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Abstract—With the increasing adoption of deep learning in
computer vision-based applications, it becomes critical to achieve
robustness to real-world image transformations, such as geo-
metric, photometric, and weather changes, even in presence
of an adversary. However, earlier work has focused on only
a few transformations, such as image translation, rotation,
or coloring. We close this gap by analyzing and improving
robustness against twenty-four different physical transformations.
First, we demonstrate that adversarial attacks based on each
physical transformation significantly reduce the accuracy of
deep neural networks. Next, we achieve robustness against these
attacks based on adversarial training, where we show that
single-step data augmentation significantly improves robustness
against these attacks. We also demonstrate the generalization of
robustness to these types of attacks, where robustness achieved
against one attack also generalizes to some other attack vectors.
Finally, we show that using an ensemble-based robust training
approach, robustness against multiple attacks can be achieved
simultaneously by a single network. In particular, our proposed
method improves the aggregate robustness, against twenty-four
different attacks, from 21.4% to 50.0% on the ImageNet dataset.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Deep neural networks have enjoyed large success in a wide
range of computer vision applications, such as autonomous
driving [1], [2], face recognition [3], [4], robotic vision [5],
and healthcare [6], [7]. Given the safety-critical nature of most
of these applications, it is essential that deep neural networks
are robust to common image transformations in the real world,
such as geometric transformation, random noise, image blur-
ring, photometric, and weather changes. Evermore, it is also
critical to achieve robustness to worst-case transformations,
such that safety cannot be compromised even by a strong
adversary.

Though recent works have characterized the performance
of state-of-the-art deep neural networks under common image
transformations [8], [9], only a limited number of algorithms
have achieved robustness against common image transforma-
tions in the presence of an adversary [10], [11]. However, the
set of transformations considered in these works is limited
to geometric transformations, such as translation or rotation,
and colorization [11]–[13]. Besides, the set of common image
corruptions and perturbations, which a real-world adversary

Fig. 1: An illustration of our objective in this paper. We
first analyze the performance of deep neural networks under
twenty-four adversarial transformations. Next we develop en-
semble training to achieve simultaneous robustness to multiple
adversarial transformations.

can utilize to craft adversarial examples, is very large. Ear-
lier work, which improves a model’s robustness against a
few transformations, will still be vulnerable to attacks from
multiple other transformations.

To close this gap, we aim to both understand and improve
the robustness of deep neural networks against a wide range of
physical image transformations. We focus on twenty-four im-
age transformations from five subgroups including geometric
changes, random noise, blurring, photometric modifications,
and weather changes. We illustrate our objective in Figure 1
where we first study the robustness of deep neural networks
against adversarial examples based on these transformations
and later transition to improving the robustness against these
attacks.

We first show that deep neural networks remain largely
vulnerable to adversarial examples from physical image trans-
formations. For example, coarse random noise-based adversar-
ial examples reduce the test accuracy to as low as 0.1% on
the ImageNet dataset (Figure 2). To fix it, we next focus on
developing a simple yet effective defense against these attacks.
While earlier work on robust training motivates the use of
strong adversarial examples [11], i.e, the most adversarial, we
find that single-step data-augmentation itself is highly effective
in defending against these attacks. It simply requires training
with a randomly transformed version of the image in each
training step.
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Fig. 2: Test accuracy in the presence of each of the 24 attack vectors for a ResNet-50 network trained on the ImageNet dataset.
For non-robustly trained networks (without any data augmentation), i.e., baseline, these attacks reduce the test accuracy from
68.4% to 21.4%. The proposed robust ensemble training with all transformations, improves it to 50.0%.

As illustrated in Figure 1, our objective is to train a network
which can be simultaneously robust to multiple transforma-
tions. When we robustly train a network against an individual
transformation, it still remains vulnerable to multiple other
transformations, especially ones from different subgroups. We
argue that a successful defense will need to accommodate
multiple transformations in the robust training objective itself.
However, related work in Lp norm-based robust training has
shown that multiple adversaries often conflict [14] and can
also lead to large degradation of benign accuracy [15].

