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Abstract—Recent research has successfully demonstrated new
types of data poisoning attacks. To address this problem, some
researchers have proposed data poisoning detection defenses
which employ machine learning algorithms to identify such
attacks. In this work, we take a different approach to preventing
data poisoning attacks which relies on cryptographically-based
authentication and provenance to ensure the integrity of the data
used to train a machine learning model. The same approach is
also used to prevent software poisoning and model poisoning
attacks. A software poisoning attack maliciously alters one or
more software components used to train a model. Once the
model has been trained it can also be protected against model
poisoning attacks which seek to alter a model’s predictions by
modifying its underlying parameters or structure. Finally, an
evaluation set or test set can also be protected to provide evidence
if they have been modified by a second data poisoning attack
during inference. To achieve these goals, we propose VAMP which
extends the previously proposed AMP system, that was designed
to protect media objects such as images, video files or audio clips,
to the machine learning setting. We first provide requirements
for authentication and provenance for a secure machine learning
system. Next, we demonstrate how VAMP’s manifest meets these
requirements to protect a machine learning system’s datasets,
software components, and models.

Index Terms—data poisoning, provenance, cryptographic hash

I. INTRODUCTION

As machine learning models become increasingly ubiqui-
tous within industrial and governmental settings, more effort is
needed to maintain, manage, and protect the data and software
components used to train these models as well as the trained
models themselves. Researchers have recently proposed data
poisoning attacks [1]–[5] where data is specifically altered in
order to train a model which produces incorrect outputs. In a
related attack, which we call a software poisoning attack, the
software or the training framework is altered to intentionally
introduce a vulnerability or bug. Finally in a model poisoning
attack, the model’s parameters and its structure may be altered
to again produce a malicious output.

Attackers seek to exploit data, software, and model poi-
soning attacks against machine learning systems during four
phases of development and production. First, the training and
validation datasets that are used for training a model may be
altered in a data poisoning attack either by insider threats or
from man-the-middle attacks which modify the data during
transmission over a network such as the Internet. For example,

a face recognition model which is trained using poisoned
data may provide an attacker with a backdoor into computer
systems allowing them to pose as a valid user [6]. Second in
a software poisoning attack, the machine learning software,
packages, or containers (e.g., Docker) used to train the model
may be maliciously altered to introduce a vulnerability. Exam-
ples of software poisoning attacks include the introduction of a
difficult-to-discover vulnerability, malware or a backdoor into
the machine learning system infrastructure. Third, if the model
was trained with pristine (i.e., clean) data and software, its
parameters or structure may be modified in a model poisoning
attack to produce incorrect results during inference. Finally, it
may be possible to conduct an additional data poisoning attack
against the unknown data used for inference or the test dataset
used to evaluate the model’s performance. As a result, we seek
to prevent all types of attacks against the data, software, or the
trained models.

One method for preventing data poisoning attacks is data
poisoning detection which falls into two main approaches:
offline [7] and online [8]. In an offline detection system,
algorithms analyze the trained model to determine if it was
trained with poisoned data. In online detection, algorithms
seek to monitor the data being used to train the model during
the training process and identify poisoned data. Since data
poisoning detection relies on statistical algorithms to detect
these types of attacks, they produce both false positives and
false negatives.

Provenance has been previously proposed to protect ma-
chine learning systems [9], [10]. In this work, we take a
different approach to the problem of preventing data poisoning
attacks. We propose the use of cryptographic hashing, in addi-
tion to provenance, in order to protect the original datasets that
are used for training and validation. In addition, cryptographic
hashing also ensures the integrity of the software used to train
or evaluate the model. The trained model itself is protected
with cryptographic hashing. When a model has been trained,
we again use cryptographic hashing in order to ensure that
it is not been tampered with by attackers. This allows us to
prevent the incorrect use of the model during inference. If the
cryptographic hashes ensure that the datasets, software, and
model have been authenticated using cryptographic hashes,
the system’s integrity is assured.

