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Abstract
Cloud networks are increasingly managed by centralized

software defined controllers. Centralized traffic engineering
controllers achieve higher network throughput than decen-
tralized implementations, but are a single point of failure in
the network. Large scale networks require controllers with
isolated fault domains to contain the blast radius of faults.
In this work, we present BLASTSHIELD, Microsoft’s SDN-
based decentralized WAN traffic engineering system. BLAST-
SHIELD slices the WAN into smaller fault domains, each
managed by its own slice controller. Slice controllers inde-
pendently engineer traffic in their slices to maximize global
network throughput without relying on hierarchical or cen-
tral coordination. Despite the lack of central coordination,
BLASTSHIELD achieves similar network throughput as state-
of-the-art centralized deployments. Moreover, BLASTSHIELD
reduces throughput loss from the failure of a single controller
by over 65%. BLASTSHIELD is deployed in Microsoft’s WAN
today and carries a majority of the backbone traffic.

1 Introduction

Cloud wide-area networks (WANs) enable low-latency and
high bandwidth requirements of client workloads like live-
video, business critical applications, and geo-replication work-
loads. Cloud WANs are billion dollar assets, and annually cost
a hundred million dollars to maintain. To efficiently utilize
their infrastructure investment, cloud providers employ cen-
tralized, software-defined traffic engineering (TE) systems.
Centralized TE leverages global views of the topology and
demands to maximize the network throughput [16, 19].
Maximum throughput, but at what cost? The paradigm
shift in WAN TE from fully-decentralized switch-native pro-
tocols (e.g., RSVP-TE [4, 39]) to centralized TE controllers
was driven by the throughput gains made possible by central-
ization [29]. After a decade of operating SWAN in Microsoft’s
backbone network, we claim that squeezing the last ounce of
network throughput is not necessary. It is more important that
the centralized TE controller does not become a single point
of failure in the system. The impact of a TE controller fault
needs to be lowered along with achieving high throughput.
Controller replication does not guarantee availability. Our
operational experience with SWAN has taught us that regard-
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less of good engineering practices (e.g., code reviews, safe de-
ployment, testing and verification), software systems will fail
in production in unforeseen ways, often due to complex inter-
actions of multiple faults. While it is hard to eliminate faults,
it is crucial to contain the damage when faults inevitably
occur. It is possible to build fault-tolerant components, and
prevent single point of failures by replicating the centralized
controller and its components. However, despite these mech-
anisms, an unforeseen cascade of faults led to an outage of
global scope in the SWAN TE system.

In this work, we first describe the operational experiences
that led us to migrate away from SWAN, the fully-centralized
TE system in the Microsoft cloud network (§2). Second, to
reason about the availability of large-scale wide-area TE sys-
tems, we define blast radius of a TE controller as the fraction
of the service level objective at risk due to its failure. We de-
veloped BLASTSHIELD, a WAN TE system that reduces the
blast radius by slicing the global cloud WAN into smaller fault
domains or slices (§3). BLASTSHIELD dials back from fully-
centralized to slice-decentralized TE by striking a balance
between the centralized vs. distributed design principles.

BLASTSHIELD slices are independent, and do not rely on
hierarchical or central coordination. Multiple WAN slices
and controllers raise unique implementation challenges for
BLASTSHIELD. In SWAN, a centralized controller with global
view of the network, programmed TE routes in all WAN
routers. In contrast, BLASTSHIELD slice controllers work
independently — each with its own version of code, configu-
ration, and view of the global network topology. Inconsistent
views of the network topology can cause routing loops for
inter-slice traffic in the cloud WAN. The failure of a slice
controller on the path could blackhole traffic. BLASTSHIELD
solves these challenges by developing a robust inter-slice
routing mechanism that falls back on switch-native protocol
routes in case of slice controller failures (§4 and §5).

We have been operating Microsoft’s backbone with BLAST-
SHIELD since 2020. We find that BLASTSHIELD allows us
to deploy changes to the network safely without the risk of
global impact. While any change in network configuration or
software is accompanied by risk, the ability to deploy changes
without global risk is a significant advantage. Quantitatively,
BLASTSHIELD reduces the risk of throughput loss due to fail-
ure of a TE controller by 65% for 0.07% decrease in network
throughput, compared to SWAN (§6).
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2 Background and Motivation

In this section, we describe an outage in the SWAN network
that motivated the design of BLASTSHIELD. This outage was
caused by a cascade of several independent failures and its
ripple effects persisted long after the root cause was resolved.
The experience of resolving this incident urged us to survey
the components at risk in SWAN and mechanisms to mitigate
the risks. We define metrics to quantify the availability of
TE controllers and design a TE system robust to global-scale
outages like the one SWAN experienced.

2.1 Back luck comes in threes

Prior to the development of BLASTSHIELD, a series of three
unfortunate events occurred causing a SWAN outage of global
scope. Global SWAN outages lasting more than a few minutes
result in loss of several terabytes of network traffic, and are
instantly observed by a global audience.

Controller removes all routes. A partially failed web re-
quest triggered the first bug that led the SWAN controller to
remove all its TE routes from WAN routers. In absence of the
controller routes, the traffic gets routed over shortest paths
computed by the IGP. This type of fallback is acceptable at a
small scale, but not as a network-wide replacement.

Incorrect IGP shortest-paths. Second, there were two links
with misconfigured IGP weights in the North American region.
The misconfiguration was inconsequential while the controller
routes were present. When the controller removed its routes,
these links incorrectly became a part of many shortest paths,
consequently attracting more traffic than their capacity.

Delayed controller response time. An automatic recovery
process could have restored the controller routes in 3 min-
utes, but a second controller bug incorrectly assumed that the
recovering routers were undergoing maintenance, and held
back from programming routes on them. The longer recovery
caused some internal workloads to dynamically change their
traffic class to a higher tier, worsening the load and conges-
tion in the network. The combination of these three cascading
faults amplified the amount of traffic affected by the outage.

With the luxury of hindsight we extract three key lessons
from the SWAN incident:

1. All changes have risk. Global changes are antithetical to
the availability of large-scale systems. We need an ability
to gradually deploy changes, starting with staging which
are production-like but without real customers, to low im-
pact, and finally high impact regions. Global centralized
TE precludes piece-wise rollout of changes.

2. Configuration and software bugs are inevitable. The
outage occurred due to configuration and software bugs
that escaped sandbox validation. While validation can be
effective, it remains inherently best-effort. In a nutshell,

critical infrastructure like SWAN should not presume per-
fect pre-deployment validation.

