular
parameter may change in a very specific way over time, such
as the version parameter in Section II-A goes up by 1 every
time it is changed. We leave learning such rules and properties
to future work.

3) Designing applications: Our goal is to design a pattern
mining algorithm for configuration. While we do not concen-
trate on building applications that can use the mined config-
uration patterns, we have emulated an automated comment
generator which, in real time, flags many misconfigurations
made by developers in deployment. Section IV describes our
evaluation and application emulation in detail.

III. CONFMINER DESIGN

In this section, we first give some background on string
profiling and describe our program synthesis-based string pro-
filing algorithm, while providing details on the configuration-
specific parameters. Next, we describe the data generation
engine and the rule-learning engine. Finally, we describe the

Fig. 3. ConfMiner components.

API that ConfMiner exposes and that applications can use.
Figure 3 gives a summary of ConfMiner’s components and
how they interact.

A. Profiling Configuration Values

The string profiling problem. First, we address the problem
of characterizing all the values a configuration parameter may
take. Given the known set S of string values for a configuration
parameter, the string profiling problem is to produce a set of
disjoint regular expressions R and a set of outliers O ⊆ S
such that ∀s ∈ S.s ∈ O ∨ ∃r ∈ R.s ∈ r. That is, every string
in S either matches one of the regular expressions in R or
is in the outlier set O. Here, we use the notation s ∈ r to
represent that a string s matches a regular expression r.

The set of regular expressions R is called the profile of S.
Intuitively, each r ∈ R defines a cluster of similar strings in
S. We will use the set of known values (obtained from the file
or the history) for a configuration parameter to learn a profile
R and use the profile as a specification for any new values of
the configuration parameter.

The correctness requirements of the string profiling problem
are rather easy to satisfy. The profile consisting the single
regular expression .*, i.e., the expression to match all strings,
is always a valid solution. To obtain useful solutions, we
need to define an optimality criterion. We do not provide
the full formal details of the criterion, but instead refer the
reader to [13]. Intuitively, an optimal profile is one such that∑

r∈R Score(r) is minimized, where Score is a custom defined
ranking function. We use the same Score function used in
[13]—in particular, in the Microsoft PROgram Synthesis using
Examples SDK (PROSE) [19] implementation of [13]. This
version of Score was tuned using over 100 sample datasets
across different application and data domains beyond just
configuration mining.

The function Score assigns scores based on two factors:
specificity and simplicity. For example, regular expressions
that use the character class ., i.e., class that matches all
characters are given a high score, while expressions using
long constant strings are given a lower score. On the other
hand, the expression [0-9]* would be given a lower score
than [0-9]{2,9} despite the latter being more specific: the
former is a simpler pattern.

We extend the optimality criterion to a noisy setting as:∑
r∈R Score(r)+ o · |O| where o ∈ R+ is the outlier penalty.

We explicitly penalize outliers using the parameter o, and
tuning the value of o controls the balance between patterns
and outliers.

Example III.1. Consider the following set of values that the
ResourcePath configuration parameter takes: S = {

"resource/2020-08-26/first.xml",
"resource/2001-11-05/second.xml",
...,
"resource/1992-03-15/third.xml",
"deployed/main.xml",
"deployed/secondary.xml",
...,
"deployed/tertiary.xml",
"test_resource.xml"

}
Here, the values fall into the following categories: (a) Values

that match the regular expression r1 = resource/
[0-9]{4}-[0-9]{2}-[0-9]{2}/[a-zA-Z]*[.]xml,
(b) Values that match the regular expression r2 =
deployed/[a-zA-Z]*[.]xml, and (c) the outlier
value test_resource.xml.

Ideally, a string profiling procedure will characterize the
patterns in S with the regular expressions R = {r1, r2} and
the outlier setO = {text_resource.xml}. This profile would
signify that any new values for the configuration parameter
should match either r1 or r2.

The Stochastic String Profiling Procedure. Algorithm 1 de-
scribes a stochastic algorithm for the string profiling problem.
At its core, the algorithm uses the LearnRegex to learn a
single regular expression r from a set of generators G ⊆ S .
In general, the set G is small, between 2 − 5 strings. We
use the LearnRegex procedure from [13], as implemented
in the Microsoft PROgram Synthesis using Examples SDK
(PROSE) [19].

Algorithm 1 Stochastic string profiling algorithm
Require: Set of strings S
Require: Ranking score Score
Ensure: Regular expressions R and outliers O ⊆ S

1: Clusters← ∅
2: while * do
3: G← Sample(S,Clusters)
4: r ← LearnRegex(G)
5: Clusters← Clusters ∪ {G 7→ r}
6: end while
7: R ← ApproxExactSetCover(Clusters,Score)
8: O ← {s ∈ S | ∀r ∈ R.s 6∈ r}
9: return (R,O)

Given a set of strings S, Algorithm 1 maintains a dictionary
Clusters that maps subsets G of S to the regular expression
r = LearnRegex(G). Each item G 7→ r in Clusters is a
potential cluster in the learned profile, representing the strings
{s ∈ S | s ∈ r}. The procedure proceeds through the
following stages:
Generate. We repeatedly sample small subsets (size 2− 4) of
S and learn a regular expression using the LearnRegex proce-
dure. During sampling, we do not construct G by uniformly

sampling from S. Instead, we obtain G as follows: we start
with an empty G and extend G with one of the following
randomly chosen options 2–4 times:
• String s ∈ S that does not belong to any cluster,
• All the generators G of a cluster G 7→ r in Clusters, and
• String s where s ∈ S does belong to a cluster in Clusters,

This biased sampling attempts to achieve one of the following:
(a) construct a new cluster out of the strings that do not belong
to any cluster, (b) merge or extend existing clusters to form
a larger one, and (c) construct new clusters independently of
existing ones. Ideally, the sample-and-learn loop is run until
all patterns in the desired profile are added to the Clusters
collection. However, we do not know the desired patterns: in
practice, we sample until no new regular expressions have been
added to Clusters for 10 iterations.
Select. Now, given a set of candidate clusters and the Score
function, we use an approximation algorithm for the minimal
exact set cover to pick a near optimal subset of clusters. Given
a set X and a set of its subsets Y = {X1, . . . , Xn} with a
cost function mapping Xi to reals, the exact set cover problem
asks to choose a subset of Y ′ ⊆ Y such that each Xi, Xj ∈ Y ′

are disjoint and
⋃

Xi∈Y ′ Xi = X . Of all such possible Y ′ we
prefer the one with the minimal total cost. In our setting, (a) X
is the set of all strings S, (b) Y contains the set of candidate
clusters Clusters, and (c) the cost function is Score.