Our investigation demonstrates that a simple approach of
ensemble training, where performing robust training against a
set of transformations, choosing one randomly for each image
in every training step, is highly successful in improving the
robustness to multiple transformations, simultaneously. On the
ImageNet dataset, it improves the mean robust accuracy across
all transformations from 21.4% to 50.0% (Figure 2). We also
show that unlike Lp norm-based objectives, multiple objectives
in ensemble training do not conflict with each other and do
not lead to a degradation of benign accuracy, i.e, accuracy on
unmodified test images.
Contributions. We make the following key contributions.
• We conduct a thorough evaluation of adversarial attacks

based on twenty-four different physical image transfor-
mations, from five different subgroups, on the ImageNet
and Reduced-ImageNet dataset.

• We demonstrate that single-step data augmentation can
achieve high success in defending against attacks based
on physical image transformations. We also demonstrate
that there exists some generalization of robustness to
unknown transformations within a subgroup or from other
subgroups.

• We further show that robustness against multiple attacks
can be achieved simultaneously by a single network,
without degradation of benign accuracy.

II. RELATED WORK

Azulay and Weiss [8] earlier observed that deep neural net-
works are vulnerable to small geometric changes in the image
while Hendrycks and Dietterich [9] extended this observation

to multiple other transformations. However, these works only
focus on an average case robustness of deep neural networks.

A recent line of research focuses on the robustness against
worst-case transformation, i.e., adversarial examples based on
physical image transformation. With a motivation to move be-
yond Lp-norm-based adversarial examples [16], some earlier
works have constructed adversarial examples based on trans-
lation, rotation, and colorization [10]–[13], [17], [18]. A few
other related works add adversarial patches on the image [19]–
[21]. We complement that line of work by demonstrating that
our twenty-four physical image transformations are highly
adversarial thus significantly reducing the accuracy of deep
neural networks.

Along with adversarial attacks, several earlier works have
also focused on developing robust defenses against translation
and rotation based on robust training [11], [22]. A different
set of works aims to achieve provable robustness but mostly
limited to a few geometric transformations [23], [24]. We show
that instead of relying on a computationally expensive robust
training framework used in earlier works, a single-step data
augmentation in robust training can be highly successful in
improving robustness against image transformations.

Another related line of work focuses on robustness to
few geometric transformation based on advances in network
architectures [25]. We achieve robustness to multiple attacks
using robust training.

III. GENERATING ADVERSARIAL EXAMPLES BASED ON
PHYSICAL IMAGE TRANSFORMATIONS

In this section, we first provide a background of adversarial
examples and our notation. Next, we present the mechanism
used to generate adversarial examples in this work.
Notation. We denote neural network parameters by θ and
assume that the training and test inputs are i.i.d. samples from
the data distribution, i.e, (x, y) ∈ Din, where x is the input
image and y is the respective output class label. We train
the neural network f(θ, .) : X → Y by minimizing training
loss L(θ, x, y),∀(x, y) ∈ X × Y over all training samples.
We denote a transformation as T (γ, .) : X → X , where γ
represents the implicit parameters used by each transformation.
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Fig. 3: Highly non-convex loss surface of different trans-
formations, w.r.t. its parameters (γ) for a randomly selected
image (ImageNet), which makes it very difficult to generate
adversarial examples using gradient-based optimization.

Given an image x and transformation T , we can generate an
adversarial example (x̂) by solving the following optimization
problem.

γ̂ = argmax
γ

L(θ, T (γ, x), y)

γ ≤ γmax x̂ = T (γ̂, x)

where L(.) is the required loss function, and γmax is the
maximum budget for each transformation, such as limiting
rotation to ±30 degrees. We can use first-order optimization
methods, which have been very successful in generating ad-
versarial examples based on pixel-perturbations [26], to solve
this problem.

However, we find very limited success when using gradient-
based optimization. A key reason behind its failure is the
highly non-convex nature of the loss-surface. Engstrom et
al. [11] first highlighted this issue when constructing adversar-
ial examples based on image rotation and translation. We find
that the loss surface for multiple other transformations, ranging
from geometric to weather changes, is also highly non-convex
w.r.t. its parameters (Figure 3).
Attacks based on a worst-of-k approach. Most physical
image transformations, such as rotation, translation, contrast,
and blurring, are parameterized by a few parameters, which
makes it possible to search the whole space of parameters.
Thus for each image, rather than optimizing based on gradi-
ents, we can create a set of transformed images based on each
possible parameter setting, and choose the one which is most
adversarial. Earlier work has demonstrated that often choosing
the most adversarial sample from a set of k randomly sampled
parameters (γ) is sufficient to construct successful adversarial
examples. This approach is known as the worst-of-k based
adversarial attack [11]. We unify adversarial attacks with each
transformation by conducting a worst-of-k style attack with it.