Using provenance and cryptographic hashing to combat fake



media, including photoshopped images and both cheapfake
and deepfake videos, has been recently proposed [11]–[13].
A number of examples of this approach include Project
Origin [12] and the Content Authenticity Initiative (CAI) [13].
CAI focuses on images captured in a camera, using a secure
hardware enclave, through the content creation process using
photo editing tools [13]. Project Origin, which is an alliance
between the BBC, CBC, Microsoft, and the New York Times,
instead protects the integrity of images and videos from the
point of initial publication to the display on a webpage or in
a mobile app [11], [12].

Project Origin uses the AMP (Authentication of Media via
Provenance) system [11] as the underlying authenticity and
provenance technology. AMP is a proof-of-concept Azure web
service which includes several components that combine to
convey provenance to the end user when consuming a piece
of media. A publisher first creates metadata related to the
image, video, or audio clip which embeds this metadata in a
data structure we call a manifest, cryptographically binds the
manifest to a media object via object hashes, and then signs
the manifest. The publisher then uploads the manifest to the
manifest database in the web service or alternatively embeds
the manifest into the media file itself. Next, the manifest,
or its cryptographic hash, is inserted into an immutable,
provenance ledger using the Confidential Consortium Frame-
work (CCF) [14]. This provenance ledger provides publicly
available evidence that the manifest has not been modified by
attackers. CCF returns a receipt to the database which can be
used for fast verification that the manifest has been stored in
the ledger without the need for the client to query the ledger
itself.

In this paper, we extend AMP to create a new authenticity
and provenance system called VAMP which aims to prevent
data, software and model poisoning attacks directed towards
all aspects of the machine learning system. VAMP stands
for the Verifiablilty and Authentication of Machine Learning
and Media Objects via Provenance. We first define the re-
quirements of a cryptographically-protected machine learning
provenance system. Next, we show how VAMP fulfills these
requirements with only minor modifications to the underlying
AMP system. The main contributions of this paper include:

• We propose a cryptographic-based authentication and
provenance solution for machine learning systems for the
prevention of data, software, and model poisoning at-
tacks against the training, validation, test, and evaluation
datasets, the machine learning software and components,
and the trained model.

• We list the requirements for different phases of develop-
ing and deploying a machine learning system that need
to be addressed by a machine learning authentication and
provenance system.

• We extend the AMP system to the machine learning
setting and show how its relational concepts that are
important for protecting media are also important in the
machine learning setting.

• We use a highly performant provenance ledger using
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Fig. 1. High-level overview of the VAMP system components (shaded boxes).

the confidential consortium framework to offer public
assurance of the integrity of the objects in the machine
learning environment.

• We implement this system as an Azure web service.

The paper is organized as follows. The AMP system is
reviewed in Section II. In Section III, we define the concepts of
authentication and provenance, and then provide an overview
of the system. The VAMP requirements for the protection of
machine learning systems are given for datasets (Section IV),
software (Section V), and models (Section VI). The key data
structure for meeting these requirements is the Manifest which
is described in Section VII. Finally, the trust model is given
in Section VIII.

II. AMP

VAMP can be considered as an extension of the AMP
system [11] which provides cryptographically-authenticated
provenance for media. In this section, we briefly review the
AMP system. Figure 1 depicts the original AMP system along
with the extensions to VAMP. Its key components include
a manifest which provides the metadata for the media ob-
jects, the Manifest Database which stores previously uploaded
manifests, and a Provenance Ledger (i.e., blockchain) which
provides publicly available evidence that the media has not
been modified. In addition, the manifest includes fields which
allow the media consumer to track its provenance backwards
through the media capture, editing, publishing, and distribution
graph to its original source.

AMP manifests can be stored using two separate methods:
embedded or detached. AMP proposes a new way of embed-
ding (i.e., inserting) manifests into MP4 files. In the detached
manifest scenario, the manifest is instead stored separately in
the Manifest Database. A client application such as a browser
extension or a webpage then can authenticate media using the
file itself if the manifest is embedded or using the AMP Service
if the manifest is detached.



AMP serializes the manifest in two ways using both CBOR
and JSON. CBOR is more efficient since it stores the data in
a binary format whereas a manifest stored using JSON in a
plaintext format is human readable.