3. Global optimization does not preclude multiple con-
trollers. In the scenario, non-leader replicas of the con-
troller had an accurate view of the network, and could have
optimized traffic correctly. By partitioning the scope of
TE controllers, a faulty leader in one region of the WAN
would not impact controllers in other regions.

2.2 Blast Radius, Rippling and Shielding
While faults and small-scale outages occur and get rapidly
rectified in our network, what stood out about the SWAN out-
age incident was its global scope. This led us to define metrics
that quantify the scope of wide-area traffic engineering out-
ages. In later sections, we use these metrics to evaluate the
reduction in the scope of potential outages when we deploy
the new TE system, BLASTSHIELD.

Definition 1 (Blast Radius) is the fraction of overall TE ser-
vice level objective (SLO) at risk by a point of failure.

The blast radius of a TE controller is the customer traffic
managed by it. Customer or tier-0 traffic has the highest SLO.
Discretionary traffic tiers, tier-1 and tier-2, have a lower SLO.
The TE controller programs routes that steer traffic on traffic
engineered paths to optimize for congestion, link diversity or
provide granular quality of service. When the TE controller
fails, traffic reverts to the shortest path.

Definition 2 (Blast Ripple) of a point of failure is the ser-
vice level degradation experienced by components that are
not governed by failing TE controllers.

The blast or failure of a TE controller can cause ripples and
impact traffic not managed by the failing controller. The im-
pact of the ripple is proportional to the amount of tier-0 traffic
affected that is not managed by the controller.

Definition 3 (Blast Shielding) is the engineering practice
that minimizes the blast radius of failing components while
meeting operational constraints like cost and complexity.

We note that blast shielding does not ensure that the overall
system is fault tolerant in achieving the service level objective.
Fault tolerance allows the system to operate even if its compo-
nents fail [27]. Table. 1 covers mitigations in Microsoft’s TE
deployment to achieve fault tolerance and blast shielding. We
highlight faults that were not addressed in SWAN’s original
design, and are a focus of this work with �.

3 Slicing the cloud WAN

The global scope of the SWAN outage inspired the design of
BLASTSHIELD, the WAN traffic engineering system that has
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Fault Mitigation
Controller hardware,
cluster, or site failure.

Automatic migration to
geo-redundant cluster.

Network fault, e.g., link
failure, forwarding fault,
router reboot.

Per-router SWAN agents
perform local repair
autonomously from controller.
Controller does global repair
in the next TE iteration.

Network device
disconnects or is
unreachable by controller.

SWAN agent retains last
programming. Controller
reconnects via router
management plane. Device
treated as down if failure
persists. Rollback routes if
disconnection is during new
route programming.

Invalid, inconsistent,
outdated programming by
controller.

SWAN agents perform data
plane verification. Controller
programs agents with latest
inputs every 3 minutes.

TE optimization failure
e.g., a controller
withdraws its routes, or
programs incorrect
routes. �

Restrict access of the
controller to defined subgraphs
of the WAN. Fast verification
of routes before install.

Malicious router agent e.g.,
agent stalls the controller
from programming other
routers. �

Decrease agent-controller
interaction to defined
subgraphs of the network.

Byzantine controller fault,
e.g., a controller sabotages
other controllers. �

Controllers acquire network
inputs independently.

Zero-day fault in multiple
controllers. �

Diverge configurations in TE
controllers.

Table 1: Fault types and their mitigation. New fault types handled
by this paper are marked with �.

replaced SWAN in Microsoft’s backbone network. BLAST-
SHIELD views the WAN as a collection of sites or gateways.
Each gateway consists of multiple WAN routers. WAN routers
connect to other routers in the network like the datacenter fab-
ric with a high bandwidth interconnect. WAN routers also
transit traffic that is not from a directly connected datacenter.
WAN gateways at submarine landing terminals and optical
transit sites do not have datacenters attached to them.

WAN Slices. BLASTSHIELD divides the WAN into slices
or subgraphs of routers, each controlled by a dedicated slice
controller. A slice is a logical partitioning of the WAN into
disjoint sets of routers where each router belongs to exactly
one slice. A slice can consist of a single router or all routers,
or anything in between. Routers do not have any slice-specific
configuration. In Figure 1, slice 1 consists of routers in gate-
ways A–D. A slice can have multiple strongly connected

Slice 1
controller

Slice 2
controller

Slice 3
controller

A

B
C

DE F

G H

slice 1 slice 1

router

gateway

Figure 1: The WAN is divided into slices. Each slice is managed by
a dedicated slice controller. Slice 1 consists of routers in gateways
A–D, slices 2 and 3 have routers in gateways E–F and G–H.

components of routers. Slice 1 has two strongly connected
components, the routers in gateways A–C and D, respectively.
Controllers 2 and 3 manage routers in gateways E–F and G–
H, respectively. The count and composition of slices is not
limited by the design but dictated by operational choice.

Enforcing slice isolation. Only the slice’s owning controller
programs routers in the slice. All traffic from slice routers
to any destination is engineered by the slice controller. This
includes traffic that originates in datacenters directly con-
nected to slice devices and the traffic originating in upstream
slice routers. Each slice is a separate deployment, and can be
patched independently. Slices can inherit common configura-
tion but BLASTSHIELD applies slice-specific configuration
independently. Slice controllers do not communicate with
other slice controllers. This further isolates faults and pre-
vents byzantine controllers bringing the entire system down.
Slice controllers operate with a global view of the network
by acquiring global topology and demand inputs. Each slice
controller makes traffic engineering decisions based on ex-
pected conditions in local and remote slices. Controllers antic-
ipate what other controllers do given the same inputs. While
deviations between flow allocations computed by different
controllers operation are possible, they are not disruptive to
BLASTSHIELD’s operation.

How many slices? The number of BLASTSHIELD WAN
slices decide the system’s operating point on an important
tradeoff between network throughput and blast radius. A sin-
gle slice enables the TE formulation to achieve maximum
network throughput through centralization, but exposes the
network to the risk of global blast radius. In contrast, several
BLASTSHIELD slices reduce the blast radius of slice con-
trollers but may also reduce the achievable network through-
put. Additionally, several WAN slices increase the operational
overhead of configuring and maintaining slice controllers.
There is a sweet spot for the number of slices that limits the
risk of changes and keeps operational overhead manageable.
We empirically derive the number of BLASTSHIELD slices
for Microsoft’s network and strike a balance between blast
radius and network throughput (§6).
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4 BLASTSHIELD System Design

In this section we present the design of BLASTSHIELD and
describe the design choices that motivated our design.

