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Abstract

Common policy gradient methods rely on the
maximization of a sequence of surrogate func-
tions. In recent years, many such surrogate
functions have been proposed, most without
strong theoretical guarantees, leading to algo-
rithms such as TRPO, PPO or MPO. Rather
than design yet another surrogate function, we
instead propose a general framework (FMA-
PG) based on functional mirror ascent that
gives rise to an entire family of surrogate func-
tions. We construct surrogate functions that
enable policy improvement guarantees, a prop-
erty not shared by most existing surrogate
functions. Crucially, these guarantees hold
regardless of the choice of policy parameteri-
zation. Moreover, a particular instantiation of
FMA-PG recovers important implementation
heuristics (e.g., using forward vs reverse KL
divergence) resulting in a variant of TRPO
with additional desirable properties. Via ex-
periments on simple reinforcement learning
problems, we evaluate the algorithms instan-
tiated by FMA-PG. The proposed framework
also suggests an improved variant of PPO,
whose robustness and efficiency we empiri-
cally demonstrate on the MuJoCo suite.
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1 INTRODUCTION

Policy gradient (PG) methods (Williams, 1992; Sut-
ton et al., 2000; Konda and Tsitsiklis, 2000; Kakade,
2002) are an important class of model-free methods in
reinforcement learning. They enable a differentiable
policy parameterization and can easily handle function
approximation and structured state-action spaces. PG
methods based on REINFORCE (Williams and Peng,
1991) are equipped with strong theoretical guarantees
in restricted settings (Agarwal et al., 2020; Mei et al.,
2020; Cen et al., 2020). For these methods, each policy
update requires recomputing the policy gradient. This
in turn requires interacting with the environment or
the simulator which can be computationally expensive.

On the other hand, methods such as TRPO (Schul-
man et al., 2015), PPO (Schulman et al., 2017) and
MPO (Abdolmaleki et al., 2018) support off-policy up-
dates, i.e. they can update the policy without requiring
additional interactions with the environment. These
methods are efficiently implementable and have good
empirical performance (Dhariwal et al., 2017). All of
these methods rely on constructing surrogate functions
of the policy, then updating the policy by maximiz-
ing these surrogates. Unfortunately, most of these
surrogate functions (including those for PPO, TRPO
and MPO) do not have strong theoretical guarantees.
Consequently, this class of PG methods only has perfor-
mance guarantees in the tabular setting (Kakade and
Langford, 2002; Schulman et al., 2015; Neu et al., 2017;
Geist et al., 2019; Shani et al., 2020), and some of these
can even fail to converge in simple scenarios (Hsu et al.,
2020). More importantly, there is no systematic way to
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design theoretically principled surrogate functions, or a
unified framework to analyze their properties. We ad-
dress these issues through the following contributions.

Functional mirror ascent for policy gradient:
In Section 3, we construct surrogate functions using
mirror ascent on a functional representation of the pol-
icy itself, rather than on its parameters. We call this
approach functional mirror ascent (FMA) and derive
its update for policy gradient methods. The FMA up-
date results in a surrogate function that is independent
of the policy parameterization. We use it to propose
FMA-PG (FMA for PG), a general framework for con-
structing surrogate functions and introduce a generic
policy optimization algorithm that relies on approxi-
mately maximizing a sequence of surrogate functions.

Theoretical guarantees for FMA-PG: In Section 4,
we explain the theoretical advantages of using FMA-
PG. In particular, we describe a sufficient condition
that guarantees that maximizing the sequence of surro-
gate functions instantiated by FMA-PG will result in
monotonic policy improvement and ensure convergence
to a stationary point. Crucially, these guarantees hold
regardless of the choice of policy parameterization.

Instantiating the FMA-PG framework: In Sec-
tion 5, we instantiate the FMA-PG framework with
two common functional representations – direct and
softmax representations. For each of these, we compare
the resulting surrogate function to existing methods in
the literature. For each representation, we prove that
a specific surrogate function instantiated by FMA-PG
satisfies the sufficient condition in Section 4. Conse-
quently, maximizing it guarantees monotonic policy
improvement for arbitrarily complicated policy parame-
terizations including neural networks. Such a property
is not shared by existing surrogate functions including
those for PPO, TRPO and MPO.

For the softmax functional representation, FMA-PG
results in a surrogate function that is a more sta-
ble variant of TRPO (Schulman et al., 2015) and
MDPO (Tomar et al., 2020). Moreover, it recovers im-
plementation heuristics (e.g. using forward vs reverse
KL divergence) in a principled manner. Additionally,
in Appendix A, we show that FMA-PG can handle
stochastic value gradients (Heess et al., 2015).

Experimental evaluation: Finally, in Section 6, we
evaluate the performance of surrogate functions instan-
tiated by FMA-PG on simple bandit and reinforcement
learning settings. FMA-PG also suggests a variant of
PPO (Schulman et al., 2017), whose robustness and
efficiency we demonstrate on continuous control tasks
in the MuJoco environment (Todorov et al., 2012).

2 PROBLEM FORMULATION
We consider an infinite-horizon discounted Markov de-
cision process (MDP) (Puterman, 1994) defined by the
tuple M = ⟨S,A, p, r, d0, γ⟩ where S and A is the set
of states and actions respectively, p : S × A → ∆S

the transition probability function, r : S × A → R
the reward function, d0 the initial distribution over
states, and γ ∈ [0, 1) the discount factor. Each pol-
icy π induces a distribution pπ(·|s) over actions for
each state s. It also induces a measure dπ over states
such that dπ(s) =

∑∞
τ=0 γ

τP(sτ = s | s0 ∼ d0, aτ ∼
pπ(aτ |sτ )). Similarly, we define µπ as the induced
measure over state-action pairs induced by policy π,
implying that µπ(s, a) = dπ(s)pπ(a|s) and dπ(s) =∑

a µ
π(s, a). The expected discounted return for π is

defined as J(π) = Es0,a0,...[
∑∞

τ=0 γ
τr(sτ , aτ )], where

s0 ∼ d0, aτ ∼ pπ(aτ |sτ ), and sτ+1 ∼ p(sτ+1|sτ , aτ ).
Given a set of feasible policies Π, the objective is to
compute the policy that maximizes J(π). We define
π∗ := argmaxπ∈Π J(π) as the optimal policy.

We call the set of distributions pπ(·|s) for each s or the
measure dπ functional representations of the policy π.
Note that a single policy policy π can have multiple
functional representations. In general, optimizing J
directly with respct to any functional representation of
π is intractable. Consequently, the standard approach
is to parameterize π by a set of parameters θ ∈ Rd and
to directly optimize J with respect to θ. However, it is
critical to remember that the functional representation
of a policy is independent of its parameterization.

There are other possible functional representations of a
policy besides the two mentioned above. For example,
since pπ(·|s) is a probability distribution, one can write
pπ(a|s) = exp(zπ(a,s))/

∑
a′ exp(z

π(a′,s)), and represent π
as the set of zπ(a, s) for each (a, s) pair. We call
this particular functional representation the softmax
representation, as opposed to the set of pπ(a|s) which
we call the direct representation. In the next section,
we describe how to use the functional representation
of a policy to derive a surrogate function. Although
multiple functional representations can be equivalent in
the class of policies they define, they result in different
surrogate functions (Sections 5.1 and 5.2). Finally, we
note that functional representations are not limited to
stochastic policies and one can, for instance, represent
a deterministic, stationary policy by specifying the
state-action mapping for each state (Appendix A).