The approximation algorithm follows standard greedy set
cover algorithms: it maintains a partial solution, in this case,
a set of regular expressions {r1, r2, . . . , rk}. In each iteration,
the cluster G 7→ r which maximizes |{s ∈ S | s ∈ r ∧ ∀i.s 6∈
ri}|/Score(r) is added to the partial solution, and all clusters
which intersect with ri are discarded from Clusters.

However, we do not proceed until all strings in S are
covered in the solution. Instead, we stop adding to the partial
solution when the value |{s ∈ S | s ∈ r∧∀i.s 6∈ ri}|/Score(r)
drops below the outlier penalty o−1 for all r in Clusters. The
strings in S that are not matched by any ri in the solution are
deemed outliers O. Our implementation additionally returns
the confidence and support for each pattern, which are defined
as the fraction and the number of strings, respectively, that are
matched by the corresponding regular expression.

It should be noted here that the fact that the procedure
ignores a small fraction of outliers is particularly of importance
to us, since this ensures that any rare examples of that
configuration parameter which might be existing or historical
misconfigurations are not matched in the learnt profile.

Example III.2. Consider the set of strings S from
Example III.1. In the first phase of the algorithm, we
sample subsets of S and learn regular expressions from these
samples. Here, we have 4 separate cases:
(a) The sample only contains strings of form
"resource/{date}/{file_name}.xml In this
case, LearnRegex returns r1.
(b) The sample only contains strings of form
deployed/{file_name}.xml. In this case, LearnRegex
returns r2.

(c) Sample contains strings of both forms. Here, r3 =
[a-zA-Z/]+/[a-zA-Z]*[.]xml is returned.
(d) The sample contains the outlier string
test_resource.xml. Here, r4 =
[a-zA-Z/_]*[.]xml is returned.
By design, the ranking score Score function produces scores
with Score(r1),Score(r2) < Score(r3) < Score(r4), by the
principle of specificity.

During the second phase, selection, the clusters are cho-
sen using the greed heuristic, with r1 and r2 picked in
sequence. For the rest of the clusters, the normalized score
is less than the outlier penalty o−1. Hence, the string
test_resource.xml is deemed an outlier. Note that the
selection of regular expressions depends heavily on the Score
function. With different Score functions, there are cases where
the preferred cluster may be r3 or r4.

Comparison to [13] We do not go into a full comparison
of Algorithm 1 with [13] as it is not related to the main
thesis of this paper. Summarizing the performance aspect
of the comparison, Algorithm 1 is 3.3X faster than [13]
on the set of benchmarks from [13] (see Figure 4). This
performance improvement can be attributed to avoiding the
expensive agglomerative hierarchical clustering (AHC) based
approximation, which is O(n2) in the number of input strings.
The time taken by Algorithm 1 is dominated by the sample

Fig. 4. Performance comparison of Algorithm 1 vs. FlashProfile

phase. The number of sampling iterations to produce good
profiles depends on the number of patterns in the desired
profile as opposed to the number of input strings. As the
number of patterns in the profile is significantly smaller than
the number of input strings, Algorithm 1 is often more efficient
than AHC.

Further, Algorithm 1 often produces profiles of a higher
quality than [13]. In the string profiling setting, AHC is
sensitive to incorrect decisions in a manner that is not possible
for numerical data. AHC proceeds by initially considering each
string to be a cluster by itself, and then iteratively merging
the two clusters that are the closest to each other. Here, the
notion of distance is given by the Score value of the regular
expression generated by the strings in the cluster. One incorrect
merging decision, often due to outliers or similar strings of
different patterns, has a cascading effect and may produce
undesirable profiles.

Example III.3. Consider a set of strings representing dates

of the forms 14 January 2020 and 23-Feb-2020.
Suppose the set contains the strings 03-May-1992 and
03 May 1992. It is likely that the first merge performed
by AHC will group these strings together to obtain the
regular expression 03[-]May[-]1992. This is because
the resulting regular expression is very specific and will have
a low Score value.

After this point, all subsequent clusters will either
include both these strings, or exclude both of them.
Hence, we can never obtain the desired regular
expressions [0-9]{2}-[A-Z][a-z]{2}-[0-9]{4}
and [0-9]{2} [A-Z][a-z]* [0-9]{4}. Instead,
AHC returns a profile that has the single regular expression
[0-9]{2}[-][A-Z][a-z]*[-][0-9]{4} which
mixes the two formats. Similarly, in the presence of outliers,
one incorrect decision merging an outlier with a non-outlier
cluster will cause significant degradation of the final results.
Algorithm 1 avoids these issues—even if the sampling groups
strings incorrectly, the clusters that arise from these groups
will be safely ignored during the selection phase.

B. Token DSL for Configuration Mining.

We use the PROSE SDK implementation of the LearnRegex
procedure. However, this procedure had to be customized
to the context of configuration mining. During the learning
process, LearnRegex constructs regular expressions using a
domain specific language DSL of generic tokens such as
[0-9] for digits and [A-Z] for uppercase letters. ConfMiner
has had to modify the DSL to make it more configuration-
specific. Consider the following example scenarios.