4.1 System overview

Each BLASTSHIELD slice controller is a collection of five
microservices: topology service (TS), bandwidth predictor
(BWP), traffic engineering scheduler (TES), route program-
mer (RP), and admission controller (AC) (Fig. 2). In addition
to the controller services that run on off-router compute nodes,
a BLASTSHIELD agent (BA) runs on all WAN routers.

TS

BWP

TES

AC

RP

router

BA

feeds

topology

demands

TE FIB TE routes

solver result

admission result to broker

Figure 2: The slice controller is a collection of five microservices:
topology service (TS), bandwidth predictor (BWP), traffic engineer-
ing scheduler (TES), route programer (RP), and admission controller
(AC). BLASTSHIELD agents (BA) run in slice routers.
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Figure 3: Traffic engineering scheduler computes routes that opti-
mize paths for flows by traffic tier. Each controller performs a global
optimization based on its view of the entire network, but only pro-
grams routes for devices belonging to its slice.

Topology Service (TS) synthesizes the network topology
using graph metadata, link states, and BLASTSHIELD agent
input feeds. Graph metadata consists of the list of provisioned
routers, their roles in the network, router loopback addresses
and links in the network. We use BGP-LS [15] as the primary
source of dynamic link state information e.g., link bandwidths,
interface addresses, and segment identifiers [8]. The BLAST-
SHIELD agent feed relays the health of the router agent to the
controller. All routers must have a functioning agent to be
used for traffic engineering.

Bandwidth Predictor (BWP) predicts upcoming network de-
mands using historical traffic matrices recorded by sFlow [30],
IPFIX [32], and bandwidth requests made through the band-
width broker [16]. IPFIX and sFlow collectors sample packets
at WAN entering interfaces to estimate per-minute traffic ma-
trices. BWP uses a linear regression model to predict the
upcoming traffic demands in the network using historical traf-
fic matrices from the flow collectors [38]. Bandwidth broker
aggregates service-level bandwidth requests made by agents
on compute nodes in cloud datacenters. WAN demands are a
linear combination of these three predictors.

Each network demand is identified by the (source, destina-
tion, application, traffic class) tuple. Source and destination
are WAN ingress and egress routers or gateways, respectively.
Application is the name of a brokered flow, used only by the
admission controller. Traffic class is a differentiated service
queue name e.g., best-effort, interactive, scavenger.
Traffic Engineering Scheduler (TES) forms the core of
the BLASTSHIELD system (Fig. 3). It ingests global topol-
ogy and demand inputs from TS and BWP respectively, and
some static configuration. A collection of path computers
calculates paths using the dynamic topology for the demand
source destinations. Too many paths would be inefficient in
time and space to compute and optimize with. Too few paths
would reduce the choice for placing demands. MaxFlow path
computer uses maximum flow algorithms [13], and Color
path computer computes risk diverse paths using penalizing
shortest path algorithms.

TE solver consists of a chain of linear programming
(LP) [6] optimization steps that place demands on weighted
cost multiple paths (WCMP) between demand source and
destination pairs. It places demands in the tier-0 traffic class
on paths with diversity protection that minimize latency sub-
ject to approximate max-min fairness [16]. Lower priority
demands in tier-1 and tier-2 classes are placed on paths that
minimize the maximum link utilization.

The FIB generator mechanically converts the output of
the TE solver, called the solver result, into TE routes. The
slice configuration specifies the subset of routers for which
routes are generated. The FIB generator transforms the solver
result based on the slice configuration, and produces routes
only for the routers in the slice. The entire iteration in TES
takes around 60 seconds. The network is re-optimized every
3 minutes, or on topology change, whichever occurs first.
Admission Controller (AC) computes the bandwidth that
can be granted to brokered flows, called the admission result.
It defines priority granularly by application and traffic class.
Bandwidth broker throttles individual machine flows when
the aggregate requested bandwidth exceeds the aggregate
granted bandwidth for the demand. Bandwidth broker places
brokered tier-0 traffic in a separate network queue since it
has already been throttled based on the admission thresholds,
and should not experience congestion when mixed with un-
brokered tier-0 traffic.
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Route Programmer (RP) programs traffic engineering
routes in the BLASTSHIELD agent which in turn installs
them in the router. RP periodically receives the full set of
routes for all slice routers from the TES; this is called the traf-
fic engineering forwarding information base (TE FIB). The
FIB is organized into per-device flow and group tables in the
OpenFlow [28] format. Every FIB has an associated sequence
number which records the version of the FIB. RP performs
make-before-break updates by first programming the traffic
engineered path before placing traffic on it [12]. It programs
intermediate FIBs on routers to prevent black-holing traffic
during updates to TE paths. FIB programming for the entire
slice takes ten seconds. We set scratch capacity aside on links
to handle transient flow changes during route programming.

BLASTSHIELD agent (BA) runs on all WAN routers. It
installs TE routes, monitors the end-to-end liveness of TE
paths (tunnels), and modifies ingress routes based on live-
ness information. Route installation on the router requires
translating the FIB into router platform-specific API calls.
BLASTSHIELD agents have a platform-dependent module to
handle this translation. BA verifies tunnels within the slice
using probes generated natively or with BFD [21] from tunnel
ingress points. Flows are unequally hashed to live paths based
on the path weight, flow 5-tuple, and traffic class. If a path
goes down, the agent proportionally distributes the weight of
the down path to remaining up paths. If no path is up, then the
ingress route is withdrawn, and packets are forwarded using
switch-native protocol routes. This is called local repair.

4.2 Design considerations

Global solution at local instances. Each BLASTSHIELD
slice controller consumes global network topology and de-
mands. The solver of each controller computes flow alloca-
tions for the entire network. Therefore, each slice controller
produces the same solver result if its inputs and solver soft-
ware versions are the same. In practice, inputs and software
versions can differ, and we study the impact of these dif-
ferences in §6.1. Although a slice controller only programs
the WAN routers in its slice, it optimizes flow with a global
view. Slice controllers do not communicate with each other
and gather inputs from the network and slice configuration.
Performing global optimization at each slice controller is ben-
eficial while deploying changes to the network. Some faults
involve complex interactions that only occur in unique parts
of the WAN. Global inputs increase the coverage of code
paths while new software or configuration changes are being
deployed in small blast radius slices.