AMP uses a X.509 PKI (public key infrastructure) trust
model. The serialized manifests are signed with the publisher’s
private key allowing client applications to verify the pub-
lisher’s identity.

In following sections, we discuss how the media-focused
AMP system can also be extended to help protect machine
learning systems.

III. AUTHENTICATION AND PROVENANCE OF MACHINE
LEARNING SYSTEMS

Both authentication and provenance play critical functions
in a secure machine learning system. Authentication of a
machine learning system’s components, such as datasets, soft-
ware, and models, ensures the trustworthiness of the final
prediction results. Similarly, provenance allows the model
trainer, and to some extent the user, to trace and verify all of
the components that were used to train the system backwards
through the provenance graph to the original sources.
Authentication. In a secure machine learning system, authen-
tication is the process of the consumer validating the veracity
all of the machine learning objects. Before using a machine
learning object in a secure system, the object consumer first
verifies its signature. Next, they confirm that each object’s
one or more signed cryptographic hashes match those gener-
ated from its contents. Building a cryptographically protected
provenance system for the prevention of data, software, and
model poisoning attacks involves three main tasks including
protecting the training and validation datasets, protecting the
software used to train and evaluate the model, and later
protecting the trained model so that it can be used for tamper-
evident inference. In addition, the evaluation dataset can also
be protected and verified before inference as an optional fourth
task.

VAMP’s pipeline in illustrated in Figure 2. First, the dataset
creator generates the training and validation datasets. Next,
they create the manifests (i.e., metadata and data bindings)
and either upload (i.e., publish) them to the VAMP service or
embed them directly in the individual datasets. Manifests for
all of the software (e.g., source code, packages, containers) that
is used for training the model, as well as any software that is
used to evaluate the model, are then embedded in the objects
or uploaded to the VAMP service. Next, the model creator
validates that the content bindings in the manifests match the
data and labels in the datasets and the model training software
components. After the validation succeeds, the model creator
trains the machine learning model. Afterwards, the model
creator generates a manifest for the model and either uploads
the manifest to the VAMP service or embeds the manifest into
the model itself.

All of the software (e.g., source code, packages, containers)
that is used for training the model, as well as any software that
is used to evaluate the model, is then uploaded to the service.

Fig. 2. Authentication steps for protecting datasets, software, and a trained
machine learning model.

Next, the model creator validates that the content bindings
in the manifests match the data and labels in the dataset and
the model training software components. After the validation
succeeds, the model creator trains the machine learning model.
Afterwards, the model creator generates a manifest for the
model and either uploads the manifest to the VAMP service
or embeds the manifest into the model itself.

Once the model has been trained and its manifest embedded
or uploaded to the service, the user can perform inference
on the unknown evaluation set. Similar to the previous steps
in this process, authentication and provenance are also an
important aspects for inference. The user first validates that
the model bindings match the contents of the model file. It
is possible at this point that the manifest for the evaluation
dataset has been previously generated and either uploaded to
the VAMP service or embedded in the dataset. If so, the user
also validates that the bindings in the manifest match the data,
and labels if they exist, in the dataset. After validating the
model, and possibly the evaluation dataset, the user produces
the final scores for the evaluation dataset using the model.

Since VAMP is an extension of AMP, it also employs CCF
to help ensure the integrity of the machine learning system
by providing a public audit trail of the machine learning
objects that were either used to train the system or to evaluate
new data. When manifests for data, software, and models are
uploaded to the service, they are stored in the ledger.
Provenance. In a machine learning system, provenance in-
volves being able to understand how all of the different
machine learning objects are processed to yield the final
prediction score. Provenance also plays a key role in secur-
ing a machine learning system. Provenance can typically be
represented as a directed acyclic graph (DAG), and therefore
provenance can be traced in either direction from the start
to the finish or backwards from the end to the beginning.
Many complex machine learning systems consist of simpler
machine learning components. Each of these components may
be trained with different datasets which may or may not be
standard (e.g., ImageNet). In order to verify that the final
complex model has been trained using authenticated datasets,
software, and underlying (i.e., upstream) models, it requires
a provenance graph which indicates all of these system com-
ponents. Provenance is also important for creating machine
learning systems that generate reproducible results [15], [16].