3 FUNCTIONAL MIRROR ASCENT
FOR POLICY GRADIENT

In the previous section, we defined the functional rep-
resentation of a policy. However, as we mentioned,
typically, one cannot optimize J with respect to these
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representations directly, in which case the policy π is
parameterized. While the functional representation
defines a policy’s sufficient statistics, the policy param-
eterization specifies the practical realization of these
statistics and defines the set Π of realizable (repre-
sentable) policies. The parameterization is independent
of the functional representation, is explicit and deter-
mined by a model with parameters θ. For example, we
could represent a policy by its state-action occupancy
measure and use a linear parameterization to realize
this measure, implying µπ(s, a|θ) = ⟨θ, ϕ(s, a)⟩, where
θ is the parameter to be optimized and ϕ(s, a) are
the known features providing information about the
state-occupancy measures. Similarly, we could use a
neural-network parameterization for the variables that
define a policy in its softmax representation, rewriting
zπ(a, s) = zπ(a, s|θ). In order to compare to existing
methods (Agarwal et al., 2020; Mei et al., 2020), we also
define a tabular parameterization. For a finite state-
action MDP with S states and A actions, choosing a
tabular parameterization with the softmax represen-
tation results in θ ∈ RSA such that ∀s ∈ S, a ∈ A,
zπ(a, s|θ) = θs,a.

Next, we describe a form of mirror ascent to directly
update a policy’s functional representation.

3.1 Functional Mirror Ascent Update

To state the functional mirror ascent (FMA) update,
we define a strictly convex, differentiable function ϕ as
the mirror map. We denote by Dϕ(π, µ) the Bregman
divergence associated with the mirror map ϕ between
policies π and µ. Each iteration t ∈ [T ] of FMA consists
of the update and projection steps (Bubeck, 2015):
Eq. (1) computes the gradient ∇πJ(πt) with respect
to the policy’s functional representation and updates
πt to πt+1/2 using a step-size η; Eq. (2) computes the
Bregman projection of πt+1/2 onto the class of realizable
policies, obtaining πt+1.

πt+1/2 = (∇ϕ)−1 (∇ϕ(πt) + η∇J(πt)) , (1)
πt+1 = argmin

π∈Π
Dϕ(π, πt+1/2). (2)

The above FMA updates can also be written as (c.f.
Bubeck, 2015):

πt+1 = argmax
π∈Π

[
⟨π, ∇πJ(πt)⟩ −

1

η
Dϕ(π, πt)

]
. (3)

Note that the FMA update is solely in the functional
space, and is specified by the choice of the functional
representation and mirror map. The update requires
solving a sub-problem to project the updated policy
onto the set Π. Since the policy parameterization de-
fines the set Π of realizable policies, it influences the
difficulty of solving this projection sub-problem as well

as the final policy πt+1. For simple policy parameteri-
zations such as tabular or when using a linear model,
the set Π is convex and the minimization in Eq. (3)
can be done exactly. When using more complex policy
parameterizations (e.g. deep neural network), the set
of realizable policies Π can become arbitrarily compli-
cated and non-convex, making the projection in Eq. (3)
infeasible. The FMA-PG framework overcomes this
issue as follows.

3.2 FMA-PG Framework

We assume that Π consists of policies that are realiz-
able by a model parameterized by θ ∈ Rd. Throughout
the paper, we will use π to refer to a policy’s func-
tional representation, whereas π(θ) will refer to the
parametric realization of π. We do not impose any
restriction on the parameterization and any generic
model (e.g. neural network) can be used to parame-
terize π. The choice of the policy parameterization is
implicit in the π(θ) notation. For the special case of
the tabular parameterization, π = π(θ) = θ.

Solving Eq. (2) iteratively may be interpreted as finding
a path that starts from πt+1/2 and gradually gets closer
to the set Π. In this view, an approximate solution
would be a point along that path that is not in the set Π,
and consequently not realizable by a vector θ. Another
perspective is to interpret solving Eq. (2) as finding a
path within Π that starts from πt, the previous policy
(already in Π), and gets closer to πt+1/2 (potentially
outside Π). Any point along such a path is within Π
and is thus realizable. In other words, we replace (2)
with another problem with the same solution:

argmin
π∈Π

Dϕ(π, πt+1/2) = arg min
θ∈Rd

Dϕ(π(θ), πt+1/2) .

(4)

With this reparameterization, no projection is required
and the update in Eq. (3) can be written as a para-
metric, unconstrained optimization problem. This is
a critical property as it makes FMA-PG applicable to
any policy parameterization.

In particular, if πt = π(θt), θt+1 ∈ Rd is the solution
to the RHS of Eq. (4) and πt+1 = π(θt+1), then Eq. (3)
can be written as the maximization of a surrogate
function, θt+1 = argmaxθ∈Rd ℓ

π,ϕ,η
t (θ), where

ℓπ,ϕ,ηt (θ) := J(π(θt)) + ⟨π(θ)− π(θt), ∇πJ(π(θt))⟩

− 1

η
Dϕ(π(θ), π(θt)) . (5)

The surrogate function ℓπ,ϕ,ηt (θ) is a function of θ, but
it is specified by the choice of the functional representa-
tion, the mirror map Φ, and the step-size η. Note that
as compared to Eq. (3), in Eq. (5), we added terms
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independent of θ which do not change the argmax but
will prove useful to prove guarantees in Section 4. We
have thus used the FMA update in Eq. (3) to spec-
ify a family of surrogate functions that can be used
with any policy parameterization. We refer to this
general framework of constructing surrogates for policy
gradient methods as FMA-PG.

The surrogate function in Eq. (5) is non-concave in
general and can be maximized using a gradient-based
algorithm. We will use m gradient steps with a step-size
α to maximize ℓπ,ϕ,ηt (θ). With this choice, we can now
state a generic policy optimization algorithm (pseudo-
code in Algorithm 1). We see that the surrogate func-
tion ℓπ,ϕ,ηt acts as a “guide” for the parametric updates
in the inner loop, similar to the supervised learning
method proposed by Johnson and Zhang (2020).

Algorithm 1: Generic policy optimization
Input: π (choice of functional representation), θ0
(initial policy parameterization), T (PG
iterations), m (inner-loops), η (step-size for
functional update), α (step-size for parametric
update)

for t← 0 to T − 1 do
Compute gradient ∇πJ(πt) and form function
ℓπ,ϕ,ηt (θ) as in Eq. (5)

Initialize inner-loop: ω0 = θt
for k ← 0 to m do

ωk+1 = ωk + α∇ωℓ
π,ϕ,η
t (ωk)

end
θt+1 = ωm

πt+1 = π(θt+1)
end
Return θT

4 THEORETICAL GUARANTEES

In this section, we explain the theoretical advantage of
using surrogate functions instantiated by FMA-PG. Re-
call that the policy is updated through the (potentially
approximate) maximization of Eq. (5). To guarantee
that maximizing the surrogate function improves the
resulting policy, i.e. J(πt+1) ≥ J(πt), a sufficient con-
dition is to have ℓt(θ) ≤ J(π(θ)) for all θ. Indeed, if
ℓt is a uniform lower-bound on J , then,

J(πt+1) = J(π(θt+1)) ≥ ℓt(θt+1)

≥ ℓt(θt) (By maximizing the surrogate function)
= J(π(θt)) = J(πt) (From Eq. (5))

For stating a more practical condition that guarantees
that the surrogate function is a uniform lower-bound
on J , we prove the following proposition in Appendix B.

Proposition 1 (Guarantee on surrogate function).
The surrogate function ℓπ,ϕ,ηt is a lower bound of J if
and only if J + 1

ηϕ is a convex function of π.

The above proposition shows that the desired property
is guaranteed by selecting an appropriate value of η that
only depends on properties of J and the mirror map
Φ in the functional space. Once again, we emphasize
that the guarantees offered by the surrogate function
are independent of the parameterization.

We have seen that if the surrogate is a uniform lower
bound on J , then the equality of the two functions at
θ = θt (from Eq. (5)) guarantees that any improvement
of the surrogate leads to an improvement of J . The
following result states that improvement in the surro-
gate can be guaranteed provided that the parametric
step-size α is chosen according to the smoothness of
the surrogate function.
Theorem 1 (Guaranteed policy improvement for Al-
gorithm 1). Assume that ℓt is β-smooth w.r.t. the
Euclidean norm and that η satisfies the condition of
Proposition 1. Then, for any α ≤ 1/β, iteration t of Al-
gorithm 1 guarantees J(πt+1) ≥ J(πt) for any number
m of inner-loop updates.