We consider a set of 24 physical image transformations
to construct adversarial examples (Table I). These transfor-
mations capture a wide range of image artifacts, corruptions,
and quality degradations observed in the physical world. We
categorize these transformations in five subgroups: Geometric,

Category Attack Vectors Category Attack Vectors

Geometric
Transformations

Translation

Image Blurring

Gaussian Blurring
Rotation Average Blurring

Scale Median Blurring
Shear Motion Blurring
Affine Super Pixelation

Piecewise-Affine

Addition of Random
Noise

Gaussian Noise
Perspective Transform Laplace Noise

Elastic Transform Poisson Noise

Photometric
Gamma and Constrast Impulse Noise

Brightness Coarse Salt-n-Pepper

Weather Simulations
Snow Coarse Dropout

Clouds
Fog

TABLE I: Summary of the key image transformations and
their subgroups to construct adversarial examples.

Random Noise, Blurring, Photometric, and Weather transfor-
mations. We study these transformations both individually and
according to subgroups.

IV. DEFENDING AGAINST ADVERSARIAL EXAMPLES
BASED ON PHYSICAL IMAGE TRANSFORMATIONS

As we demonstrate in Section VI-A, adversarial transfor-
mation from each of the transformations in Table I are highly
successful in reducing the test accuracy. In this section, we
present our approach towards developing a successful defense
against physical transformation-based adversarial examples.
We focus on a robust training-based defense since it has
been highly successful in defending against adversarial ex-
amples [11], [15]. It modifies the training objective, where
instead of doing empirical risk minimization on the training
data, we minimize the training loss on respective adversarial
examples. In particular, we solve the following optimization
problem:

min
θ

1

N

N∑
1

L(θ, x̂it, y
i) (1)

where x̂ is the respective adversarial example generated for
image x using transformation t. We use the worst-of-k attack
to generate each adversarial example.
Primary challenge. Note that a worst-of-k attack requires
generating k random transformations of each image. Thus
when used in robust training, we will need to evaluate k
samples for every image in the batch throughout training. This
makes robust training with a worst-of-k attack approximately
k× slower1 than benign training. Even with a modest value
of k, e.g. 10, the computational cost might prohibit its scaling
to large-scale datasets, such as ImageNet.
Single-step data augmentation. Our key hypothesis is that
given a small parameter space and generalization ability of
deep neural networks, robust training with a very weak adver-
sary might suffice to achieve high robustness. In Figure 4, we
show that robust training with k=1, for the worst-of-k attack,
does indeed achieve high robustness while incurring negligible

1Not exactly k since forward pass takes less than time than backward pass
in deep neural networks.



computational overhead over benign training.2 Note with k=1,
it reduces to using one random transformation of the image,
instead of the original image, which we refer to as single-step
data augmentation.
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Fig. 4: We compare the success of single-step data augmen-
tation with a worst-of-10 attack from [11]. It achieves similar
benign and robust accuracy compared to worst-of-10 attacks,
while being 6× computationally cheaper than it. We use a
worst-of-50 attack to evaluate robust accuracy with ResNet-
18 network and the R-ImageNet dataset. Baseline refers to
benign training with no data augmentation.
Defending against unknown attacks. A real-world adversary
can choose any particular physical transformation to craft an
adversarial example. While single-step data augmentation is
highly effective in defending against a particular attack, it is
unclear how effective it will be in defending against unknown
attacks. For example, when a network is robustly trained
with rotation-based adversarial examples, will it achieve any
robustness against other transformations, from the geometric
subgroup or from a different subgroup?
Intra-group generalization of robustness. Given a robust net-
work trained against a particular transformation, it captures the
average robust accuracy obtained with attacks within the same
transformation subgroup? For robust network fta(θ), which
is robust against transformation ta, we measure intra-group
generalization by the following robust accuracy:

rintra =
1

|Sm| − 1

|Sm|∑
1

1(ta 6= ti)Acc(fta , X̂ti , Y ) (2)

where ta, ti ∈ Sm, Acc(.) measures the accuracy of the
network on given input samples, X̂ti refers to adversarial
examples generated with transformation ti and Sm refers to a
subgroup of transformations.
Inter-group generalization of robustness. Now we formulate
the average robust accuracy obtained with attacks from a
different subgroup of transformations. For robust network
fta(θ), which is robust against transformation ta, we measure
inter-group generalization with the following robust accuracy:

