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ABSTRACT
Nowadays, it is common for one natural person to join multiple
social networks to enjoy different types of services. User identity
linkage (UIL), which aims to link identical identities across different
social platforms, has attracted increasing research interests recently.
Most existing approaches focus on the sophisticated architecture
engineering of the linkage model but ignore the challenge of hub-
ness in the post-processing nearest neighbor search phase. Hubness
appears as some identities in a social platform, called hubs, being
extra-ordinary close to the identities in the other platform, which
will degrade the alignment performance. Different from existing
heuristic methods, in this paper we propose a hubness-aware user
identity linkage model HAUIL to smoothly learn hubless linkage
signals. A carefully-designed objective function is presented to
explicitly mitigate the hubness information from the pre-learned
linkage guidance. HAUIL can be easily adapted to most existing
UIL models. Empirically, we evaluate HAUIL over multiple publicly
available datasets, and the experimental results demonstrate its
superiority.

CCS CONCEPTS
• Information systems → Social networks.
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1 INTRODUCTION
Nowadays, users tend to simultaneously join a variety of social
platforms to enjoy different types of services. When a user registers
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Figure 1: An illustrative example of hubness in the user iden-
tity linkage task.

on a social platform, an identity is created to represent his unique
personal figure. As an indispensable step in cross-platform social
network mining, user identity linkage (UIL), which aims to link
identities of one same natural person across different social net-
works, has attracted enormous attentions considering its significant
research challenges and tremendous practical values.

Existing UIL models [6–8, 11, 12, 17, 20, 24] are mostly distance-
based and usually aim to learn a desirable projection function to
map user identities from the source platform to the target one. In the
model training phase, the objective function is designed tominimize
the distances between identities in the matched pairs and maximize
the distances of unmatched ones. After that, in the inference phase,
the ground distances between the projected source identity and the
target candidates can be viewed as the linkage signals to retrieve
the top-k nearest neighbors. Existing distance-based approaches
mainly focus on the sophisticated architecture engineering of the
projection function (e.g., adversarial learning [6, 7], graph neural
network [1, 21] and translation models [23]). However, the post-
processing nearest neighbor search in the inference phase is also
critical to achieving the desirable linkage performance [1], which
is seriously hindered by a phenomenon called hubness. How to
alleviate the negative impact of hubness to the UIL task is rarely
touched and still remains an open research problem.

Hubness is a tendency that a few target identities (hubs) appear
unwontedly often among the k-nearest neighbor lists of the source
identities [15]. Figure 1 intuitively illustrates the phenomenon of
hubness in the UIL task. A SOTA UIL model SNNA is trained over
a popular Facebook-Twitter dataset [7]. We randomly select 400
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Twitter identities and record the frequencies of these Twitter iden-
tities appearing in the top-5 lists of the Facebook identities. Each
cell denotes a Twitter identity, and the darkness of color in a cell is
proportion to the normalized occurrence times of the correspond-
ing Twitter identities. A natural person usually registers very few
identities in a social platform. Thus, an source identity may only
link to one or few identities in the target platform. It would be more
promising if the target identities uniformly appear in the top-𝑘
list of the source identities. However, this fine-grained one-to-few
mapping is not explicitly enforced in most UIL models. As shown
in Figure 1, several Twitter identities may appear much more fre-
quent than others in the top-𝑘 nearest neighbor lists, which violates
the reality of one-to-few mapping and will degrade the alignment
performance. The underlying reason of hubness is the highly im-
balanced distribution of the user activeness [1]. If an active user
in the target network published a lot of microblogs and interacted
frequently with others, then she has a larger chance to be close to
many source identities due to the rich mutual information.