Note that Algorithm 1 and the corresponding theorem
can be easily extended to handle stochastic parametric
updates. This will guarantee that E[J(πt+1)] ≥ J(πt)
where the expectation is over the sampling in the para-
metric SGD steps. Similarly, both the algorithm and
theoretical guarantee can be generalized to incorpo-
rate the relative smoothness of ℓt(θ) w.r.t. a general
Bregman divergence (Lu et al., 2018).

For rewards in [0, 1], J(π) is upper-bounded by 1
1−γ ,

and hence monotonic improvements to the policy guar-
antee convergence to a stationary point. We emphasize
that the above result holds for any arbitrarily compli-
cated policy parameterization. Hence, a successful PG
method (one that reliably improves the policy) relies on
appropriately setting two step-sizes: η at the functional
level and α at the parametric level.

5 INSTANTIATING FMA-PG

We now instantiate the FMA-PG framework with two
common functional representations: the direct repre-
sentation (Section 5.1) and the softmax representation
(Section 5.2), deriving values for η for each.

5.1 Direct Functional Representation

In the direct functional representation, the policy
π is represented by the set of distributions pπ(·|s)
over actions for each state s ∈ S. Using the policy
gradient theorem (Sutton and Barto, 2018), in this



Vaswani, Bachem, Totaro, Müller, Garg, Geist, Machado, Castro, Le Roux

case, ∂J(π)
∂pπ(a|s) = dπ(s)Qπ(s, a). Since pπ(·|s) is a set

of distributions (one for each state), we define the
mirror map as ϕ(π) =

∑
s∈S w(s)ϕ(p

π(·|s)), where
w(s) is a positive weighting on the states s. Note
that the positive weights ensure that ϕ is a valid
mirror-map. The resulting Bregman divergence is
Dϕ(π, π

′) =
∑

s w(s)Dϕ(p
π(·|s), pπ′

(·|s)), that is, the
weighted sum of the Bregman divergences between the
action distributions in state s. By choosing w(s) equal
to dπt(s), and parameterizing the functional representa-
tion, i.e. pπt(·|s) = pπ(·|s, θt), we obtain the following
form of the surrogate function:

ℓπ,ϕ,ηt (θ) = E(s,a)∼µπt

[(
Qπt(s, a)

pπ(a|s, θ)
pπ(a|s, θt)

)]
− 1

η
Es∼dπt [Dϕ(p

π(·|s, θ), pπ(·|s, θt))] , (6)

where the constants independent of θ were omitted.
By choosing ϕ and η, the above surrogate function
can be used with Algorithm 1. We now discuss how
to set η that guarantees monotonic policy improve-
ment when using the above surrogate function with
the negative entropy mirror map, i.e. ϕNE(p

π(·|s)) =
−
∑

a p
π(a|s) log pπ(a|s).

Proposition 2 (Improvement guarantees for direct
functional representation). Assuming that the rewards
are in [0, 1], when using the surrogate function in Eq. (6)
with the mirror map chosen to be the negative entropy,
then J ≥ ℓπ,ϕ,ηt for η ≤ (1−γ)3

2γ|A| .

This proposition is proved in Appendix C. Using the
argument in Section 4, we can infer that using the direct
functional representation with the negative entropy
mirror map and η ≤ (1−γ)3

2γ|A| ensures monotonic policy
improvement for any policy parameterization.

Next, we discuss how the surrogate function in Eq. (6)
and the resulting algorithm is related to existing meth-
ods. When using a tabular parameterization, i.e. when
π(θ) = θ, we make the following connections:

Connection to uniform TRPO and MDPI: With
the tabular parameterization, the proposed update
is similar to the update in uniform TRPO (Shani
et al., 2020) and Mirror Descent Modified Policy Itera-
tion (Geist et al., 2019).

Connection to CPI: For finite states and actions,
when using a tabular parameterization, the first
term in Eq. (6) becomes the same as in conserva-
tive policy iteration (CPI) (Kakade and Langford,
2002). In CPI, the authors first derive the form∑

s d
π(s)

∑
a p

π(a|s)Qπt(s, a), then use a mixture pol-
icy to ensure that π is “close” to πt and justify replacing
dπ(s) in the above expression by dπt . On the other
hand, we use the FMA-PG framework to directly de-

rive Eq. (6) and allow for the use of any Bregman
divergence to ensure the proximity between π and πt.
While we derive the CPI update from an unconstrained
optimization viewpoint, CPI has also been connected
to constrained optimization with an equivalence to
functional Frank-Wolfe (Scherrer and Geist, 2014).

Connection to REINFORCE-based methods:
For finite states and actions, when using a tabular
parameterization and Algorithm 1 with m = ∞ (ex-
act minimization of the surrogate), if we choose the
(i) squared Euclidean distance as the mirror map,
the proposed update is the same as standard REIN-
FORCE (Williams and Peng, 1991; Agarwal et al.,
2020) and (ii) negative entropy as the mirror map (im-
plying that the resulting Bregman divergence is the KL
divergence), the proposed update is equal to natural
policy gradient (Kakade, 2001).

Comparison to MDPO: With a direct functional
representation, negative entropy mirror map and a
general policy parameterization, the resulting FMA-PG
update is similar to MDPO (Tomar et al., 2020). The
only difference between the two updates is that MDPO
involves the advantage Aπt instead of the Qπt term
in Eq. (6). Since both Aπt and Qπt are independent
of pπ, this difference does not matter for gradient-
based algorithms maximizing the surrogate (see caption
of Table 1 in Appendix E.1). Hence, MDPO directly
falls under the FMA-PG framework.

The above formulation has two main shortcomings.
First, it involves pπ(a|s, θ), which means that for
each parametric update, either (i) the actions need
to be resampled on-policy, or (ii) the update in-
volves an importance-sampling ratio pπ(a|s,θ)/pπ(a|s,θt)

like in Eq. (6). This requires clipping the ratio for
stability, and can potentially result in overly conser-
vative updates (Schulman et al., 2017). Moreover,
with the mirror map as the negative entropy, the
Bregman divergence is the reverse KL divergence, i.e.
Dϕ(p

π(·|s, θ), pπ(·|s, θt)) = KL(pπ(·|s, θ)||pπ(·|s, θt)).
The reverse KL divergence makes this objective mode
seeking, in that the policy π might only capture a
subset of the actions covered by πt. Past works have
addressed this issue either by adding entropy regu-
larization (Geist et al., 2019; Shani et al., 2020), or
by simply reversing the KL, using the forward KL:
KL(pπ(·|s, θt)||pπ(·|s, θ)) (Mei et al., 2019). However,
using entropy regularization results in a biased policy,
whereas the forward KL does not correspond to a valid
Bregman divergence in pπ and can converge to a sub-
optimal policy. We now show how FMA-PG with the
softmax representation addresses both these issues in
a principled way, providing a theoretical justification
to heuristics that are used to improve PG methods.
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5.2 Softmax Functional Representation

Since pπ(·|s) is a distribution, it has an equivalent soft-
max representation that we study in this section. The
softmax functional representation results in the FMA
update on the logits zπ(a, s) of the conditional distri-
butions pπ(a|s). Formally, pπ(a|s) = exp(zπ(a,s))∑

a′ exp(zπ(a′,s))

and the policy gradient theorem yields ∂J(π)
∂zπ(a,s) =

dπ(s)Aπ(s, a)pπ(a|s). Here, Aπ(s, a) is the advantage
function equal to Qπ(s, a) − V π(s). Similar to Sec-
tion 5.1, we use a mirror map ϕz(z) that decomposes
across states, i.e. ϕz(z) =

∑
s w(s)ϕz(z

π(·, s)) for some
positive weighting w. We denote the corresponding
Bregman divergence as Dϕz and choose w(s) = dπt(s).
Parameterizing the logits as zπ(a, s, θ) and noting that
pπt(a|s) = pπ(a|s, θt), we obtain the following form of
the surrogate function:

ℓπ,ϕ,ηt (θ) = E(s,a)∼µπt [A
πt(s, a) pπ(a|s, θt)]

− 1

η

∑
s

w(s)Dϕz (z
π(·, s, θ), zπ(·, s, θt)) . (7)

We now discuss how the surrogate function in Eq. (7)
and the resulting algorithm relate to existing methods.