In the next sections, we first describe the requirements im-



posed by many machine learning systems on datasets, software
components, and the training process. We then describe how
manifests and VAMP can be used to meet these machine
learning requirements.

IV. DATASETS

The first requirement for preventing data poisoning attacks
in machine learning systems is creating datasets with manifests
which cryptographically bind the metadata to the data and la-
bels, if they exist. Since data poisoning attacks primarily target
the model training process, it is most important to protect the
training and validation datasets so the model training code
(e.g., PyTorch, TensorFlow, ML.Net) can authenticate the data
used during training.

Unlike formatted media objects which are addressed by
AMP, machine learning datasets are often text files, although
the raw data underlying vision datasets are often standard
image formats such as JPEG. Text file-based machine learning
datasets typically have a custom format which either has a
prescribed format definition or includes a header which defines
this format. It may not be possible to modify standard datasets
since the metadata cannot be inserted into the dataset without
breaking the existing training code. In this case, the dataset
creator’s manifest must be stored externally such as in a
separate sidecar file or in a web service. For new datasets,
the metadata format could be specified and inserted into the
text file itself.

Another important requirement of a secure machine learning
system is determining what is the important metadata needed
for the datasets and what are important aspects (i.e., fields) of
the metadata to cryptographically protect.

V. MACHINE LEARNING SOFTWARE

In addition to protecting the datasets, it is also important to
protect all of the software used to train the model to prevent
software poisoning attacks. For machine learning systems, this
software can either be text-based software such as Python,
Java, or C# code or it may be binary packages needed to create
features (e.g., OpenCV) or train the model itself. Machine
learning models are often trained within containers (e.g.,
Docker, NuGet), and these containers need to be protected
as well. Thus, it is important for a machine learning system to
protect all aspects of the machine learning software training
and inference environments.

VI. MODEL TRAINING

After the manifests for the training and validation datasets
and all software components have been successfully uploaded
to the authentication service or embedded into the files, the
datasets, software, and manifests can be used to train the
machine learning model with cryptographic guarantees that
the components have not been altered. The software must be
validated before training the model. The datasets can either
be verified at the start of training or continuously verified
during the training process if the dataset is provided using a
streaming service. After training has completed, it is important

to protect the final model used to evaluate unknown datasets
during inference.
Verifying the Datasets Before Training. In the majority of
cases, the training and validation datasets can be verified once
before training the model. This verification may be done by
computing a single hash for each dataset or the verification
may be done in chunks for more efficient, and perhaps parallel,
processing.
Multiple Minibatch Sizes. When training standard machine
learning models such as logistic regression, the parameters
are updated based on the loss for each individual sample
in the training set. In this batch setting, the order that the
samples are processed is chosen at random for each subsequent
epoch. On the other hand, deep learning models are typically
trained using minibatches, and one important hyperparameter
that is chosen during training is the minibatch size. Instead
of randomly choosing the order for each sample as done in
the standard machine learning setting, the order of contiguous
minibatches is chosen randomly when training deep learning
models. The system must be able to validate datasets in both
the batch and mini-batch modes during training. In addition,
the system must support multiple minibatch sizes for both of
these modes.
Adaptive Minibatch Sizes. A recently proposed deep learning
training approach seeks to learn the optimal minibatch size
during training [17]. For adaptive minibatch size training, the
objective function includes a term which allows the minibatch
size to be changed during training using stochastic gradient
descent (SGD). Thus, if adaptive minibatch size training is
required, the secure machine learning system must be able to
support dynamically changing the minibatch size from epoch
to epoch.

VII. VAMP MANIFESTS

Next, we demonstrate how VAMP fulfills the requirements
of a secure machine learning provenance system. The manifest
is the key data structure in VAMP. Its main two functions are
to 1) define and cryptographically protect the critical metadata
that is important for the datasets, software, and models, and 2)
cryptographically bind this metadata to these machine learning
objects. In addition, manifests can also define relationships
between these objects which allow the model trainer, and
maybe even the user in some cases, to trace the machine
learning object provenance from the final prediction score or
the inference object back to all of its original components.
Key Manifest Metadata Fields. All of the metadata structures
related to media authentication and provenance are described
in the AMP system design and are provided in Appendix
C in [11]. We believe that the AMP metadata structures
can also be used for machine learning metadata with minor
modifications. Thus, we have not added or removed any of
metadata fields for VAMP.