The hubness problem is rarely investigated by the existing UIL
models. Chen et al. [1] propose a heuristic strategy named CGSS
(Cross-Graph Similarity Scaling) as the distance measurement to
mitigate hubness, which modifies the traditional cosine similarity
with local scaling normalization. However, CGSS is a heuristic strat-
egy without any mathematical foundation, which cannot explicitly
demonstrate the motivations theoretically. Here we aim to allevi-
ate the challenge of hubness from a totally different perspective
with powerful mathematical derivations. To ensure the flexibility
and generality, we assume the distances between projected source
identities and target ones have been calculated by previous models.
We argue that the ground distances cannot be directly utilized as
the linkage guidance considering the severe challenge of hubness.
Thus, new hubless linkage signals are required. This motivation
leads to an optimization problem which smoothly converts the dis-
tances to the linkage probabilities. The learned probabilities should
not only preserve the valuable linkage guidance in the pre-learned
distances, but also can effectively mitigate the hubness. As our pro-
posal focuses on the post-processing phase, it can be easily adapted
to most existing UIL models, which demonstrates the generality of
our proposal. The proposed HAUIL (Hubness-Aware User Identity
Linkage) model is thoroughly evaluated on five pairs of real-life
datasets, and the experimental results demonstrate its superiority.

We summarize our main contributions as follows:

• We study the novel problem of hubness-aware UIL. Different
from existing heuristic approaches, we introduce a flexible
optimization-based strategy with strong mathematical foun-
dation to smoothly mitigate the hubness.

• Extensively, we evaluate HAUIL on five groups of datasets.
Experimental results demonstrate the superior performance
of the proposed approach.

2 PROBLEM STATEMENT
We denote a source network S = {𝑠1, 𝑠2, · · · , 𝑠𝑚} with𝑚 identities
and a target network T = {𝑡1, 𝑡2, · · · 𝑡𝑛}with𝑛 identities.We assume
that a distance matrix G ∈ R𝑚×𝑛 has already been calculated by
the existing UIL models, in which G𝑖 𝑗 denotes the ground distance
between the target identity 𝑡 𝑗 and the source identity 𝑠𝑖 . In this

paper, we aim to learn a probability matrix U ∈ R𝑚×𝑛 , in which U𝑖 𝑗

denotes the probability of identity 𝑠𝑖 and 𝑡 𝑗 belonging to the same
natural person. Matrix U is expected to alleviate the challenge of
hubness while preserving the valuable knowledge in the original
distance matrix G.

3 DISTANCE-BASED LINKAGE MODELS
Existing identity linkage models usually aim to learn a desirable
projection function to minimize the distances between identities
in the matched pairs and maximize the distances of unmatched
ones [6, 8, 11, 12]. Given an aligned identity pair (𝑠𝑖 , 𝑡𝑝 ) and the
unmatched pair (𝑠𝑖 , 𝑡𝑞), the objective function is defined as:

min
M

L𝑑 = 𝑑 (M(𝑠𝑖 ), 𝑡𝑝 ) − 𝑑 (M(𝑠𝑖 ), 𝑡𝑞) (1)

in whichM is the projection function that maps the source identity
into the target space. Function 𝑑 measures the ground distance
between two points, which is usually implemented as the Euclidean
distance. With the learned projection function, we can achieve
a distance matrix G which contains the learned distance-based
linkage signals. However, these signals are seriously affected by
hubness as discussed in the introduction section. Hence, we aim to
smoothly mitigate the hubness from the learned distance matrix G.

4 METHODOLOGY
We aim to learn a probability matrixU based on the learned distance
matrix G, which is expected to be distance preserving and hubless.
Several works have been proposed to mitigate the challenge of
hubness in different scenarios [2, 4, 5, 15]. Inspired by previous
works [4, 5], we employ related techniques to remove hubness
in the user identity linkage scenario. Next we will introduce the
objective function from the perspectives of distance preserving and
anti-hubness.

4.1 Distance Preserving
The distance matrix G contains crucial linkage signals learned
by SOTA UIL models. Larger ground distances lead to the lower
linkage probabilities. Based on this criterion, the objective function
is presented as follows:

L = min
U

∑︁
𝑖,𝑗

G𝑖 𝑗U𝑖 𝑗 + 𝜆
∑︁
𝑖,𝑗

U𝑖 𝑗 logU𝑖 𝑗 ,

𝑠 .𝑡 .
∑︁
𝑗

U𝑖 𝑗 = 1,UU⊺ = I
(2)

The first term (min
U

∑
𝑖, 𝑗

G𝑖 𝑗U𝑖 𝑗 ) ensures that a larger distance G𝑖 𝑗

leads to a lower linkage probability U𝑖 𝑗 , and vice versa. In addition,
this objective function also minimizes the cost to transfer from the
source space to the target space, which is equivalent to the Earth
Mover’s Distance (EMD) [13]. EMD estimates the minimum cost of
turning the earth into the holes, which is calculated by the amount
of dirt moved (i.e., U𝑖 𝑗 ) times the moving distance (i.e., G𝑖 𝑗 ), and
has been proven as an effective measurement in UIL [8].

