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ABSTRACT
Drones represent a signi�cant technological shift at the conver-
gence of on-demand cyber-physical systems and edge intelligence.
However, realizing their full potential necessitates managing the
limited energy resources carefully. Prior work looks at factors such
as battery characteristics, intelligent edge sensing considerations,
and planning in isolation. But a global view of energy awareness
that considers these factors and looks at various tradeo�s is es-
sential. To this end, we present results from our detailed empirical
study of battery charge-discharge characteristics and the impact of
altitude and lighting on edge inference accuracy. Our energy mod-
els, derived from these observations, predict energy usage while
performing various maneuvers with an error of 5.6%, a 2.5X im-
provement over the state-of-the-art. Furthermore, we propose a
holistic energy-awaremulti-drone scheduling system that decreases
the energy consumed by 21.14% and the mission times by 46.91%
over state-of-the-art baselines. We release an open-source imple-
mentation of our system. Finally, we tie all of these pieces together
using a people counting case study.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems.
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1 INTRODUCTION
Unmanned Aerial Vehicles (UAVs), popularly known as drones,
represent a signi�cant technological shift, at the convergence of on-
demand cyber-physical systems and edge intelligence. They have
shown tremendous promise in collecting data that are either dan-
gerous, expensive, or impractical to obtain otherwise [31]. Drones
have provided disruptive solutions for monitoring natural and built
environments in varied applications such as agriculture [38], re-
newables [23], wildlife conservation [33], search and rescue [34],
etc. Drone-based applications are taking o� because of the availabil-
ity of open-source hardware and software platforms [27, 40] at an
a�ordable cost [11], and regulatory clarity in many countries [4, 5].

As drones are mostly battery-powered, managing their energy
resources is critical, whether we consider an individual drone in
isolation or a �eet of drones deployed for a task. Increased battery
life leads to longer �ight times, enabling more extensive coverage
with the available drones, and a higher uptime with fewer charging
pitstops. To highlight the signi�cance of energy constraints on
drones, consider a disaster recovery scenario illustrated in Figure 1
that shows a �ood-a�ected area along the banks of a river. The
two drones deployed — shown as blue and red crosses — �y along
pre-determined routes, with the mission of identifying possible
human subjects in harm’s way. The aerial picture shows the objects
detected by the blue drone using an on-board camera. Ensuring that
the area of interest is covered quickly and e�ectively by the drones
available would require careful management of their battery energy
resource, which, in turn, requires overcoming several challenges.

First, charging should ideally happen autonomously (e.g., with
a wireless charging pad [22]), so that the drones can remain in a
perpetual cycle of getting charged, taking o� for their mission, and
then landing to get charged again, without any human involvement.
There is the question of the level to which to charge the drone bat-
teries. To the extent that the rate of charging is a concave function
of time, it might be bene�cial to charge partially and free up the
charging station for another drone to use. Moreover, in a setting
with a �eet of drones — a common case for large-scale sensing tasks
— there might be heterogeneity in the capacity, chemistry, and age
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Figure 1: Multiple drones surveying a given
area for disaster recovery

Figure 2: Varying weather,
lighting and altitude

Figure 3: Distributed irregular survey regions
for ecological assessment of dam construction

of batteries. So, we need to create custom charging and discharging
pro�les for each drone battery.

Second, while most applications to date have used the drone
as a “dumb” sensing device [26, 28, 37], there are many situations
where it is advantageous to have on-board intelligence on the drone
for local sensor stream processing (E.g. bandwidth constraints and
privacy concerns). Energy again plays a non-trivial role in edge
computation i.e., the interplay between battery energy and the accu-
racy of computation with varying weather and lighting conditions
(see Figure 2). For instance, in our disaster recovery scenario, drones
�ying at a greater height could capture a larger area using their
cameras, thereby enabling greater coverage for a given amount of
battery drain. However, the detection accuracy for the objects of
interest (e.g., people, vehicles) would likely su�er due to the re-
duced size of the objects in the captured images (e.g., see Figure 1).
Flying the drones at a lower height would likely improve the object
detection accuracy but at the cost of reduced coverage and hence
an increased survey time. Hence, there is a need to balance the
energy cost and the task accuracy of each computing platform.

Finally, large-scale surveying tasks might need the services of
multiple drones to complete in stipulated time. However, partition-
ing the task among a heterogeneous �eet of drones is non-trivial.
Consider a scenario shown in Figure 3. Here, a surveying task en-
tails assessing the ecological impact after creating a reservoir for a
dam by counting the number and species of the submerged trees —
similar to a problem discussed in [30]. Due to the undulating bed of
the reservoir lake, the partially submerged regions are distributed
across a wide area. Thus, it is important to consider the location,
shape, and square footage of these regions to divide the surveying
task optimally across multiple drones available at one’s disposal.

Prior work has looked at the e�ect of battery charecteristics [10,
36], path planning and scheduling [6, 20, 39], and e�ect of variation
in drone imagery [13] on drone operation in isolation. However, a
holistic view is needed to break the silos by considering tradeo�s
between these factors to develop energy-aware drone scheduling.
We address these challenges through the following contributions:

(1) Drone energy modeling: We present an extensive empiri-
cal study based on over 100 drone �ights to arrive at several
observations regarding the drone charging and discharging
characteristics. Based on these, we perform a detailed and
accurate modelling of battery performance. We report an
error of just 1.94% in predicting the battery charge times.

Furthermore, our novel predictor accurately predicts energy
consumption for di�erent drone manoeuvres, with an aver-
age error of 5.6% — a 2.5⇥ reduction in error from the state of
the art [36]. We also discuss the tradeo� between drone en-
ergy consumption and varying altitude, lighting conditions,
etc.

(2) Energy-aware Scheduling: Informed by our observations
from the empirical study, we build a holistic system to create
energy-aware �ight paths for a given task. Our system gen-
erates energy-aware �ight path for a given shape via a novel
path planning algorithm and splits the task among a �eet
of drones via an Integer Linear Programming (ILP) model.
Thus, our system decreases the average energy consump-
tion by 21.14% when the shape regularity is less than 0.85
(and overall improvement of 10.15%) and an average relative
time reduction of 46.91% in a multiple drone setup, over the
variety of baselines and the state of the art.

(3) Open-source implementation: We create an open-source
toolkit for charging and discharging energy models of drone.
We also implement our system as an extension to the most
widely used open-sourcemission planning software, qGround-
Control [40]. Our implementation involvedwriting over 2000
lines of C++ code and 400 lines of QML scripts.

2 ENERGY CHARACTERIZATION AND
MODELING

In this section, we discuss some interesting and non-intuitive pat-
terns learned through an extensive empirical study, which included
completing over 100 �ights on drones with varying payload along
with charging the batteries in varied settings (i.e., di�erent initial
charging current). We use a custom-built quadcopter of 1-meter
diagonal length with 15-inch propellers and weighing around 900
grams without the battery. For the experiments presented in this
paper, we used an 8000 mAh LiPo battery. Moreover, we introduce
accurate models for the time taken to charge the batteries and the
energy consumption on various maneuvers.

