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We present CrashMonkey and Ace, a set of tools to systematically find crash-consistency bugs in Linux

file systems. CrashMonkey is a record-and-replay framework which tests a given workload on the target

file system by simulating power-loss crashes while the workload is being executed, and checking if the file

system recovers to a correct state after each crash. Ace automatically generates all the workloads to be run

on the target file system. We build CrashMonkey and Ace based on a new approach to test file-system crash

consistency: bounded black-box crash testing (B3). B3 tests the file system in a black-box manner using work-

loads of file-system operations. Since the space of possible workloads is infinite, B3 bounds this space based

on parameters such as the number of file-system operations or which operations to include, and exhaustively

generates workloads within this bounded space. B3 builds upon insights derived from our study of crash-

consistency bugs reported in Linux file systems in the last 5 years. We observed that most reported bugs can

be reproduced using small workloads of three or fewer file-system operations on a newly created file system,

and that all reported bugs result from crashes after fsync()-related system calls. CrashMonkey and Ace are

able to find 24 out of the 26 crash-consistency bugs reported in the last 5 years. Our tools also revealed 10 new

crash-consistency bugs in widely used, mature Linux file systems, 7 of which existed in the kernel since 2014.

Additionally, our tools found a crash-consistency bug in a verified file system, FSCQ. The new bugs result in

severe consequences like broken rename atomicity, loss of persisted files and directories, and data loss.
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1 INTRODUCTION

A file system is crash consistent if it always recovers to a correct state after a crash due to a power

loss or a kernel panic. The file-system state is correct if the file system’s internal data structures are

consistent, and files that were persisted before the crash are not lost or corrupted. When developers

added delayed allocation to the ext4 file system [65] in 2009, they introduced a crash-consistency

bug that led to widespread data loss [36]. Given the potential consequences of crash-consistency

bugs and the fact that even professionally managed datacenters occasionally suffer from power

losses [67–70, 90, 92], it is important to ensure that file systems are crash consistent.

Unfortunately, there is little to no crash-consistency testing today for widely used Linux file

systems such as ext4, xfs [84], btrfs [80], and F2FS [37]. The current practice in the Linux file-

system community is to not do any proactive crash-consistency testing. If a user reports a crash-

consistency bug, the file-system developers will then reactively write a test to capture that bug.

Linux file-system developers use xfstests [23], an ad-hoc collection of correctness tests, to per-

form regression testing. xfstests contains a total of 482 correctness tests that are applicable to all

POSIX file systems. Of these 482 tests, only 26 (5%) are crash-consistency tests. Thus, file-system

developers have no easy way of systematically testing the crash consistency of their file systems.

This article introduces a new approach to testing file-system crash consistency: bounded black-

box crash testing (B3). B3 is a black-box testing approach: no file-system code is modified. B3 works

by exhaustively generating workloads within a bounded space, simulating a crash after persistence

operations like fsync() in the workload, and finally testing whether the file system recovers cor-

rectly from the crash. We implement the B3 approach by building two tools, CrashMonkey and

Ace. Our tools are able to find 24 out of the 26 crash-consistency bugs reported in the last 5 years,

across seven kernel versions and three file systems. Furthermore, the systematic nature of B3 al-

lows our tools to find new bugs: CrashMonkey and Ace find 10 bugs in widely used Linux file

systems which lead to severe consequences such as rename() not being atomic and files disappear-

ing after fsync() and a data loss bug in the FSCQ verified file system [13]. We have reported all

new bugs; developers have submitted patches for five, and are working to fix the rest. We formu-

lated B3 based on our study of all 26 crash-consistency bugs in ext4, xfs, btrfs, and F2FS reported in

the last 5 years (Section 3). Our study provided key insights that made B3 feasible: most reported

bugs involved a small number of file-system operations on a new file system, with a crash right

after a persistence point (a call to fsync(), fdatasync(), or sync that flushes data to persistent

storage). Most bugs could be found or reproduced simply by systematic testing on a small space

of workloads, with crashes only after persistence points. Note that without these insights which

bound the workload space, B3 is infeasible: there are infinite workloads that can be run on infinite

file-system images.

Choosing to crash the system only after persistence points is one of the key decisions that makes

B3 tractable. B3 does not focus on bugs that arise due to crashes in the middle of a file-system

operation because file-system guarantees are undefined in such scenarios. Moreover, B3 cannot

reliably assume that the on-storage file-system state has been modified if there is no persistence

point. Crashing only after persistence points bounds the work to be done to test crash consistency,

and also provides clear correctness criteria: files and directories which were successfully persisted
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before the crash must survive the crash and not be corrupted. Though we explore how to simulate

crashes in the middle of file-system operations (Section 7), it did not result in finding new bugs. We

believe that there are several open challenges that need to be addressed before we can efficiently

find bugs due to crashes in the middle of file-system operations.

B3 bounds the space of workloads in several other ways. First, B3 restricts the number of file-

system operations in the workload, and simulates crashes only after persistence points. Second,

B3 restricts the files and directories that function as arguments to the file-system operations in the

workload. Finally, B3 restricts the initial state of the system to be a small, new file system. Together,

these bounds greatly reduce the space of possible workloads, allowing CrashMonkey and Ace to

exhaustively generate and test workloads.

An approach like B3 is only feasible if we can automatically and efficiently check crash consis-

tency for arbitrary workloads. We built CrashMonkey, a framework that simulates crashes during

workload execution and tests for consistency on the recovered file-system image. CrashMonkey

first profiles a given workload, capturing all the IO resulting from the workload. It then replays

IO requests until a persistence point to create a new file-system image we term a crash state. At

each persistence point, CrashMonkey also captures a snapshot of files and directories which have

been explicitly persisted (and should therefore survive a crash). CrashMonkey then mounts the

file system in each crash state, allows the file system to recover, and uses its own fine-grained

checks to validate if persisted data and metadata are available and correct. Thus, CrashMonkey

is able to check crash consistency for arbitrary workloads automatically, without any manual effort

from the user. This property is key to realizing the B3 approach.

We built the Automatic Crash Explorer (Ace) to exhaustively generate workloads given user

constraints and file-system semantics. Ace first generates a sequence of file-system operations;

e.g., a link() followed by a rename(). Next, Ace fills in the arguments of each file-system opera-

tion. It then exhaustively generates workloads where each file-system operation can optionally be

followed by an fsync(), fdatasync(), or a global sync command. Finally, Ace adds operations

to satisfy any dependencies (e.g., a file must exist before being renamed). Thus, given a set of con-

straints, Ace generates an exhaustive set of workloads, each of which is tested with CrashMonkey

on the target file system.

B3 offers a new point in the spectrum of techniques addressing file-system crash consistency,

alongside verified file systems [12, 13, 82] and model checking [94, 95]. Unlike these approaches,

B3 targets widely deployed file systems written in low-level languages, and does not require an-

notating or modifying file-system code.

However, B3 is not without limitations as it is not guaranteed to find all crash-consistency bugs.

Currently, Ace’s bounds do not expose bugs that require a large number of operations or ex-

haustion of file-system resources. While CrashMonkey can test such a workload, Ace will not

be able to automatically generate the workload. Despite these limitations, we are hopeful that the

black-box nature and ease-of-use of our tools will encourage their adoption in the file-system com-

munity, unlike model checking and verified file systems. We are encouraged that researchers at

Hanyang University are using our tools to test the crash consistency of their research file system,

BarrierFS [93].

This article makes the following contributions:

—A detailed analysis of crash-consistency bugs reported across three widely used file systems

and seven kernel versions in the last 5 years (Section 3).

—The bounded black-box crash testing approach (Section 4).

—The design and implementation of CrashMonkey and Ace.1 (Section 5)

1https://github.com/utsaslab/crashmonkey.

ACM Transactions on Storage, Vol. 15, No. 2, Article 14. Publication date: April 2019.

https://github.com/utsaslab/crashmonkey


14:4 J. Mohan et al.

Fig. 1. Life of a file-system write. The figure shows an application write being processed by the storage

stack. For correctness, the data for the file needs to be persisted before the metadata. The file system sets

the FLUSH flag when submitting the request to the block subsystem; the block subsystem flushes the data

block before persisting the metadata block.

—Experimental results demonstrating that our tools are able to efficiently find existing and

new bugs across widely used Linux file systems and verified file systems. (Section 6)

—Generalizing CrashMonkey to find bugs due to crashes in the middle of file-system opera-

tions and demonstrating the use of LSTM to tackle the issue of a large state space. (Section 7)

2 BACKGROUND

We first provide some background on how file systems perform reads and writes, and how

those operations are processed through the storage stack. We then introduce file-system crash

consistency, why crash-consistency bugs occur, and why it is important to test file-system crash

consistency.

File-System IO. File systems typically expose the POSIX API to users in the form of system calls.

The POSIX API includes data operations such as read() and write(), and metadata operations

such as creat() and rename(). When the user performs a write, the write is first processed by

the file system, and then handed down to the block IO subsystem as a list of blocks to be written.

The blocks pass through several layers before reaching the storage device. Layers such as the IO

scheduler may re-order the blocks being sent to the storage device to increase performance (e.g.,

sorting the blocks by logical block address helps reduce seek time on hard drives). The path taken

by a file-system write operation is depicted in Figure 1.

Caching in the Storage Device. Most modern storage devices have an on-board RAM cache

to increase read and write performance. When the device receives a write request, it writes the

data to its cache and signals completion of the request. As a result, an IO request being completed

by the storage device does not mean it is persistent; if the storage device loses power before the

cached data can be persisted, the data is lost. When writing cached data to the persistent media,

the storage device is free to write the data in any order; typically, the storage devices like hard disk

drives will try to maximize write performance by sorting the data by logical block address.

Ordering and Durability. The file system may need to ensure ordering and durability at various

points. For example, the journaling protocol requires the journal transaction be persisted before
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the journal commit. Similarly, when the user calls fsync() on a file, they expect that all data

associated with the file is persistent after the fsync() returns. To help implement ordering and

durability, storage devices expose two flags: the FLUSH flag and the Forced Unit Access (FUA) flag.