We found that configurations often capture names,
such as file names, test names and firewall rule names.
Names can have an arbitrary number of camel-cased
terms. For instance, a parameter testname captures
the names of tests to run on a particular code-base. Say
ConfMiner’s data collection found three unique values for it:
("testComponent","testData","testSystem").
Given the generic DSL, ConfMiner would learn the regular
expression test[A-Z][a-z]+ which allows only one
camel-cased term to follow test. Hence if an application
queries ConfMiner with the value "testAppData" for this
parameter, the regular expression will not match it since it
has two camel-cased terms following test. To accommodate
this scenario, the configuration-specific DSL ignores the token
[A-Z] and hence ConfMiner learns the regular expression
test[A-Za-z]+ which is much more general and allows
an arbitrary number of camel-cased terms in the name.

The configuration-specific DSL also includes new tokens.
For instance, we found that values often capture lists of
arbitrary sizes, where a delimiter such as a comma separates
the list elements. To allow for lists of arbitrary size, the
configuration-specific DSL includes tokens such as (\w+,)+
which covers comma-separated lists or arbitrary size. If the
DSL does not include such list-specific patterns, ConfMiner
learns regular expressions only towards a specific number of

elements in the list which again causes incorrect matching
behavior in a large number of cases.

C. Data Generation Engine

We now describe the data generation process for file-based
and history-based rules.

1) File-based: Data generation to learn file-based rules
is triggered every time a configuration file is changed.
ConfMiner’s data generation engine parses the configura-
tion file using format-specific parsers. Currently, our im-
plementation supports 11 different file types including xml,
json, yaml and ini. Each parser gives us a tree object
that captures all the configuration in a structured for-
mat. From this, ConfMiner extracts tuples of the form
(file_name, param_name, list_of_values). A
parameter name, such as expiration in Figure 1, can exist
under different parent configurations. We made the choice
to ignore the ancestry of each parameter and, as long as
their names are identical, ConfMiner combines all values of
parameters within the same tuple and into one list of val-
ues. Hence, for the mentioned example, ConfMiner generates
the tuple (app.yaml, expiration, ["0s", "5s",
"5m", "10m"]). This increases the number of values for
each parameter and more data allows for rules with higher
confidence and support from the string profiling algorithm.

2) History-based: Data generation for history-based
rules is triggered every time a commit changes an existing
parameter in a configuration file. For every file commit,
ConfMiner runs a differential analysis on the file to detect
which particular configuration parameter has changed. A
textual difference (which version control systems readily
provide) does not suffice because it is possible that the value
of a parameter spans multiple lines, and if only some of
those lines are changed, one cannot tell what the changed
parameter is. ConfMiner therefore performs the difference
at a syntactic level. To do this, it uses configuration parsers
to learn the tree object for the old version of the file, does
the same for the new version of the file, and compares them
using heuristic approaches. From these comparisons, it finds
a) the changed configuration parameter and b) the new value
it is set to. From this, ConfMiner creates tuples of the form
file_name, param_name, list_of_values).
In addition, ConfMiner also generates new tuples that
combine data across files if the configuration parameter
name (param_name) is the same. This aggregated data is
particularly useful towards learning rules that govern generic
datatypes such as IP addresses, and DLL version numbers
which could have the same format across different files.
Section IV-C shows several examples of file-based rules and
history-based rules that ConfMiner learned in deployment.
This includes examples of generic patterns that exist across
files as well.

Depending on file format, configurations could have slightly
varying structure. For instance, in the xml format, a config-
uration parameter, apart from having a value, could have at-
tributes which themselves have set values. ConfMiner accom-

modates all these specific details for different formats. More
details on the implementation are provided in Section IV-A.

D. Rule-Learning Engine

Once ConfMiner generates data for file-based and history-
based rules separately, it uses the string profiling algorithm
which returns a list of regular expressions with the confidence
and support for each. While rules with higher confidence and
support are indicative of “well-behaved" values of a config-
uration parameter, rules with very low confidence or support
may be equally important and useful. At first glance, this ap-
pears counter-intuitive. But several configuration parameters,
in reality, have very varied patterns like the url parameter
in Figure 1. Learning one regular expression that captures
all these parameters would make the regular expression too
generic, albeit with high confidence and support. We have
found that it is indeed better to learn a small number of
regular expressions that capture the whole set of values, with
each regular expression having relatively low confidence and
support. We use the Score parameter in the string profiling
algorithm to strike this balance and set a very low threshold on
the confidence and support of the rules learned. The confidence
threshold is set to 0.03, i.e., if a cluster contains 3% of
known file-based or history-based values for a configuration
parameter, the corresponding rule is considered valid. For rules
with confidence lower than this threshold, the corresponding
values are considered accidental or outliers, i.e., even if a
new configuration value matches this rule, it is considered
potentially incorrect and flagged.

Currently, ConfMiner’s rule-learning engine is triggered
once a day. Using all commits within that day, it learns history-
based rules using a commit history of 6 months. It learns file-
based rules for any configuration file that has been changed
on that day. Finally, ConfMiner stores all learned rules in a
central database, indexed by file name and/or parameter name.

E. ConfMiner API

The above sections have described the process by which
ConfMiner learns regular expressions given input examples.
We now describe the API using which applications can use
ConfMiner. The primary call that ConfMiner supports is
FindMatches(file_name, param_name, value).
The call returns a list of all file-based and history-based rules
that the value matches along with the confidence and support
for each rule. The application can then further filter the set of
rules based on its own confidence and support requirements.
If no matching rule is found, the function returns a null value.
ConfMiner also returns matches using generic history-based
rules, which hold across different file names. Again, the
application can decide to keep these rules or eliminate them.

IV. EVALUATION

We first describe details of the ConfMiner implementation
and describe our deployment of ConfMiner on 4 repositories of
Microsoft 365, a large-scale widely used enterprise service. We
then evaluate the string profiling algorithm using real data from

these repositories. We emulate an automated misconfiguration
checker and show that ConfMiner rules flag several miscon-
figurations as and when developers commit them. Finally, we
examine 64 real-world configuration issues as reported in the
Ctest dataset [20] to determine how often configuration pattern
mining can help find real misconfigurations.