2.1 Battery Charging Characterization
High discharge currents with high energy density, and �exibility in
shape and size make Lithium-Ion (Li-ion) or Lithium-Polymer (LiPo)
batteries ideal candidates for powering drones. Similar to any other
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battery chemistry, Li-based ones also have some peculiarities. Here,
we highlight the e�ect of two main factors — i) starting current,
and ii) age — on the LiPO battery used in our drones.

Impact of starting current: The initial battery charging hap-
pens at a constant current level (CC mode). After a while, the
charging process reaches an in�ection point beyond which the
charging happens at a constant voltage level (CV mode). Higher
currents allow faster charging, while at the same time, the battery
capacity degrades more quickly over multiple cycles [8]. Over the
entire empirical study, we experimented with di�erent charging
currents. Figure 4(a) illustrates the impact of the initial current on
the charging time of the battery. The �gure presents the change
in the charging current, the battery voltage, and the cumulative
energy delivered for the three di�erent charging sessions. For this
experiment, we considered the batteries of the same age, i.e., ones
that had undergone the same number of charge-discharge cycles.
Speci�cally, we looked at the time taken to deliver the last 140 Wh
to charge the batteries fully 1. The overall time taken with the initial
current of 6.4A, 3.7A, and 1.8A is 72 minutes, 112 minutes, and 207
minutes, respectively. For applications that require higher drone
uptime, with disregard for battery capacity degradation down the
line, one must choose higher initial charging currents.

Observation: Higher starting current leads to a commensurate
reduction in charging times.

Impact ofAging:The energy density of Lithium-based batteries
is a�ected by ageing [8]. Battery ageing is caused by cell oxidation
— an irreversible process. Over multiple charge-discharge cycles,
the usable capacity drops consistently. We observed the e�ects of
ageing over 200 charging cycles spread across multiple batteries.

Figure 4(b) illustrates the impact of ageing on the time taken
to deliver the �nal 140Wh of energy to charge two batteries fully.
Both batteries are charged with the same initial charging current
of 6.4A. Battery 1 is a new battery with fewer than �ve charging
cycles, whereas Battery 2 had been put through over 130 charge-
discharge cycles.As shown, the current and energy charging pro�les
are identical in the �rst 34 minutes, as both batteries are in the CC
mode of operation. However, the voltage increase in Battery 2 is
much quicker as it reaches the in�ection point faster. After reaching
the in�ection point, Battery 2 continues to get charged in the CV
mode at a much slower rate, as indicated by the �atter energy curve.
Battery 1 switches from CC to CV mode much later — around
the 45-minute mark. To fully charge Battery 1 and Battery 2, it
takes 79 and 113 minutes respectively. Thus, the time taken to fully
charge batteries with the same quantum of energy depends on their
respective age.

Observation: Older batteries reach the in�ection point faster and
take longer to charge a given amount of energy.

2.2 Battery Charging Modeling
The charging process is non-linear (due to the CC and CV modes)
and varies with charging current and battery age. Thus, there are
opportunities for drone operators to create drone �ight schedules
that optimize drone uptime by knowing the charging pro�les of
various drone batteries in their �eet. Using the observations made

1As batteries degrade over time, their capacity reduces. In our setup, 140 Wh was the
minimum energy needed to fully charge the oldest battery.

(a) (b) (c)

Figure 4: (a) Impact of starting current, (b) Impact of aging
on charging time, (c) Charging parameters vs current

through our empirical study, we now present our model to charac-
terize the charging pro�les accurately. Figure 4(a) shows how the
current pro�le is �at until the in�ection point and experiences an
exponential reduction in the CV mode. On the other hand, the volt-
age pro�le follows a quadratic curve until it reaches the in�ection
point and stabilizes at a maximum value in the CV mode.

Let � represent the time elapsed since the start of charging until
when the in�ection point occurs. I star t is the starting current
applied for charging, and the �nal maximum voltage attained in the
CV mode is Vmax , which is constant for a speci�c battery-charger
pair. Let Vt and It represent the voltage and the current levels at
time t 2 [0,T ], whereT is the total number of time intervals needed
for charging. We model the current and the voltage pro�les using a
piece-wise curve �t. In the CC mode, when � > t , we have:

Vt = Vmax � � ⇤ (� � t) � � ⇤ (� � t)2; It = I
star t

� and � are the quadratic coe�cients that �t the voltage curve.
These parameters varies for di�erent starting current, battery age,
etc. In the CV mode, when � < t , we have:

Vt = V
max ; It = I

star t ⇤ � (t��)

Here, � is the exponential parameter to �t the current curve. Once
again, this parameter vary for di�erent starting current, battery
age, etc. The above equations can be combined as:

Vt = V
max � � ⇤ (� � t)+ � � ⇤ ((� � t)+)2

It = I
star t ⇤ � (t��)+

For estimate the parameters such as �, � , � , and � , we use
a Bayesian Inference approach that provides probability density
functions for each of these parameters. We describe the complete
Bayesian formulation in Table 1. Here, we assume that the error
associated with �tting the voltage and current pro�les are normally
distributed N(0,� ). Also, we use weakly informative prior for the
di�erent battery charging parameter based on the range of val-
ues relevant to the domain. Using the Markov chain Monte Carlo
(MCMC) method, we can utilize the evidence (i.e. known quantities
such as Vt and It8t 2 T ) to get the posterior distributions for the
charging model parameters such as � , � , � , and � starting from the
initial prior beliefs. The priors were set using the recommendations
provided by Gelman et al. [16].

Based on the past charging sessions, we can learn the di�erent
charging parameters. From our empirical study, we found that the
value of �, changes with the age of the battery. However, for same-
aged batteries, � corresponds to reaching a speci�c battery energy
level — irrespective of the starting current. From the Figure 4(c),
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Prior
� ⇠ U(0,T ), � ⇠ U(0, 1), � ⇠ N(0, 2), � ⇠ N(0, 2),
�
I ⇠ Cauch�(0, 5), �

V ⇠ Cauch�(0, 5)
Regression Equation
µ
V
t = Vmax - � ⇤ (� � t)+ � � ⇤ ((� � t)+)2
µ
I
t = I

star t * � (t��)
+

Model Likelihood
Id ⇠ N(µIt ,� I ), Vd ⇠ N(µVt ,�V )
Parameter Bounds
0 < � < T , 0 <= � <= 1, �1 <= � , � <= 1

Table 1: Drone charging Bayesian model formulation

we observe that both � and � follow a linear relationship with the
starting current, re�ecting the fact that the higher the charging
current, the more rapidly the voltage approaches Vmax during the
CC phase. This linear dependence helps in learning the parameters
for a speci�c charging current by interpolating the parameter values
for various other charging currents. On the other hand, the value
of � (⇡ 0.91), which pertains to the CV phase, does not change
with starting current for the battery. While all (except � ) these
parameters change with battery age, the change is gradual. Thus,
we can predict quite accurately the time taken to charge the battery.