Decoupling TE scalability from blast shielding. BLAST-
SHIELD employs slice controllers to reduce the blast radius of
faults in our network but not to improve the scalability of the
system. We handle scale along several dimensions, unrelated
to blast shielding. For example, BLASTSHIELD aggregates

datacenter routes to keep the size of the FIB in check. Thus,
despite solving a global TE problem, the run-time complexity
scales with the number of gateways, not routes in the network.
Another dimension of scale is the number demands that need
to be allocated by the TE solver. We find that small demands
(<500 Mbps) are 68% by count, but only 1.3% of total band-
width. The run-time of the LP solver in TES increases with
the number of demands, among other factors. We allow small
flows to use network shortest paths until their bandwidths ex-
ceed a threshold to reduce the input demands to the LP solver.
Finally, the sFlow and IPFIX collectors, and bandwidth bro-
ker are fully sharded to handle the large scale of the network.
They are not part of the slice controller.

Fault tolerant design. All services run on multiple machines
in at least two geographically separate clusters. TS instances
are fully active, but elect a leader to avoid oscillations if two
instances report different topologies due to faults or transients.
TES, RP, and AC elect leaders, and switchover in case of
failure. RP handles all the faults and inconsistencies that
can happen during programming, e.g., BLASTSHIELD agents
are unresponsive or have faults before, during, or after route
programming. Reliable controller-agent communication is
achieved by using network control traffic class, and redundant
data and management plane connections. BA can react to
network faults even when it is disconnected from the RP.

5 Intra-WAN routing with BLASTSHIELD

The routing of intra-slice flows in BLASTSHIELD is simi-
lar to SWAN’s present-day implementation. In this section,
we describe BLASTSHIELD’s extensions to enable routing
and forwarding of inter-slice flows i.e., flows whose traffic
engineered paths span multiple slices.

Routing in SWAN. In SWAN, packets are routed using a
combination of switch-native protocols (i.e., BGP [31], IS-
IS [18]) and the TE controller. WAN routers connected to the
datacenter fabric advertise datacenter routes with themselves
as the BGP next-hop. BGP receivers can resolve this BGP
next-hop using one of two available routes: the shortest path
route computed by IS-IS, or the route programmed by the
TE controller which leverages traffic engineered paths. TE
routes have higher precedence than IS-IS routes. The TE route
encapsulates packets using MPLS labels from a label range
reserved for the TE controller. Since IS-IS is configured with
segment routing [8], the IS-IS route encapsulates packets in
segment identifiers that are also MPLS labels from a different
label range. Fig. 4 shows SWAN’s packet routing pipeline.

Slices as isolated routing domains. In centralized TE sys-
tems, a single controller is responsible for programming all
WAN routers with the TE routes. BLASTSHIELD replaces the
centralized controller with multiple slice controllers that can
only program the routers within their slice (§3). By prevent-
ing slice controllers from programming routers outside their
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BGP Prefix BGP Nexthop Swan label BGP Prefix

SR label

BGP TE TE

IS-IS IS-IS

if slice boundaryTE

IS-IS

TE

Figure 4: Packet routing pipeline in SWAN. Packets are routed
using a combination of protocol and controller routes. Absent the
controller, BGP and IS-IS routes forward the packet on shortest paths.
The controller programmed TE routes override the IS-IS routes and
route to the destination or the next slice.

slice, we enforce fault isolation between slices. The failure
of one controller does not impede other controllers e.g., the
failure of a downstream slice controller on an inter-slice route
in the WAN does not lead to black-holing of traffic. Similarly,
slice controllers with inconsistent views of the network, route
packets to their destination without centralized control.

5.1 Inter-slice routing
BLASTSHIELD routes inter-slice flows i.e., flows whose traf-
fic engineered paths span multiple slices, using slice-local
encapsulation till the slice boundary. Slice controllers add
encapsulation headers while the packet is within the slice but
ensure that the packets arrive at the next slice in their native
encapsulation i.e., the encapsulation in which the packets
entered the WAN. Each slice controller is only responsible for
routing traffic to the ingress router of the next slice. Packets
are encapsulated in MPLS labels either at the time of BGP
route resolution on the WAN ingress router or intermediate
slice ingress routers. In both scenarios, transit routers forward
the packet using the MPLS label, and the label is popped by
the penultimate router — either at a slice boundary or at the
destination. Intra-slice traffic is split across TE paths only
once at the WAN ingress router. Inter-slice traffic can also be
split at the ingress router of an intermediate slice.
Inter-slice forwarding In Fig. 5, all four slice TES deter-
mine that the demand from a to z should be placed on paths
abeg juwxz, acdmoqstyz, and acdmonikvyz with weights 0.3,
0.42, and 0.28 respectively. Slice 1 programs abe with weight
0.3, and acdm with weight 0.7. Slice 2 programs eg ju and
ikv. Slice 3 programs moqsty with weight 0.6, and moni with
weight 0.4, and slice 4 programs uwxz, vyz, and yz. Controllers
only need to install routes in their slice routers. It may ap-
pear implausible that controllers could all install the same
routes without coordination. In § 6.1, we show results on the
alignment of multiple controllers.
Handling intermediate controller failures. If any down-
stream slice controller fails to program routes to the destina-
tion, packets are forwarded using protocol routes along the
shortest paths to the destination. For example, if the slice 2
controller withdraws all routes due to a failure, the inter-slice
traffic uses shortest paths to the destination. This is the blast

ripple of a down controller. In § 6.2, we will discuss how to
define slice boundaries to decrease the blast ripple.

5.2 Preventing routing loops

Unlike the TE controller in SWAN, a BLASTSHIELD slice
controller is only responsible for routing packets within the
slice and not until the packets’ final destination. Since each
slice is its own routing domain, inconsistent views of the
global network graph at different slice controllers can lead to
routing loops.

BLASTSHIELD avoids routing loops by enforcing enter-
leave constraints on inter-slice next-hops. These constraints
define the set of inter-slice next-hops for all demand source-
destination pairs in the network. The constraints ensure loop-
free paths, and are calculated offline using a static router-
level network graph. Path computers calculate paths on the
dynamic network graph, and only allow paths that satisfy
the enter-leave constraints. However, enter-leave constraints
should not be overly restrictive. For example, a potential ap-
proach to preventing routing loops can limit inter-slice next-
hops to be on the minimum spanning tree from the source
router to the destination, similar to the spanning tree protocol.
But, this approach restricts inter-slice paths to go through a
few next-hops, creating bottleneck links.