The key manifest fields are listed in Table I. These fields
match those originally specified in AMP with one exception.
AMP specified a MediaID, but this field has been changed to
ObjectID in VAMP allowing it to generalize to the machine



learning scenario. The ObjectID is the identifier of the machine
learning object that is being protected. In addition, a number of
the AMP field descriptions reference media related concepts.
In VAMP, these field descriptions are updated to be more
general.
Manifest Data Binding. Manifests are cryptographically
bound to the data and the labels, if they exist, located in
the datasets by computing one or more cryptographic hashes
of the data and labels. Similarly, the cryptographic hashes
are also computed for any software components and the final
trained model. VAMP uses SHA2 cryptographic hashes such
as SHA2-256 or SHA2-512 for this purpose.

VAMP supports four different types of content binding:
static, fixed-length chunk, box-based, and offset-length [18].
For a static content binding, a cryptographic hash is computed
over the entire contents of the object (e.g., machine learning
small dataset, source code, model) that need to be protected.
For large datasets using a fixed-length chunk content binding,
the file is divided into consecutive fixed-length chunks, and
the cryptographic hash is computed for each chunk.

In AMP, the box-based binding is used to insert the metadata
and content hashes into the media file according to its format
specification (i.e., moov, moof, mdat), and this type of binding
is also included in VAMP to support media objects. VAMP
also uses a offset-length binding which embeds the offset and
length of the key fields and structures when this information
is embedded in the file. VAMP’s layout of a machine learning
object is provided in Table II for files where the header can be
modified. This format supports both embedded and detached
manifests. The beginning of the file contains the ManifestType
which indicates if the manifest is embedded or detached.
The next field, ManifestSerialization, specifies if the manifest
is stored in canonicalized JSON or canonicalized CBOR. If
the ManifestType indicates that the manifest is detached, the
next field ManifestLocator provides the URI of the manifest.
Otherwise, the signed manifest is embedded and located in
the next section of the file. For text files, the manifest is
Base64 encoded. Finally, the media object itself is stored in
the remainder of the file.

The offset-length binding can also be used to support
datasets with minibatches of different lengths for training deep
learning models. Since the best minibatch size is typically
learned during hyperparameter tuning, it may not be possible
to set this parameter beforehand. Therefore, the challenge
with supporting different minibatch sizes is that the minibatch
hashes must be computed for each possible setting of the
minibatch size hyperparameter.

An example of a text-based dataset with an embedded
manifest is depicted in Table III. where the data is divided
into minibatches 1 though N . These minibatches contain a
fixed number of examples (e.g., 64). However, since each row
in the dataset consists of a potentially different number of
characters, each minibatch can have a different length and be
located at a non-uniform offset from the beginning of the file.
The offset-length binding is also important in the case where
the user may want to repeatedly validate each minibatch for an

epoch during training. In the future, AMP’s box-based binding
format can also be extended in VAMP to handle chunks of
varying offsets and lengths to accommodate minibatches in a
deep learning dataset.

Machine learning datasets can also be stored in a binary
format instead of a text file. In this case, the minibatches
are contained within a fixed number of bytes. However, these
fixed-length minibatches may still be stored with a random
offset due to the inclusion of the manifest and the column
specification header, and the offset-length content bindings
are still required. Once the hashes have been computed and
inserted into the manifest, along with the other important
metadata, the key parts of the manifest that need to be
protected are then signed to provide evidence if an attacker
has modified the dataset, software, or model.
Transformation Manifests. Transformation Manifests are
used to indicate provenance in a machine learning system.
All of the datasets, software components, and models can
form a complicated graph. Understanding this complete graph
is important for implementing reproducible machine learning
systems. Transformation Manifests include one or more back-
pointers to the manifests of other machine learning objects.
These backpointers support a derived object relationship and
can be used in a number of ways. For example, one common
practice in machine learning is to start with a pretrained
model which has been trained with data and labels for another
purpose. Using this pretrained model as a starting point,
it is finetuned with a different set of data and labels to
achieve another objective. In this case, the finetuned model
is “transformed” from the original, pretrained model, and a
backpointer from the finetuned model to the pretrained model
indicates this relationship.