2.3 Battery Discharging Characterization
Energy consumed to �y the drone depends on the current drawn
by the motors to provide the lift and thrust needed to execute
the various maneuvers. In turn, these depend on the prevalent
environmental conditions (wind speed and direction), the weight
of the payload carried, etc. Here, we highlight the impact of two
main factors — i) the drone’s speed, and ii) weight of the payload
— on the battery drain observed. This study involved recording
energy consumption data over 100 �ights involving a diverse set
of maneuvers in di�erent wind conditions and carrying di�erent
amounts of payload.

Impact of speed: While �ying the drone at a higher speed will
result in a shorter time to complete a mission it is unclear if the
energy consumed will also reduce. Thus, to illustrate the impact
of speed, we show the results from two speci�c �ight paths — (i)
linear horizontal �ights between two points approximately 130
meters apart at varying speeds, and (ii) vertical �ights between the
altitudes of 10 and 50 meters above the ground at 2 m/s.

Figure 5(a) shows the horizontal speed and the power consumed
of the drone moving between two points while switching its maxi-
mum speed from 8 m/s to 6 m/s and �nally to 4 m/s. Clearly, the
maneuvers are completed in a shorter time at higher speeds. How-
ever, the power consumption does not increase proportional to
the increase in speeds. Thus, the reduction in energy consumed
at higher speeds is the result of a reduction in time without an
equivalent increase power. Figure 5(b) presents the relationship
between vertical up and down movement and power consumption.
Ascending higher is represented by a positive value of the vertical
velocity component represented as Vz , whereas a negative value
represents the drone descending towards the ground. As shown,
working against gravity (while ascending) incurs a 30% higher
power consumption on average compared to descending, assisted
by gravity.

(a) Horizontal �ights. (b) Vertical �ights

Figure 5: Power usage for various drone maneuvers

Observation: At higher horizontal speeds, the energy usage is
lower due to reduction in time without an equivalent increase power.
Ascending incurs a 30% higher power compared to descending.

Impact of weight: Drones often carry an additional payload
for speci�c missions. Thus, it is essential to characterize the energy
consumption when carrying di�erent weights. To study the impact
of weight in detail, we created two drone workloads, i.e., �ight plans
involving several maneuvers. We call the �rst workload Horizontal
Oblique Triangle, in which the drone moves horizontally from the
start point to the endpoint in a straight line separated by a distance
of 240m at 10 m/s. After reaching the endpoint, the drone follows
an oblique path upwards to the center of this line but at a higher
altitude of 20m at 5 m/s. Then the drone returns to the start point
by moving in an oblique path downwards at 5m/s. These series
of maneuvers forms a triangular �ight path. The drone completes
three such triangular �ight paths for a given payload. This workload
is completed in roughly 341 seconds. The second workload is called
Vertical Shift Hover. Here, the drone ascends from a height of 10 to
30 meters in 10 meter increments. At each point, the drone hovers
for 5 minutes before ascending. After hovering for 5 minutes at 30
meters height, the drone descends for landing. This workload takes
approximately 920 seconds to complete. Table 2 summarizes our
�ndings of executing these two workloads with di�erent weights
attached to the drone. We observe a linear relationship between
the energy consumed and the drone weight.

Observation: The increase in weight results in a linearly propor-
tional increase in energy consumption.

2.4 Battery Discharging Modeling
Having discussed the impact of speed and payload, we want to
predict the instantaneous power consumed while performing var-
ious maneuvers. By integrating the predicted power values, we
can easily calculate the energy spent on a given set of maneuvers.
Below, we discuss our power prediction model in more detail.

We can think of the power required to maintain a stable �ight as
a combination of several components. Let Px� , and Pz be the power
needed to sustain the �ight in the horizontal and vertical direction,
respectively. Similarly, let Pwind be the power demand to resist
the deviation due to the wind. Finally, Pdra� is the power neces-
sary to move against drag. We know that Power = Force*Velocity =
Mass*Acceleration*Velocity. Note that while hovering, drone’s ver-
tical acceleration (Az ) has to be equal and opposite to acceleration
due to gravity, i.e., 9.8m/s2 near sea-level.
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Workload Time (s) Weight (kg) Average Power (W)
Horizontal
Oblique
Triangle

341
1.895 170.01
1.995 181.20
2.095 190.87

Vertical
Shift
Hover

920
1.895 172.51
1.995 181.60
2.095 206.51

Table 2: Impact of weight on power consumption

Figure 6: Detection Accuracy across various conditions

Px� =m ⇤Ax� ⇤Vx� ; Pz =m ⇤Az ⇤Vz ; Pwind =m ⇤Ax� ⇤Vwind ;

Here,m is the mass of the drone, Ax� and Vx� are acceleration
and velocity in the horizontal direction. Similarly, Az and Vz are
acceleration and velocity in the vertical direction. Vwind denotes
the velocity of the wind. Further, from drag equations [7], we know
that Pdra� is proportional toVx� · (Vwind +Vx� )2. Note that acceler-
ation and velocities are vector quantities and have both magnitude
and direction associated with them. One can �nd a closed-form ex-
pression linking the overall power consumption of the drone, given
by Ptotal . However, these components may not be independent of
each other. Thus, we choose random forest regression to learn a
power prediction model using the four components of power as
features to predict instantaneous power use.

2.5 Energy-aware Inference Characterization
We now turn to the inference performed on the drone, speci�cally
for (aerial) vision-based tasks. We characterize the various trade-
o�s in executing ML inference workloads, such as object detection
on edge devices. We experiment with two edge platforms, a Rasp-
berry Pi 4 with a Google Coral USB Accelerator (Coral+RPi4) and
Nvidia Jetson Nano. To characterize the object detection perfor-
mance, we �ne-tune two Single Shot Detectors (SSD) [25], with
MobileNetV1 [19] (MV1) and MobileNetV2 [32] (MV2) backbone
networks. The detectors are pretrained on MS-COCO dataset [24]
which comprises natural and “on-ground” scenes. We conduct our
experiments on the UAVDT dataset (details in Section 5.1). This com-
bination of the SSD detection model with the MobileNet backbones
is known to be accurate while being e�cient and minimizing la-
tency, even outperforming computationally more expensive models
like FasterRCNN in UAV scenes [13].

Impact of Altitude and Lighting conditions: Inference tasks
are heavily dependent on the characteristics of the data. For in-
stance, �ying the drone at a lower altitude would consume more
energy, as a smaller area is captured in the �eld of view of the cam-
era, requiring the drone to travel more distance to cover a target
area. A decrease in �ying altitude will result in a quadratic increase
in the distance to be covered by drone, and thus an altitude drop is
costly. However, this may ultimately be necessary if the DNNmodel
su�ers from unacceptable degradation in accuracy from using the
more distant imagery obtained at higher altitudes. Furthermore,
changes in weather conditions, such as fog, could reduce visibility
and necessitate �ying at a lower altitude. We do not consider the
direct power consumption attributable to computation, which could
consume ⇡ 5-10W (e.g., Jetson Nano, etc.) — equivalent to less than
2% of the energy consumed by the drone used in this study.