2The data-augmentation cost is not significant due to heavily optimized
libraries [27].

rinter =
1

|Sk|

|Sk|∑
1

Acc(fta , X̂ti , Y ); ta,∈ Sm; ti ∈ Sk (3)

where X̂ti refers to adversarial examples generated with
transformation ti from subgroup Sk. We provide experimental
results on generalization in Section VI-C.
Defending against multiple attacks simultaneously. Since
a real-world adversary can launch adversarial attacks based
on any image transformation, an effective defense will require
designing a system that is simultaneously robust to multiple
attacks. As we will see in Sections VI-B and VI-C, single-
step data augmentations suffice to achieve high robustness
against any individual transformation and the achieved ro-
bustness generalizes to some extent to other transformations.
While generalization of robustness between attacks provides
some simultaneous robustness to multiple attacks, we need
additional techniques to achieve high robust accuracy against
multiple, simultaneous attacks.
Ensemble training. A naive solution is to use an ensemble
of multiple networks, each being robust to a particular trans-
formation. However, we find that each network does remain
vulnerable to transformations unknown to it at traning time.
We argue that an effective defense requires training a single
network which is simultaneously robust to multiple transfor-
mations. In particular, we propose to solve the following robust
ensemble training objective.

min
θ

1

N

N∑
i=1

L(θ, x̂i,ti , y) ; ti ∼ {ta, tb, ..., tn} (4)

We minimize the training loss over the adversarial examples
generated from transformation ti, which is randomly sampled
from the set of possible transformations for each image at
each training step. We use the single-step data augmentation
to construct xti .

In developing an ensemble of robust training objectives, it
is critical to consider the following challenges.
• Is there a conflict between the objectives of robust train-

ing with multiple attack transformations?
• Will there be high accuracy degradation when embedding

robustness to multiple attacks?
As we will see in Section VI-D, we answer both questions

negatively. We first show that the proposed robust training
is able to achieve simultaneous robustness to multiple at-
tacks. In addition, we also did not observe any degradation
in test accuracy. In summary, we find robustness to each
transformation, when robustly trained against all, is almost
similar to robustness achieved by training against an individual
transformation. We hypothesize that the high expressive power
of deep neural networks enables this phenomenon.

V. EXPERIMENTAL SETUP

We use twenty-four common image transformations, rang-
ing from geometric, random noise, photometric, blurring, and
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Fig. 5: Robust accuracy against different image transformations, where none refers to benign accuracy. For both dataset,
adversarial transformations significantly reduces the accuracy of the network.

weather changes (Table I). To avoid degrading visual quality,
we sample parameters of each transformation from a bounded
range. We provide the range of these parameters in Appendix
1. We use the well-standardized ImgAug library [27] to
implement the transformations. We use the worst-of-50 attack
to measure robust accuracy.

We conduct all our experiments on the ImageNet [28]
dataset. We deliberately avoid experimenting with very low-
resolution datasets, like MNIST and CIFAR-10, where even
the smallest physical transformations, such as weather changes
or blurring, often heavily distort the image quality. However,
to imitate the scale of these smaller datasets, we also ex-
periment with R-ImageNet (Reduced-ImageNet) [29], a 10-
class subset of ImageNet. Note that ImageNet has 1000
classes. In comparison to MNIST and CIFAR-10, which
have 28×28 and 32×32 size images, respectively, we use
224×224 images for R-ImageNet. We employ widely used
Residual networks [30], including ResNet50 for ImageNet and
ResNet18 for R-ImageNet, in our experiments. We provide
additional experimental details in Appendix 2.

Since our defense is based on data augmentation, we train
our baseline networks without any data augmentation. We use
the following metrics to evaluate the performance.
Benign accuracy. Measures the percentage of test data points
that are classified correctly.
Robust accuracy. Captures the number of correctly classified
adversarial examples by a network.
Aggregate robust accuracy. Average of robust accuracy
achieved against adversarial examples based on each of the
individual transformations.