Connection to REINFORCE-based methods:
For finite states and actions and when using a tabu-
lar parameterization and the squared Euclidean mirror
map, Algorithm 1 with m = 1 leads to the same update
as that of policy gradient with the softmax parameteri-
zation (Agarwal et al., 2020; Mei et al., 2020).

A more interesting surrogate emerges when ϕ is the
logsumexp, i.e. ϕz(z) =

∑
s w(s) log (

∑
a exp(z

π(a, s))),
and w(s) = dπt(s). Then,

ℓπ,ϕ,ηt (θ) = E(s,a)∼µπt

[(
Aπt(s, a) +

1

η

)
log

pπ(a|s, θ)
pπ(a|s, θt)

]
,

(8)

omitting the constant terms independent of θ. The full
derivation of this computation can be found in Propo-
sition 4 of Appendix C. We now discuss how to set η
that guarantees monotonic policy improvement when
using the above surrogate function.

Proposition 3 (Improvement guarantees for softmax
functional representation). Assuming that the rewards
are in [0, 1], then the surrogate function in Eq. (8)
satisfies J ≥ ℓπ,ϕ,ηt for η ≤ 1− γ.

This proposition is proved in Appendix C. As before,
we can infer that using the softmax functional represen-
tation with the logsumexp mirror map and η ≤ 1− γ
ensures monotonic policy improvement for any policy
parameterization. Although we have used the same η
for all states s, the updates in Eqs. (6) and (8) can

accommodate a different step-size η(s) for each state.
This is likely to yield tighter lower bounds and larger
improvements in the inner loop. Determining such
step-sizes is left for future work.

Unlike the formulation in Eq. (6), we see that Eq. (8)
relies on the logarithm of the importance sampling
ratios. Moreover, Eq. (8) can be written as

ℓπ,ϕ,ηt = Es∼dπt

[
Ea∼pπt

(
Aπt(s, a) log

pπ(a|s, θ)
pπ(a|s, θt)

)
− 1

η
KL(pπ(·|s, θt)||pπ(·|s, θ))

]
. (9)

Comparing to Eq. (6), we observe that the KL diver-
gence is in the forward direction and is mode covering.
This naturally prevents a mode-collapse of the policy
and encourages exploration. We thus see that FMA-PG
is able to recover an implementation heuristic (forward
vs reverse KL) in a principled manner. Moreover, we
can interpret Eq. (9) as a variant of TRPO with desir-
able properties, as we discuss next.

Comparison to TRPO: Comparing Eq. (9)
to the TRPO update (Schulman et al., 2015),
argmaxθ∈Rd E(s,a)∼µπt [Aπt(s, a) pπ(a|s,θ)

pπ(a|s,θt) ], such that
Es∼dπt [KL(pπt(·|s, θt)||pπ(·|s, θ))] ≤ δ, we observe
that Eq. (9) involves the logarithm of pπ, which can
be interpreted as a form of soft clipping due to the
narrower range of the log ratio. Additionally, when the
policy is modeled by a deep network with a final soft-
max layer, this leads to an objective concave in the last
layer, which is in general easier to optimize than the
original TRPO objective. Unlike TRPO, the proposed
update enforces the proximity between policies via a
regularization rather than a constraint. This modifi-
cation has been recently found to be beneficial (Lazić
et al., 2021). Finally, the parameter δ in TRPO is a
hyper-parameter that needs to be tuned. In contrast,
the regularization strength 1/η in proposed update can
be determined theoretically (Proposition 3).

6 EXPERIMENTAL EVALUATION

While this work focuses on providing a general frame-
work for designing surrogate functions, we explore the
behaviour of surrogates instantiated by the softmax
functional representation in three different settings.
First, to avoid dealing with local maxima of J , we
explore a multi-armed bandit, where we compare it
to the exponential weights algorithm (EXP3) (Auer
et al., 2002) in Section 6.1. The simplicity of the en-
vironment allows us to get a clearer understanding
of the behaviour of each algorithm. Second, we set
up small-scale RL environments where the surrogates
in Section 5 can be maximized exactly. We assume ac-
cess to the exact MDP dynamics and rewards model to
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Figure 1: Comparing the average regret over 50 runs for two variants of EXP3 – with standard importance weights
(IWEXP3) or loss-based importance weights (LBIWEXP3) to that of sEXP3. Both algorithms use a tuned
step-size equal to 0.005. We observe that sEXP3 consistently achieves lower regret.

focus on the impact of the proposed surrogate, ignoring
potential interactions with a critic and avoiding explo-
ration and sampling issues. Finally, we tested the
practical performance of FMA-PG using a larger-scale
experiment on MuJoCo in Section 6.3. In addition
to the increased complexity of the environments, this
experiment allows us to explore how the surrogate be-
haves in the presence of a critic. Since the policies are
parameterized as a deep network, the surrogate can
only be maximized approximately.

6.1 Multi-armed Bandit

For a stochastic multi-armed bandit problem, we com-
pare EXP3, which corresponds to the single-state, tab-
ular parameterization of FMA-PG with the direct rep-
resentation and the negative entropy mirror map; to
softmax EXP3 (sEXP3 ), which uses the softmax pa-
rameterization and the logsumexp mirror map. For
EXP3, we use the standard importance weighting pro-
cedure (denoted as IWEXP3 in the plots) as well as the
loss-based variation (Lattimore and Szepesvári, 2020)
(denoted as LBIWEXP3). We choose the step-size η
that achieved the best average final regret for each
algorithm over 50 runs (see Appendix D for details).
Figure 1 shows that sEXP3 consistently achieves lower
regret than the EXP3 variants, regardless of the num-
ber of arms (2, 10, 100) and the problem difficulty
determined by the action gap.

6.2 Tabular MDP

We use two tabular environments: CliffWorld (Sutton
and Barto, 2018) and DeepSeaTreasure (Osband et al.,
2019), and a tabular softmax policy parameterization
(one parameter for each state and action). We study
the performance of four algorithms, two of which are
instantiated by the FMA-PG framework – (i) sMDPO
(maximizing the objective given in Eq. (8)), (ii) MDPO
(objective given in (7) with a negative entropy mirror
map), and two commonly used PG methods – (iii)
PPO (Schulman et al., 2017) and (iv) TRPO (Schul-
man et al., 2015). Of these, sMDPO and MDPO

have two hyper-parameters: η (outer loop stepsize)
and α (the inner loop step-size); PPO has two hyper-
parameters, ϵ (clipping factor) and α (the inner-loop
step-size) whereas TRPO has a single hyper-parameter
δ, the magnitude of the KL-constraint. For all the al-
gorithms, we use the true action-value functions. The
complete experimental setup, implementation details,
and additional experiments are in Appendix E and F.

Figure 2: Comparing PG algorithms on CliffWorld
and DeepSeaTreasure environments for 100 inner-loop
updates and best set of hyper-parameters.