Figure 6 shows detection accuracy across various altitudes and
lghting conditions for the di�erent hardware and model combi-
nations. As expected, increasing altitude of the drone results in a
drastic drop in accuracy, due to the smaller size of the objects in
view. It is interesting to note that night time conditions yield better
accuracy than day time conditions. This is possibly due to models
learning to identify vehicles based on their headlights and taillights
being on during the night. Also, foggy conditions are especially
bad for model performance.

Observation: Altitude and lighting conditions signi�cantly in�u-
ence the accuracy of the sensing task.

2.6 Energy-aware Inference Modeling
Having discussed the tradeo�s between various on-board edge
devices, model quantization and drone altitude, we present our
framework for predicting accuracy, given the edge device, model
quantization level, the lighting condition and the �ying altitude of
the drone. Consider altitude as a discretized variable alt (with a
bin-size of say b metres), while the variables relevant to a model
such as model quantization, lighting etc are denoted by o. Here, we
model the performance to be a set of piece-wise linear functions of
altitude, conditioned on the other variables. We sample the value
set for performance and altitude from the experiments we have
conducted earlier,

per fo (alt) =m ⇤ alt + c altb < alt < altb+1

wherem and c are computed from the accuracy values of the
task after �ying the drone at the speci�ed altitude. Given a desired
accuracy level, we can now �gure out the highest altitude to �y
our drone at. At this altitude our sensing will be accomplished at
above the expected accuracy level with the largest �eld of view,
thus minimizing the energy consumed.

3 ENERGY-AWARE SCHEDULING
In this section, we leverage the preceding insights to design an
energy-aware drone scheduling system. We �rst summarize the
key characteristics of drone operation that guides our design and
then explain the key components of our system.

First, to survey a designated area, the drone is �own in straight
lines called transects to cover the ground below the �own region
with measurements. Turns are only made to move from one transect
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to another and do not contribute to the survey. Thus, minimizing
the number of these turns is integral to optimizing energy usage
as these are wasteful maneuvers. Second, we earlier observed the
impact of speed on energy consumption. These characteristics im-
ply that the transects should be as long as possible to maintain
sustained high speeds to save energy. Thus, the orientation of gen-
erated transects should be such that they are as long as possible,
covering the maximum portion of the area of interest, called the
optimum sweep direction [20]. Third, we can restrict the charg-
ing only up to the in�ection point as the battery capacity increase
beyond this stage is much slower. Finally, if in a �eet there are
drones with old batteries, it would be bene�cial to allocate fewer
manoeuvres to them as charging older batteries takes a longer time.

3.1 Path Planning
Concave Partitioning: The shape of the area to be surveyed

could either be convex or concave. In case of a concave polygonal
shape, optimum sweep direction may not guarantee coverage in
minimum time due to redundant turns. Therefore, a set of convex
sub-regions ensures that for each sub-region we traverse in the
optimum sweep direction to minimize energy consumption. Thus,
we partition the concave space into a set of convex sub regions [21].

Finding Transects: In this step, we determine the optimum
sweep direction for each convex sub-region. We utilize the algo-
rithm described in [6], which determines the direction of the maxi-
mum width of the polygon obtained by rotating it at every orien-
tation (iterated at 1 degree in our implementation). Further, if two
adjacent sub-regions have similar optimum sweep direction, we
merge them into a single sub-region, via a threshold �min . Tran-
sects are formed along the optimum sweep direction. The other
factor determining the number of transects is the altitude (which
de�nes the �eld of view) and it is estimated from the desired ac-
curacy level of the sensing task (as described in Section 2.6). For
a given sub-region, and given sweep direction and altitude, there
are four ways in which the entire polygon can be surveyed. Our
energy model requires acceleration data to estimate energy usage
to cover various transects. Thus, we simulated acceleration data
for di�erent transects.

Connecting Sub-Regions: After obtaining the transects, we
need to traverse between the sub-regions in such a way that en-
ergy consumption is minimized. We call the inter-region traversal
distance as transition distance. For connecting the sub-regions, we
should minimize the sum of transition distance from one sub-region
to another. A brute-force approach compares the total transition
distance for all the possible orderings of the sub-regions and for
each permutation of four possible traversals of a sub-region. This
approach is computationally expensive as run-time is exponential
to number of sub-regions. Thus, we �rst decide the order of visiting
every sub-region. We model the sub-region ordering problem as
a graph problem. Each sub-region is considered as a vertex, and
the edge weights are the inter-centroid euclidean distance between
them. The proposed formulation is equivalent to the travelling sales-
man problem (or the source-t min cost Hamiltonian Path problem)
in a metric graph (due to the de�nition of edge weights). However,
the formulation is NP-Hard and a polynomial time approximation
heuristic exists, the Christo�des algorithm [9, 18]. The upper bound

is 3/2 for the general case and 5/3 for the s-t case. These are cur-
rently the best known bounds for the problem. This algorithm gives
us the order of traversal of the sub-regions.

We have obtained the ordering of traversal between the sub-
regions, however, there are four possibilities while traversing each
sub-region. The traversed path can be found by comparing the
distance between the four possible end points of the �rst convex
sub-region to the four possible end-points of the second sub-region.
After connecting the points with minimum distance, the two sub-
region are combined and there are only two possible end-points
of the combined sub-region. Then, compare the distance between
the two end points of the combined sub-region with the four end
points of the third sub-region and so on to get the �nal path.

3.2 Task Scheduling
We formulate an integer linear programming program (described
in Table 3) to solve task division among the available drones.

Let � 2 � be an ordered list of transects and d 2 D be the set
of available drones. Each drone d takes time T� ,d to cover tran-
sect � and consumes energy E� ,d . As we know the traversed path
and can simulate the drone dynamics, E� ,d can be estimated by
calculating the instantaneous power from simulated acceleration
using the model described in Section 2.4, and then integrating the
predicted power values. The drone d has to travel from the ending
of transect � to the start of transect � + 1 (take a turn), and for this
it has to waste time T̂� ,�+1,d and spend energy Ê� ,�+1,d . Ê� ,�+1,d
is again estimated using the model described in Section 2.4, similar
to how E� ,d is estimated. Each drone is allocated a contiguous list
of transects to decrease the number of turns (which are wasteful
as noted earlier). Let the battery capacity of drone d be denoted by
Bd and time taken to charge the exhausted battery till the constant
current charging mode be Cd . We can reliably estimate the battery
pro�les (Bd and Cd ) using the models described in Section 2.2 and
Section 2.4 as the battery charging process is linear (CC mode).
Further, we want to know if the drone has visited the transect � . Let
the binary indicator variable V� ,d denote if d has visited � , while
another binary indicator variable V̂� ,�+1,d denote if d has covered
the distance between � and � + 1. In our formulation shown in
Table 3, we would want to minimize the time (Mt ime ) in which the
given task can be completed. To minimizeMt ime , we only need to
look at the drone that takes the maximum time to complete its task.
Let Etotald be the total energy and T totald be the total time taken
by d to cover the task assigned to it. These two quantities can be
de�ned in terms of the indicator variables,V� ,d , V̂� ,�+1,d , the time
T̂� ,�+1,d and energy Ê� ,�+1,d .