Computing enter-leave constraints. An offline generator
computes enter-leave constraints from the static router-level
network graph to prevent inter-slice routing loops. It first
constructs a slice graph from the network graph, where each
slice node represents a strongly connected component (SCC)
after removing all inter-slice links. Fig. 6 is the slice graph
of Fig. 5, formed by removing inter-slice links be, b f , dl,
dm, f l, in, ju, kv, vr, and yt, and calculating SCCs. A slice
can contribute one or more SCCs as nodes to the slice graph.
A link between the slice graph nodes aggregates all links
between SCCs in the network graph. Link weights in the slice
graph are computed from link weights in the network graph.

BLASTSHIELD generator then constructs per-destination
slice DAGs based on the shortest path distances in the slice
graph. The enter-leave constraints come out directly from
the slice DAGs. In Fig. 6, the slice DAG for s4 says that
paths from any node in s1 to any node in s4 can only have
inter-slice transitions: s1 → s2 → s4, s1 → s3 → s4, and s1 →
s3 → s2 → s4. No controller, no matter its topology, can use
any other inter-slice transition.

Path computers blacklist edges excluded by enter-leave con-
straints in the dynamic router-level graph before computing
TE paths. Since the slice DAG is loop-free, paths computed by
any slice controller are also loop-free. This ensures that even
if slice controllers have inconsistent views of the dynamic
network graph, they will arrive at loop free routes. Enter-
leave constraints place restrictions on TE paths, and reduce
the number of paths available to place demands. We evaluate
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Slice 1 routes to z
Device Prefix Wt Action Out
a z 0.3 push 151 ab

0.7 push 157 ac
b 151 - pop be
c 157 - swap 157 cd
d 157 - pop dm

Slice 2 routes to z
Device Prefix Wt Action Out
e z 1 push 223 eg
i z 1 push 227 ik
g 223 - swap 223 gj
j 223 - pop ju
k 227 - pop kv

Slice 3 routes to z
Device Prefix Wt Action Out
m z 0.6 push 331 mo

0.4 push 337 mo
o 331 - swap 331 oq
q 331 - swap 331 qs
s 331 - swap 331 st
t 331 - pop ty
o 337 - swap 337 on
n 337 - pop ni

Slice 4 routes to z
Device Prefix Wt Action Out
u z 1 push 443 uw
v z 1 push 447 vy
y z 1 - yz
w 443 - swap 443 wx
x 443 - pop xz
y 447 - pop yz

Slice 1
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k

Slice 3

l

m

n

o

p
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s
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u

v

w
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Figure 5: Inter-slice routing. Router-level cloud WAN topology segregated into slices 1, 2, 3 and 4. The tables represent the TE FIB programmed
by slice controllers if they used inter-slice routing. Each slice controller programs the path segment within its slice. For the path abeg juwxz,
slice 1 programs abe, slice 2 programs eg ju, and slice 3 programs uwxz. Traffic arriving on slice ingress routers get encapsulated and is split
over different paths based on the TE solution. Transit routers guide the packet along the path specified in the packet encapsulations. Packets
return to native encapsulation at next slice and WAN exit (e.g., datacenter fabric).
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Figure 6: Enter-leave constraints restrict paths to achieve loop-free
routing. Slice graph is a component level graph of Fig. 5. Slice DAG
is constructed from shortest path distances in the slice graph. Router-
level paths must follow DAG edges when crossing slice boundaries.
Path acdmonikvyz is allowed for TE because s1 → s3 → s2 → s4 is
a path in DAG s4. Path ab f hinprvyz is not allowed for TE because
s2 → s3 is not present in DAG s4.

the percentage of allowed paths vs. computed paths without
constraints in §6.2.

Verifying inter-slice routing correctness. Due to the nega-
tive impact of routing loops in production, loop detection tests
are important. This testing has helped us find design flaws
and bugs, and is now used to verify constraint configuration
before deployment.

We use the following formalism to define correct inter-slice
routing. Let R be the set of defined route keys, where route
key is a tuple of (device, destination prefix), end be the termi-
nating route key, null be the undefined route key, and ttl be
the packet time to live. Let f : R → R , where f (null) = null,
f (end) = end. Routing is a repeated application of f (), till
f n(x) = end where n ranges over 1 ≤ n ≤ ttl. The collection
of TE, BGP, and IS-IS routes, and their union are examples

of routing functions. The routing function is complete, loops,
or blackholes, if:

∀x,∃n : f n(x) = end (complete)
∃x,n : f n(x) = x (routing loop)
∃x,n : f n(x) = null (blackhole)

where x ranges over R \{end,null} and n ranges over [1..ttl].
The enter-leave tester uses this formalism to verify con-

straints. It simulates inconsistent views by feeding slice con-
trollers different network graphs, and checking every route
key of the combined FIB for completeness. It also performs
graph invariant checks e.g., no inter-slice cycles in the graph
after excluding edges in constraints.

5.3 Why not source routing?

An industry-standard mechanism for intra-domain traffic en-
gineering is segment routing (SR) [8]. In this section, we
describe an alternate approach that leverages the capabilities
of segment routing, and why we did not adopt this approach.

What is segment routing? SR is a source-based routing
technique that allows senders to specify the packets’ route
through the network by leveraging the MPLS forwarding
plane. An SR ingress router subjects arriving packets to a
policy and encapsulates the matching packets in an MPLS
label stack, each label represents a segment in the SR-path. A
segment denotes a forwarding instruction to traverse one or
more hops in the network topology. There are two main types
of segments: adjacency and prefix segments. Prefix segments
cause the packet to be routed on the least-cost paths computed
by the IGP between a router and a specified prefix. A prefix
segment with the router’s loopback address is a node segment.
An adjacency segment causes a packet to traverse a specified
link corresponding to an IGP adjacency between two routers.
Segments are allocated and signaled by protocols like IS-IS.
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Source routes to z
Device Prefix Wt Action Out
a z 0.3 push n(u) n(z) ab

0.42 push n(o) n(z) ac

0.28 push n(o) n(k)
n(z) ac

Protocol routes for beg juwxz
Device Prefix Action Out
b n(u) swap n(u) be
e n(u) swap n(u) eg
g n(u) swap n(u) gj
j n(u) pop ju
u n(z) swap n(z) uw
w n(z) swap n(z) wx
x n(z) pop xz