Figure 2 shows the algorithm performance with the
number of outer-loops (interactions with the environ-
ment) for m = 100 inner-loop updates. We show the
performance for the best set of hyper-parameters for
each algorithm and environment. We observe that
(i) with exact computation of action-value functions,
MDPO and sMDPO have similar performance, and (ii)
for both environments, sMDPO, MDPO and TRPO
are able to reach the performance of the optimal policy,
whereas PPO (with the best hyper-parameter) con-
verges to a sub-optimal policy for CliffWorld. For both
sMDPO and MDPO, the theoretically derived step-sizes
in Proposition 2 and Proposition 3 are much smaller
than the best tuned step-sizes (see Appendix E.4 for
exact calculations). Using theoretically derived step-
sizes result in slow (but monotonic) convergence, veri-
fying Theorem 1. Our results show that sMDPO and
MDPO are competitive with popular PG algorithms,
and demonstrate the effectiveness of FMA-PG in de-
signing theoretically sound and practical PG methods.

Ablation Study: In Figure 3, we study the effect of
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Figure 3: Parameter sensitivity for sMDPO, MDPO and TRPO on CliffWorld for 2000 environment interactions
with different number of inner loop updates (first 3 columns) and different algorithmic choices (rows) (see Ap-
pendix E for exact expressions). For each plot, the X-axis shows the sensitivity towards the corresponding
hyper-parameter (the other hyper-parameters are set to best-tuned values). The first row shows the regularized
(with parameter η) variants (default variant of sMDPO and MDPO used in Figure 2). The second row also shows
the regularized variants but uses a line-search to set the step-size for each inner-loop. Instead of enforcing the
proximity between consecutive policies via regularization, the variants in the third row use a constraint with
parameter δ (default variant of TRPO used in Figure 2). For each row, the fourth column shows the algorithm
performance vs the number of environment interactions. Black lines correspond to the value of the optimal policy.

different algorithmic choices and sensitivity towards
the corresponding hyper-parameter (see the caption
for details) for sMDPO, MDPO, and TRPO for Cliff-
World (DeepSeaTreasure results in Appendix E). We
observe that (i) increasing the number of inner-loops
(marginally) improves the performance of each method,
demonstrating the effect of data reuse (ii) in the first
row, all methods perform worse as the regularization
increases from left to right, and the regularized variant
of TRPO (Lazić et al., 2021) has similar performance
as sMDPO and MDPO, (iii) in the second row, using a
line-search for the inner-loop makes all methods more
robust to η, but the aggressive (using large step-sizes)
inner-loop updates can result in convergence to a sub-
optimal policy, (iv) in the third row, the constrained
variants of all methods are quite robust to the con-
straint hyper-parameter δ, with all methods converging
to the optimal policy. Hence, for each method, using
a constraint to enforce proximity between consecutive
policies can result in superior performance over its
regularized counterpart (with or without line-search).

6.3 Large-scale Continuous Control Tasks

Since PPO (Schulman et al., 2017) requires clipping
the importance sampling ratio, in order to make the
resulting algorithm similar to PPO for ease of imple-
mentation, we included clipping with the surrogate

function instantiated by FMA-PG. In particular, we
modify Eq. (8) and the resulting surrogate given by:

ℓπ,ϕ,ηt (θ) = E(s,a)∼µπt

[
Aπt(s, a)

× log

(
clip

(
pπ(a|s, θ)
pπ(a|s, θt)

,
1

1 + ϵ
, 1 + ϵ

))]
,

We denote the above surrogate function and the re-
sulting algorithm as sPPO. We investigate its perfor-
mance on five continuous control environments from
the OpenAI Gym (Brockman et al., 2016): Hopper-v1,
Walker2d-v1, HalfCheetah-v1, Ant-v1, and Humanoid-
v1. As a baseline, we use the PPO implementation from
Andrychowicz et al. (2021) with their standard config-
uration and default hyperparameters values. We im-
plement sPPO by adding a binary flag (use_softmax).
We re-emphasize that both algorithms use a critic and
that the hyper-parameters of the critic are tuned using
PPO to avoid favoring our framework.

We investigate the differences between PPO and sPPO
by training 180 different policies for each environment
and all combinations of use_softmax ∈ {True, False},
m ∈ {10, 100} and the importance weight capping value
ϵ ∈ {0.1, 0.3, 0.5, 0.7} (a total compute of 1400 days
with TPUv2). We evaluate each policy 18 times dur-
ing training, using the action with largest probability
rather than a sample. We compute the average return
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Figure 4: Average return and 95% confidence intervals (over 180 runs) for PPO and sPPO on 5 environments
rows) and for four different clipping values (columns). sPPO is more robust to large values of clipping, even more
so when the number of updates in the inner loop grows (linestyle).

and 95% confidence intervals for each of the settings.
The results are presented in Figure 4, where we see
that sPPO outperforms PPO across all environments.
Furthermore, we see that the difference is more pro-
nounced when the number of iterations m in the inner
loop is increased (linestyles) or when less capping is
used (columns). In Appendix G, we show additional re-
sults but with learning rate decay and gradient clipping
disabled, two commonly used techniques to stabilize
PPO training (Engstrom et al., 2019). In this setting,
sPPO only suffers a mild degradation while PPO fails
completely, confirming sPPO’s additional robustness.

7 CONCLUSION
We proposed FMA-PG, a general framework to design
computationally efficient policy gradient methods. By
disentangling the functional representation of a policy
from its parameterization, we unified different PG per-

spectives, recovering several existing algorithms and
implementation heuristics in a principled manner. By
using the appropriate theoretically-determined hyper-
parameters, FMA-PG guarantees policy improvement
(and hence convergence to a stationary point) for the
resulting PG method, even with arbitrarily complex
policy parameterizations and for arbitrary number of
inner-loop steps. We demonstrated that FMA-PG en-
ables the design of new, improved surrogate functions
that can lead to improved empirical results. We believe
that our framework will further enable the systematic
design of sample-efficient PG methods.

Our theoretical results assume the exact computation
of the action-value and advantage functions, and are
thus limited in practice. In the future, we aim to
handle sampling errors and extend these results to the
actor-critic framework.
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Supplementary Material:
A general class of surrogate functions for stable

and efficient reinforcement learning

Organization of the Appendix

A Handling stochastic value gradients

B Proofs for Section 4

C Proofs for Section 5

D Experimental details in the bandit setting

E Experiments in the tabular setting

F Analytical Updates and Gradient Expressions for tabular PG Algorithms

G Additional experiments on MuJoCo environments

A Handling stochastic value gradients

Thus far we have worked with the original formulation of policy gradients where a policy is a distribution over
actions given states. An alternative approach is that taken by stochastic value gradients (Heess et al., 2015), that
rely on the reparametrization trick. In this case, a policy is not represented by a distribution over actions but
rather by a set of actions. Formally, if ε are random variables drawn from a fixed distribution ν, then policy π is
a deterministic map from S× ν → A. This corresponds to the functional representation of the policy. The action
a chosen by π in state s (when fixing the random variable ϵ = ε) is represented as π(s, ϵ) and

J(π) =
∑
s

dπ(s)

∫
ε

ν(ε) r(s, π(s, ε)) dε (10)

and Silver et al. (2014) showed that
∂J(π)

∂π(s, ϵ)
= dπ(s)∇aQ

π(s, a)
∣∣
a=π(s,ϵ)

.

If the policy π is parameterized by model f with parameters θ, then π(s, ϵ) = f(θ, s, ϵ). If f(θt, ϵ) and f(θ, ϵ) are
S-dimensional vectors, then Eq. (3) is given as

θt+1 = argminEϵ∼ν

[
−
∑
s

dπt(s)f(θ, s, ϵ)∇aQ
πt(s, a)

∣∣
a=f(θt,s,ϵ)

+
1

η
Dϕ(f(θ, ϵ), f(θt, ϵ))

]
. (11)

Similar to Sections 5.1 and 5.2, we will use a mirror map that decomposes across states. Specifically, we choose
Dϕ(π, µ) =

∑
s∈S d

πt(s) ||π(s)− µ(s)||2. With this choice, Eq. (11) can be written as:

θt+1 = argmax

[
Es∼dπt

[
Eϵ∼ν

[
f(θ, s, ϵ)∇aQ

πt(s, a)
∣∣
a=f(θt,s,ϵ)

− 1

η
||f(θ, ϵ)− f(θt, ϵ)||2

]]]
(12)

This formulation is similar to Eq (15) of (Silver et al., 2014), with Qπt instead of Qπ. Additionally, while the
authors justified the off-policy approach with an approximation, our formulation offers guarantees provided η
satisfies the condition of Proposition Proposition 1.
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B Proofs for Section 4

Proposition 1 (Guarantee on surrogate function). The surrogate function ℓπ,ϕ,ηt is a lower bound
of J if and only if J + 1

ηϕ is a convex function of π.