In the formulation, constraint (1) ensures that the variables V� ,d
and V̂� ,�+1,d are binary, i.e., a transect or transition between tran-
sects is either completed or not completed. Constraint (2) ensures
that the intermediary distance between � and � + 1 is considered
as visited by drone d , if and only if the same drone visits both the
transect � and � + 1. Such a constraint ensures that a drone covers
contiguous transects. Also, any transect must be visited only once
in total (see constraint (3)). As we handle cases where all drones are
used for the task, the total number of transitions between transects
is constrained by the number of transects � subtracting the number
of drones D, and is represented by (4). (6) denotes the number the
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minimize Mt ime

s.t.
(1) V� ,d 2 {0, 1}, V̂� ,�+1,d 2 {0, 1} 8� 2 �, d 2 D
(2) V̂� ,�+1,d <= V� ,d , V̂� ,�+1,d <= V�+1,d 8� 2 �, d 2 D
(3)

Õ
d2D

V� ,d = 1 8� 2 �

(4)
|� |�1Õ
�=1

Õ
d2D

V̂� ,�+1,d = |� | � |D |

(5) Etotald =
Õ
� 2�

V� ,d · E� ,d +
|� |�1Õ
�=1

V̂� ,�+1,d · Ê� ,�+1,d 8d 2 D

(6) Nd = Etotald /Bd 8d 2 D

(7) T totald =
Õ
� 2�

V� ,d · T� ,d +
|� |�1Õ
�=1

V̂� ,�+1,d · T̂� ,�+1,d + Nd ·Cd 8d 2 D

(8) T totald <= Mt ime 8d 2 D

Table 3: Task scheduling optimization

Figure 7: Energy monitor-
ing setups

Figure 8: UI for Smart Sur-
vey feature in QGC

times that drone d has to charge, to complete its task. Constraint
(5) and (7) represent the total energy consumed and time taken by a
drone d to complete the task allocated to it. Constraint (8) denotes
that the total time taken to �nish all the tasks (i.e.Mt ime ) is at most
equal to the maximum time taken by any drone in d 2 D.

4 IMPLEMENTATION
4.1 Open Source GCS
Existing Ground Control Station (GCS) softwares are highly sophis-
ticated and versatile as they provide support for various platforms,
such as Pixhawk [27]. They are capable of handling detailed teleme-
try and uploading �ight plans using multiple connection options
such as TCP/UDP, etc. Thus, we implemented our system as an
extension in QGroundControl (QGC). QGC is open-source, and the
most widely used GCS with a signi�cant active contributors base.
Speci�cally, we implemented our algorithm as an additional tab
called Smart Survey, which is an improvement over the existing
Survey tab that implements a basic path planning algorithmwith no
energy considerations. Figure 8 shows the UI design for our Smart
Survey tab. The entire implementation involves around 2000 lines
of C++ code and around 400 lines of QML code (our open-source
implementation: https://github.com/t-sriyen/qgroundcontrol). For
simulating accelerometer values for the energy predictions, we
implement Allan variance algorithm [1].

4.2 Energy Model Toolkit
To learn the battery charging parameters, we used PyStan, a Bayesian
modelling library with several MCMC samplers. We use Sklearn,

a Python-based machine learning library to train our energy dis-
charging models. As part of this work, we release an open-source
toolkit consisting of the battery charging and discharging mod-
els. Further, the toolkit also contains a framework to calculate
the optimal altitude that minimizes energy usage of drones for
any UAV-based sensing, given enough domain information. More-
over, we also release our detailed drone �ights datasets containing
GPS and IMU logs along with �ight plans (our open-source toolkit:
https://github.com/t-sriyen/DroneEnergyModeling).

4.3 Energy-Aware Model Inference
Our object detection models are trained and �ne-tuned on a server
equipped with a Nvidia Tesla K80 equipped with 64 GB RAM using
Tensor�ow 1.12 with the Tensor�ow Object Detection API. Our
trained models (SSD-MV1 and SSD-MV2) cannot be executed as-is
on either edge platforms and thus were converted to their respective
proprietary formats — i.e., t�ite model for Google Coral and UFF
model for Jetson Nano.

4.4 Hardware Implementation
For our experiments, we use TATTU Premium 22.2V 6-cell LiPo
batteries with an 8000mAh capacity and discharging rate of 15C.We
used a quadcopter with an onboard Pixhawk �ight controller along
with a RaspberryPi 3B+ as a companion computer to log IMU data,
along with energy used to perform di�erent drone manoeuvres.
For observing charging trends of the battery we used a Turnigy
Reaktor D6 Pro Duo charger and a coulomb counter, designed using
IC LTC2944[3]. Figure 7(a) shows this energy monitoring setup. For
experiments involving ML inference on the edge platforms, our
power logging setup involved a current sensor (ACS 712) and an
SMPS regulated at 5 volts, shown in Figure 7(b).

5 EVALUATION METHODOLOGY
5.1 Datasets

ML Inference:We conduct our experiments on the UAVDT [13]
object detection dataset, which consists of 80,000 frames of UAV
�ights. The frames are labelled with object bounding boxes of ve-
hicles and other attributes — such as weather conditions, �ying
altitude, etc. — that are useful in characterizing performance of
object detection algorithms in various real-world scenarios.

Path Planning:We created a dataset of prominent public places,
including parks, piers, and city squares, etc. spread across four cities
—NewYork, San Francisco, Bangalore, and London. These areas vary
greatly in shapes and sizes, ranging from 0.2 to 5.7 sq. km. These
sites form the set of shapes given as input to the algorithms. We
will release this dataset as part of the toolkit to aid benchmarking.

5.2 Metrics
Energy Modeling: For this, we use Mean Absolute Percentage

Error (MAPE) as our performance metric.
ML Inference: We measure the accuracy of inference using

Mean Average Precision with IOU � 0.5 (mAP@0.5) [14].
Path Planning:We characterize the input shapes using convex-

ity, which is de�ned as the area of the shape divided by the area of

47

https://github.com/t-sriyen/qgroundcontrol
https://github.com/t-sriyen/DroneEnergyModeling


BuildSys ’21, November 17–18, 2021, Coimbra, Portugal Iyengar, et al.

Figure 9: Relative energy
improvement of proposed
method for shapes with
di�erent convexity

Figure 10: Relative time
taken with increasing
number of drones

convex hull of the shape [35]. We characterize the performance by
measuring both energy and the time taken for a planned path.

5.3 Baselines
Energy Modeling: We compare the performance of our energy

discharge model with the start of the art [36], which modelled
the drone energy consumption as a linear combination of several
factors that include the drone weight, wind speed, and velocity, etc.