If an IO request is tagged with the FLUSH flag, the storage device must flush its cache and all data

previously written to the storage device persistent. Note that the FLUSH does not force the data in

its own request to be persistent, only previously written data. If an IO request is tagged with the

FUA flag, the IO request can only return when the data in that request has been made persistent. For

example, in the ext4 file system, the journal commit is tagged with both the FLUSH tag (ensuring

durability of the previously written journal transaction) and the FUA flag (ensuring durability of

the journal commit).

Crash Consistency. A file system is crash-consistent if a number of invariants about the file-

system state hold after a crash due to power loss or a kernel panic [14, 66]. Typically, these invari-

ants include using resources only after initialization (e.g., path-names point to initialized metadata

such as inodes), safely reusing resources after deletion (e.g., two files should not think they both

own the same data block), and atomically performing certain operations such as renaming a file.

Conventionally, crash consistency is only concerned with internal file-system integrity. A bug that

loses previously persisted data would not be considered a crash-consistency bug as long as the file

system remains internally consistent. In this article, we widen the definition to include data loss.

Thus, if a file system loses persisted data or files after a crash, we consider it a crash-consistency

bug. The Linux file-system developers agree with this wider definition of crash consistency [19,

86]. However, it is important to note that data or metadata that has not been explicitly persisted

does not fall under our definition; file systems are allowed to lose such data in case of power loss.

Finally, there is an important difference between crash-consistency bugs and file-system correct-

ness bugs: crash-consistency bugs do not lead to incorrect behavior if no crash occurs.

Why Crash-Consistency Bugs Occur. The root of crash-consistency bugs is the fact that most

file-system operations only modify in-memory state. For example, when a user creates a file, the new

file exists only in memory until it is explicitly persisted via the fsync() call or by a background

thread which periodically writes out dirty in-memory data and metadata.

Modern file systems are complex and keep a significant number of metadata-related data struc-

tures in memory. For example, btrfs organizes its metadata as B+ trees [80]. Modifications to these

data structures are accumulated in memory and written to storage either on fsync(), or by a

background thread. Developers could make two common types of mistakes while persisting these

in-memory structures, which consequently lead to crash-consistency bugs. The first is neglecting

to update certain fields of the data structure. For example, btrfs had a bug where the field in the

file inode that determined whether it should be persisted was not updated. As a result, fsync() on

the file became a no-op, causing data loss on a crash [41]. The second is improperly ordering data

and metadata when persisting it. For example, when delayed allocation was introduced in ext4,

applications that used rename to atomically update files lost data since the rename could be per-

sisted before the file’s new data [36]. Despite the fact that the errors that cause crash-consistency

bugs are very different in these two cases, the fundamental problem is that some in-memory state

that is required to recover correctly is not written to disk.

POSIX and File-System Guarantees. Nominally, Linux file systems implement the POSIX API,

providing guarantees as laid out in the POSIX standard [25]. Unfortunately, POSIX is extremely

vague. For example, under POSIX it is legal for fsync() to not make data durable [77]. Mac OSX

takes advantage of this legality, and requires users to employ fcntl(F_FULLFSYNC) to make data

durable [3]. As a result, file systems often offer guarantees above and beyond what is required by
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Fig. 2. Example crash-consistency bug. The figure shows the workload to expose a crash-consistency

bug that was reported in the btrfs file system in Feb. 2018 [57]. The bug causes the file system to become

un-mountable.

POSIX. For example, on ext4, persisting a new file will also persist its directory entry. Unfortu-

nately, these guarantees vary across different file systems, so we contacted the developers of each

file system to ensure we are testing the guarantees that they seek to provide.

Example of a Crash-Consistency Bug. Figure 2 shows a crash-consistency bug in btrfs that

causes the file system to become un-mountable (unavailable) after the crash. Resolving the bug

requires file-system repair using btrfs-check; for lay users, this requires guidance of the devel-

opers [10]. This bug occurs on btrfs because the unlink affects two different data structures which

become out of sync if there is a crash. On recovery, btrfs tries to unlink bar twice, producing an

error.

Why Testing Crash Consistency is Important. File-system researchers are developing new

crash-consistency techniques [17, 18, 75] and designing new file systems that increase perfor-

mance [1, 7, 32, 35, 79, 83, 99, 100]. Meanwhile, Linux file systems such as btrfs include a number

of optimizations that affect the ordering of IO requests, and hence, crash consistency. However,

crash consistency is subtle and hard to get right, and a mistake could lead to silent data corruption

and data loss. Thus, changes affecting crash consistency should be carefully tested.

State of Crash-Consistency Testing Today. xfstests [23] is a regression test suite to check

file-system correctness, with a small proportion (5%) of crash-consistency tests. These tests are

aimed at avoiding the recurrence of the same bug over time, but do not generalize to identify-

ing variants of the bug. Additionally, each of these test cases requires the developer to write a

checker describing the correct behavior of the file system after a crash. Given the infinite space of

workloads, it is extremely hard to handcraft workloads that could reveal bugs. These factors make

xfstests insufficient to identify new crash-consistency bugs.

3 STUDYING CRASH-CONSISTENCY BUGS

We present an analysis of 26 unique crash-consistency bugs reported by users over the last 5 years

on widely used Linux file systems [88] (Section 11.1). We find these bugs either by examining

mailing list messages or looking at the crash-consistency tests in the xfstests regression test

suite. Few of the crash-consistency tests in xfstests link to the bugs that resulted in the test

being written.

Due to the nature of crash-consistency bugs (all in-memory information is lost upon crash), it is

hard to tie them to a specific workload. As a result, the number of reported bugs is low. We believe

there are many crash-consistency bugs that go unreported in the wild (Section 11.2).
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Table 1. Analyzing Crash-Consistency Bugs

Kernel
Version

# bugs

3.12 3

3.13 9

3.16 1

4.1.1 2

4.4 9

4.15 3

4.16 1

Total 28

The tables break down the 26 unique crash-consistency bugs reported over the last 5 years (since 2013) by different criteria.

Two bugs were reported on two different file systems, leading to a total of 28 bugs.

Consequence # bugs

Corruption 19

Data Inconsistency 6

Un-mountable file system 3

Total 28

File System # bugs

ext4 2

F2FS 2

btrfs 24

Total 28

# of ops required # bugs

1 3

2 14

3 9

Total 26

Table 2. Examples of Crash-Consistency Bugs

Bug # File System Consequence # of ops Ops involved (excluding persistence operations)

1 btrfs Directory un-removable 2 creat(A/x), creat(A/y)

2 btrfs Persisted data lost 2 pwrite(x), link(x,y)

3 btrfs Directory un-removable 3 link(x,A/x), link(x,A/y), unlink(A/y)

4 F2FS Persisted file disappears 3 pwrite(x), rename(x,y), pwrite(x)

5 ext4 Persisted data lost 2 pwrite(x), direct_write(x)

The table shows some of the crash-consistency bugs reported in the last 5 years. The bugs have severe consequences,

ranging from losing user data to making directories un-removable.

We analyze the bugs based on consequence, kernel version, file system, and the number of file-

system operations required to reproduce them. There are 26 unique bugs spread across ext4, F2FS,

and btrfs. Each unique bug requires a unique set of file-system operations to reproduce. Two bugs

occur on two file systems (F2FS and ext4, F2FS and btrfs), leading to a total of 28 bugs.

Table 1 presents some statistics about the crash-consistency bugs. The table presents the kernel

version in which the bug was reported. If the bug report did not include a version, it presents the

latest kernel version in whichB3 could reproduce the bug (the two bugs thatB3 could not reproduce

appear in kernel 3.13). The bugs have severe consequences, ranging from file-system corruption to

the file system becoming un-mountable. The four most common file-system operations involved

in crash-consistency bugs were write(), link(), unlink(), and rename(). Most reported bugs

resulted from either reusing filenames in multiple file-system operations or write operations to

overlapping file regions. Most reported bugs could be reproduced with three or fewer file-system

operations.

Examples. Table 2 showcases a few of the crash-consistency bugs. Bug #1 [39] involves creating

two files in a directory and persisting only one of them. btrfs log recovery incorrectly counts the

directory size, making the directory un-removable thereafter. Bug #2 [43] involves creating a hard

link to an already existing file. A crash results in btrfs recovering the file with a size 0, thereby

making its data inaccessible. A similar bug (#5 [28]) manifests in ext4 in the direct write path,

where the write succeeds and blocks are allocated, but the file size is incorrectly updated to be

zero, leading to data loss.

Complexity Leads to Bugs. The ext4 file system has undergone more than 15 years of develop-

ment, and, as a result, has only two bugs. The btrfs and F2FS file systems are more recent: btrfs
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was introduced in 2007, while F2FS was introduced in 2012. In particular, btrfs is an extremely

complex file system that provides features such as snapshots, cloning, out-of-band deduplication,

and compression. btrfs maintains its metadata (such as inodes and bitmaps) in the form of vari-

ous copy-on-write B+ trees. This makes achieving crash consistency tricky, as the updates have

to be propagated to several trees. Thus, it is not surprising that most reported crash-consistency

bugs occurred in btrfs. As file systems become more complex in the future, we expect to see a

corresponding increase in crash-consistency bugs.

Crash-Consistency Bugs are Hard to Find. Despite the fact that the file systems we examined

were widely used, some bugs have remained hidden in them for years. For example, btrfs had a

crash-consistency bug that was only discovered 7 years after it was introduced. The bug was caused

by incorrectly processing a hard link in btrfs’s data structures. When a hard link is added, the

directory entry is added to one data structure, while the inode is added to another data structure.

When a crash occurred, only one of these data structures would be correctly recovered, resulting

in the directory containing the hard link becoming un-removable [46]. This bug was present since

the log tree was added in 2008; however, the bug was only discovered in 2015.

Systematic Testing is Required. Once the hard link bug in btrfs was discovered, the btrfs de-

velopers quickly fixed it. However, they only fixed one code path that could lead to the bug. The

same bug could be triggered in another code path, a fact that was only discovered 4 months after

the original bug was reported. While the original bug workload required creating hard links and

calling fsync() on the original file and parent directory, this one required calling fsync() on a

sibling in the directory where the hard link was created [47]. Systematic testing of the file system

would have revealed that the bug could be triggered via an alternate code path.