Protocol routes for cdmoqstyz
Device Prefix Action Out
c n(o) swap n(o) cd
d n(o) swap n(o) dm
m n(o) pop mo
o n(z) swap n(z) oq
q n(z) swap n(z) qs
s n(z) swap n(z) st
t n(z) swap n(z) ty
y n(z) pop yz

Protocol routes for onikvyz
Device Prefix Action Out
o n(k) swap n(k) on
n n(k) swap n(k) ni
i n(k) pop ik
k n(z) swap n(z) kv
v n(z) swap n(z) vy
y n(z) pop yz
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Figure 7: Source routing. Slice 1 controller programs ingress routes to z using loose source routing. Switch native protocols like IS-IS take care
of transit routes. The path beg juwxz is composed of two shortest path segments beg ju and uwxz. Hence the label stack for the path is n(u) n(z),
where n() is the node segment identifier of a device. Weights of intra-slice links are 1 and inter-slice links are 5.

Loose source routing. An IGP path computer models the IS-
IS shortest path first algorithm [18]. Coupled with segment
identifiers from TS (§4.1), it implements loose source routing.
In place of explicitly listing adjacency segments of hop-by-
hop links of a path, loose source routing uses a node segment
when it exactly represents the sequence of the hop-by-hop
links of the path. Fig. 7 shows an example of loose source
routing for the same paths shown in Fig. 5. The path beg juwxz
is composed of two shortest path segments beg ju and uwxz.
Hence a encapsulates with label stack of [n(u) n(z)] to route
to z, where n() is the node segment identifier of a device.

Packet encapsulations reduce hashing entropy. To achieve
balanced utilizations across links in the WAN, the cloud net-
work employs two load balancing mechanisms, link aggrega-
tion group (LAG) and equal cost multi-path (ECMP) hash-
ing. LAG hashing sprays packets on member links of a port-
channel. ECMP hashing sprays packets on the next-hops of
a group of traffic engineering routes. The packet processor
uses fields from the packet headers to hash the packet to dif-
ferent ports or links with the goal of maximizing entropy in
the hash calculation. To achieve high entropy, the outermost
IPv4/IPv6 source and destination addresses under stack of
MPLS header encapsulations should be used to calculate the
hash. A deep MPLS label stack can impair the ability of the
packet processor to extract the relevant fields in the IP header.

The depth limit is the maximum number of MPLS encap-
sulations a packet can have while still allowing the packet
processor to extract the header fields of the original (i.e., prior
to MPLS encapsulations) packet. The depth limit is switch
platform-dependent [2, 7, 20]. We note that if the packets in-
gressing the WAN already are encapsulated in MPLS headers,
the depth limit available to source routing is further reduced.

Why select inter-slice routing? Based on the current gener-
ation of platforms across different regions of our cloud WAN,
the depth limit is four labels. Paths that require more labels
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Figure 8: Cumulative density function of label stack depth for (a)
computed paths and (b) allocated demands, for inputs A and B of
increasing sizes. If depth limit is four, 45% of computed paths and
93% of allocated demands map to allowed paths for input B.

cannot be used for TE. Fig. 8 studies the label stack depth
needed to encode paths computed by TES path computers for
current and future evolutions of the WAN. In source routing,
45% of computed paths can be used for TE. For compari-
son, 69% of computed paths can be used for TE in inter-slice
routing (see §6.2).

Second, the purpose of BLASTSHIELD is to separate fault
domains, but IS-IS is a single fault domain. A fault in IS-IS
can ripple to multiple slices, like in the outage described in
§2.1. On the other hand, inter-slice routing does not depend
on IS-IS. It sets up TE paths without any assistance from
dynamic protocols, relies only on BGP, and works across
WAN domains.

In source routing, a downstream slice can only transit up-
stream flows. In inter-slice routing, the downstream slice is
free to rebalance the traffic to correct errors made upstream,
or mitigate for local slice conditions. This kind of control is
not available with source routing.
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Time 0 3 6 9 12 15 18 21 24 27 30
Ctlr 1 .5 .5 .5 .5 0 0 .5 .5 .5 0 .4
Ctlr 2 .5 .5 .5 .5 0 0 .2 .5 .4 0 .5

Table 2: The path weights computed by two controllers for a path.
Weights have been rounded for readability and time is in minutes.
Path weight difference between the two series is 0.17.

6 Evaluating BLASTSHIELD in production

The incremental deployment of BLASTSHIELD began in 2020
and today BLASTSHIELD has replaced the legacy SWAN
traffic engineering system in the Microsoft network. In this
section, we evaluate the stochastic effects caused by multiple
and independent BLASTSHIELD controllers (§6.1). We show
that despite the controllers having different configurations,
software versions and network topology snapshots, they arrive
at nearly similar flow allocations. Finally, we quantify the cost
vs. benefit trade-off of slice-decentralized traffic engineering
in terms of the loss of TE throughput and gain in availability
as a function of the slice count in BLASTSHIELD (§6.2).

6.1 Stochastic effects of multiple controllers
Prior to the deployment of BLASTSHIELD, the centralized
SWAN controller programmed new TE routes for the entire
cloud network. In a transient routing state i.e., network state
when all new routes have not been programmed and some
flows are on old paths while others are on new paths, SWAN
did not risk link congestion for two main reasons. First, the
time to program routes is very short, only ten seconds, and
second, SWAN reserves a small amount of scratch capacity
to handle flows in transient routing states. However, BLAST-
SHIELD replaces the centralized controller with multiple slice
controllers that snapshot network topology and demands at
different times. Moreover, the controllers may re-run the TE
optimization and program their slice routers at different times.
We study the impact of the temporally staggered operation of
slice controllers to ask: can multiple slice controllers work
harmoniously in an orchestra and not be discordant?

Symphony or cacophany of controllers? Path weights de-
cide the split of traffic across paths and are the final result
of the TE optimization. The weight of a path is the frac-
tion of demand placed on it. BLASTSHIELD programs the
newly computed path weights every 3 minutes. Since all slice
controllers solve the TE problem for the entire network, we
measure if the path weights that different controllers compute
diverge from each other. We quantify the path weight differ-
ence as the root mean squared error between path weight time
series from two controllers. A path weight difference of zero
implies that the controllers are perfectly aligned. Non-zero
path weight difference implies that the controllers are setting
aside different link bandwidths for a flow during the measure-
ment period which can cause congestion. Table 2 shows an
example of path weight time series of two controllers.