Path Planning:We compare the performance of our path plan-
ning approach with three existing algorithms - DroneDeploy(East-
to-west algorithm) [12], QGC [40] and FarmBeats [38] using energy
consumption as the metric. DroneDeploy generates sweeping pat-
terns from east to west or west-to-east regardless of the shape of
the surveying area. FarmBeats generates the path that minimizes
number of waypoints. In QGC, the sweep direction is left to the
user to select. In our evaluation, we kept the sweep direction �xed
from north-to-south.

Task Scheduling:We consider the equal transect division algo-
rithm as our baseline, i.e. the transects are equally divided amongst
all the drones available to us. This is in contrast to our system
wherein a linear programming model is proposed.

6 EXPERIMENTAL RESULTS
6.1 Energy Modeling
As discussed earlier, we model the power consumption using a
Random Forest (RF) regression consisting of several components
(i.e. Px�, Pz , Pwind , Pdra� ) as features. We used over 100 di�erent
drone �ight data and categorized them into four groups. The �rst
two groups are called vertical and horizontal �ight datasets. As the
name suggests, these �ights only involve drones either moving
in horizontal or vertical directions. The vertical triangle group is
similar to our workload discussed in section 2.4. In the dataset
group called full, every �ight path was included.

Within each group, we performed a leave-one-out cross-validation
approach to characterize the performance of our model (Proposed
(RF)) compared to Tseng et al [36] (see Figure 11). Also, with more
data points, as is the case in the full dataset group, the performance
improves to an average MAPE of 5.6% for the predicted energy con-
sumption across all manoeuvres. Clearly, our model signi�cantly
outperforms the model presented by Tseng et al [36], as our average
MAPE values are 2.5x lower than theirs in the average case. Our
proposed method performs even better in horizontal and vertical
manoeuvres, where we report 3 to 3.5x improvements in MAPE.

We conducted a detailed evaluation of our charging models and
observed an average MAPE of around 1.94% in predicting the tran-
sition point between the CC and the CV mode. Further, the R2 �t
of the charging models for voltage and current over 100 sessions
never dropped below 0.98.

Summary: Our energy model demonstrates an average MAPE of
5.6% — a 2.5x improvement over the state of the art.

6.2 Path Planning Evaluation
To evaluate our system’s performance on path planning tasks, we
compare it with three baseline algorithms (DroneDeploy, QGC,
Farmbeats) on a dataset discussed in section 5. In many di�erent
real-world surveying tasks, such as mapping districts, river deltas,
etc., the underlying shape is not convex. Thus, in Figure 9 we show
the graph of the relationship between relative energy consump-
tion w.r.t DroneDeploy and Area Convexity. Area Convexity is
de�ned as the ratio of the survey area to the area of its convex hull.
When the convexity is less than 0.95, the proposed algorithm shows
signi�cant improvement in energy consumption. The percentage
improvement in energy when the convexity lies between 0.85 to
0.95 is 11.29%. The percentage improvement in energy consumption
when the convexity is between 0.7 and 0.85 is 21.14%. The percent-
age improvement in the energy consumption when the convexity
is greater than 0.95 is 3.09% which is similar to the Farmbeats al-
gorithm. Hence, when the shape is not convex, it is bene�cial to
partition the shape. When the shape is nearly convex, the paths
generated by FarmBeats and our algorithm are very similar. Hence
the energy consumption does not change too much.

Summary: Our system outperforms the three baseline algorithms
in energy consumption. The improvement is more pronounced when
the area convexity is lower.

6.3 Task Scheduling Evaluation
To evaluate the performance of our proposed system for multi-
drone scheduling, we use the same dataset used in the above path
planning evaluation. We vary the number of drones and gener-
ate the path using our algorithm and the equal transect division
algorithm. Figure 10 shows the relative time taken by three ap-
proaches - (i) DroneDeploy (Equal), where the path is generated
using DroneDeploy and task division is done using equal transect
splitting algorithm, (ii) Proposed (Equal), where our system does
path planning and task division is done using equal transect split-
ting algorithm and (iii) Proposed (ILP), where the path planning
and task division is done by our system using the proposed linear
programming approach. As expected, the time taken decreases with
an increase in the number of drones. In all the cases, the Proposed
(ILP) based task division algorithm results in the least time taken.
Speci�cally, with just two drones, the average reduction in time
taken to complete surveying tasks in our dataset by Proposed (ILP)
compared to DroneDeploy (Equal) the 35.97%. With four drones, the
reduction in time is 46.91%. This is because the Proposed (ILP) algo-
rithm considers various factors — such as charging pro�le, energy
consumption for various maneuvers, time taken per transect, etc. —
to divide the task among available drones optimally.

Summary: Our proposed system achieves a greater reduction in
mission times with multiple drones than the baselines.
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Figure 11: MAPE of our
proposed model with
di�erent regression algo-
rithms

Figure 12: Performance of
the object detection mod-
els at di�erent altitudes

6.4 Impact of altitude
To study the e�ect of the altitude on the accuracy of object detection
models and the consequent impact on task-level energy consump-
tion, we use UAVDT [13] dataset for identifying vehicles. We choose
three object detection models YOLO [29], Tiny YOLO [29] and SSD-
MV2 [25, 32] to compare their accuracy at di�erent altitudes. Fig-
ure 12 shows the variation of mAP@0.5 of di�erent models and
task-level energy consumption with the altitude of drone. At higher
altitudes, the �eld of view of the camera has increased coverage.
Hence, the �ight time needed to complete a surveying task could
reduce. We observe that object detection models have lower accu-
racies at higher altitudes due to reducing object size (in terms of
the number of pixels). YOLO has maximum accuracy out of the
three models used at all altitudes. Thus, if an embedded device can
run an expensive model like YOLO, it will yield greater accuracy.
Further, we see that the energy consumption decreases with the
increase in altitude, but the decrease is not uniform. Instead, the
energy decreases in a step-wise manner. This behavior is because
the the �ight time and hence the energy consumption depends on
the cumulative length of the transects, and an increase in altitude
does not necessarily mean a decrease in the number of transects.
In some cases, the number of transects decreases with an increase
in altitude, while in other cases it remains unchanged, and so the
energy consumption also remains essentially unchanged.

Summary: Increasing altitude hurts object detection accuracy.
However, energy consumption decreases in a step-wise manner.

7 CASE STUDY: PEOPLE COUNTING
This section describes a people counting case study with our system.

Setup:We conducted this experiment using two drones mounted
with a camera and an onboard computer (Jetson Nano). The ap-
plication objective was to detect people walking on two adjacent
sports grounds of area 106,563 and 112,601 sq.ft. in a university
(anonymized). Our open-source ground control software (QGCwith
energy-aware path planning and scheduling) allocated �ight paths
to the drones to repeatedly cover each ground until the batteries
are exhausted. Several students were asked to walk on the ground
so that the drones could detect them. The application entailed con-
tinuous monitoring of the sports grounds until two batteries are
exhausted by each of the two drones. In this case study, we had two
new batteries (<10 charge-discharge cycles) and two older ones
(>100 cycles). Each drone started the mission with a newer battery,

and then we swapped it with older ones. The onboard comput-
ers have a pre-trained tinyYOLO object detector on the previously
collected people detection dataset. As discussed in section 2.6, we
selected an altitude of 15 meters for the �ight to have a high object
detection accuracy (F1 score >0.8 in the training set).