Loss L is regularized by 𝜆
∑
𝑖, 𝑗 U𝑖 𝑗 logU𝑖 𝑗 , which is the negative

entropy of U. This regularization term gives a measure of how
uniform the probabilities are and a higher entropy tends to make
the probabilities less extreme. Besides, negative entropy term has
a clear bound which simplifies the process of finding the optimal
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Table 1: Statistics of the datasets.

Dataset Source Network Target Network #𝑀𝑎𝑡𝑐ℎ𝑒𝑑

Twi.-Four. Twitter (5,120) Foursquare (5,313) 3,143
Twi.-Fli. Twitter (6,005) Flickr (4,403) 3,499
La.-My. Lastfm (4,807) Myspace (4,464) 1,777
Dou.-Wei. Douban (15,151) Weibo (28,646) 11,170
Twi.-Tum. Twitter (127,736) Tumblr (103,427) 30,746

solution. 𝜆 is the weight of regularization term. Given a source user
𝑖 , the first constraint ensures that the summation of its matching
probabilities on all target identities should be equal to 1. The second
constraint forces the matrix U to be orthogonal as an orthogonal
projection is theoretically appealing for its numerical stability.

4.2 Anti-hubness
The challenge of hubness is caused by some target identities being
retrieved more frequently than others. Given a hub identity 𝑡𝑝 and
an anti-hub one 𝑡𝑞 , we can get

𝑚∑︁
𝑖=1

G𝑖𝑝 <

𝑚∑︁
𝑖=1

G𝑖𝑞 (3)

as hub identities tend to be closer to other identities compared with
anti-hub ones. A natural idea is to force all target identities being
equally preferred to be retrieved [5]. Based on this motivation, the
following constraint is presented:

1
𝑚

𝑚∑︁
𝑖=1

U𝑖 𝑗 =
1
𝑛

(4)

in which the left expression denotes the preference of target iden-
tity 𝑡 𝑗 , namely on average how 𝑡 𝑗 is likely to be selected as the
linkage candidate of a source identity. This constraint can force
the preference to be uniformly distributed over all target identities.
Overall, the final objective function is the combination of Formula
2 and Formula 4. This objective function can be easily optimized
by the stochastic gradient descent algorithm.

5 EXPERIMENTS
5.1 Experimental Settings
We select five publicly available real-life datasets to evaluate the
HAUIL model: Twitter-Foursquare [19], Twitter-Flickr [16], Lastfm-
Myspace [22], Douban-Weibo [8] and Twitter-Tumblr [9]. The sta-
tistical information of the datasets is presented in Table 1. In order
to thoroughly evaluate the generality of HAUIL, we select a set of
SOTA UIL methods as the basic models to generate the distance
matrix: MAH [14], COSNET [22], IONE [10], MEgo2Vec [18], ULink
[12] and SNNA [7]. For the datasets without node attributes, we uti-
lize Node2Vec [3] to generate the unsupervised node embeddings
as representations. For the probability-based approaches, we use
the normalized matching probabilities as the distance matrix. In the
inference phase, following previous works [6, 7], we exploit the co-
sine similarity as the distance measurement. The dimension of node
embeddings is set to 100, the negative entropy weight 𝜆 is set to 0.3
and the learning rate is set to 0.001. The parameters of baselines are

carefully tuned on a small validation dataset following the guide-
lines in the original papers. Based on the previous works [7, 12],
we select 𝐻𝑖𝑡-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 score as the evaluation metric, which is
formally defined as:

ℎ(𝑥) = 𝑘 − (ℎ𝑖𝑡 (𝑥) − 1)
𝑘

(5)

where ℎ𝑖𝑡 (𝑥) is the rank position of the matched target user in
the returned top-k candidate target identities. The 𝐻𝑖𝑡-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
is calculated by the average on the scores of the matched identity
pairs:

∑𝑖=𝑚
𝑖=0 ℎ (𝑥𝑖 )

𝑚 , in which𝑚 is the number of source identities in
matched pairs.