We measure the path weight difference between BLAST-

SHIELD controllers in scenarios where they are most likely
to differ – days when the controllers were operating with dif-
ferent configurations, different software versions, or frequent
network topology changes. Fig. 9 shows the histogram of path
weight differences in the production network between pairs
of controllers. The data shows that 67%, 88%, and 96% of
paths have path weight difference of 0, ≤ 0.09, and ≤ 0.18,
respectively. The low path weight difference shows that slice
controllers can operate without central coordination. We note
that additional scratch capacity can be set aside to absorb
errors from high path weight differences, but was not required
when deploying BLASTSHIELD.

Solver stability. Optimization solvers (e.g., GLOP [14]) can
often solve the same or slightly different problem formulation
and produce different results that satisfy all problem con-
straints. Different path weights for slightly perturbed inputs
creates an operational challenge for BLASTSHIELD. We con-
strain the solver models to make their solutions stable – the
tier-0 objective function minimizes demand weighted latency
after solving for max-min fairness, In practice, this makes the
solver results more stable when subjected to input perturba-
tions. We do not allow non-determinism in the TE solver e.g.,
no parallel primal and dual LP execution to pick first result.

We evaluate the stability of the solver results using the
normalized autocorrelation function (ACF) ρ(τ). ACF is the
correlation of a time series to a delayed version of itself, as a
function of the delay, τ. We calculate ACF for the hour-long
path weight time series of all paths. ACF values range [−1,1],
and 1 implies perfect correlation. For example, ρ(3 minutes)
for the two path weight series in Table 2 are 0.13 and 0.19
respectively. Network topology changes and model instabili-
ties can both affect the path weight ACF. However, network
topology changes are far less frequent compared to model
instabilities that can occur in every round of TE computation.
Thus, when averaged over a large number of paths and time
series, the effect of network changes diminishes and the mean
ACF measures model stability. Fig. 10 shows that solver mod-
els are quite stable, with mean ACF of 0.75–0.63 for lags of
3–30 minutes.

6.2 Slicing strategies and TE efficiency
In this section, we describe incremental deployment strate-
gies for BLASTSHIELD— from globally centralized to slice-
decentralized traffic engineering. We incrementally carve out
slices from the global cloud network as shown in Table 3. We
consider ten different slicing configurations with increasing
number of slices from 1 to 10. Slice configuration 1 represents
centralized traffic engineering as in SWAN. Slice configura-
tions 2–6 are formed by drawing slice boundaries around
large geographical regions like APAC, EMEA, India, North
America, Oceania, and South America. In Table 3, slice con-
figuration 2 represents the network divided into two slices:
India and the rest of the world, configuration 3 represents In-
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Figure 10: Autocorrelation function (ACF) is calculated on path
weight time series of 1 hour, averaged over a day. ACF range is
[−1,1], 1 is perfect correlation. (a) example path weight time series
and its lag 30 minutes ACF, (b) Mean ACF of all paths by traffic tier.

dia, Oceania, and the rest of the world, and so on. Slices 7–10
are formed by additionally dividing the two largest geogra-
phies, Europe and North America, into smaller slices. In our
network, configurations 1–6 tend to have higher intra-slice
traffic in comparison to inter-slice traffic. Slices have up to
three strongly connected components, arising from discon-
nected gateways and router planes.

BLASTSHIELD aims to contain the impact of inevitable
faults in the cloud WAN by decentralizing traffic engineering
into slices. However, decentralization comes at a cost – reduc-
tion in the network throughput compared to fully-centralized
TE. We compute the benefits and costs of WAN slicing using
demands and topology inputs from the Microsoft backbone
network for the month of July 2021.

Availability gains from decentralized TE. The key benefit
of BLASTSHIELD’s slicing is the reduction in blast radius

1 2 3 4

5 6 7 8

9 10
Table 3: Ten slice configurations. In (1) the entire network is one
slice. Slices 2–6 are formed by grouping routers in continents or
geographies. Slices 7–10 are created by further subdividing the two
largest geographies, Europe and North America.

when a slice controller fails. We consider the failure where
the slice controller removes all programmed TE routes. This
causes the traffic to fall back on protocol routes and the ensu-
ing loss of throughput is the impact of the slice failure. We
measure the throughput loss under various over-subscribed
scenarios using a network simulator that models routing, for-
warding, and queuing behavior. Fig. 11 (a) shows the impact
of the worst-case single slice failure when BLASTSHIELD is
operating with 1–10 slices. We keep the demands and topol-
ogy fixed in this experiment. For each slice configuration, we
fail the largest slice by demand. In every simulated failure
case, BLASTSHIELD uses the combined FIB consisting of
IGP routes of the failed slice, and TE routes of the remaining
slices (if any) to allocate the remaining demands. We note
that the loss in throughput is due to congestion caused by
shortest-path routing over IGP routes. There are no losses
due to traffic blackholes or routing loops. Fig. 11 (a) shows
that with ten slices, the throughput loss due to slice failure
decreases by 65% (-27.6% to -9.6%) across all traffic classes.

Throughput cost of decentralized TE. The key reason why
inter-slice routing in BLASTSHIELD can have lower through-
put than SWAN is due to the enter-leave constraints (§5.1).
These constraints decrease the choice of paths available for
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Figure 11: (a) Throughput loss from worst case single slice failure as a function of number of slices. Loss is measured by simulation and
reported as a percentage of requested demand per traffic tier. (b) Ratio of slice failure throughput loss reduction to unsatisfied demands due to
enter-leave constraints points to a sweet spot of eight slices with this slicing strategy.

placing demands, which in turn decreases the demands that
can be allocated. To quantify the cost vs. benefit tradeoff of
decentralized traffic engineering, we compute the ratio of the
worst-case throughput reduction due to a single slice failure
and the unsatisfied demand. Fig. 11 (b) compares the ratio of
throughput loss due to slice failure and unsatisfied demand
from enter-leave constraints – higher ratio implies a better op-
erating point on the benefits vs. cost tradeoff. Slices 2–4 show
little improvement because the largest slice can still cause
an overly large failure. The improvements come at six and
eight slices with the break up of Europe and North America
into separate and smaller slices. Beyond eight slices, the loss
reduction to unsatisfied demand ratio starts to decline. Hence,
the ideal number of slices with this strategy is eight.