Observations: The two drones covered a total distance of 10.358
km in 44.54 minutes and 9.73 km in 41.1 minutes, respectively. The
�rst ground was covered 14.2 times, while the second was covered
15.75 times. Overall, the object detector identi�ed people with a
precision of 0.8 and a recall of 0.89. Overall, the mean average
precision (mAP@0.5) of 83.65%.

8 RELATEDWORK
8.1 Energy Modeling in Drones
Optimal usage of a drone’s battery can signi�cantly increase in its
�ight time. Past works have looked at creating an energy model
for the drone [10, 36]. [10] presents an energy model derived from
real-world measurements and then uses it to derive the path plan-
ning algorithm. [36] propose a regression model of energy con-
sumption for drones. However, these systems do not talk about
energy-e�cient task division among multiple drones across mul-
tiple charging events — a fundamental requirement in large-scale
surveying tasks. Moreover, none of the existing work considers the
interplay between energy consumption and the sensing quality.

8.2 Drone path planning and scheduling
Most approaches to solve drone path planning problem involve
dividing the survey area into cells. Following which, a travelling
salesman algorithm is applied to �nd the coverage path [39]. Further,
several algorithms �nd optimal sweep direction to minimize the
number of turns while surveying an area [6, 20]. All these works
restrict themselves to only the geometrical aspects of the survey
area and do not consider factors such as battery capacity, weight,
etc. Recently, an approach to energy-aware path planning was
introduced [15]. However, the treatment was quite preliminary
and did not consider factors such as wind, payload weight, etc.
Neither did it look at the impact of the plan on sensing accuarcy.
There are also many powerful mission planning and ground control
stations(GCS) having various capabilities. QGround Control [40]
is the most used open-source GCS having an ample amount of
contributors on GitHub. UGCS [2] is closed-source but has some
great features compared to open-source counterparts like multiple
drone support even in simulation, 3D surveying, etc. None of these
have implemented energy-focused path planning and leaves the
choice of the mission �ight altitude to the user.

8.3 Drone orchestration systems
Work in several areas (computer systems, robotics, etc.) has looked
at developing drone orchestration, i.e., a system to manage a �eet
of drones for a set of applications [17, 26, 28, 37]. AnDrone [37] is
a virtual drone computing platform that attempts to use drone-as-
a-service to make it accessible like a cloud resource. Through this,
a single physical drone can run multiple virtual drones instances
for di�erent applications simultaneously. Voltron [28] presents a
programmingmodel tomanage a �eet of drones using programming
constructs. More recently, BeeCluster [17] looked at provides APIs
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to abstract complex drone tasks. However, none of these systems
considers battery energy modelling (charging and discharging) and
its implications in reducing mission times. Moreover, none of these
focuses on the interplay between application objectives — i.e., model
inference accuracy in surveying tasks — and the choice of altitude,
with the resulting impact on the �ight time for a mission and the
battery drain. However, an interesting future direction would be
integrating our energy-aware path planning and task scheduling
into these drone orchestration systems.

9 CONCLUSION
Realizing the full potential of drones necessitates managing the lim-
ited energy resources carefully while maintaining sensing accuracy.
In this paper, we presented a holistic view on drone scheduling by
considering tradeo�s across several factors such as battery charac-
teristics, variation in drone imagery, etc. We conducted an extensive
empirical study and explored the impact of altitude and lighting
on sensing accuracy. While uncovering several real-world battery
characteristics, we built accurate models for learning charge and
discharge pro�les. For example, our energy model could predict
energy consumed by various maneuvers with an error of 5.6% —
comfortably beating earlier state-of-the-art baseline. We use the
insights from our empirical studies and the learned models to de-
sign our holistic, energy-aware, multi-drone scheduling system
that reduces the energy consumed by 21.14% and time taken by
46.91%. We implemented our system as an open-source extension
to a popular drone ground control software. We presented a people
counting case study that performed with an accuracy of 83.65%.

REFERENCES
[1] [n. d.]. https://github.com/Aceinna/gnss-ins-sim.
[2] [n. d.]. https://www.ugcs.com/.
[3] [n. d.]. LTC2944. https://www.analog.com/media/en/technical-documentation/

data-sheets/2944fa.pdf.
[4] Federal Aviation Administration. 2016. Summary of Small Unmanned Aircraft

Rule (Part 107). https://www.faa.gov/uas/media/Part_107_Summary.pdf. [Online;
accessed 10-August-2019].

[5] European Union Aviation Safety Agency. 2019. Civil drones (Unmanned aircraft).
https://www.easa.europa.eu/easa-and-you/civil-drones-rpas. [Online; accessed
10-August-2019].

[6] J. F. Araújo, P. B. Sujit, and J. B. Sousa. 2013. Multiple UAV area decomposition
and coverage. In 2013 IEEE Symposium on Computational Intelligence for Security
and Defense Applications (CISDA). 30–37. https://doi.org/10.1109/CISDA.2013.
6595424

[7] Glenn Reesearch Center at National Aeronautics and Space Administration. 2019.
https://www.grc.nasa.gov/www/k-12/airplane/drageq.htmls. [Online; accessed
10-August-2019].

[8] Anirudh Badam, Ranveer Chandra, Jon Dutra, Anthony Ferrese, Steve Hodges,
PanHu, JuliaMeinershagen, ThomasMoscibroda, Bodhi Priyantha, and Evangelia
Skiani. 2015. Software de�ned batteries. In Proceedings of the 25th Symposium on
Operating Systems Principles. ACM, 215–229.

[9] Nicos Christo�des. 1976. Worst-Case Analysis of a New Heuristic for the Travel-
ling Salesman Problem.

[10] Carmelo Di Franco and Giorgio Buttazzo. 2016. Coverage Path Planning for UAVs
Photogrammetry with Energy and Resolution Constraints. J. Intell. Robotics Syst.
83, 3–4 (Sept. 2016), 445–462. https://doi.org/10.1007/s10846-016-0348-x

[11] DJI. 2020. PHANTOM 4 PRO Specs. https://www.dji.com/sg/phantom-4-pro/info.
[Online; accessed 10-January-2020].

[12] DroneDeploy. 2020. https://www.dronedeploy.com.
[13] Dawei Du, Yuankai Qi, Hongyang Yu, Yifan Yang, Kaiwen Duan, Guorong Li,

Weigang Zhang, Qingming Huang, and Qi Tian. 2018. The unmanned aerial
vehicle benchmark: Object detection and tracking. In Proceedings of the European
Conference on Computer Vision (ECCV). 370–386.

[14] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge. Inter-
national journal of computer vision 88, 2 (2010), 303–338.