In another example, an uncompressed dataset can be “trans-
formed” from a compressed dataset. Decoding an encoded
dataset into a text or binary file can be represented using
a Transformation Manifest. In addition, an encoded dataset
may be transcoded from one lossless compression algorithm
to another including compression algorithms such as Gzip,
Huffman encoding, or Run-length encoding, and this transcod-
ing operation can be represented using another Transformation
Manifest.

A Transformation Manifest also supports the notion of
derivation from multiple objects. In machine learning, we can
create a Transformation Manifest which contains backpointers
to the manifests of the training and validation datasets used to
train a model, for example. In another case, the Transformation
Manifest may provide pointers back to multiple submodels
used during preprocessing steps to create features for the final
model.
Facsimiles. Facsimiles are datasets, and possibly even models,
that the data publisher or the model creator believe are
similar or related in some way. Manifests can authenticate
any number of facsimiles in machine learning scenarios where
facsimiles may be used for 1) splitting one labeled dataset into
separate training, validation, and test datasets, 2) training with
different minibatch sizes, 3) adaptively selecting the minibatch



Field Manifest Type Description
ObjectID Static/Streaming Publisher-assigned identifier for the object.
MasterCopyLocator Static/Streaming URI of a stable, publisher provided location service or a generic URL redirector service.
EncodingInformation Static/Streaming String describing the object type (e.g., “JPEG”, “MP4”, “Gzip”, “Huffman encoding”).
OriginManifestID[] Static/Streaming One or more ManifestIDs that describe the source object used to create a derived work.
Copyright Static/Streaming Copyright string associated with the object.
ObjectHash[] Static Cryptographic hash of the associated simple object (or collection of related objects

objects).
ChunkDigest Streaming An ordered array of chunk-hashes starting from the beginning of the work.

TABLE I
KEY MANIFEST FIELDS.

Field Storage Description
ManifestType Embedded / Specifies if the manifest

Detached is Embedded or Detached.
ManifestSerialization Embedded / Specifies if the manifest is

Detached serialized using
canonicalized JSON
or CBOR.

ManifestLocator Detached URI of the manifest.
Manifest Embedded The signed manifest

of the machine,
learning object.

Data/Code Embedded / The data for a dataset,
Detached the code for a program,

the binary data for a software
component, or the architecture
and parameters for a model.

TABLE II
MACHINE LEARNING OBJECT FILE STRUCTURE SUPPORTING BOTH

DETACHED AND EMBEDDED MANIFESTS.

Field Description
ManifestType Specifies that the manifest

is Embedded.
ManifestSerialization Specifies if the manifest is

serialized using
canonicalized JSON
or CBOR.

Manifest The signed
manifest of the dataset.

Data Minibatch 1

Data Minibatch 2

Data ...
Data Minibatch N

TABLE III
TEXT-BASED, DATASET FILE EXAMPLE WITH AN EMBEDDED MANIFEST

AND FIXED-LENGTH MINIBATCHES.

size during training, and 4) constructing datasets of different
sizes, including subsampling and oversampling, from a single
dataset.

In the first example, a single dataset can be split into
separate training, validation, and test datasets. In this case,
the single large dataset can be considered to be a facsimile
of a collection of the individual training, validation, and test
datasets. Another example of a pair of datasets which can be
considered as facsimiles includes two datasets where the first
is a single multiplexed dataset containing both the data and

labels, and the second includes two datasets where the data
and the labels are stored separately.
Manifest Storage Locations. In the original design, AMP
allows for manifests to differ based on their storage location.
The different storage types of AMP manifests include detached
and embedded. Likewise, VAMP includes both detached and
embedded manifests. Furthermore, since machine learning
datasets are typically stored in text-based files, as opposed
to well-known binary media format files (e.g., JPEG, MP4),
VAMP further allows for detached manifests to be stored
locally or in the cloud. Finally, VAMP also allows manifests
to be stored both locally and in the cloud simultaneously.