VI. EXPERIMENTAL RESULTS

We now present results demonstrating the success of adver-
sarial examples based on physical transformations, robustness
with single-step based data augmentation and its generaliza-
tion, and effectiveness of robust ensemble training in achieving
robustness to multiple transformations.

A. Success of adversarial attacks based on physical transfor-
mations

We present our results in Figure 5 where we report the
robust accuracy against each of the twenty-four image trans-
formations for both R-ImageNet and ImageNet dataset. We
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Fig. 6: Robust accuracy against a transform when an individual
networks is robustly trained against it on R-Image dataset. We
perform robust training with single-step dataset augmentation,
which is consistently improving robust accuracy across all
transformations. The results for ImageNet dataset are embed-
ded in the Figure 8 itself.

find that adversarial attacks based on each transformation are
highly successful in reducing the accuracy compared to the
benign accuracy (i.e., labeled as None).
Adversarial attacks are more successful for ImageNet. We ob-
serve an aggregated robust accuracy of 33.2% for R-ImageNet
and 21.4% for theImageNet dataset. Note that ImageNet
includes 1000 classes, in comparison to 10 classes in R-
ImageNet, which makes it easier to misclassify images with
adversarial perturbation.
Success also depends on the choice of transformation. While
most transformations successfully reduce the accuracy of the
networks, some are more adversarial than others. For example,
perspective transformations, including affine, are generally
more adversarial than other geometric transformations. Simi-
larly, coarse noise patterns, such as coarse salt-n-pepper, coarse
dropout, and impulse noise, are far more adversarial than
other random noise distributions. Finally, we find most weather
transformations, such as clouds and fog, are more adversarial
than most of the other transformations.
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Fig. 7: Generalization of robust accuracy for both R-ImageNet
and ImageNet dataset. Diagonal entries measures intra-group
generalization (rintra) and non-diagonal entries measures
inter-group generalization (rinter).

Aggregated robust accuracy for subgroups. We observe 37.2%,
29.7%, 46.7%, 18.6%, and 21.3% aggregate robust accuracy
for ImageNet and 21.0%, 14.6%, 28.8%, 33.7%, and 15.7%
aggregate robust accuracy for R-ImageNet over geometric,
random noise, blurring, photometric, and weather subgroups,
respectively. Some subgroups, such as weather transforma-
tions, are highly adversarial, which necessitates the develop-
ment of a defense against these attacks.

B. Effectiveness of single-step based data augmentation

Single-step data augmentation with an individual transfor-
mation is highly effective in improving a model’s robust accu-
racy when trained for that specific transformation (Figure 6).
For example on the R-ImageNet dataset, a ResNet18 net-
work, robust training with rotation-based data augmentation,
achieves 82.7% robust accuracy, whereas the baseline model
yields only 50% robust accuracy, against rotation-based ad-
versarial examples. Similar improvements are achieved across
different transformations, when robust training is performed
with them, yielding a mean improvement of 42.6 percentage
points. Across the geometric, random noise, blurring, photo-
metric, and weather subgroups, robust training achieves an
improvement of 38.7, 45.7, 40.9, 61.0, and 50.1 percentage
points in robust accuracy, respectively. Similarly, for the Ima-
geNet dataset, it achieves an improvement of 27.8, 37.3, 26.7,
26.8, and 37.7 percentage points in robust accuracy across the
same subgroups, respectively (Figure 8).

C. Generalization of robustness to unseen attacks

While robust training with single-step data augmentation
using a particular transformation achieves high robustness
against it, it is unclear how well it will generalize, i.e., resist
attacks based on other transformations. We provide results on
generalization in Figure 7. We study both the inter- and intra-
group generalization of adversarial robustness. Against each
adversarial transformation, we use the difference of robust
accuracy for a robust and the baseline networks, and aggregate
it along subgroups based on Equation 2, 3.
Strong intra-group generalization. We find that robustness
achieved against a specific transformation also generalizes
strongly to others within the same subgroup. For example, a