Small Workloads can Reveal Bugs on an Empty File System. Most of the reported bugs do

not require a special file-system image or a large number of file-system operations to reproduce. 24

out of the 26 reported bugs require three or fewer core file-system operations to reproduce on an

empty file system. This count is low because we do not count dependent operations: for example,

a file has to exist before being renamed and a directory has to exist before a file can be created

inside it. Such dependent operations can be inferred given the core file-system operations. Of the

remaining two bugs, one required a special command (dropcaches) to be run during the workload

for the bug to manifest. The other bug required a specific setup: 3,000 hard links had to already

exist (forcing an external reflink) for the bug to manifest.

Reported Bugs Involve a Crash After Persistence. All reported bugs involved a crash right af-

ter a persistence point: a call to fsync(), fdatasync(), or the global sync command. These com-

mands are important because file-system operations only modify in-memory metadata and data by

default. Only persistence points reliably change the file-system state on storage. Therefore, unless

a file or directory has been persisted, it cannot be expected to survive a crash. While crashes could

technically occur at any point, a user cannot complain if a file that has not been persisted goes miss-

ing after a crash. Thus, every crash-consistency bug involves persisted data or metadata that are af-

fected by the bug after a crash, and a workload that does not have a persistence point cannot lead to

a reproducible crash-consistency bug. This also points to an effective way to find crash-consistency

bugs: perform a sequence of file-system operations, change on-storage file-system state with

fsync() or similar calls, crash, and then check files and directories that were previously persisted.

4 B3: BOUNDED BLACK-BOX CRASH TESTING

Based on the insights from our study of crash-consistency bugs, we introduce a new approach

to testing file-system crash consistency: Bounded Black-Box crash testing (B3). B3 is a black-box
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testing approach built upon the insight that most reported crash-consistency bugs can be found by

systematically testing small sequences of file-system operations on a new file system. B3 exercises

the file system through its system-call API, and observes the file-system behavior via read and

write IO. As a result, B3 does not require annotating or modifying file-system source code.

4.1 Overview

B3 generates sequences of file-system operations, called workloads. Since the space of possible

workloads is infinite, B3 bounds the space of workloads using insights from the study. Within the

determined bounds, B3 exhaustively generates and tests all possible workloads. Each workload is

tested by simulating a crash after each persistence point, and checking if the file system recovers

to a correct state. B3 performs fine-grained correctness checks on the recovered file-system state;

only files and directories that were explicitly persisted are checked. B3 checks for both data and

metadata (size, link count, and block count) consistency for files and directories.

Crash Points. The main insight from the study that makes an approach like B3 feasible is the

choice of crash points; a crash is simulated only after each persistence point in the workload instead

of in the middle of file-system operations. This design choice was motivated by two factors. First,

file-system guarantees are undefined if a crash occurs in the middle of a file-system operation;

only files and directories that were previously successfully persisted need to survive the crash.

File-system developers are overloaded, and bugs involving data or metadata that has not been

explicitly persisted is given low priority (and sometimes not acknowledged as a bug). Second, if

we crash in the middle of an operation, there are a number of correct states the file system could

recover to. If a file-system operation translates to n block IO requests, there could be 2n different

on-disk crash states if we crashed anywhere during the operation. Restricting crashes to occur

after persistence points bounds this space linearly in the number of operations comprising the

workload. The small set of crash points and correct states makes automated testing easier. Our

choice of crash points naturally leads to bugs where persisted data and metadata are corrupted or

missing and file-system developers are strongly motivated to fix such bugs.

4.2 Bounds Used by B3

Based on our study of crash-consistency bugs, B3 bounds the space of possible workloads in several

ways:

(1) Number of Operations. B3 bounds the number of file-system operations (termed the

sequence length) in the workload. A seq-X workload has X core file-system operations in

it, not counting dependent operations such as creating a file before renaming it.

(2) Files and Directories in Workload. We observe that in the reported bugs, errors result

from the reuse of a small set of files for metadata operations. Thus, B3 restricts workloads

to use few files per directory, and a low directory depth. This restriction automatically

reduces the inputs for metadata-related operations such as rename().

(3) Data Operations. The study also indicated that bugs related to data inconsistency mainly

occur due to writes to overlapping file ranges. In most cases, the bugs are not dependent

on the exact offset and length used in the writes, but on the interaction between the over-

lapping regions from writes. The study indicates that a broad classification of writes such

as appends to the end of a file, overwrites to overlapping regions of a file, and so on, is

sufficient to find crash-consistency bugs.

(4) Initial File-System State. Most of the bugs analyzed in the study did not require a spe-

cific initial file-system state (or a large file system) to be revealed. Moreover, most of the
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studied bugs could be reproduced starting from the same, small file-system image. There-

fore, B3 can test all workloads starting from the same initial file-system state.

4.3 Fine-Grained Correctness Checking

B3 uses fine-grained correctness checks to validate the data and metadata of persisted files and

directories in each crash state. Since fsck is both time-consuming to run and can miss data

loss/corruption bugs, it is not a suitable checker for B3.

4.4 Limitations

The B3 approach has a number of limitations:

(1) B3 does not make any guarantees about finding all crash-consistency bugs. It is sound but

incomplete. However, because B3 tests exhaustively, if the workload that triggers the bug

falls within the constrained workload space, B3 will find it. Therefore, the effectiveness of

B3 depends upon the bounds chosen and the number of workloads tested.

(2) B3 focuses on a specific class of bugs. It does not simulate a crash in the middle of a file-

system operation and it does not re-order IO requests to create different crash states. The

implicit assumption is that the core crash-consistency mechanism, such as journaling [78]

or copy-on-write [30, 81], is working correctly. Instead, we assume that it is the rest of

the file system that has bugs. The crash-consistency bug study indicates this assumption

is reasonable. We explore crashing in the middle of file-system operations in Section 7,

which did not result in finding any new bugs.

(3) B3 focuses on workloads where files and directories are explicitly persisted. If we created

a file, waited 1 hour, then crashed, and found that the file was gone after the file-system

recovered, this would also be a crash-consistency bug. However, B3 does not explore such

workloads as they take a significant amount of time to run and are not easily reproduced

in a deterministic fashion.

(4) Due to its black-box nature, B3 cannot pinpoint the exact lines of code that result in the

observed bug. Once a bug has been revealed by B3, finding the root cause requires further

investigation. However, B3 aids in investigating the root cause of the bug since it provides

a way to reproduce the bug in a deterministic fashion.

Despite its shortcomings, we believe B3 is a useful addition to the arsenal of techniques for

testing file-system crash consistency. The true strengths of B3 lie in its systematic nature and the

fact that it does not require any changes to existing systems. Therefore, it is ideal for complex and

widely used file systems written in low-level languages like C, where stronger approaches like

verification cannot be easily used.

5 CRASHMONKEY AND ACE

We realize the B3 approach by building two tools, CrashMonkey and Ace. As shown in Figure 3,

CrashMonkey is responsible for simulating crashes at different points of a given workload and

testing if the file system recovers correctly after each simulated crash, while the Automatic Crash

Explorer (Ace) is responsible for exhaustively generating workloads in a bounded space.

5.1 CrashMonkey

CrashMonkey uses record-and-replay techniques to simulate a crash in the middle of the work-

load and test if the file system recovers to a correct state after the crash. For maximum portability,

CrashMonkey treats the file system as a black box, only requiring that the file system implement

the POSIX API.
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Fig. 3. System architecture. Given bounds for exploration, Ace generates a set of workloads. Each work-

load is then fed to CrashMonkey, which generates a set of crash states and corresponding oracles. The

AutoChecker compares persisted files in each oracle/crash state pair; a mismatch indicates a bug.

Fig. 4. CrashMonkey operation. CrashMonkey first records the block IO requests that the workload

translates to, capturing reference images called oracles after each persistence point. CrashMonkey then

generates crash states by replaying the recorded IO and tests for consistency against the corresponding

oracle.

Overview. CrashMonkey operates in three phases as shown in Figure 4. In the first phase, Crash-

Monkey profiles the workload by collecting information about all file-system operations and IO

requests made during the workload. The second phase replays IO requests until a persistence point

to create a crash state. The crash state represents the state of storage if the system had crashed after

a persistence operation completed. CrashMonkey then mounts the file system in the crash state

and allows the file system to perform recovery. At each persistence point, CrashMonkey also cap-

tures a reference file-system image, termed the oracle, by safely unmounting it so the file system

completes any pending operations or checkpointing. The oracle represents the expected state of

the file system after a crash. We rely on the correctness of the umount() operation to generate

an oracle image. If the umount() operation itself does not flush all the dirty blocks, then it is pos-

sible that we miss finding a bug. However, in all the previously reported crash-consistency bugs
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we explored, we never encountered this situation. In the absence of bugs, persisted files should

be the same in the oracle and the crash state after recovery. In the third phase, CrashMonkey’s

AutoChecker tests for correctness by comparing the persisted files and directories in the oracle

with the crash state after recovery.

CrashMonkey is implemented as two kernel modules and a set of user-space utilities. The

kernel modules consist of 1,300 lines of C code which can be compiled and inserted into the kernel

at runtime, thus avoiding the need for long kernel re-compilations. The user-space utilities consist

of 4,800 lines of C++ code. CrashMonkey’s separation into kernel modules and user-space utilities

allows rapid porting to a different kernel version; only the kernel modules need to be ported to

the target kernel. This allowed us to port CrashMonkey to seven kernels to reproduce the bugs

studied in Section 3.

Profiling Workloads. CrashMonkey profiles workloads at two levels of the storage stack: it

records block IO requests, and it records system calls. It uses two kernel modules to record block

IO requests and create crash states and oracles.

The first kernel module records all IO requests generated by the workload using a wrapper

block device on which the target file system is mounted. The wrapper device records both data

and metadata for IO requests (such as sector number, IO size, and flags). Each persistence point

in the workload causes a special checkpoint request to be inserted into the stream of IO requests

recorded. The checkpoint is simply an empty block IO request with a special flag, to correlate the

completion of a persistence operation with the low-level block IO stream. All the data recorded by

the wrapper device is communicated to the user-space utilities via ioctl calls.