A. Implementation

ConfMiner is implemented using 4760 lines of C# code and
works with Git [21]. The data generation engine interfaces
with both Github [22] and Azure DevOps [23]. It supports
a total of 11 file types that typically store configuration,
including xml, json, yaml, csproj, config and ini. For each
format, the data generation engine implements parsers which
first translate the file contents into the xml format. ConfMiner
then inputs the xml for the old version and the new version to a
difference module which implements the differential syntactic
analysis required to learn history-based rules. The difference
module is built using the XmlDiffAndPatch [24] library.
The ConfMiner API is implemented using approximately 1500
lines of C# code. In our Azure DevOps implementation, we
use service hooks [25] to capture commits to configuration
files as and when they happen.

B. Deployment

We have deployed ConfMiner on four repositories belong-
ing to a large continuously deployed service within our enter-
prise, as shown in Table I. R1 contains both code and configu-
ration of core features in the service. R2 contains information
regarding physical configuration, such as datacenter-specific
configuration and network-specific configuration. R3 contains
code and configuration related to the DevOps environment i.e.
build, test and deployment pipeline for the service. Finally, R4
contains code and configuration for all applications built on
top of the core features that the service provides.

Most configuration for these repositories sits in xml, json
and ini files. The “config changes" column tells us the number
of configuration parameters that have been changed in the
last six months. This is as high as 23,521 in the case of R4.
The rule-learning engine uses these changes to learn history-
based rules. Increasing history beyond six months makes the
computation of rules slow and also biases the rules towards
older data that may not be relevant. The “file changes" column
gives the number of configuration files changed in the last six
months. This is much lower than the configuration changes
because every file captures multiple configuration parameters.
Finally, the “history-based rules" column and the “file-based
rules" column show the number of rules ConfMiner learns in
these two categories using six months of data.

C. Example Rules

Table II gives some example rules that ConfMiner has
learned in deployment. Both file-based and history-based
techniques learned similar rules. As can be seen the support
i.e. the number of input examples that match each learnt rule
can vary widely, sometimes reaching a few thousand. Also,

TABLE I
DETAILS OF REPOSITORIES THAT CONFMINER IS DEPLOYED ON. FILE CHANGES AND CONFIGURATION FILE COMMITS ARE FOR THE LAST SIX MONTHS.

Repository Config file counts Config changes History-based rules File changes File-based rules
json xml ini

R1 4635 55815 5199 21627 13358 976 36089
R2 1905 3104 114 18461 14313 634 17261
R3 598 10150 121 2130 8173 337 5816
R4 6769 2008 1967 23521 13113 661 15443

TABLE II
EXAMPLE RULES LEARNED.

No. File type Config name Rule Examples Support

1 xml ServerName SRDC-NLB-0[0-9]A
“SRDC-NLB-01A" 34“SRDC-NLB-03A"

2 config Version [0-9]+\.[0-9]+\.[0-9]+\.[0-9]+
“19.12.12.151005" 466“3.7.25810.101"

3 xml Runtime 00:00:00\.[0-9]7
“00:00:00.2178760" 7219“00:00:00.3280206"

4 csproj Include tbuild_DB[0-9a-fA-F]+\.xml
“tbuild_DB3.xml" 17“tbuild_DB9f.xml"

5 xml Duration 00:00:[0-9]{2}
"00:00:24" 10
“00:00:01"

6 - TimeServers 10\.22\.5\.134,10\.89\.0\.13 - 1043

7 json Normal 0x[0-9a-fA-F]{6}
“0x212838" 33“0x7C68B2"

8 json TestProfiles [A-Z][a-z]+,Search,[A-Z][a-z]+
“Suggestions,Search,Teams" 45“Recommendations,Search,Suggestions"

9 ini OrderBy UserRelation/[a-zA-Z]+[\s]desc
“UserRelation/TrendingWeight desc" 14“UserRelation/LastAccessTime desc"

10 ini ItemName AutoSuggest\.[0-9a-zA-Z]+
“AutoSuggest.L0RankerControlCsgIndex" 108“AutoSuggest.L1v3RankerCsgIndex"

ConfMiner learns many rules across all major configuration
file types such as xml, json and csproj. Rules learned
many different kinds of patterns. Row 1 shows how ConfMiner
learns formats in machine names. Row 2 demonstrates that
version numbers in a particular configuration file consist of
four numbers separated by a “.”. Rows 3 and 5 capture two
different time formats. Row 4 shows an example pattern in
included file-names in a project file. Row 6 is an example of an
aggregated history-based rule across many files. It learns two
very specific IP addresses. Row 7 infers a 7-digit hexadecimal
pattern. Row 8 learns a list of strings with a specific pattern,
i.e. the word “Search" is always second in the list. Finally Row
9 and row 10 show miscellaneous examples of configuration
value patterns that specify an ordering relationship and an
auto-suggest algorithm.

As these examples show, patterns of very different types
exist across various configuration values that have a wide array
of semantics. Using a generic program synthesis framework
enables ConfMiner to be relevant in a large number of scenar-
ios which are very different from each other. Moreover, this
varied set of rules shows that specifying such rules manually
is a formidable task which cannot be achieved at scale without
developers making a huge investment in time and effort.

D. Precision

We perform an online evaluation of ConfMiner on these
four repositories. Notice that since ConfMiner is actually
deployed on these repositories, evaluation is more realistic
than a standard train-test split based evaluation. When a

developer completes a pull-request that changes a configu-
ration file, ConfMiner first determines which configuration
parameter is changed, and what value it is changed to. To do
this, ConfMiner uses the same difference algorithm as used
to generate the data to learn history-based rules. Then, for
each changed parameter, we call the FindMatches function
provided by the ConfMiner API. ConfMiner checks if the
change matches any of the rules learned in the previous day
(ConfMiner’s rule-learning engine runs once a day.). If it does,
the change is labeled a true-positive (TP), i.e. ConfMiner
has indeed learned a rule that the new value matches. If no
match is found, the change is labeled a false-positive (FP),
i.e. ConfMiner was not able to learn a rule that matches
the new value. The precision of ConfMiner is calculated
as TP/(TP+FP). Note that we assume that if a developer is
completing a pull-request with a changed configuration file, it
must be correct. It is of course possible that the value is wrong,
and the developer corrects it later. We make the reasonable
assumption that such situations arise only rarely.