Stress testing BLASTSHIELD. We oversubscribe the net-
work by doubling the bandwidth values in requested demands,
and failing the worst-case shared risk groups that bring down
multiple links in hot spots of the topology. The oversubscrip-
tion amplifies the downsides of enter-leave constraints. Fig-
ure 12 shows the impact of slicing on paths computed by
BLASTSHIELD path computers. Since the constraints enforce
a shortest-path order when crossing slice boundaries, they
exclude paths that would otherwise be allowed. The count
of computed paths decreases with each additional slice. At
ten slices, computed paths decreases by 31% when compared
with one slice. Of the computed paths, the number of paths
actively used for carrying traffic decreases slightly – by < 1%
due to some demands remaining completely unsatisfied, or
diverse paths not getting found. Figure 12 shows that the
bandwidth weighted path latency of tier-0 demands decreases
by 3% because TE computed paths are skewed towards short-
est paths. Finally, unsatisfied demands as a percentage of
requested demands increases by 16% (from 3.1% to 3.6%).

7 Discussion

In this section, we discuss the logistics associated with operat-
ing BLASTSHIELD. We describe safe deployment of software
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Figure 12: Stress-testing BLASTSHIELD with worst-case failures and
2x demands. Computed paths is the count of paths computed with
enter-leave constraints. Active paths is the count of paths selected
by TE solver. Latency is average path latency for tier-0 demands.
Unsatisfied demand is the unallocated demand per traffic tier. All
values, except unsatisfied demand, are normalized to corresponding
values for one slice; the latter is a percentage of requested demand.

and configuration in BLASTSHIELD slices, the implications
of byzantine slice controllers, and the safeguards in place to
prevent damage from them.

7.1 Safe deployment with slices
Cloud platforms are partitioned into rings of different scopes.
Deployment starts in a ring with the smallest scope, e.g., stag-
ing, and progresses to larger scopes. We use probationary
periods for evaluating changes, watchdogs to alert on failures,
and rollbacks to control progress. BLASTSHIELD offers the
same approach for the WAN with slices.

We begin testing new software and configuration with sand-
boxes that replicate the production WAN [26]. We inject faults
in the sandbox before releasing the change to production. This
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process was used for turning on new slices in BLASTSHIELD.
We define slices that range from low to high impact. Safe

deployment is a partial ordering of slices based on their blast
radius. The initial slices have the smallest production scope.
We assign devices of paired regions used for geo-redundancy
to separate slices. Deployment progresses to the next slice
in the sort order after a sufficient probationary period. The
process continues till either all slices receive the new version
of software or a failure happens in a slice, which may trigger
a rollback of this version from all slices.

7.2 Byzantine slice controllers

A byzantine controller is an unreliable controller that is dis-
seminating false information or sabotaging the operation of
other slices in the network [23]. A controller that only impacts
its own traffic is not considered byzantine in our analysis.

Resistance to byzantine slice controllers is baked into the
BLASTSHIELD design. BLASTSHIELD does not allow any
inter-controller interaction. Each controller uses its own ser-
vices to get demand and topology inputs. It calculates TE
routes by sensing the state of the network, and does not rely on
communication with other controllers. Route programmers of
a WAN slice do not communicate with BLASTSHIELD agents
in other slices, and thus are unaffected by unreliable agents
in other slices. Access control lists on slice routers prevent
other slice controllers from attempting to program them.

Despite these protections, a byzantine controller may route
traffic in a way that causes congestion in downstream slices.
A slice controller estimates the demands at the slice bound-
ary based on the assumption that all slices are well behaved
i.e., they use the same algorithm and configuration as itself.
A byzantine slice can violate this assumption. The impact
of a byzantine controller’s actions is limited to the remote
traffic from the byzantine slice. We provision WAN links to in-
corporate such controller failures. Moreover, BLASTSHIELD
reduces the cost of capacity augments since WAN traffic pat-
terns can inform the creation of slices that are self-contained
and minimize inter-slice traffic [35].

We note that non-byzantine controller faults are also pos-
sible. A faulty controller may withdraw all its routes and
congest links in its own or other slices. A faulty controller
may loop or blackhole packets. While we have safety checks
and routing constraints that prevent such conditions, if a con-
troller manages to bypass the checks, human intervention is
required. We mitigate these failures by pausing the faulty
controllers, and restoring the network programming to last
known good FIB.

8 Related work

Software-defined centralized TE: Cloud providers have em-
braced software-defined, centralized TE controllers to assign

flow in their WANs to maximize their utilization, guarantee
fairness, and prevent congestion [16, 19, 22, 33, 34, 36, 37].

Fully-decentralized TE: Early work on traffic engineer-
ing in WANs relied on switch-native protocols like MPLS
RSVP-TE [3, 39]. Predominantly deployed in ISP networks,
operators have used global optimization of IGP link weights
to achieve desired traffic engineering properties in their net-
work [10, 11]. BLASTSHIELD proposes an SDN-based slice-
decentralized approach to strike a balance between fully-
decentralized and centralized TE solutions.

Hierarchial TE: In [17], Google presented the updated de-
sign of their B4 WAN TE system. The new design leverages
hierarchical TE for scalability in their WAN. BLASTSHIELD
does not rely on hierarchical WAN topology.

Solver scalability: [1] improves solver runtime with net-
work contractions. BLASTSHIELD focusses on controller fail-
ures, and our results show that current LP solvers can solve
our constrained problem formulations within seconds. Once
the scale becomes a challenge, BLASTSHIELD can leverage
NCFlow [1] to replace the slice optimization formulation.

Wide-area failure recovery: [9] considered safe re-
allocation of routes without incurring congestion or breaking
reachability under network and demand changes. Bringing
these ideas to TE, K-wise failure resiliency was developed
in [5, 24, 25]. These works are complementary to BLAST-
SHIELD and can be incorporated in the optimization formula-
tion that slice controllers solve.

9 Conclusion

In this work, we motivate the design of a partially decentral-
ized traffic engineering system for large-scale cloud WANs
using our operational experience with SWAN. We propose
BLASTSHIELD, Microsoft’s new global TE system that de-
centralizes the TE controller with WAN slicing, and imple-
ments loop-free inter-slice routing. BLASTSHIELD achieves
similar throughput as fully-centralized TE implementations
while significantly reducing the blast radius of faults in TE
controllers. We have been operating Microsoft’s WAN with
BLASTSHIELD, and it has substantially lowered the risk of
configuration changes causing large outages.
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