The second kernel module in CrashMonkey is an in-memory, copy-on-write block device that

facilitates snapshots. CrashMonkey creates a snapshot of the file system before the profiling phase

begins, which represents the base disk image. CrashMonkey provides fast, writable snapshots by

replaying the IO recorded during profiling on top of the base disk image to generate a crash state.

Snapshots are also saved at each persistence point in the workload to create oracles. Furthermore,

since the snapshots are copy-on-write, resetting a snapshot to the base image simply means drop-

ping the modified data blocks, making it efficient.

CrashMonkey also records all open(), close(), fsync(), fdatasync(), rename(), sync(),

and msync() calls in the workload so that when the workload does a persistence operation such

as fsync(fd), CrashMonkey is able to correlate fd with a file that was opened earlier. This allows

CrashMonkey to track the set of files and directories that were explicitly persisted at any point in

the workload. This information is used by CrashMonkey’s AutoChecker to ensure that only files

and directories explicitly persisted at a given point in the workload are compared. CrashMonkey

uses its own set of functions that wrap system calls which manipulate files to record the required

information.

Constructing Crash States. To create a crash state, CrashMonkey starts from the initial state of

the file system (before the workload was run), and uses a utility similar to dd to replay all recorded

IO requests from the start of the workload until the next checkpoint in the IO stream. The resultant

crash state represents the state of the storage just after the persistence-related call completed on

the storage device. Since the IO stream replay ends directly after the next persistence point in

the stream, the generated crash point represents a file-system state that is considered uncleanly

unmounted. Therefore, when the file system is mounted again, the kernel may run file-system-

specific recovery code.

Automatically Testing Correctness. CrashMonkey’s AutoChecker is able to test for correct-

ness automatically because it has three key pieces of information: it knows which files were
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Fig. 5. Workload generation in Ace. The figure shows the different phases involved in workload gener-

ation in Ace. Given the sequence length, Ace first selects the operations, then selects the parameters for

each operation, then optionally adds persistence points after each operation, and finally satisfies file and

directory dependencies for the workload. The final workload may have more operations than the original

sequence length.

persisted, it has the correct data and metadata of those files in the oracle, and it has the actual

data and metadata of the corresponding files in the crash state after recovery. Testing correctness

is a simple matter of comparing data and metadata of persisted files in the oracle and the crash

state.

CrashMonkey avoids using fsck because its runtime is proportional to the amount of data in

the file system (not the amount of data changed) and it does not detect the loss or corruption of

user data. Instead, when a crash state is re-mounted, CrashMonkey allows the file system to run

its recovery mechanism, like journal replay, which is usually more lightweight than fsck. fsck is

run only if the recovered file system is un-mountable. To check consistency, CrashMonkey uses

its own read and write checks after recovery. The read checks used by CrashMonkey confirm

that persisted files and directories are accurately recovered. The write checks test if a bug makes it

impossible to modify files or directories. For example, a btrfs bug made a directory un-removable

due to a stale file handle [39].

Since each file system has slightly different consistency guarantees, we reached out to devel-

opers of each file system we tested, to understand the guarantees provided by that file system. In

some cases, our conversations prompted the developers to explicitly write down the persistence

guarantees of their file systems for the first time [87]. During this process, we confirmed that most

file systems such as ext4 and btrfs implement a stronger set of guarantees than the POSIX stan-

dard. For example, while POSIX requires an fsync() on both a newly created file and its parent

directory to ensure the file is present after a crash, many Linux file systems do not require the

fsync() of the parent directory. Based on the response from developers, we report automatically

detected bugs that violate the guarantees each file system aims to provide.

5.2 Automatic Crash Explorer (Ace)

Ace exhaustively generates workloads satisfying the given bounds. Ace has two components, the

workload synthesizer and the adapter for CrashMonkey.

Workload Synthesizer. The workload synthesizer exhaustively generates workloads within the

state space defined by the user-specified bounds. The workloads generated in this stage are repre-

sented in a high-level language, similar to the one depicted in Figure 5.

CrashMonkey Adapter. A custom adapter converts the workload generated by the synthesizer

into an equivalent C++ test file that CrashMonkey can work with. This adapter handles the inser-

tion of wrapped file-system operations that CrashMonkey tracks. Additionally, it inserts a special

ACM Transactions on Storage, Vol. 15, No. 2, Article 14. Publication date: April 2019.



14:14 J. Mohan et al.

Table 3. Bounds Used by Ace

B3 bound Insight from the study Bound chosen by Ace

Number of operations Small workloads of two to three
core operations

Maximum # of core ops in a
workload is three

Files and directories Re-use file and directory names Two directories of depth 2, each with
two unique files

Data operations Coarse-grained, overlapping
ranges of writes

Overwrites to start, middle, and end
of file, and appends

Initial file-system state No need of a special initial state
or large image

Start with a clean file-system image
of size 100MB

The table shows the specific values picked by Ace for each B
3 bound.

function-call at every persistence point, which translates to the checkpoint IO. It is easy to extend

Ace to be used with other record-and-replay tools like dm-log-writes [4] by building custom

adapters.

Table 3 shows how we used the insights from the study to assign specific values for B3 bounds

when we run Ace. Given these bounds, Ace uses a multi-phase process to generate workloads that

are then fed into CrashMonkey. Figure 5 illustrates the four phases Ace goes through to generate

a seq-2 workload.

Phase 1: Select Operations and Generate Workloads. Ace first selects file-system operations

for the given sequence length to make what we term the skeleton. By default, file-system operations

can be repeated in the workload. The user may also supply bounds such as requiring only a subset

of file-system operations be used (e.g., to focus testing on new operations). Ace then exhaustively

generates workloads satisfying the given bounds. For example, if the user specified the seq-2
workload could only contain six file-system operations, Ace will generate 6 ∗ 6 = 36 skeletons in

phase one.

Phase 2: Select Parameters. For each skeleton generated in phase one, Ace then selects the pa-

rameters (system-call arguments) for each file-system operation. By default, Ace uses two files at

the top level and two sub-directories with two files each as arguments for metadata-related oper-

ations. Ace also understands the semantics of file-system operations and exploits it to eliminate

the generation of symmetrical workloads. For example, consider two operations link(foo, bar)
and link(bar, foo). The idea is to link two files within the same directory, but the order of file

names chosen does not matter. In this example, one of the workloads would be discarded, thus

reducing the total number of workloads to be tested for the sequence.

For data operations, Ace chooses between whether a write is an overwrite at the beginning,

middle, or end of the file or simply an append operation. Furthermore, since our study showed that

crash-consistency bugs occur when data operations overlap, Ace tries to overlap data operations

in phase two.

Each skeleton generated in phase one can lead to multiple workloads (based on different param-

eters) in phase two. However, at the end of this phase, each generated workload has a sequence of

file-system operations with all arguments identified.

Phase 3: Add Persistence Points. Ace optionally adds a persistence point after each file-system

operation in the workload, but Ace does not require every operation to be followed by a persis-

tence point. However, Ace ensures that the last operation in a workload is always followed by a

persistence point so that it is not truncated to a workload of lower sequence length. The file or

directory to be persisted in each call is selected from the same set of files and directories used
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by phase two, and, for each workload generated by phase two, phase three can generate multiple

workloads by adding persistence points after different sets of file-system operations.

Phase 4: Add Dependencies. Finally, Ace satisfies various dependencies to ensure the workload

can execute on a POSIX file system. For example, a file has to exist before being renamed or written

to. Similarly, directories have to be created if any operations on their files are involved. Figure 5

shows how A, B, and A/foo are created as dependencies in the workload. As a result, a seq-2
workload can have more than two file-system operations in the final workloads. At the end of this

phase, Ace compiles each workload from the high-level language into a C++ program that can be

passed to CrashMonkey.

Implementation. Ace consists of 2,500 lines of Python code, and currently supports 14 file-system

operations. All bugs analyzed in our study used one of these 14 file-system operations. It is straight-

forward to expand Ace to support more operations.

Running Ace with Relaxed Bounds. It is easy to relax the bounds used by Ace to generate

more workloads; this comes at the cost of computational time used to test the extra workloads. Care

should be taken when relaxing the bounds, since the number of workloads increases at a rapid rate.

For example, Ace generates about 1.5M workloads with three core file-system operations. Relaxing

the default bound on the set of files and directories to add one additional nested directory, increases

the number of workloads generated to 3.7M. This simple change results in 2.5× more workloads.

Note that increasing the number file-system operations in the workload leads to an increase in the

number of phase-1 skeletons generated, and adding more files to the argument set increases the

number of phase-2 workloads that can be created. Therefore, the workload space must be carefully

expanded.

5.3 Testing and Bug Analysis

Testing Strategy. Given a target file system, we first exhaustively generate seq-1 workloads and

test them using CrashMonkey. We then proceed to seq-2, and then seq-3 workloads. By gen-

erating and testing workloads in this order, CrashMonkey only needs to simulate a crash at one

point per workload. For example, even if a seq-2 workload has two persistence points, crashing

after the first persistence point would be equivalent to an already-explored seq-1 workload.

Analyzing Bug Reports. One of the challenges with a black-box approach like B3 is that a single

bug could result in many different workloads failing correctness tests. We present two cases of

multiple test failures in workloads, and how we mitigate them.

First, workloads in different sequences can fail because of the same bug. Our testing strategy is

designed to mitigate this: if a bug causes incorrect behavior with a single file-system operation, it

should be caught by a seq-1 workload. Therefore, if we catch a bug only in a seq-2 workload, it

implies the bug results from the interaction of the two file-system operations. Ideally, we would

run seq-1, report any bugs, and apply bug-fix patches given by developers before running seq-2.

However, for quicker testing, Ace maintains a database of all previously found bugs which includes

the core file-system operations that produced each bug and the consequence of the bug. For all

new bugs reports generated by CrashMonkey and Ace, it first compares the workload and the

consequence with the database of known bugs. If there is a match, Ace does not report the bug to

the user.

Second, similar workloads in the same sequence could fail correctness tests due to the same bug.