ResNet-18 network which is robustly trained against rotation-
based attacks, also improves the robust accuracy by 21 per-
centage points against other geometric transformations for the
R-ImageNet dataset. Similarly, robustness against fog-based
transformation also improves robustness to other weather-
based transformations by 12 percentage points. We observe
a similar trend for the ImageNet dataset (Figure 7b) where
robustness to intra-group transformations increases by 6-20
percentage points.
Weak inter-group generalization. We find only a weak gen-
eralization of robustness to inter-group transformations. For
example, a network robust to rotation-based attacks, only
achieve 2-5% improvements in robust accuracy across other
transformations from other subgroups. We also observe an
inverse generalization where robust training against perturba-
tions from geometric, noise, blurring, and weather subgroups
lead to a decrease in the robust accuracy for attacks based on
optical changes on the ImageNet dataset.
Dependence on dataset. We find a weaker generalization of
robustness for the ImageNet dataset, in comparison to R-
ImageNet. It could be attributed to the 1000-class classifi-
cation for ImageNet, in comparison to 10-class classification
for R-ImageNet. In particular, the inter-group generalization
degrades most when transitioning from R-ImageNet to Ima-
geNet. For example, an average increase in the inter-group
robust accuracy, i.e, mean across all non-diagonal entries in
Figure 7, is only -0.25% for ImageNet, whereas it is 2.3% for
the R-ImageNet dataset.

D. Simultaneous robustness to multiple attacks

While intra-group generalization of robustness provides
some robustness to transformations within the same subgroup,
it fails to achieve simultaneous robustness to multiple other
attacks. Now we provide results with proposed ensemble
training using single-step adversarial examples from all trans-
formations. We present our results in Figure 2, 8.

We demonstrate that robust training with adversarial exam-
ples from multiple transformations can enable the network
to achieve simultaneous robustness to each of them. While
the baseline network achieves only 21.4% aggregate robust
accuracy, our robust network achieves 50.0% aggregate robust
accuracy, an improvement by more than 2×. The correspond-
ing improvement in each subgroup is 21.0, 38.1, 28.2, 22.1,
and 32.9 percentage points, respectively. We argue that the
very high-expressive power of neural networks enables them
to achieve such simultaneous robustness to a range of multiple
attacks.
Impact on benign accuracy. Even when robust training with
multiple transformations, we find that the benign accuracy of
the network does not degrade. In contrast, using single-step
data augmentation improves a network’s generalization and
itself improves the benign accuracy. We find this effect in exis-
tent even when doing data augmentation from a set of multiple
transformations. We find that the robustly trained networks
with all transformations achieve 71.8% benign accuracy while
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Fig. 8: Detailed results for each of attack-defense pair on ImageNet dataset. For each transformation we robustly train an
individual network and measure its accuracy with each attack transformation. All refers to robust ensemble training.

baseline networks, trained without any data augmentation, only
achieve 68.4% benign accuracy.
Most adversarial transformations. Our results suggest the
trend that transformations that are most adversarial against
a baseline network are harder to defend against. Certain
transformations, such as coarse random noise, clouds, fog,
affine, perspective, and elastic transformations, remain most
adversarial for both baseline and robustly trained networks.

VII. DISCUSSION AND CONCLUSION

We demonstrated that a deep neural network can achieve
simultaneous robustness to multiple physical transformation-
based attacks. However, do these networks have high enough
expressive power to also achieve additional robustness against
Lp norm-based adversarial attacks? We answer this question
affirmatively. We find that including L∞-perturbation with
existing ensemble training setup leads to only 1%-5% degrada-
tion in robustness to physical transformations, while achieving
64% robustness in L∞-perturbation-based attacks. Ensemble

training with only physical transformations leads to 0% robust
accuracy against the L∞ perturbation for 2/255 for ResNet18
network and R-ImageNet dataset.

Conclusion. Deep learning is making rapid progress in many
safety-critical areas that rely on images and video such as
autonomous driving and healthcare. Robust training has shown
to be effective in preventing adversarial learning-based attacks
and limited physical attacks for these types of media. We
extend earlier work and consider adversarial learning attacks
based on twenty-four types of image transformations. We
demonstrate that these adversarial attacks are highly effective,
even at the scale of the ImageNet dataset. Next, we demon-
strate that single-step data augmentation algorithm can provide
robustness to individual transformations, with a negligible
computation overhead over benign training. We show that
the achieved robustness also generalizes to some other attack
vectors. Finally, we demonstrate that a single network can be
effectively trained to handle multiple, simultaneous attacks.
This work is an important step towards protecting a user’s



safety in critical applications that rely on image classification.
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