Table III shows the total precision, precision due to file-
based rules, and precision due to history-based rules for all
configuration changes made from 18th of July 2020 to date.
Total precision lies between 0.7 and 0.85. In general, history-
based learning shows overall better precision than file-based
learning, with the value being as high as 0.92. The slightly
lower precision of file-based rules is because a lot of these
rules learn patterns in file paths and file names. Thus when
developers introduce a new file path, or change the format

TABLE III
OVERALL PRECISION, FILE-BASED PRECISION AND HISTORY-BASED PRECISION THAT CONFMINER ACHIEVES.

Repository Total File-based History-based
TP FP Precision TP FP Precision TP FP Precision

R1 279 105 0.73 148 82 0.64 129 21 0.86
R2 372 157 0.70 257 140 0.65 112 17 0.87
R3 60 20 0.75 36 15 0.71 24 5 0.83
R4 639 111 0.85 227 73 0.76 408 37 0.92

Fig. 5. Example manual comment that can be replaced by ConfMiner. All
de-anonymizing information is elided.

of a file name slightly, this is recorded as a false-positive.
Sometimes, these new file paths or name format changes are
required and therefore our rules are indeed wrong. However,
very often we found that our rules, though marked as false-
positives, were indeed valid because they required the format
of the file path or name to be fully consistent with previously
seen examples, and the developer had committed a path or
name in a slightly different format. We explain one such
example in detail in Section IV-E3. Such rules, though they do
not flag misconfigurations, do point to style defects addressing
which can improve hygiene and readability of configuration.

E. Application Emulation

Section IV-D gives us confidence in the inherent ability of
ConfMiner to learn rules with high precision. Now, we ask
how useful these rules are in flagging misconfiguration. For
this, we have built a misconfiguration detection application
on top of ConfMiner which tracks every commit to a config-
uration file. If the commit does not match any rules, a flag
is raised that this is a potential misconfiguration. The flag is
silent, i.e. the developer is not informed of the flag. Hence, we
call this an emulation of the application. If, before completing
the pull-request, the developer changes the configuration value
again so that it now matches a learned rule, it indicates that
the previous value was indeed incorrect and the flag that our
application raised was valid. We now present a few example
misconfigurations that our emulation flagged. We have used
redacted screenshots to keep them anonymous.

1) Path-based misconfiguration: We notice that configu-
ration values that hold file names and file paths are often
misconfigured with relative paths rather than absolute paths.
ConfMiner has been very effective at flagging this. Figure 5
shows an example pull-request that ConfMiner flagged. A

Fig. 6. ConfMiner flagged this since the timestamp did not match the rule.

reviewer manually calls out this error for correction through
the comment, thereby confirming that the flag was indeed
valid. Given that ConfMiner flagged this error by the devel-
oper, we believe that the comments on such errors, which are
currently entirely manual, can be automated. Moreover, since
ConfMiner takes at most a few seconds to flag such errors,
i.e. the time it takes to call the ConfMiner API, it can flag
such errors much faster than the manual review process.

2) Numerical misconfigurations: In Figure 6, we
see that in line 943, the developer changed a value
for BootstrapTimeStamp from 1.00:00:00 to
24.00:00:00. However, in multiple other sections of the
file, for instance in line 918, the same configuration has been
set to 2.00:00:00. A file-based rule therefore learned that
this configuration should be set such that the first number that
appears is a single digit, and not two digits, as in 24. Notice
that the reviewer also made this comment, albeit with much
more semantics, saying that the developer has set the number
of days as 24, and not the number of hours. This example
shows that ConfMiner, through its simple regular express
learning, can sometimes flag subtle misconfigurations even
without understanding the semantics. The challenge though,
if we are to automate comments based on this, is to make
automated comments capture semantics like the reviewer has
in this example. We leave this to future work.

Fig. 7. ConfMiner flagged this change because of an anomalous file name.

3) Style recommendations: ConfMiner flags several style-
related recommendations as well. Figure 7 shows an example

where ConfMiner learns a specific file format: a string-based
name, followed by a hyphen and a date. The shown commit on
line 92 uses an underscore instead of the hyphen. ConfMiner
flagged this commit, but unlike previous examples, since this
is merely an issue of style, no reviewer specifically called
this out. In fact, past interviews we have conducted have
shown that reviewers hesitate from calling out such nits to
maintain professional courtesy. We believe that automating
such flagging of format issues can greatly improve readability
and hygiene for configuration, while directing potential ire
from developers at a bot rather than a human reviewer.

F. Real-world misconfigurations

To see how often such pattern-based misconfigurations oc-
cur in the wild, we manually examined the CTest dataset [20]
which contains 64 real-world configuration-induced failures
collected from 5 open-source projects. We found that, of the
64 issues, 51 were due to misconfiguration while the remaining
13 were due to bugs in code that parsed the configurations.

We studied the 51 misconfigurations in detail, and found 27
misconfigurations could potentially be caught using pattern
mining. Of these, 18 misconfigurations were due to incor-
rect string formats in the value specified. For example, in
HDFS-7359, the configuration parameter has to be parsed
as an http address: any other string would cause a failure.
The remaining 9 were due to numerical values lying outside
a permissible range. For example, in HBASE-13320, the
configuration parameter should either be a float value less
than 1.0 or an integer greater than 1. Regular expressions can
capture such specification.