For efficient analysis, we group together bug reports by the consequence (e.g., file missing), and the

skeleton (the sequence of core file-system operations that comprise the workload) that triggered

the bug, as shown in Figure 6. Using the skeleton instead of the fully fleshed-out workload allows
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Fig. 6. Post-processing. The figure shows how generated bug reports are processed to eliminate duplicates.

us to identify similar bugs. For example, the bug that causes appended data to be lost will repeat

four times, once with each of the files in our file set. We can group these bug reports together and

only inspect one bug report from each group. After verifying each bug, we report it to developers.

6 EVALUATION

We evaluate the utility and performance of the B3 approach by answering the following questions:

—Do CrashMonkey and Ace find known bugs and new bugs in Linux file systems in a rea-

sonable period of time? (Section 6.2)

—What is the performance of CrashMonkey? (Section 6.3)

—What is the performance of Ace? (Section 6.4)

—How much memory and CPU does CrashMonkey consume? (Section 6.5)

6.1 Experimental Setup

B3 requires testing a large number of workloads in a systematic manner. To accomplish this test-

ing, we deploy CrashMonkey on Chameleon Cloud [38], an experimental testbed for large-scale

computation.

We employ a cluster of 65 nodes on Chameleon Cloud. Each node has 24 cores, 128GB RAM, and

250GB HDD. We install 12 VirtualBox virtual machines running Ubuntu 16.04 LTS on each node,

each with 2GB RAM and 10GB storage. Each virtual machine runs one instance of CrashMonkey.

Thus, we have a total of 780 virtual machines testing workloads with CrashMonkey in parallel.

Based on the number of virtual machines that could be reliably supported per node, we limited the

total to 780.

On a local server, we generate the workloads with Ace and divide them into sets of workloads to

be tested on each virtual machine. We then copy the workloads over the network to each physical

Chameleon node, and, from each node, copy them to the virtual machines.

6.2 Bug Finding

Determining Workloads. Our goal was to test whether the B3 approach was useful and practical,

not to exhaustively find every crash-consistency bug. Therefore, we wanted to limit the computa-

tional time spent on testing to a few days. Thus, we needed to determine what workloads to test

with our computational budget.
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Table 4. Workloads Tested

Sequence type File-system operations tested
# of
workloads

Runtime
(minutes)

seq-1 ⎧⎪⎪⎨
⎪⎪
⎩

creat, mkdir, falloc, buffered write, mmap,
link direct-IO write, unlink, rmdir, setxattr

removexattr, remove, unlink, truncate

⎫⎪⎪⎬
⎪⎪
⎭

300 1

seq-2 254K 215

seq-3-data buffered write, mmap, direct-IO write, falloc 120K 102

seq-3-metadata buffered write, link, unlink, rename 1.5M 1,274

seq-3-nested link, rename 1.5M 1,274

Total 3.37M 2,866

The table shows the number of workloads tested in each set, along with the time taken to test these workloads in parallel

on 65 physical machines and the file-system operations tested in each category. Overall, we tested 3.37 million workloads

in 2 days, reproducing 24 known bugs and finding 10 new crash-consistency bugs.

Our study of crash-consistency bugs indicated that it would be useful to test small workloads of

length one, two, and three. However, we estimated that testing all 25 million possible workloads

of length three was infeasible within our target time-frame. We had to further restrict the set of

workloads that we tested. We used our study to guide us in this task. At a minimum, we wanted

to select bounds that would generate the workloads that reproduced the reported bugs. Using this

as a guideline, we came up with a set of workloads that was broad enough to reproduce existing

bugs (and potentially find new bugs), but small enough that we could test the workloads in a few

days on our research cluster.

Workloads. We test workloads of length one (seq-1), two (seq-2), and three (seq-3). We fur-

ther separate workloads of length three into three groups: one focusing on data operations

(seq-3-data), one focusing on metadata operations (seq-3-metadata), and one focusing on meta-

data operations involving a file at depth three (seq-3-nested) (by default, we use depth two).

The seq-1 and seq-2 workloads use a set of 14 file-system operations. For seq-3 workloads,

we narrow down the list of operations, based on what category the workload is in. The complete

list of file-system operations tested in each category is shown in Table 4.

Testing Strategy. We tested seq-1 and seq-2 workloads on ext4, xfs, F2FS, and btrfs, but did not

find any new bugs in ext4 or xfs. We additionally tested the seq-1 workloads on two verified file

systems, FSCQ and Yxv6. We focused on F2FS and btrfs for the larger seq-3 workloads. In total, we

spent 48 hours testing all 3.37 million workloads per file system on the 65-node research cluster

described earlier. Table 4 presents the number of workloads in each set, and the time taken to test

them (for each file system). All the tests are run only on 4.16 kernel. To reproduce reported bugs,

we employ the following strategy. We encode the workload that triggers previously reported bugs

in Ace. In the course of workload generation, when Ace generates a workload identical to the

encoded one, it is added to a list. This list of workloads is run on the kernel versions reported in

Table 1, to validate that the workload produced by Ace can indeed reproduce the bug.

Cost of Computation. We believe the amount of computational effort required to find crash-

consistency bugs with CrashMonkey and Ace is reasonable. For example, if we were to rent

780 t2.small instances on Amazon to run Ace and CrashMonkey for 48 hours, at the current

rate of $0.023 per hour for on-demand instances [2], it would cost 780 ∗ 48 ∗ 0.023= $861.12. For the

complete 25M workload set, the cost of computation would go up by 7.5×, totaling $6.4K. Thus,

we can test each file system for less than $7K. Alternatively, a company can provision physical

nodes to run the tests; we believe this would not be hard for a large company.
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Table 5. Newly Discovered Bugs

Bug # File System Consequence # of ops Bug present since

1 btrfs Rename atomicity broken (file disappears) 3 2014

2 btrfs Rename atomicity broken (file in both locations) 3 2018

3 btrfs Directory not persisted by fsync* 3 2014

4 btrfs Rename not persisted by fsync 3 2014

5 btrfs Hard links not persisted by fsync* 2 2014

6 btrfs Directory entry missing after fsync on directory 2 2014

7 btrfs Fsync on file does not persist all its paths* 1 2014

8 btrfs Allocated blocks lost after fsync* 1 2014

9 F2FS File recovers to incorrect size* 1 2015

10 F2FS Persisted file disappears* 2 2016

11 FSCQ File data loss* 1 2018

The table shows the new bugs found by CrashMonkey and Ace. The bugs have severe consequences, ranging from losing

allocated bocks to entire files and directories disappearing. The bugs have been present for several years in the kernel,

showing the need for systematic testing. Note that even workloads with single file-system operation have resulted in bugs.

Developers have submitted a patch for bugs marked with*.

Results. CrashMonkey and Ace found 10 new crash-consistency bugs [89] in btrfs and F2FS

and 1 new bug in FSCQ, in addition to reproducing 24 out of 26 bugs reported over the past

5 years. We studied the bug reports for the new bugs to ensure they were unique and not dif-

ferent manifestations of the same underlying bug. We verified each unique bug triggers a different

code path in the kernel, indicating the root cause of each bug is not the same underlying code.

All new bugs were reported to file-system developers and acknowledged [15, 16, 71, 72]. De-

velopers have submitted patches for five bugs [11, 55, 59, 97, 98], and are working on patches for

the others [58]. Table 5 presents the new bugs discovered by CrashMonkey and Ace. We make

several observations based on these results.

The Discovered Bugs have Severe Consequences. The newly discovered bugs result in either

data loss (due to missing files or directories) or file-system corruption. More importantly, the miss-

ing files and directories have been explicitly persisted with an fsync() call and thus should survive

crashes.

Small Workloads are Sufficient to Reveal New Bugs. One might expect only workloads with

two or more file-system operations to expose bugs. However, the results show that even workloads

consisting of a single file-system operation, if tested systematically, can reveal bugs. For example,

three bugs were found by seq-1 workloads, where CrashMonkey and Ace only tested 300 work-

loads in a systematic fashion. Interestingly, variants of these bugs have been patched previously,

and it was sufficient to simply change parameters to file-system operations to trigger the same

bug through a different code-path.

An F2FS bug found by CrashMonkey and Ace is a good example of finding variants of pre-

viously patched bugs. The previously patched bug manifested when fallocate() was used with

the KEEP_SIZE flag; this allocates blocks to a file but does not increase the file size. By calling

fallocate() with the KEEP_SIZE flag, developers found that F2FS only checked the file size to

see if a file had been updated. Thus, fdatasync() on the file would have no result. After a crash, the

file recovered to an incorrect size, thereby not respecting the KEEP_SIZE flag. This bug was patched

in Nov. 2017 [96]; however, the fallocate() system call has several more flags like ZERO_RANGE,

PUNCH_HOLE, and so on, and developers failed to systematically test all possible parameter options

of the system call. Therefore, our tools identified and reported that the same bug can appear when
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ZERO_RANGE is used. Though this bug was recently patched by developers, it provides more evi-

dence that the state of crash-consistency testing today is insufficient, and that systematic testing

is required.

Crash-Consistency Bugs are Hard to Find Manually. CrashMonkey and Ace found eight

new bugs in btrfs in kernel 4.16. Interestingly, seven of these bugs have been present since kernel

3.13, which was released in 2014. The ability of our tools to find four-year-old crash-consistency

bugs within 2 days of testing on a research cluster of modest size speaks to both the difficulty of

manually finding these bugs, and the power of systematic approaches like B3.

Broken Rename Atomicity Bug. Ace generated several workloads that broke the rename atom-

icity of btrfs. The workloads consist of first creating and persisting a file such as A/bar. Next, the

workload creates another file B/bar, and tries to replace the original file, A/bar, with the new

file. The expectation is that we are able to read either the original file, A/bar, or the new file,

B/bar. However, btrfs can lose both A/bar and B/bar if it crashes at the wrong time. While los-

ing rename atomicity is bad, the most interesting part of this bug is that fsync() must be called

on an un-related sibling file, like A/foo, before the crash. This shows that workloads revealing

crash-consistency bugs are hard for a developer to find manually since they do not always involve

obvious sequences of operations.

Crash-Consistency Bugs in Verified File Systems. CrashMonkey and Ace found a crash-

consistency bug in FSCQ [13] that led to data loss in spite of persisting the file using fdatasync().