Proof.

J(π)− ℓπ,ϕ,ηt (π) = J(π)− J(πt)− ⟨π − πt, ∇πJ(πt)⟩+
1

η
Dϕ(π, πt)

= J(π)− J(πt)− ⟨π − πt, ∇πJ(πt)⟩+
1

η
(ϕ(π)− ϕ(πt)− ⟨∇πϕ(πt), π − πt⟩)

=

(
J +

1

η
ϕ

)
(π)−

(
J +

1

η
ϕ

)
(πt)− ⟨π − πt, ∇π

(
J +

1

η
ϕ

)
(πt)⟩ .

The last equation is positive for all π and all πt if and only if J + 1
ηϕ is convex.

Theorem 1 (Guaranteed policy improvement for Algorithm 1). Assume that ℓt is β-smooth w.r.t.
the Euclidean norm and that η satisfies the condition of Proposition 1. Then, for any α ≤ 1/β,
iteration t of Algorithm 1 guarantees J(πt+1) ≥ J(πt) for any number m of inner-loop updates.

Proof. Using the update in Algorithm 1 with α = 1
β and the β-smoothness of ℓt(ω), for all k ∈ [m− 1],

ℓt(ωk+1) ≥ ℓt(ωk) +
1

2β
||∇ℓt(ωk)||2

After m steps,

ℓt(ωm) ≥ ℓt(ω0) +
1

2β

m−1∑
k=0

||∇ℓt(ωk)||2

Since θt+1 = ωm and ω0 = θt in Algorithm 1,

=⇒ ℓt(θt+1) ≥ ℓt(θt) +
1

2β
||∇ℓt(θt)||2 +

m−1∑
k=1

||∇ℓt(ωk)||2

Note that J(πt) = ℓt(θt) and if η satisfies Proposition 1, then J(πt+1) ≥ ℓt(θt+1). Using these relations,

J(πt+1) ≥ J(πt) +
1

2β
||∇ℓt(θt)||2 +

m−1∑
k=1

||∇ℓt(ωk)||2︸ ︷︷ ︸
+ve

=⇒ J(πt+1) ≥ J(πt).
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C Proofs for Section 5

In this section, we first prove the equivalence of the formulations in terms of the logits and in terms of log π.
Lemma 1. Let

ϕ(z) = log

(∑
a

exp(z(a))

)
(13)

pπ(a) =
exp(z(a))∑
a′ exp(z(a′))

. (14)

Then

Dϕ(z, z
′) = KL(pπ

′
||pπ) . (15)

where pπ and pπ
′
use z and z′ respectively.

Proof.

Dϕ(z, z
′) = log

(∑
a

exp(z(a))

)
− log

(∑
a

exp(z′(a))

)
−
∑

a exp(z
′(a))(z(a)− z′(a))∑
a exp(z

′(a))

=
∑
a

pπ
′
(a)

(
z(a)− z′(a) + log

(∑
a

exp(z(a))

)
− log

(∑
a

exp(z′(a))

))

=
∑
a

pπ
′
(a) log

pπ(a)

pπ′(a)
.

Proposition 4.

ℓz
π,ϕ,η

t (θ) = J(πt) + E(s,a)∼µπt

(
Aπt(s, a) +

1

η

)
log

pπ(a|s, θ)
pπt(a|s, θ)

(16)

Proof. Because
∑

a p
πt(a|s)Aπt(s, a) = 0, we can shift all values of z by a term that does not depend on a without

changing the sum, in particular by log (
∑

a′ exp(zπ(a′, s|θ)). Thus,

ℓz
π,ϕ,η

t (θ) = J(πt) + E(s,a)∼µπtA
πt(s, a)

(
zπ(a, s|θ)− log

(∑
a′

exp(zπ(a′, s|θ))

))

− 1

η

∑
s

dπt(s)Dϕz (z
π(·, s|θ), zπ(·, s, θt))

= J(πt) + E(s,a)∼µπtA
πt(s, a) log pπ(a|s, θ)− 1

η

∑
s

dπt(s)Dϕz
(zπ(·, s|θ), zπ(·, s|θt))

= J(πt) + E(s,a)∼µπtA
πt(s, a) log pπ(a|s, θ)− 1

η

∑
s

dπt(s)KL((pπ
′
(·|s)||pπ(·|s)) ,

where the last line is obtained using Lemma 1. Expanding the KL leads to the desired result.

Proposition 2 (Improvement guarantees for direct functional representation). Assuming that the
rewards are in [0, 1], when using the surrogate function in Eq. (6) with the mirror map chosen to be
the negative entropy, then J ≥ ℓπ,ϕ,ηt for η ≤ (1−γ)3

2γ|A| .
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Proof. Agarwal et al. (2020) show that, when using the direct parameterization, J is
(

2γ|A|
(1−γ)3

)
-smooth w.r.t.

the Euclidean distance. By using the properties of relative smoothness (Lu et al., 2018), if the mirror map ϕ is
µ-strongly convex w.r.t. Euclidean distance, then J is L-smooth with L = (2γ|A|/(1−γ)3 µ). Using the fact that
negative entropy is 1-strongly convex w.r.t. the 1-norm, we can set η = (1−γ)3/2γ|A| in Eq. (6).

To prove the value of η guaranteeing improvement for the softmax parameterization, we first need to extend a
lower bound result from Ghosh et al. (2020):
Lemma 2. Let us assume that the rewards are lower bounded by −c for some c ∈ R. Then we have

J(π) ≥ J(πt) + E(s,a)∼µπt

[(
Qπt(s, a) +

c

1− γ

)
log

pπ(a|s)
pπt(a|s)

]
. (17)

Proof. Let us define the function Jν for a policy ν as

Jν(π) =

+∞∑
h=0

γh

∫
τh

(r(sh, ah) + c)

(
1 + log

πh(τh)

νh(τh)

)
νh(τh) dτh −

c

1− γ
,

where τh is a trajectory of length h that is a prefix of a full trajectory τ and πh is the policy restricted to
trajectories of length h. We first show that it satisfies Jν(π) ≤ J(π) for any ν and any π such that the support of
ν covers that of π.

Indeed, we can rewrite

J(π) =

∫
τ

(
R(τ) +

c

1− γ

)
π(τ) dτ − c

1− γ

=

∫
τ

(∑
h

γh(r(ah, sh) + c)

)
π(τ) dτ − c

1− γ
(using

∑
h γ

hc = c/(1− γ))

=
∑
h

γh

∫
τh

(r(ah, sh) + c)πh(τh) dτh −
c

1− γ
,

where the last line is obtained by marginalizing over steps h+ 1, . . . ,+∞ for all h and all trajectories τ . Because
r(ah, sh) + c is positive, as the rewards are lower bounded by −c, we have

J(π) =
∑
h

γh

∫
τh

(r(ah, sh) + c)
πh(τh)

νh(τh)
νh(τh) dτh −

c

1− γ

≥
∑
h

γh

∫
τh

(r(ah, sh) + c)

(
1 + log

πh(τh)

νh(τh)

)
νh(τh) dτh −

c

1− γ
(using x ≥ 1 + log x)

= Jν(π) .

Let us denote JSA
ν the right-hand side of Eq. (17), i.e.:

JSA
ν (π) = J(ν) + E(s,a)∼µν

[(
Qν(s, a) +

c

1− γ

)
log

pπ(a|s)
pν(a|s)

]
.