Detached Manifests: Detached Manifests are manifests
which are stored separately from the machine learning ob-
jects themselves. Datasets are not implemented using stan-
dard structured text or binary formats, and similarly, current
machine learning models trained with PyTorch or TensorFlow
have a prescribed model format. In both cases, the manifest
can be created and uploaded to the VAMP Service after the
dataset has been created or the model has been trained.

Detached Manifests can either be Detached Local Manifests
or Detached Cloud Manifests. Detached Local Manifests are
stored in the same directory structure (e.g., in the same
directory) whereas Detached Cloud Manifests are stored in
the cloud and uploaded or read using the VAMP web service.

Embedded Manifests: Embedded Manifests are inserted into
the object files which allows them to be easily authenticated.
Unlike media which relies on standard encoding formats (e.g.,
JPEG, MP4), machine learning datasets are not typically stored
using a standard format. On the other hand, machine learning
models are usually stored using a format defined by the
machine learning framework (PyTorch, TensorFlow, scikit-
learn). We anticipate that as cryptographic-based provenance
solutions become more ubiquitous, it is possible that a current
dataset or model structure can be extended, or new structures
can be created, to allow the inclusion of a manifest.

Manifests Stored in Multiple Locations: This case includes
storing the manifest in two locations, locally and in the
cloud. For example, a machine learning object’s manifest can
be stored in a Local Detached Manifest file in addition to
being stored as a Detached Cloud Manifest in the Manifest
Database. Since media is typically stored as self-contained
binary files, AMP only supported Embedded Manifests or
Detached Cloud Manifests, where embedding manifests in the



file is the preferred method for media. Thus, the original AMP
design did not consider storing the manifest in both locations.
Detached Local Manifests. As noted above, a machine
learning system may consist of a number of different machine
learning related files such as the source code for training or
inference, separate training, validation, and test datasets and
the trained model itself. Furthermore, each dataset may be
separated into two different files for the data and the labels.
As such, a directory structure may contain many different
Detached Local Manifest files. If the original media object
file can be modified, a reference to the manifest file can be in-
cluded using the ManifestLocator in Table II. However, it may
not be possible to add this additional metadata to the original
media object file. In this case to allow the user to quickly
associate the manifest file and the machine learning object
file when storing the manifest as a Detached Local Manifest,
VAMP requires the following naming convention. If a machine
learning object is stored as name.xxx, then the manifest is
stored in the same directory as name.xxx.man. For example,
the training set might be stored as data/training.csv, and the
manifest would then be stored as data/training.csv.man.
Serialization. As noted in Section II, AMP serializes mani-
fests in two ways using both canonicalized JSON and canon-
icalized CBOR. Since media formats are binary, using the
CBOR binary serialization format for manifests is a natural
fit. However, for text-based datasets typically encountered in
machine learning systems, CBOR serialization for Embedded
Manifests would result in binary data being inserted into a file
which otherwise consists of text. Thus, VAMP allows for the
option of serializing the manifests using either JSON for text-
based datasets or CBOR for datasets implemented in a binary
format. Binary arrays are Base64 encoded before serialization.

Manifests are signed by the machine learning object creator
to ensure that the machine learning object has not been mod-
ified from its original version. Canonicalized JSON manifests
are signed using a JWS while canonicalized CBOR manifests
are signed using COSE.
Verification. Before training or inference, the signed manifests
of each required machine learning object must be first verified.
For training, the manifests for the training and validation
datasets and the training software components are verified
using the signer’s public key. If the media object is signed
using COSE, the manifest is Base64 decoded to reveal its
authenticated contents. The signer’s public key may be differ-
ent for each machine learning object. Similarly, the dataset,
software components and model can also be verified during
inference using the same process.