The developers have acknowledged and patched the bug [11]. The origin of this bug can be

tracked down to an optimization introduced in the C-Haskell binding in FSCQ, which is unverified

code.

6.3 CrashMonkey Performance

CrashMonkey has three phases of operation: profiling the given workload, constructing crash

states, and testing crash-consistency. Given a workload, the end-to-end latency to generate a bug

report is 4.6 seconds. The main bottleneck is the kernel itself: mounting a file system requires up-to

a second of delay (if CrashMonkey checks file-system state earlier, it sometimes gets an error).

Similarly, once the workload is done, we also wait for 2 seconds to ensure the storage subsystem

has processed the writes, and that we can unmount the file system without affecting the writes.

These delays account for 84% of the time spent profiling.

After profiling, constructing crash states is relatively fast: CrashMonkey only requires 20ms

to construct each crash state. Furthermore, since CrashMonkey uses fine-grained correctness

tests, checking crash consistency with both read and write tests takes only 20ms. A more detailed

break-down of time taken by various phases of CrashMonkey is as shown in Table 6.

We further optimize the running time of CrashMonkey based on few observations of the work-

load pattern. First, the 2-second writeback delay is unnecessary, as all our workloads end with

a persistence operation. To create an oracle, we safely unmount the file system, thereby forcing

these pending writes to disk. The writeback delay is only necessary for workloads that do not

terminate at a persistence operation. To ensure that we record the block IO requests in the order

they were issued, it is necessary to wait until the writeback delay in such cases. This optimization

of disabling writeback delay wait, saves 2 seconds of running time per CrashMonkey test.

Second, we see that the mount (or unmount) delay is not absolute. Hence, the 1-second mount

(or unmount) delay is eliminated by successively retrying after every 500-μs. These optimizations

bring down the running time of CrashMonkey from 4.6 seconds to 1.5 seconds.
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Table 6. CrashMonkey Performance

Stages # Time taken (ms)

Profiling the workload

Formatting and mounting the device 100

Mount delay 1,000

Insert kernel modules 378

Snapshot 56

Writeback delay 2,000

Unmounting the device 7

Sub Total 3,541

Constructing a crash state 21

Testing consistency

Mounting disks 1,009

Read checks 16

Write checks 3

Sub Total 1,028

Total 4,590

The table shows the time spent in each stage of CrashMonkey. The end-

to-end latency to output the bug report is 4.6 seconds.

6.4 Ace Performance

Ace generated all the workloads that were tested (3.37M) in 374 minutes (≈150 workloads gen-

erated per second). Despite this high cost, it is important to note that generating workloads is

a one-time cost. Once the workloads are generated, CrashMonkey can test these workloads on

different file systems without any reconfiguration.

Deploying these workloads to the 780 virtual machines on Chameleon took 237 minutes: 34 min-

utes to group the workloads by virtual machines, 199 minutes to copy workloads to the Chameleon

nodes, and 4 minutes to copy workloads to the virtual machines on each node.

These numbers reflect the time taken for a single local server to generate and push the work-

loads to Chameleon. By utilizing more servers and employing a more sophisticated strategy for

generating workloads, we could reduce the time required to generate and push workloads.

6.5 Resource Consumption

The total memory consumption by CrashMonkey averaged across 10 randomly chosen work-

loads and the three sequence lengths are 20.12MB. The low memory consumption results from the

copy-on-write nature of the wrapper block device. Since Ace’s workloads typically modify small

amounts of data or metadata, the modified pages are few in number, resulting in low memory

consumption. Furthermore, CrashMonkey uses persistent storage only for storing the workloads

(480KB per workload). Finally, the CPU consumption of CrashMonkey, as reported by top, was

negligible (less than 1%).

7 SIMULATING CRASHES IN THE MIDDLE OF FILE-SYSTEM OPERATIONS

CrashMonkey and Ace focus on a specific class of bugs that arise due to crashes after persistence

points. We relax this assumption and extend CrashMonkey to find crash-consistency bugs that

could arise due to crashes in the middle of file-system operations. For example, the IO requests

could be re-ordered by the storage device, in the absence of a FLUSH or FUA flag. Suppose the file

system has a bug in the journaling mechanism where the journal commit is not followed by either
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Fig. 7. Bug in the journaling mechanism. If the journal entries are logged without a terminating FLUSH
or FUA flag, they could be reordered at the volatile storage device cache on a crash. The resulting crash state

could be any random subset of the logged IOs, thereby resulting in file system inconsistency.

of these flags as shown in Figure 7(a). If a crash occurs in the middle of a journal update, these IO

requests could be re-ordered or dropped. Figure 7(b) depicts a scenario where the commit block

and data bitmap are re-ordered at the storage device cache. If a crash now occurs after the commit

block is flushed to disk as shown in Figure 7(c), the resultant crash state shown in Figure 7(d) leads

to a file-system inconsistency. In this case, the inode claims that the data blocks are allocated, while

according to the data bitmap, they are not. Additionally, the inode points to garbage data. Note

that the crash state in Figure 7(d) is simply a randomly picked subset of the initial recorded IO in

Figure 7(a).

We extend CrashMonkey to find bugs of this kind, that could arise due to an incorrect core

journaling mechanism of file systems and to simulate the behavior of the storage device that could

re-order or drop IO requests. CrashMonkey supports a subset-replay mode, where a random

subset of the workload is replayed and the user is expected to manually provide correctness tests.

CrashMonkey does not support automatic correctness checks in this mode, because there are

many correct states to which the file system could recover when a crash occurs in the middle of a

system call. For example, if a crash occurs during a write system call, the file could either be empty,

or in any partially written state when it recovers. File system guarantees are not concrete in such

scenarios, with no single correct state to which the file system is expected to recover. Therefore,

CrashMonkey requires that the user specify a list of correctness checks to be performed after

the execution of workloads in this mode. Since there are numerous correct states to which the file

system could recover, manually writing these tests could be tedious.

The subset-replay mode of CrashMonkey also works in the same three phases described in

Section 5.1. In the first phase, CrashMonkey profiles the workload and collects the sequence of

IO requests issued. The second phase replays IO requests to create a crash state, by selecting a

random subset of the requests. The crash state represents the state of storage if the system had

crashed after a subset of the disk requests completed. In the third phase, CrashMonkey tests for

correctness by running the user-provided correctness tests. These user tests must implement a

specific interface, and are provided information about how far into the workload the generated

crash state is. When the file system is mounted in the crash state, it is allowed to perform any

journal recovery, following which the user tests are run to check the existence of a file, directory,

or their contents. In these tests, the user is responsible for determining if the file system is in a

consistent state.

Generating Random Subsets of IOs. In the subset-replay mode, CrashMonkey generates

crash states by breaking the set of recorded disk IOs into epochs, where each epoch consists of a
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set of IO requests up to and including a request with the FLUSH or FUA flag set on it. Both flags

represent a sort of barrier operation for the storage device because the FLUSH flag tells the storage

device to flush its on-board cache to persistent storage while the FUA flag tells the storage device

not to mark the current request complete until it is persisted. Once the workload has been divided

into epochs, a randomly chosen number of epochs are replayed in their entirety, and then a subset

of the following epoch is replayed to generate the crash state. In the final partial epoch, requests are

replayed in the order they were recorded in, but some of the requests may be dropped, simulating

a storage device that crashed while some data was stored in a volatile cache. If there are two writes

to the same logical block address, the subset-replay mode is careful not to re-order a later write

before the earlier one, as the storage device cache would merge these requests.

CrashMonkey can also split the recorded workload into what we call soft epochs, which use an

additional criteria to split IO requests into epochs. While a normal epoch will only end if a request

with a FLUSH or FUA flag is seen, soft epochs can also end if some amount of time elapses (default of

2.5 seconds) between consecutive requests. This feature aims to more faithfully represent storage

devices since it is likely that a storage device would move data from its volatile cache to persistent

storage if no new requests are coming in.

Dealing with Large Number of Crash States. The subset-replay mode of CrashMonkey

randomly picks the number of epochs to replay, and the number of requests to be included in the

final partial epoch in which the crash occurs. This results in a large number of possible crash states

for any given workload. For a workload with several epochs and tens of IOs per epoch, it is rather

impractical to exhaustively test all possible crash states, which could be exponentially large.

To enable systematic testing of the large space of crash states, we use Long Short Term Memory

(LSTM) [31], a machine learning model capable of learning long-term dependencies, to predict the

file-system behavior on a crash state. We train the learning model to predict the probability that a

file-system recovers to a consistent state after a crash.

The approach proposed here is not just confined to tackling the state-space explosion due to

crashes in the middle of file-system operations. We could extend this idea to selectively test work-

loads of longer sequence lengths.

Learning Model. We use the simplest, sequential model which is a linear stack of layers. We

build a three-layer network with the first one being an embedding layer with a maximum of

100 features, followed by an LSTM layer with 128 units and finally a single dense layer with sig-

moid activation. The input to the learning model is a crash state, while a label representing if the

file system recovers to a consistent state or not, is the output. Each crash state is represented as

a sequence of IO requests, along with the information about the sector to which the IO request

is issued, flags denoting whether it is a data or metadata write, the size of the write, and its data.

When trained on this input data, the model learns the patterns in the sequence of IO requests in

the crash state for a given file system, and thereby predicts the probability of it recovering to a

consistent state. We use the binary cross-entropy loss function and Adam’s optimizer [34] with

learning rate (r = 0.0001) for our model. We train the model on a sample of 80% of the total data

with a validation split of 0.20, for 20 epochs. Based on the probability predicted by the trained

model, we determine if the crash state would be tested with CrashMonkey or not.

Using this approach, we filter out the crash states that could potentially not lead to crash-

consistency bugs. Since each crash state takes about 1.5 seconds to be tested using CrashMonkey,

filtering out obviously correct crash states is orders of magnitude faster than testing all of them

with CrashMonkey. This approach thereby makes systematic testing of a exponentially large

space of crash states feasible.

ACM Transactions on Storage, Vol. 15, No. 2, Article 14. Publication date: April 2019.