However, in the other 24 cases, we found that regular
expressions would not capture the specification for the configu-
ration. For example, in issue ZOOKEEPER-2264, the user has
to specify two configuration parameters or neither: specifying
only one of the two caused an error. In issue HADOOP-6566,
a configuration parameter has to be set to a directory path,
and not a file path. Regular expressions cannot tell a file apart
from a directory. Hence, of all misconfigurations, 53% (27 of
51) were amenable to pattern mining. With enough training
examples, ConfMiner can learn such patterns.

V. THREATS TO VALIDITY

As mentioned in Section II-C, ConfMiner is a best-effort
system built on an inherent assumption that new configuration
values will be similar to previous ones. Hence if a developer
knowingly changes the value format, ConfMiner will not find a
match and hence will generate a false-positive. However, this is
unavoidable unless the developer provides hints to ConfMiner
before-hand that the pattern is about to change. Manual input
of this nature, while useful, is error-prone and does not scale to
large services that uses millions of configuration parameters.
Hence our effort has been to drive false-positives down as
much as possible by fine-tuning the string profiling algorithm.

Also, since we depend upon commit histories and our differ-
ence module that performs a syntactic analysis of configuration
files, for our implementation to be effective, configuration

should be stored in well-formed files that are easy to parse, and
well separated from code. If specification of configuration is
inter-twined with code, or if they use non-standard formats, it
becomes difficult to fine-tune our difference module to do the
required syntactic analysis. While we do see examples of such
scenarios, in most cases, we observe that developers maintain
good hygiene and keep configuration and code files separate.

Our approach only considers the syntactic format of con-
figuration values and ignores the semantics altogether. For
example, even when the format of a timeout parameter is
correct, the value may be incorrect in practice due to being
very large or very small. In practice, it is not feasible to build
a general and completely automated configuration mining tool
that takes semantics into account.

VI. RELATED WORK

A. Configuration Management

Previous work has used configuration files to learn “correct"
data types [26] and flag misconfigurations when they occur.
Configuration SpellCheck [27], [28] uses program analysis
to detect configuration data types as well. We believe that
detecting patterns based on data-types is very useful, but
cannot capture the nuanced, fine-grained and varied patterns in
configuration that are prevalent in today’s large-scale services,
as shown in Table II. Further, apart from the basic data-types,
Configuration SpellCheck requires the user to manually enter
regular expression specifications for each configuration pat-
tern. We believe that the number of configuration parameters
in modern systems make manual authoring of specifications
difficult, or impossible. Several other tools exist to check and
validate a configuration file against a given specification [29],
[30]. However, most specification is high-level and has to be
manually entered by developers.

Recent work has focused on multiple data-driven and pro-
gram analysis-based techniques to detect various different
kinds of misconfiguration. REX [15] and Encore [31] use
association rule mining to detect configurations that are cor-
related and flag misconfigurations based on the learned rules.
PCheck [31], by performing static analysis on code, generates
fast configuration checkers that emulate the code that uses
the configuration. Code [32] analyzes event logs to detect
anomalous event sequences and flag potential errors in con-
figuration. Though not related to configuration, Getafix [33]
uses pattern mining in code to detect missing null-reference
checks in code. All these techniques are complementary to the
program synthesis-based approach we take.

Several tools([34], [35], [36]) address how large services
run by Facebook, Microsoft and Akamai have dealt with
the problem of configuration management. These tools help
engineers manage configuration across large deployments that
span several geographies. A number of commercially available
third-party tools also target configuration management [37],
[38]. Facebook’s holistic configuration [34] specifically illus-
trates the effort required to detect misconfigurations early, by
using automated canary testing for changed configurations, and
using user-defined invariants to drive configuration changes.

We believe that techniques such as ours can work well in
tandem with such configuration management systems to check
for correctness before deploying configuration widely.

B. Profiling and Program Synthesis

Previous work on data profiling has focused more on
statistical profiling of numerical data [39], [40], [41], [42].
See [43] for a survey of techniques. Several works in the
databases literature have considered mining specifications that
relate the values of one attribute to values of another through
functional dependencies [44], [45], [46]. While we focus more
on string typed values of a single configuration parameter, one
potential direction for future work is to extend the work to
learn from both numerical and string data, possibly relating
the configuration values of one parameter to another.

Program synthesis has recently found significant success in
the data manipulation, cleaning, and transformation fields [7],
[8], [47]. In these settings, the synthesis takes the form of
programming-by-example where the user provides a few input-
output examples. However, in the string profiling setting the
user does not provide examples of each cluster in the profile—
instead, the synthesizer predictively learns the profile. In this
manner, string profiling is closer in nature to other predictive
synthesis works in the domain for data extraction [12], [48].

C. Regular expression and Automata Learning.

The L∗ algorithm [49] was the first technique that learned
finite automata from examples. Many variants of L∗ have been
studied over the past few decades [50], [51], [52] extending
it to other automata variants including non-deterministic fi-
nite automata [53], alternating automata [54], and symbolic
automata [55]. However, unlike our technique, L∗ and its
variants depend on an active teacher, i.e., an oracle that can
produce counter-examples to intermediate guesses made by
the learning algorithm. There have also been recent works
that learn regular expressions from natural language using both
sequence-to-sequence models [56], [57] and program synthesis
techniques [58], [59].

There are several key differences between the current work
and previous techniques driven by the underlying setting and
motivation. The setting of our problem requires a technique
that can learn multiple simple regular expressions that together
match the examples as opposed to a single complex one, while
ignoring noise in the provided examples. FlashProfile [13]
is able to produce multiple regular expressions. However, as
depicted in Section III, our technique produces higher quality
profiles more efficiently as compared to FlashProfile. L∗ and
other language theoretic algorithms optimize either the size
of the output automata or regular expression or minimality
under language inclusion, resulting in complex and over-fitted
regular expressions, making them unsuitable for our purposes.