We now prove that Jν has the same gradient as JSA
ν :

∇θJν(π) = ∇θ

(∑
h

γh

∫
τh

(r(ah, sh) + c)

(
1 + log

πh(τh)

νh(τh)

)
νh(τh) dτh

)

= ∇θ

(∑
h

γh

∫
τh

(r(ah, sh) + c) log πh(τh)νh(τh)

)
dτh

=
∑
h

γh

∫
τh

(r(ah, sh) + c)∇θ log πh(τh)νh(τh) dτh ,
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where all terms independent of θ were moved outside of the gradient. As the log probability of a trajectory
decomposes into a sum of the probabilities of actions given states and of the transition probabilities, and as the
latter are independent of θ, we get

∇θJν(π) =
∑
h

γh

∫
τh

(r(ah, sh) + c)∇θ log πh(τh)νh(τh) dτh

=
∑
h

γh

∫
τh

(r(ah, sh) + c)

(∑
h′

∇θ log p
π(ah′ |sh′)

)
νh(τh) dτh

=

∫
τ

∑
h′

∇θ log p
π(ah′ |sh′)

(
+∞∑
h=h′

γh(r(ah, sh) + c)

)
ν(τ) dτ .

But
+∞∑
h=h′

γh(r(ah, sh) + c) = γh′
(
Qν(s, a) +

c

1− γ

)
∫
τ

ν(τ)dτ1ah′=a1sh′=s = dh
′

ν (s)ν(a|s) ,

with dh
′

ν (s) the undiscounted probability of reaching state s at timestep h′. Hence, we have

∇θJν(π) =

∫
τ

∑
h′

∇θ log p
π(ah′ |sh′)

(
+∞∑
h=h′

γh(r(ah, sh) + c)

)
ν(τ) dτ

=
∑
h′

∑
s

∑
a

∇θ log p
π(a|s)dh

′

ν (s)ν(a|s)γh′
(
Qν(s, a) +

c

1− γ

)
=
∑
h′

γh′ ∑
s

dh
′

ν (s)
∑
a

∇θ log p
π(a|s)ν(a|s)

(
Qν(s, a) +

c

1− γ

)
=
∑
s

dν(s)
∑
a

(
Qν(s, a) +

c

1− γ

)
ν(a|s)∇θ log p

π(a|s)

= ∇θ

(∑
s

dν(s)
∑
a

(
Qν(s, a) +

c

1− γ

)
ν(a|s) log pπ(a|s)

)

= ∇θ

(
J(ν) + E(s,a)∼µν

[(
Qν(s, a) +

c

1− γ

)
log

pπ(a|s)
pν(a|s)

])
= ∇θJ

SA
ν (π) ,

with dν(s) the unnormalized probability of s under the discounted stationary distribution.

Because Jν and JSA
ν have the same gradient, they differ by a constant, i.e. JSA

ν = Jν + C for some C. But we
also know that Jν(ν) = J(ν), which means that

C = JSA
ν (ν)− Jν(ν)

= JSA
ν (ν)− J(ν)

= E(s,a)∼µν

[(
Qν(s, a) +

c

1− γ

)
log

pν(a|s)
pν(a|s)

]
= 0 .

Hence, Jν = JSA
ν and, becomes Jν is a lower bound of J , we have

J(π) ≥ J(ν) +
∑
s

dν(s)
∑
a

(
Qν(s, a) +

c

1− γ

)
pν(a|s) log pπ(a|s)

pν(a|s)
. (18)

Setting ν = πt concludes the proof.
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Proposition 3 (Improvement guarantees for softmax functional representation). Assuming that
the rewards are in [0, 1], then the surrogate function in Eq. (8) satisfies J ≥ ℓπ,ϕ,ηt for η ≤ 1− γ.

Proof. Assume

η =
1− γ

rm − rl
. (19)

We know from Proposition 4 that

ℓz
π,ϕ,η

t (θ) ≤ J(πt) + E(s,a)∼µπt

(
Aπt(s, a) +

1

η

)
log

pπ(a|s, θ)
pπt(a|s, θ)

.

Since the rewards are between rl and rm, we have

ℓz
π,ϕ,η

t (π) ≤ J(πt) + E(s,a)∼µπt

[(
Aπt(s, a) +

1

η

)
log

pπ(a|s)
pπt(a|s)

]
= J(πt) + E(s,a)∼µπt

[(
Aπt(s, a) +

rm − rl
1− γ

)
log

pπ(a|s)
pπt(a|s)

]
= J(πt) + E(s,a)∼µπt

[(
Aπt(s, a) + V πt(s) +

(
rm

1− γ
− V πt(s)

)
− rl

1− γ

)
log

pπ(a|s)
pπt(a|s)

]
= J(πt) + E(s,a)∼µπt

[(
Qπt(s, a)− rl

1− γ

)
log

pπ(a|s)
pπt(a|s)

]
− Es∼dπt

[(
rm

1− γ
− V πt(s)

)
KL(pπt(·|s)||pπ(·|s))

]
.

The last term on the RHS of the last equation is negative. Indeed, because the rewards are less than rm, the
value functions are less than rm/(1− γ) and rm/(1− γ)− V πt(s) is positive. As the KL divergences are positive,
the product of the two is positive and the whole term is negative because of the minus term. Thus, we have

ℓz
π,ϕ,η

t (π) ≤ J(πt) + E(s,a)∼µπt

[(
Qπt(s, a)− rl

1− γ

)
log

pπ(a|s)
pπt(a|s)

]
≤ J(π) . (by Lemma 2)

Hence, choosing η = 1−γ
rm−rl

leads to an improvement guarantee. Because our rewards are bounded between 0 and
1, setting rm = 1 and rl = 0 gives η = 1− γ. This concludes the proof.

D Experimental details in the bandit setting

In this section, we detail the experimental setup for the bandit experiments in Section 6.1.

We consider different K-armed Bernoulli bandit problems. For sEXP3, we specialising the update rule in Eq. (8)
to this multi-armed bandit case yielding: pπt+1(a) = pπt(a)(1 + ηAπt(a)), where η needs to be chosen such that
the probabilities are always positive. However, the computing the advantage either requires knowledge of the
rewards of all arms, or an estimate thereof. Since EXP3 is an adversarial bandit algorithm and does not exploit
the stochasticity in the rewards, to ensure a fair comparison, we cannot use such an estimate and thus replace the
advantage with the immediate reward, leading to the final sEXP3 update:

pπt+1(a) = pπt(a)(1 + ηr̂t(a)) ,

where r̂t(a) an estimator of the reward rt(a) obtained at round t.
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For sEXP3, if At is the action taken at round t, then we use the importance weighted estimator r̂t(a) = I{At =
1}rt(a)/πt(a). For EXP3, we consider both the standard importance weighted estimator (referred to as IWEXP3
in the plots) and the loss based importance weighted estimator (referred to as LBIWEXP3 in the plots) for which
r̂t(a) = I{At = 1}(1− rt(a))/πt(a).

Before describing our experimental setup, we emphasize that there are two different sources of randomness in
our experiments. First, we have the environment seed that controls the mean rewards in the bandit problem.
Considering different environment seeds guarantees that our results are not specific to a particular choice of the
rewards. Given a specific bandit problem, since EXP3 and sEXP3 are randomized bandit algorithms, there is a
stochasticity in the actions chosen. We can use different agent seeds to control the algorithm randomness.