CrashMonkey and ACE: Systematically Testing File-System Crash Consistency 14:23

Table 7. Dataset Used by the LSTM Model

Type Number of samples

Training set 6,678,024

Positive samples 27,185

Negative samples 6,650,839

Test set 1,781,199

Positive samples 480,576

Negative samples 1,300,623

Total samples 8,459,223

The table shows the breakdown of the dataset into

training and test samples with the number of pos-

itive and negative samples in each set.

Table 8. LSTM Test Results

Measure Percentage

Accuracy 88.253

False negative rate (FNR) 0.072

True positive rate (TPR) 99.928

True negative rate (TNR) 83.94

False positive rate (FPR) 16.06

The table shows the performance of the LSTM

model in screening crash states to be tested with

CrashMonkey.

Data Generation. We run CrashMonkey to collect around 40K crash states from 13 known bug-

causing workloads in the btrfs file system. This is not a large enough dataset to train the model.

Hence, we synthetically generate crash states in the following way. For every crash state, we per-

mute the IO requests in the last epoch and assign the same label as that of the crash state to all

its permutations. This is based on the assumption that, if a subset of IO requests resulted in a bug,

then any permutation of the subset must also result in the bug, because the cause of the bug is the

interaction between the IO requests in the subsets. This approach resulted in a total of 8.4 million

crash states.

Results. We train the model for btrfs file system using the dataset of crash states from 13 known

bugs. We uniformly sample the training and test data. The training set has roughly 80% of the

data and the rest is used for testing. 20% of the training set is used for validation. To verify that

the model generalizes, we ensure that the test set has buggy crash states which are not previously

seen during training. A more detailed split-up of the dataset into training and test data, along

with the number of positive and negative samples is presented in Table 7. Positive samples are

the crash states that result in a bug, while negative samples are crash states that pass clean when

tested with CrashMonkey. We train the model for 20 epochs using a threshold of 0.000005 (if the

model predicts a probability above the threshold, then the corresponding crash state is tested with

CrashMonkey). The model achieves an accuracy of 88% on the test data, with a very low false

negative rate (FNR) of 0.072% as shown in Table 8. This is the lowest achievable FNR by the model.

The low FNR signifies that we would miss a potentially bug-triggering crash state with a very low

probability. The false positive rate (FPR) indicates that we would test 16% more crash states than

the actual bug-triggering ones. If we reduce the FPR to 8%, the FNR shoots up to 23%. For the use
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Table 9. File-System Persistence Guarantees

Persistence operation Guarantees provided

ext4

fsync (file) Persists only a newly created file, not necessarily the hard links

fsync (directory) Persists changes to the file names under the directory, but not file data

btrfs

fsync (file) Persists the file and all its hard links

fsync (directory) Persists all changes to files and sub-directories under the directory

The table shows the difference in guarantees provided by file systems under different persistence scenarios. The btrfs

file system expects to provide stronger guarantees than ext4.

case under consideration, it is important to not miss bugs; therefore, the low FNR is promising,

even if it results in higher FPR.

8 DISCUSSION

The testing strategy employed by CrashMonkey to find new bugs was a result of our interaction

with lead developers from mature Linux file systems like ext4, xfs, btrfs, and F2FS. We learned

several useful lessons on what is deemed important by the developers and how to carefully make

assumptions about the workload. This section is dedicated to sharing these lessons.

Developers Care about Bugs Violating Persistence Guarantees. Developers are motivated to

resolve bugs that violate documented behavior. Most file systems today provide guarantees more

than what the POSIX expects; however, these are not formally documented [85]. For example,

in btrfs, fsync() of any file should be enough to persist that file in its current directory [63];

it does not require that its parent directory be explicitly persisted. Our conversations prompted

developers to write down such guarantees explicitly for the first time [87]. Table 9 lists the guar-

antees for ext4 and btrfs file systems. Developers are motivated to resolve bugs violating these

guarantees.

Not All File-System Operations Provide Well-Defined Crash-Consistency Guarantees.

The set of file-system operations supported by Ace was refined based on our interaction with

file-system developers. For example, the crash-consistency guarantees of symlink does not ensure

that the symlink-ed file survives a crash, even if it was persisted explicitly before the crash [21].

This is because, unlike hard links, symlinks are not regular files and it is not possible to directly

open them to fsync(). Understanding such semantics helped us generate workloads in a more

reasonable manner, eliminating file-system operations like symlinks which provide no strong

guarantees.

The Workload Triggering the Bug Should Be Realistic. Developers often question if the bug-

triggering workloads would be a common case occurrence. If we report a bug that arises due to a

specific interaction between a sequence of 100 file-system operations, it is important to back this

workload by an application that would result in it. Or, the workload should have a severe con-

sequence such as leaving the file system in an un-mountable state. Even when the consequences

are severe, the developers expect that the initial file-system image be realistic. For example, the

reports by syzbot [91], an automated Linux kernel fuzzer, are often criticized by the file-system

developers [20, 22]. Unless the developers can come up with a regression test to reproduce the

corrupt file-system image claimed by syzbot, they cannot identify the reason for corruption, nor

provide a patch. Patching bugs of this kind are a low priority for the developers [61].
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9 RELATED WORK

B3 offers a new point in the spectrum of techniques addressing file-system crash consistency,

alongside verified file systems and model checking. We now place B3 in the context of prior ap-

proaches.

Verified File Systems. Recent work focuses on creating new, verified file systems from a spec-

ification [12, 13, 82]. These file systems are proven to have strong crash-consistency guarantees.

However, the techniques employed are not useful for testing the crash consistency of existing,

widely used Linux file systems written in low-level languages like C. The B3 approach targets such

file systems, which are not amenable to verification. Additionally, verified file systems can have

bugs in either their specification or the unverified code. Testing approaches like B3 are complimen-

tary to verification techniques and can find bugs in verified file systems as well. CrashMonkey

and Ace demonstrate this by finding a data loss bug in FSCQ.

Formal Crash-Consistency Models. Ferrite [9] formalizes crash-consistency models and can be

used to test if a given ordering relationship holds in a file system; however, it is hard to determine

what relationships to test. The authors used Ferrite to test a few simple relationships such as prefix

append. On the other hand, Ace and CrashMonkey explore a wider range of workloads, and use

oracles and developer-provided guarantees to automatically test correctness after a crash.

Model Checking. B3 is closely related to in-situ model checking approaches such as EXPLODE

[94] and FiSC [95]. However, unlike B3, EXPLODE and FiSC require modifications to the buffer

cache (to see all orderings of IO requests) and changes to the file-system code to expose choice

points for efficient checking, a complex and time-consuming task. B3 does not require changing

any file-system code and it is conceptually simpler than in-situ model checking approaches, while

still being effective at finding crash-consistency bugs.

Though the B3 approach does not have the guarantees of verification or the power of model

checking, it has the advantage of being easy to use (due to its black-box nature), being able to

systematically test file systems (due to its exhaustive nature), and being able to catch crash-consis-

tency bugs occurring on mature file systems.

Fuzzing. The B3 approach bears some similarity to fuzz-testing techniques which explore inputs

that will reveal bugs in the target system. The effectiveness of fuzzers is determined by the careful

selection of uncommon inputs that would trigger exceptional behavior. However, B3 does not ran-

domize input selection. Neither does it use any sophisticated strategy to select workloads to test.

Instead, B3 exhaustively generates workloads in a bounded space, with the bounds informed by our

study or provided by the user. While there exists fuzzers to test the correctness of system calls [24,

33, 74], there seem to be no fuzzing techniques to expose crash-consistency bugs. The effort by Nos-

sum and Casasnovas [74] is closest to our work, where they generate file-system images that are

likely to expose bugs during the normal operation of the file system (non-crash-consistency bugs).

Record-and-Replay Frameworks. CrashMonkey is similar to prior record-and-replay frame-

works such as dm-log-writes [4], Block Order Breaker [76], and work by Zheng et al. [101].

Unlike dm-log-writes, which requires manual correctness tests or running fsck, CrashMonkey

is able to automatically test crash consistency in an efficient manner.

Similar to CrashMonkey, the Block Order Breaker (BOB) [76] also creates crash states from

recorded IO. However, BOB is only used to show that different file systems persist file-system

operations in significantly different ways. The Application-Level Intelligent Crash Explorer (AL-

ICE) explores application-level crash vulnerabilities in databases, key value stores, and so on. The

major drawback with ALICE and BOB is that they require the user to handcraft workloads and
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provide an appropriate checker for each workload. They lack systematic exploration of the work-

load space and do not understand persistence points, making it is extremely hard for a user to

write bug-triggering workloads manually.

The logging and replay framework from Zheng et al. [101] is focused on testing whether

databases provide ACID guarantees, works only on iSCSI disks, and uses only four workloads.

CrashMonkey is able to test millions of workloads, and Ace allows us to generate a much wider

range of workloads to test.

We previewed the ideas behind CrashMonkey in a workshop paper [62]. Since then, sev-

eral features have been added to CrashMonkey with the prominent one being automatic crash-

consistency testing. This article is an extended version of the OSDI’18 paper by Mohan et al. [73].

10 CONCLUSION

This article presents Bounded Black-Box Crash Testing (B3), a new approach to testing file-system

crash consistency. We study 26 crash-consistency bugs reported in Linux file systems over the

past 5 years and find that most reported bugs could be exposed by testing small workloads in

a systematic fashion. We exploit this insight to build two tools, CrashMonkey and Ace, that

systematically test crash consistency. Running for 2 days on a research cluster of 65 machines,

CrashMonkey and Ace reproduced 24 known bugs and found 10 new bugs in widely used Linux

file systems, and a data loss bug in a verified file system.

We have made CrashMonkey and Ace available (with demo, documentation, and a single line

command to run seq-1 workloads) at https://github.com/utsaslab/crashmonkey. We encourage

developers and researchers to test their file systems against the workloads included in the

repository.

A APPENDIX

A.1 Bugs Reproduced by CrashMonkey and Ace

26 of the 28 known bugs are reproducible by CrashMonkey and Ace. We present the workload

that triggers each bug, along with the file system on which it occurs, the difference in expected

and actual states after a crash, and the overall consequence of the bug.