[15] C. D. Franco and G. Buttazzo. 2015. Energy-Aware Coverage Path Planning of
UAVs. In 2015 IEEE International Conference on Autonomous Robot Systems and
Competitions. 111–117. https://doi.org/10.1109/ICARSC.2015.17

[16] Andrew Gelman et al. 2006. Prior distributions for variance parameters in
hierarchical models (comment on article by Browne and Draper). Bayesian
analysis 1, 3 (2006), 515–534.

[17] Songtao He, Favyen Bastani, Arjun Balasingam, Karthik Gopalakrishna, Ziwen
Jiang, Mohammad Alizadeh, Hari Balakrishnan, Michael Cafarella, Tim Kraska,
and Sam Madden. 2020. BeeCluster: drone orchestration via predictive opti-
mization. In Proceedings of the 18th International Conference on Mobile Systems,
Applications, and Services. 299–311.

[18] J. A. Hoogeveen. 1991. Analysis of Christo�des’ Heuristic: Some Paths Are
More Di�cult than Cycles. Oper. Res. Lett. 10, 5 (July 1991), 291–295. https:
//doi.org/10.1016/0167-6377(91)90016-I

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
E�cient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[20] W. H. Huang. 2001. Optimal line-sweep-based decompositions for coverage
algorithms. In Proceedings 2001 ICRA. IEEE International Conference on Robotics
and Automation (Cat. No.01CH37164), Vol. 1. 27–32 vol.1. https://doi.org/10.1109/
ROBOT.2001.932525

[21] J Mark Keil and Jack Snoeyink. 1998. On the time bound for convex decomposition
of simple polygons. Citeseer.

[22] Majid Khonji, Mohammed Alshehhi, Chien-Ming Tseng, and Chi-Kin Chau. 2017.
Autonomous inductive charging system for battery-operated electric drones. In
Proceedings of the Eighth International Conference on Future Energy Systems. ACM,
322–327.

[23] Qi Li, Keyang Yu, and Dong Chen. 2020. Automatic Damage Detection on Rooftop
Solar Photovoltaic Arrays. In Proceedings of the 7th ACM International Conference
on Systems for Energy-E�cient Buildings, Cities, and Transportation. 332–333.

[24] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[25] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In European conference on computer vision. Springer, 21–37.

[26] Sara Mahmoud, Nader Mohamed, and Jameela Al-Jaroodi. 2015. Integrating uavs
into the cloud using the concept of the web of things. Journal of Robotics (2015).

[27] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. 2015. PX4: A node-based
multithreaded open source robotics framework for deeply embedded platforms.
In International Conference on robotics and automation (ICRA). IEEE, 6235–6240.

[28] Luca Mottola, Mattia Moretta, Kamin Whitehouse, and Carlo Ghezzi. 2014. Team-
level programming of drone sensor networks. In Proceedings of the 12th ACM
Conference on Embedded Network Sensor Systems. 177–190.

[29] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Uni�ed, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[30] Angélica F Resende, Maria TF Piedade, Yuri O Feitosa, Victor Hugo F Andrade,
Susan E Trumbore, Flávia M Durgante, Maíra O Macedo, and Jochen Schöngart.
2020. Flood-pulse disturbances as a threat for long-living Amazonian trees. New
Phytologist 227, 6 (2020), 1790–1803.

[31] GOLDMAN Sachs. 2017. Drones reporting for work.
[32] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
4510–4520.

[33] Richard Schi�man. 2014. Drones �ying high as new tool for �eld biologists.
[34] Mario Silvagni, Andrea Tonoli, Enrico Zenerino, and Marcello Chiaberge. 2017.

Multipurpose UAV for search and rescue operations in mountain avalanche
events. Geomatics, Natural Hazards and Risk 8, 1 (2017), 18–33.

[35] Milan Sonka, Vaclav Hlavac, and Roger Boyle. 1993. Image processing, analysis,
and machine vision. Chapman and Hall.

[36] Chien-Ming Tseng, Chi-Kin Chau, Khaled M. Elbassioni, and Majid Khonji. 2017.
Flight Tour Planning with Recharging Optimization for Battery-operated Au-
tonomous Drones. ArXiv abs/1703.10049 (2017).

[37] Alexander Van’t Hof and Jason Nieh. 2019. AnDrone: Virtual Drone Computing
in the Cloud. In Proceedings of the Fourteenth EuroSys Conference 2019. ACM, 6.

[38] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra,
Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman.
2017. Farmbeats: An iot platform for data-driven agriculture. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). 515–529.

[39] J. Xie, L. R. G. Carrillo, and L. Jin. 2019. An Integrated Traveling Salesman and
Coverage Path Planning Problem for Unmanned Aircraft Systems. IEEE Control
Systems Letters 3, 1 (Jan 2019), 67–72.

[40] E Zurich. 2013. Qgroundcontrol: Ground control station for small air land water
autonomous unmanned systems.

50

https://github.com/Aceinna/gnss-ins-sim
https://www.ugcs.com/
https://www.analog.com/media/en/technical-documentation/data-sheets/2944fa.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/2944fa.pdf
https://www.faa.gov/uas/media/Part_107_Summary.pdf
https://www.easa.europa.eu/easa-and-you/civil-drones-rpas
https://doi.org/10.1109/CISDA.2013.6595424
https://doi.org/10.1109/CISDA.2013.6595424
https://www.grc.nasa.gov/www/k-12/airplane/drageq.htmls
https://doi.org/10.1007/s10846-016-0348-x
https://www.dji.com/sg/phantom-4-pro/info
https://www.dronedeploy.com
https://doi.org/10.1109/ICARSC.2015.17
https://doi.org/10.1016/0167-6377(91)90016-I
https://doi.org/10.1016/0167-6377(91)90016-I
https://doi.org/10.1109/ROBOT.2001.932525
https://doi.org/10.1109/ROBOT.2001.932525

	Abstract
	1 Introduction
	2 Energy Characterization and Modeling
	2.1 Battery Charging Characterization
	2.2 Battery Charging Modeling
	2.3 Battery Discharging Characterization
	2.4 Battery Discharging Modeling
	2.5 Energy-aware Inference Characterization
	2.6 Energy-aware Inference Modeling

	3 Energy-Aware Scheduling
	3.1 Path Planning
	3.2 Task Scheduling

	4 Implementation
	4.1 Open Source GCS
	4.2 Energy Model Toolkit
	4.3 Energy-Aware Model Inference
	4.4 Hardware Implementation

	5 Evaluation Methodology
	5.1 Datasets
	5.2 Metrics
	5.3 Baselines

	6 Experimental Results
	6.1 Energy Modeling
	6.2 Path Planning Evaluation
	6.3 Task Scheduling Evaluation
	6.4 Impact of altitude

	7 Case Study: People Counting
	8 Related Work
	8.1 Energy Modeling in Drones
	8.2 Drone path planning and scheduling
	8.3 Drone orchestration systems

	9 Conclusion
	References