5.2 Experimental Results
For each dataset, 𝑇𝑡𝑟 portion of aligned identity pairs are randomly
selected as the training annotations, and 500 linked pairs are ran-
domly selected as the test samples.𝑇𝑡𝑟 increases from 0.1 to 0.5. We
repeat this process 3 times and report the average 𝐻𝑖𝑡-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
scores. Parameter 𝑘 in the 𝐻𝑖𝑡-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 measurement is set to 10.
We select the recent CGSS [1] method as the hubness-aware base-
line. Table 2 presents the experimental results. With the increase
of training ratio 𝑇𝑡𝑟 , all models achieve better performance. Com-
pared with traditional approaches, CGSS improves the performance
by around 1%. Mitigating hubness with such a straight-forward
method still outperforms baselines, which proves the importance of
the studied hubless UIL task. Our proposal consistently achieves the
best performance over all datasets under different settings. HAUIL
beats the CGSS method by nearly 1.6% and outperforms traditional
approaches by around 2.5%. Experimental results proves that our
proposal can effectively alleviate the challenge of hubness, and thus
achieves desirable linkage performance.

5.3 Ablation Study
The objective function contains a negative entropy regularizer
and three constraints. In order to evaluate the importance of dif-
ferent components, we remove them from the objective function
as four ablation models. Namely, HAUIL1, HAUIL2, HAUIL3 and
HAUIL4 denote the models without negative entropy regularizer,
non-negativity constraint, summation constraint and the anti-hubness
constraint, respectively. Table 3 presents the linkage performance
of ablation models on the five datasets. One can see that the per-
formance of all ablation models is lower than the performance of
vanilla HAUIL model, which demonstrates that all the components
are indispensable to obtain the promising linkage results. Note that,
without the anti-hubness component, HAUIL4 achieves the worst
performance, which also proves the importance of mitigating the
hubness information.

5.4 Parameter Sensitivity Study
Here we study the performance sensitivity of HAUIL model on
two core parameters: the negative entropy weight 𝜆 and the learn-
ing rate 𝜂. Training ratio 𝑇𝑡𝑟 is set to 10%. 𝜆 varies from 0.1 to
0.5, and 𝜂 is set from e−1 to e−4. 𝐻𝑖𝑡 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 scores under dif-
ferent settings on four dataset are reported. Figure 2 presents the
experimental results. With the increase of 𝜆, the performance over
all the datasets first increases and then keeps steady or slightly
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Table 2: User identity linkage performance with different training ratio 𝑇𝑟 (𝐻𝑖𝑡-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 score).

Twitter-Foursquare Twitter-Flickr Lastfm-Myspace Douban-Weibo Twitter-Tumblr

𝑇𝑡𝑟 𝑇𝑡𝑟 =0.1 𝑇𝑡𝑟 =0.3 𝑇𝑡𝑟 =0.5 𝑇𝑡𝑟 =0.1 𝑇𝑡𝑟 =0.3 𝑇𝑡𝑟 =0.5 𝑇𝑡𝑟 =0.1 𝑇𝑡𝑟 =0.3 𝑇𝑡𝑟 =0.5 𝑇𝑡𝑟 =0.1 𝑇𝑡𝑟 =0.3 𝑇𝑡𝑟 =0.5 𝑇𝑡𝑟 =0.1 𝑇𝑡𝑟 =0.3 𝑇𝑡𝑟 =0.5

MAH 0.102 0.162 0.192 0.126 0.177 0.206 0.147 0.232 0.288 0.136 0.171 0.213 0.238 0.281 0.310
MAH+CGSS 0.104 0.169 0.206 0.131 0.186 0.217 0.154 0.238 0.294 0.144 0.173 0.221 0.246 0.288 0.217
MAH+HAUIL 0.112 0.188 0.219 0.139 0.204 0.224 0.167 0.253 0.309 0.153 0.189 0.239 0.254 0.298 0.327