Workload 1 Details [54]

mkdir A
write(0-16K)

A/foo
sync

mv A/foo A/bar
write (0-4K)

A/foo
fsync
A/foo

—Crash—

File system
btrfs
F2FS

Expected

A/foo : Size
4K

A/bar : Size
16K

Actual
A/foo : Size

4K

Consequence
Persisted file

missing

Workload 2 Details [27]

write (0-8K) foo
fsync foo

falloc -k (8-16K)
foo

fdatasync foo
—Crash—

File system ext4, F2FS

Expected foo: 32 sectors

Actual foo: 16 sectors

Consequence

Blocks
allocated

beyond EOF
are lost
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Workload 3 Details [56]

mkdir A mkfifo
A/foo touch A/baz

fsync A/baz mv
A/foo A/bar link

A/bar A/foo
remove A/baz
fsync A/baz
—Crash—

File system btrfs

Expected
A/foo
A/bar

Actual
FS

unmountable

Consequence
FS

unmountable

Workload 5 Details [60]

mkdir A
touch A/foo

link A/foo A/bar
sync

unlink A/bar
touch A/bar
fsync A/bar
—Crash—

File system btrfs

Expected
A/foo
A/bar

Actual
FS

unmountable

Consequence
FS

unmountable

Workload 7 Details [49]

mkdir A,B,C
touch A/foo

link A/foo B/foo1
touch B/bar

sync
unlink B/foo1

mv B/bar C/bar
fsync A/foo
—Crash—

File system btrfs

Expected
C/bar or

B/bar

Actual
C/bar and

B/bar
missing

Consequence
Persisted file

missing

Workload 4 Details [28]

write (16-20K)
foo

d-write (0-4K)
foo

—Crash—

File system ext4

Expected foo: Size 4K

Actual foo: Size 0

Consequence
Metadata

inconsistent

Workload 6 Details [8]

mkdir A
touch A/foo
fsync A/foo
—Crash—

File system btrfs

Expected Writable FS

Actual
Cannot create

files

Consequence
Cannot create

new files

Workload 8 Details [53]

mkdir -p A/B
mkdir A/C

touch A/B/foo
touch A/B/bar

sync
mv A/B A/C
mkdir A/B
fsync A/B
—Crash—

File system btrfs

Expected
A/B

A/C/foo
A/C/bar

Actual A/B

Consequence
Directory and
its contents

missing

Workload 9 Details [50]

mkdir A,B
touch A/foo
mkdir B/C

touch B/baz
sync

link A/foo A/bar
mv B/C A/

mv B/baz A/
fsync A/foo
—Crash—

File system btrfs

Expected
A/C or B/C

A/baz or
B/baz

Actual
A/C & B/C

A/baz & B/baz

Consequence
File persisted

in both
directories

Workload 10 Details [29]

mkdir A
sync

symlink foo,
A/bar

fsync A
—Crash—

File system btrfs

Expected
A/bar must
point to foo

Actual
A/bar is
empty

Consequence
Empty

symlink

Workload 11 Details [52]

mkdir A touch
A/foo fsync A
fsync A/foo

mv A/foo A/bar
touch A/foo
fsync A/bar
—Crash—

File system btrfs

Expected
A/foo
A/bar

Actual A/bar

Consequence
Persisted file

missing

Workload 12 Details [45]

write(0-132K) foo
punch_hole(96-128K)
punch_hole(64-192K)
punch_hole(32-128K)

fsync foo
—Crash—

File system btrfs

Expected
Hole:

32–192K

Actual
Hole:

32–128K

Consequence
Extent map

incorrect
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Workload 13 Details [47]

mkdir A
touch A/foo
touch A/bar

sync
link A/foo A/foo1
link A/bar A/bar1

fsync A/bar
—Crash—

File system btrfs

Expected
Writable

FS

Actual
Dir A

unremovable

Consequence
Directory

unremovable

Workload 14 Details [40]

touch foo
write (0-256K) foo

sync
mmap (0-256K) foo

m-write (0-4K)
m-write (252-256K)

msync (0-64K)
msync(192-256K)

—Crash—

File system btrfs

Expected
Both

writes
persist

Actual
Second

write not
persisted

Consequence Data loss

Workload 15 Details [46]

mkdir A
sync

touch A/foo
link A/foo A/bar

sync
remove A/bar
fsync A/foo
—Crash—

File system btrfs

Expected
Writable

FS

Actual
Dir A

un-removable

Consequence
Directory

unremovable

Workload 16 Details [43]

mkdir A
touch A/foo

sync
write (0-16K) A/foo

fsync A/foo
link A/foo A/bar

—Crash—

File system btrfs

Expected
foo: Size

16K

Actual foo: Size 0

Consequence
Data
loss

Workload 17 Details [42]

write(0-16K) foo
fsync foo

sync
punch_hole -k
(8,000–12,096)

foo
fsync foo
—Crash—

File system btrfs

Expected
Hole must

persist

Actual
Hole not
persisted

Consequence
Punch_hole

does not
persist

Workload 18 Details [48]

touch foo
setxattr foo u1 val1
setxattr foo u2 val2
setxattr foo u3 val3

sync
removexattr foo u2

fsync foo
—Crash—

File system btrfs

Expected
u1
u2

Actual
u1
u2
u3

Consequence
Remove

xattr does
not persist

Workload 19 Details [26]

mkdir A
touch A/foo

sync
link A/foo A/bar1
link A/foo A/bar2

sync unlink A/bar2
fsync A/foo
—Crash—

File system btrfs

Expected
Writable

FS

Actual
Dir A

unremovable

Consequence
Dir

unremovable

Workload 20 Details [51]

mkdir -p A/B, C
touch A/B/foo

sync
mv A/B/foo C/foo

touch A/bar
fsync A

—Crash—

File system btrfs

Expected
A/bar
C/foo

Actual
A/bar

A/B/foo

Consequence
Renamed file

missing

Workload 21 Details [39]

mkdir A
touch A/foo

sync
touch A/bar

fsync A
fsync A/bar
—Crash—

File system btrfs

Expected Writable FS

Actual
Dir A

unremovable

Consequence
Directory

unremovable

Workload 22 Details [5]

touch A/foo
write (0-4K) A/foo

sync
mv A/foo A/bar

fsync A/bar
—Crash—

File system btrfs

Expected A/bar

Actual A/foo

Consequence
Persisted file

missing
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Workload 23 Details [44]

write(0-32K) foo
sync

link foo, bar
sync

write(32-64K) foo
fsync foo
—Crash—

File system btrfs

Expected
foo: Size

64K

Actual
foo: Size

32K

Consequence Data loss

Workload 24 Details [6]

touch foo
mkdir A
fsync foo

sync
mv foo A/bar

fsync A
fsync A/bar
—Crash—

File system btrfs

Expected
Writable

FS

Actual
Dir A

unremovable

Consequence
Directory

unremovable

A.2 New Bugs Found by CrashMonkey and Ace

CrashMonkey and Ace found 10 new bugs across widely used Linux file systems, btrfs and F2FS.

Additionally, our tools also found a data loss in FSCQ, ascertaining the fact that unverified com-

ponents of a verified file system could lead to bugs in the final artifact.

Workload 1 Details [64]

mkdir A
touch A/bar
fsync A/bar

mkdir B
touch B/bar

rename B/bar A/bar
touch A/foo
fsync A/foo

fsync A
—Crash—

File system btrfs

Expected
A/foo

A/bar or
B/bar

Actual A/foo

Consequence

Previously
persisted file

goes
missing

Workload 2 Details [58]

mkdir A
mkdir A/C

rename A/C B
touch B/bar
fsync B/bar

rename B/bar A/bar
rename A B
fsync B/bar
—Crash—

File system btrfs

Expected B/bar

Actual
A/bar
B/bar

Consequence

Rename
persists the
file in both
directories

Workload 3 Details [59]

mkdir A
mkdir B

mkdir A/C
touch B/foo
fsync B/foo

link B/foo A/C/foo
fsync A

—Crash—

File system btrfs

Expected
B/foo

A/C/foo

Actual B/foo

Consequence
Persisted
directory
missing

Workload 4 Details [63]

mkdir A
sync

rename A B
touch B/foo
fsync B/foo

fsync B
—Crash—

File system btrfs

Expected
B

B/foo

Actual A/foo

Consequence
Persisted file

missing

Workload 5 Details [63]

mkdir A
mkdir B

touch A/foo
link (A/foo, B/foo)

fsync A/foo
fsync B/foo
—Crash—

File system btrfs

Expected
A/foo
B/foo

Actual A/foo

Consequence

Hard link
missing even

after
persisting
both files
involved

Workload 6 Details [15]

mkdir test
mkdir test/A
touch test/foo

touch test/A/foo
fsync test/A/foo

fsync test
—Crash—

File system btrfs

Expected
test/A/foo

test/foo

Actual test/A/foo

Consequence

File missing
in spite of
persisting

parent
directory
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Workload 7 Details [16]

touch foo
mkdir A

link (foo, A/bar)
fsync foo
—Crash—

File system btrfs

Expected
foo

A/bar

Actual foo

Consequence

Fsync of a file
does not

persist all its
names

Workload 8 Details [55]

write (0–16K) foo
fsync foo

falloc -k (16–20K)
fsync(foo)
—Crash—

File system btrfs

Expected
foo: 40
sectors

Actual
foo: 32
sectors

Consequence

Blocks
allocated

beyond EOF
are lost

Workload 9 Details [98]

write (0–16K) foo
fsync foo

fzero -k (16–20K)
fsync(foo)
—Crash—

File system F2FS

Expected
foo: Size

16K

Actual
foo: Size

20K

Consequence
Recovers to
incorrect file

size

Workload 10 Details [97]

mkdir A
sync

rename A B
touch B/foo
fsync B/foo
—Crash—

File system F2FS

Expected B/foo

Actual A/foo

Consequence Persisted file
ends up in a

different
directory

Workload 11 Details [11]

write (0–4K) foo
sync

write (4–8K) foo
fdatasync foo

—Crash—

File system FSCQ

Expected foo: Size 8K

Actual foo: Size 4K

Consequence Data loss
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