VII. CONCLUSION

We have described a string profiling algorithm that learns
various patterns in configuration used by large services. We
have realized this through a tool called ConfMiner which is

deployed on four repositories that maintain configuration for
a large enterprise service. Using two sets of data that are
available through version control systems – file-based and
history-based – we show that our techniques learn a large
number of varied patterns in configuration. These patterns
capture various kinds of semantics thereby making the case
for a generic algorithm that works across multiple domains.
Finally, we also show that using these patterns, we can capture
various kinds of misconfiguration at commit-time.

REFERENCES

[1] Microsoft, “Microsoft 365.” https://www.microsoft.com/microsoft-365.
[Online; accessed 24-August-2021].

[2] SalesForce, “Acccess issue: May and june 2019.” https://status.
salesforce.com/incidents/3822. [Online; accessed 28-August-2020].

[3] Google, “Google cloud networking incident 19009.” https://status.cloud.
google.com/incident/cloud-networking/19009. [Online; accessed 28-
August-2020].

[4] Sophos, “The state of cloud security 2020.” https:
//secure2.sophos.com/en-us/medialibrary/pdfs/whitepaper/
sophos-the-state-of-cloud-security-2020-wp.pdf. [Online; accessed
28-August-2020].

[5] O. Moolchandani, “Cloud waterhole - a novel cloud
attack observed on twilio.” https://www.linkedin.com/pulse/
cloud-waterhole-novel-attack-observed-twilio-om-moolchandani/.
[Online; accessed 28-August-2020].

[6] M. S. R. Center, “Access misconfiguration for customer
support database.” https://msrc-blog.microsoft.com/2020/01/22/
access-misconfiguration-for-customer-support-database/. [Online;
accessed 28-August-2020].

[7] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011,
Austin, TX, USA, January 26-28, 2011 (T. Ball and M. Sagiv, eds.),
pp. 317–330, ACM, 2011.

[8] V. Le and S. Gulwani, “Flashextract: a framework for data extraction by
examples,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014 (M. F. P. O’Boyle and K. Pingali, eds.), pp. 542–553,
ACM, 2014.

[9] R. Singh, “Blinkfill: Semi-supervised programming by example for
syntactic string transformations,” Proc. VLDB Endow., vol. 9, no. 10,
pp. 816–827, 2016.

[10] R. Martins, J. Chen, Y. Chen, Y. Feng, and I. Dillig, “Trinity: An
extensible synthesis framework for data science,” Proc. VLDB Endow.,
vol. 12, no. 12, pp. 1914–1917, 2019.

[11] A. S. Iyer, M. Jonnalagedda, S. Parthasarathy, A. Radhakrishna, and
S. K. Rajamani, “Synthesis and machine learning for heterogeneous
extraction,” in Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019 (K. S. McKinley and K. Fisher,
eds.), pp. 301–315, ACM, 2019.

[12] M. Raza and S. Gulwani, “Automated data extraction using predictive
program synthesis,” in Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA (S. P. Singh and S. Markovitch, eds.), pp. 882–890, AAAI Press,
2017.

[13] S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. D.
Millstein, “Flashprofile: a framework for synthesizing data profiles,”
Proc. ACM Program. Lang., vol. 2, no. OOPSLA, pp. 150:1–150:28,
2018.

[14] Google, “Google app engine app.yaml reference.” https://cloud.google.
com/appengine/docs/standard/python/config/appref. [Online; accessed
28-August-2020].

[15] S. Mehta, R. Bhagwan, R. Kumar, C. Bansal, C. Maddila, B. Ashok,
S. Asthana, C. Bird, and A. Kumar, “Rex: Preventing bugs and miscon-
figuration in large services using correlated change analysis,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), (Santa Clara, CA), pp. 435–448, USENIX Association, Feb.
2020.

[16] Visual Studio Code, “Intellisense in visual studio code.” https://code.
visualstudio.com/docs/editor/intellisense. [Online; accessed 24-April-
2019].

[17] “Content assist in eclipse.” https://www.eclipse.org/pdt/help/html/code_
assist.htm. [Online; accessed 28-August-2020].

[18] “Stylecop analyzers for the .net compiler platform.” https://github.com/
DotNetAnalyzers/StyleCopAnalyzers. [Online; accessed 28-August-
2020].

[19] Microsoft, “Microsoft program synthesis using examples (prose) sdk.”
https://www.microsoft.com/en-us/research/group/prose. [Online; ac-
cessed 28-August-2020].

[20] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing
configuration changes in context to prevent production failures,” in 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20), pp. 735–751, USENIX Association, Nov. 2020.

[21] The Git Version Control System. https://git-scm.com/.
[22] GitHub Inc. https://github.com. [Online; accessed 24-April-2019].
[23] Microsoft Azure DevOps. https://azure.microsoft.com/en-in/services/

devops/. [Online; accessed 24-April-2019].
[24] Microsoft, “Generating diffgrams of xmlfiles.” https://www.nuget.org/

packages/XMLDiffPatch/. [Online; accessed 24-April-2019].
[25] Microsoft Azure Cloud Services. https://docs.microsoft.com/en-us/

azure/cloud-services/cloud-services-choose-me. [Online; accessed 24-
April-2019].

[26] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic automated lan-
guage learning for configuration files,” in Computer Aided Verification
(S. Chaudhuri and A. Farzan, eds.), (Cham), pp. 80–87, Springer
International Publishing, 2016.

[27] A. Rabkin, “Using program analysis to reduce misconfiguration in
open source systems software,” tech. rep., Electrical Engineering and
Computer Sciences, University of California at Berkeley, 2012.

[28] A. Rabkin, “The conf_spellchecker tool.” https://github.com/roterdam/
jchord/tree/master/conf_spellchecker. [Online; accessed 28-August-
2020].

[29] “Validating xml files using xsd in c#.” https://www.c-sharpcorner.com/
article/how-to-validate-xml-using-xsd-in-c-sharp/. [Online; accessed
28-August-2020].

[30] “Configcop: A swift command line application that verifies .xcconfig
files against a template..” https://github.com/fivegoodfriends/ConfigCop.
[Online; accessed 28-August-2020].