COSNET 0.116 0.190 0.217 0.132 0.189 0.216 0.152 0.234 0.282 0.139 0.171 0.210 0.256 0.296 0.319
COS.+CGSS 0.123 0.192 0.219 0.139 0.192 0.228 0.159 0.240 0.293 0.148 0.179 0.224 0.264 0.303 0.330
COS.+HAUIL 0.133 0.197 0.226 0.152 0.204 0.245 0.170 0.252 0.303 0.154 0.187 0.229 0.275 0.316 0.341

IONE 0.121 0.167 0.191 0.134 0.178 0.221 0.148 0.227 0.284 0.125 0.154 0.205 0.231 0.268 0.297
IONE+CGSS 0.126 0.172 0.214 0.140 0.185 0.225 0.157 0.236 0.291 0.129 0.158 0.207 0.239 0.276 0.306
IONE+HAUIL 0.135 0.184 0.222 0.148 0.202 0.226 0.165 0.243 0.297 0.141 0.172 0.208 0.248 0.287 0.314

MEgo2Vec 0.136 0.201 0.239 0.147 0.193 0.218 0.159 0.238 0.284 0.153 0.182 0.218 0.267 0.304 0.326
MEg.+CGSS 0.141 0.216 0.250 0.152 0.206 0.249 0.165 0.249 0.295 0.161 0.195 0.238 0.274 0.316 0.331
MEg.+HAUIL 0.154 0.230 0.261 0.161 0.215 0.252 0.172 0.253 0.308 0.173 0.204 0.242 0.279 0.318 0.346

ULink 0.138 0.178 0.209 0.155 0.207 0.235 0.155 0.236 0.283 0.176 0.207 0.246 0.274 0.313 0.336
ULink+CGSS 0.147 0.192 0.224 0.159 0.209 0.242 0.168 0.248 0.306 0.179 0.209 0.262 0.281 0.319 0.345
ULink+HAUIL 0.159 0.200 0.231 0.167 0.213 0.258 0.173 0.252 0.310 0.187 0.216 0.269 0.289 0.326 0.357

SNNA 0.147 0.215 0.253 0.174 0.220 0.242 0.176 0.260 0.304 0.181 0.215 0.250 0.286 0.328 0.349
SNNA+CGSS 0.155 0.227 0.259 0.181 0.231 0.257 0.187 0.273 0.317 0.184 0.220 0.254 0.293 0.337 0.358
SNNA+HAUIL 0.163 0.239 0.272 0.189 0.350 0.267 0.194 0.275 0.328 0.190 0.228 0.267 0.307 0.346 0.373

Table 3: Ablation study of HAUIL.

Method Twi.-Four. Wei.-Dou. La.-My. Dou.-Wei. Twi.-Tum.

Baseline 0.147 0.174 0.176 0.181 0.286

HAUIL1 0.151 0.179 0.182 0.183 0.292
HAUIL2 0.155 0.181 0.185 0.187 0.295
HAUIL3 0.158 0.184 0.189 0.186 0.298
HAUIL4 0.149 0.177 0.179 0.182 0.290

HAUIL 0.163 0.189 0.194 0.190 0.307

increases, which demonstrates appropriate negative entropy regu-
larization may benefit the linkage performance. However, a larger
𝜆 will lead the training procedure to focus more on the negative
entropy minimization task, which may interrupt and slow down the
optimization speed to achieve optimal linkage solution. From the
right sub-figure, one can see that with the increase of learning rate
𝜂, the performance over all the datasets first significantly increases
and then dramatically drops. When the learning rate is too large,
gradient descent can inadvertently increase rather than decrease
the training error. A learning rate that is too small may never con-
verge or get stuck on a sub-optimal solution and brings more time
consuming. Thus, we have to carefully choose an appropriate value
to balance the model efficiency and effectiveness.

6 CONCLUSION
In this paper, we study the problem of mitigating hubness infor-
mation from the UIL task, which is a critical problem but rarely
explored. Different from existing heuristic methods, in this paper
we introduce a hubness-aware user identity linkage model HAUIL
with mathematical foundations to smoothly learn hubless linkage

(a) Negative entropy weight 𝜆. (b) Learning rate 𝜂.

Figure 2: Parameter sensitivity analysis.

signals. HAUIL has strong generality and can be easily adapted to
the most existing UIL models. Our proposal is extensively evaluated
over five real-life datasets. Experimental results demonstrate the
superiority of our proposal.
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