VIII. TRUST MODEL

As mentioned previously, AMP uses X.509 to implement
its trust model. Similarly, VAMP also employees X.509 and
certificate authorities (CAs) to establish the authenticity of
machine learning datasets, software, and models. A dataset
creator or a model trainer’s certificate is used to sign the
machine learning object’s manifest in VAMP. The certificates
can be issued by any standard CA.

In general, determining the identity of the entity who signed
a media object is much easier for VAMP users than for AMP
users who are trying to confirm the identity of the person or
organization who published a media object. The main reason
is because machine learning objects are much less prevalent
than all of the media objects that are available on the Internet.

We have not identified any changes needed for AMP’s trust
model to enable the machine learning scenario addressed by
VAMP.

IX. PROVENANCE LEDGER

A ledger provides additional security guarantees over a
simple signature. AMP uses a provenance ledger to further
ensure the veracity of media, and this ledger is implemented
using the Confidential Consortium Framework (CCF) [14].
Since VAMP is an extension of AMP, it also employs CCF to
help ensure the integrity of the machine learning system by
providing a public audit trail of the media objects that were
either used to train the system or to evaluate new data. One
particular advantage is that the ledger preserves the order of
publication of different objects. In this case, digital signatures
require a local clock (which may be adversarially set) or need
to use a trusted timestamp authority (TSA).

When the manifest for the machine learning object is
uploaded to the cloud service, the entire manifest or its
cryptographic hash would also be written to the ledger. CCF
provides a receipt which can be used to ensure the authenticity
of the machine learning object without the need to query the
ledger itself. Examples of the performance for storing the
manifest in the ledger, as well as writing and reading long
videos to the Manifest Database, are provided in [11] for a
number of different Azure data center configurations.

X. RELATED WORK

Provenance solutions have been previously proposed for
data and machine learning systems. One early work which
frames the need for data provenance is [19]. A blockchain
solution was proposed for data provenance in the IoT set-
ting [20]. Provenance systems [9], [10] have been previously
proposed for machine learning systems against data poisoning
attacks. However, unlike VAMP, neither system used crypto-
graphic hashes to ensure the integrity of the data and software.

VAMP is also related to creating reproducible machine
learning systems, debugging machine learning systems and
incorporating explainability in machine learning systems. One
example of a reproducible machine learning framework is
dagger [15]. Provenance has been used for other reproducible
machine learning environments including [21], [22]. Principles
related to provenance, reproducibility, and FAIR data are
given in [16]. Another framework for debugging machine
learning system is given in [23]. An interactive and explainable
framework for machine learning is proposed in [24].

Provenance systems have also been proposed for authen-
ticating media. Since VAMP is an extension of AMP, it is
most similar to that system [11]. In this work, we describe
the changes that are needed to use AMP in the machine



learning provenance and authentication scenario. The Content
Authenticity Initiative [13] is also similar to VAMP although,
like AMP, CAI targets the authentication of media. Truepic is
using provenance to provide a image provenance service for
the insurance industry [25]. Amber has also built a system for
using provenance for video [26]–[28]

The protection of the machine learning software is related to
previous work in the protection of the software bill of materials
(SBOM) and the software supply chain. SPDX [29] has been
proposed as a way to protect the software bill of materials.
In addition, in-toto [30], [31] provides a system for protecting
the entire supply chain.

XI. CONCLUSION

Authentication and provenance play key roles in preventing
poisoning attacks in secure machine learning systems. We find
that with minor modification, the AMP system, which has
previously been proposed for the authentication and prove-
nance of distributed media objects, can be extended to VAMP
and used to protect machine learning datasets, software, and
models. VAMP’s provenance features allow all of a machine
learning’s subcomponents to be discovered and verified. Prove-
nance is particularly important for complex machine learning
systems which require the discovery and verification of smaller
machine learning subcomponents. As a result, a model creator
can verify that the training and validation sets used during
training have not been altered. Similarly, the user of a model
can also authenticate both the trained model and the evaluation
set, if a manifest has also been generated for these machine
learning objects during inference. This work provides key
requirements for standards such as the Coalition for Content
Provenance and Authenticity (C2PA) [18] to be extended to
protect machine learning systems.
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