[31] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
detection of configuration errors to reduce failure damage,” in 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), (Savannah, GA), pp. 619–634, USENIX Association, 2016.

[32] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar,
“Context-based online configuration-error detection,” in Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’11, (USA), p. 28, USENIX Association, 2011.

[33] A. Scott, J. Bader, and S. Chandra, “Getafix: Learning to fix bugs
automatically,” CoRR, vol. abs/1902.06111, 2019.

[34] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, and R. Karl, “Holistic configuration manage-
ment at facebook,” in Proceedings of the 25th Symposium on Operating
Systems Principles, pp. 328–343, ACM, 2015.

[35] A. Sherman, P. A. Lisiecki, A. Berkheimer, and J. Wein, “Acms: The
akamai configuration management system,” in Proceedings of the 2Nd
Conference on Symposium on Networked Systems Design & Implementa-
tion - Volume 2, NSDI’05, (Berkeley, CA, USA), pp. 245–258, USENIX
Association, 2005.

[36] P. Huang, W. J. Bolosky, A. Singh, and Y. Zhou, “Confvalley: A
systematic configuration validation framework for cloud services,” in
Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, (New York, NY, USA), pp. 19:1–19:16, ACM, 2015.

[37] “The puppet configuration management tool.” https://puppet.com/. [On-
line; accessed 28-August-2020].

[38] “Ansible for it automation.” https://www.ansible.com/. [Online; accessed
28-August-2020].

[39] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine, “Synopses for
massive data: Samples, histograms, wavelets, sketches,” Found. Trends
Databases, vol. 4, p. 1–294, Jan. 2012.

[40] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes, “Sampling-
based estimation of the number of distinct values of an attribute,” in
Proceedings of the 21th International Conference on Very Large Data

Bases, VLDB ’95, (San Francisco, CA, USA), p. 311–322, Morgan
Kaufmann Publishers Inc., 1995.

[41] Y. Ioannidis, “The history of histograms (abridged),” in Proceedings of
the 29th International Conference on Very Large Data Bases - Volume
29, VLDB ’03, p. 19–30, VLDB Endowment, 2003.

[42] P. Karras and N. Mamoulis, “The haar+ tree: A refined synopsis
data structure,” in 2007 IEEE 23rd International Conference on Data
Engineering, pp. 436–445, 2007.

[43] Z. Abedjan, L. Golab, and F. Naumann, “Profiling relational data: A
survey,” The VLDB Journal, vol. 24, p. 557–581, Aug. 2015.

[44] A. Heise, J.-A. Quiané-Ruiz, Z. Abedjan, A. Jentzsch, and F. Naumann,
“Scalable discovery of unique column combinations,” Proc. VLDB
Endow., vol. 7, p. 301–312, Dec. 2013.

[45] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J.-P. Rudolph,
M. Schönberg, J. Zwiener, and F. Naumann, “Functional dependency
discovery: An experimental evaluation of seven algorithms,” Proc. VLDB
Endow., vol. 8, p. 1082–1093, June 2015.

[46] Y. Zhang, Z. Guo, and T. Rekatsinas, “A statistical perspective on
discovering functional dependencies in noisy data,” in Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’20, (New York, NY, USA), p. 861–876, Association
for Computing Machinery, 2020.

[47] R. Singh, “Blinkfill: Semi-supervised programming by example for syn-
tactic string transformations,” Proc. VLDB Endow., vol. 9, p. 816–827,
June 2016.

[48] M. Raza and S. Gulwani, “Web data extraction using hybrid program
synthesis: A combination of top-down and bottom-up inference,” in
Proceedings of the 2020 International Conference on Management of
Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020 (D. Maier, R. Pottinger, A. Doan, W. Tan,
A. Alawini, and H. Q. Ngo, eds.), pp. 1967–1978, ACM, 2020.

[49] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, p. 87–106, Nov. 1987.

[50] R. Parekh and V. Honavar, “An incremental interactive algorithm for reg-
ular grammar inference,” in International Colloquium on Grammatical
Inference, pp. 238–249, Springer, 1996.

[51] R. Parekh and V. Honavar, “Learning dfa from simple examples,”
Machine Learning, vol. 44, no. 1, pp. 9–35, 2001.

[52] R. L. Rivest and R. E. Schapire, “Inference of finite automata using
homing sequences,” in Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, STOC ’89, (New York, NY, USA),
p. 411–420, Association for Computing Machinery, 1989.

[53] F. Denis, A. Lemay, and A. Terlutte, “Learning regular languages using
non deterministic finite automata,” in ICGI, 2000.

[54] D. Angluin, S. Eisenstat, and D. Fisman, “Learning regular languages
via alternating automata.,” in IJCAI, pp. 3308–3314, 2015.

[55] S. Drews and L. D’Antoni, “Learning symbolic automata,” in Tools
and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I (A. Legay and
T. Margaria, eds.), vol. 10205 of Lecture Notes in Computer Science,
pp. 173–189, 2017.

[56] N. Locascio, K. Narasimhan, E. DeLeon, N. Kushman, and R. Barzilay,
“Neural generation of regular expressions from natural language with
minimal domain knowledge,” 08 2016.

[57] Z. Zhong, J. Guo, W. Yang, J. Peng, T. Xie, J.-G. Lou, T. Liu,
and D. Zhang, “Semregex: A semantics-based approach for generating
regular expressions from natural language specifications,” in EMNLP,
2018.

[58] X. Ye, Q. Chen, X. Wang, I. Dillig, and G. Durrett, “Sketch-driven
regular expression generation from natural language and examples,”
Trans. Assoc. Comput. Linguistics, vol. 8, pp. 679–694, 2020.

[59] M. Lee, S. So, and H. Oh, “Synthesizing regular expressions from
examples for introductory automata assignments,” in Proceedings of the
2016 ACM SIGPLAN International Conference on Generative Program-
ming: Concepts and Experiences, GPCE 2016, (New York, NY, USA),
p. 70–80, Association for Computing Machinery, 2016.