Following the evaluation protocol of (Vaswani et al., 2020), we consider two classes of bandits with different
action gaps (difference in the mean rewards) – hard instances (∆ = 0.5) and easy instances (∆ = 0.1). The
mean vector defining a Bernoulli bandit is then sampled entry wise (for each arm) from U(0.5−∆/2, 0.5 + ∆/2).
To obtain the plot in Section 6.1, we run the experiment for 50 different environment seeds and one agent
seed. We evaluated the three algorithms for Bernoulli bandits with K ∈ {2, 10, 100} arms and the difficulty of
the problem, as determined by the action gap. For each algorithm, we set the step-size via a grid search over
η ∈ {0.5, 0.05, 0.005, 0.0005, 0.00005}. The plot shows the regret corresponding to the step-size with lowest final
average regret.
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E Experiments in the tabular setting

In this section1, we study the performance of four different policy gradient (PG) algorithms. Two of these can
be directly obtained from the FMA-PG framework: sMDPO (FMA-PG with a softmax policy and log-sum-exp
mirror map; see Eq. 8 in the main text) and MDPO (FMA-PG with direct parameterization and a negative
entropy mirror map; see Eq. 7 in the main text). And the other two are the existing popular PG algorithms:
TRPO and PPO.

Further, to better understand the reason behind the performance of each of these methods, in addition to
studying the objective functions used by these PG algorithms, we will also consider the impact of the optimization
techqniques used to implement them. In particular, we will look at three different variants of sMDPO, MDPO,
and TRPO based on whether they use a regularized objective with a fixed step-size (similar to the conventional
sMDPO and MDPO), a regularized objective with Armijo line search, or a constrained objective with line search
(similar to the conventional TRPO).

E.1 Algorithmic Details

We begin by specifying the different surrogate objectives used by the different algorithms and the two optimization
procedures we use for maximizing these objectives. The sMDPO and MDPO algorithms motivated by the
FMA-PG framework can be considered as regularized algorithms, which can be summarized by

max
θ
JPG-Alg −

1

η
CPG-Alg, (20)

where the terms JPG-Alg and CPG-Alg are given in Table 1. One way of solving this objective is by gradient descent
using a fixed step-size α, as specified in Algorithm 1; we call this setting as Regularized + fixed step-size.
We can equivalently solve such an unconstrained optimization problem by using an Armijo-style backtracking
line search, which we call as Regularized + line search. Note that, we can use this same form to obtain a
regularized version of the TRPO algorithm2 as well.

PG Alg. Objective (J ) Constraint (C)

sMDPO
∑

s d
πt(s)

∑
a p

πt(a|s)Aπt(s, a) log pπθ (s,a)
pπt (s,a)

∑
s d

πt(s) ·KL(pπt(·|s)∥pπθ (·|s))

TRPO
∑

s d
πt(s)

∑
a p

πt(a|s)Qπt(s, a)p
πθ (s,a)

pπt (s,a) (same as above)

MDPO
∑

s d
πt(s)

∑
a p

πt(a|s)Aπt(s, a)p
πθ (s,a)

pπt (s,a)

∑
s d

πt(s) ·KL(pπθ (·|s)∥pπt(·|s))

Table 1: The objectives and the constraints corresponding to the different PG algorithms. Note that the objective
J for both TRPO and MDPO is essentially equivalent to each other, since maximizing either of them would lead
to the same solution. The reason for this is that the difference between the two objectives is

∑
s d

πtV πt(s), which
is independent of the policy weight θ).

On the other hand, the conventional TRPO algorithm instead solves a constrained optimization problem given by
the equation

max
θ
JPG-Alg subject to CPG-Alg ≤ δ, (21)

with the terms JPG-Alg and CPG-Alg again given in Table 1. The regularized program of Eq. 20 can be considered
a “softer” version of the constrained program of Eq. 21. To solve the constrained optimization problem, we use
the exact same process used by the TRPO paper (Schulman et al., 2015): we use line search to find the maximal
step-size that increases the objective value in the direction of maximum ascent while satisfying the constraint; see
Section F.3 for details. We call this setting as Constrained + line search. Further, using Eq. 21, we can also
obtained constrained versions of sMDPO and MDPO.

1The code implementation for the algorithms and the environment corresponding to experiments presented in this
section is available at https://github.com/svmgrg/fma-pg.

2For TRPO, this objective is almost the same as PPO with KL penalty (Eq. 8, Schulman et al. (2017)) except that
PPO uses the advantage function and we used the action value function (which, as we discussed in the caption of Table 1,
doesn’t really matter). It is also similar to the objective stated in the TRPO paper (Section 4, Schulman et al. (2015))
except that this has an average KL divergence instead of the max KL divergence given in the original paper.

https://github.com/svmgrg/fma-pg
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The motivation behind considering these three different variants for sMDPO, MDPO, and TRPO is to figure out
how much of the performance difference between these algorithms comes from their exact objectives (Table 1)
and how much of it comes from the optimization techniques employed. We also summarize the gradient of these
objectives in Table 2. The corresponding gradient derivations for the algorithms (including PPO) are presented
in Appendix F.

PG Alg. Grad. objective (∇θ(s,a)J ) Grad. constraint (∇θ(s,a)C)

sMDPO dπt(s)pπt(a|s)Aπt(s, a) dπt(s) [pπ(a|s)− pπt(a|s)]

TRPO dπt(s)pπ(a|s) [Qπt(s, a)−
∑

b p
π(b|s)Qπt(s, b)] (same as above)

MDPO dπt(s)pπ(a|s) [Aπt(s, a)−
∑

b p
π(b|s)Aπt(s, b)]

dπt(s)pπ(a|s)×[
log pπ(a|s)

pπt (a|s) −KL(pπ(·|s)∥pπt(·|s))
]

Table 2: The gradients of the objectives and constraints w.r.t. the policy parameter corresponding to the different
PG algorithms. Note that the gradient of the objective for both TRPO and MDPO is exactly equal to each other.

E.2 Empirical Details

In all our tabular experiments, we assumed full access to the environment dynamics and used the analytically
calculated expected gradient updates for all the algorithms, and therefore the results closely follow the theoretical
properties of the PG methods. Doing so, essentially made this a study of the optimization properties of the
four PG algorithms considered. We use a policy gradient agent with a tabular softmax policy parameterization,
and evaluate the algorithms on two tabular episodic environments: CliffWorld (environment description and its
properties are discussed in Figure 5) and DeepSeaTreasure (Osband et al. (2019); with n = 5, discount factor
γ = 0.9, 25 different states, and two actions).

Figure 5: The episodic CliffWorld environment and the learning curve for MDPO on it illustrating three different
locally optimal policies. (Left) We consider a variant of the CliffWorld environment (Example 6.6, Sutton and
Barto (2018)) containing 21 different states and four actions per state. The agent starts in the Start state and
has four cardinal actions which deterministically move it into the corresponding next state. The objective is
to reach the Goal state as quickly as possible. If the agent falls into a state marked by Cliff, any subsequent
action taken by it moves it back to the start state and yields a reward of −100. Similarly, once in the goal state,
any action takes the agent into the terminal state and yields a reward of +1. All the other transitions have
zero reward and the discount factor is γ = 0.9. It is easy to see that the optimal policy will have a value of
v∗(s0) = 0 + γ · 0 + · · ·+ γ5 · 0 + γ6 · 1 = 0.96 = 0.53. (Right) We show the learning curve for the analytical
MDPO update using η = 1. This curve shows three different locally optimal policies. We later show in our
experiments, that the different PG agents often get stuck on one of these policies.
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Figure 6: The parameter sensitivity plots for the PG algorithms on the DeepSeaTreasure environment for different
number of inner loop updates. The x axis shows sweep over one parameter of the corresponding PG algorithm.
And for each point on the x-axis, we chose the best performing second parameter of the algorithm: the inner loop
step-size α for the first row, the Armijo constant for the second row, and there is no additional parameter for
the last row. The faint black line near the top of each subplot depicts the value of the optimal policy. The last
column shows the learning curves for the best performing parameter configuration for each method.

Hyperparameter configurations: We trained each of the method for 2000 iterations for CliffWorld (200
iterations for DeepSeaTreasure). Each iteration consisted of multiple inner loop updates (we represent this
number by m); these updates are performed in an off-policy fashion that is typical of all these algorithms
(also see Algorithm 1 in the main paper). We also swept over the relevant parameters of the PG algorithms.
For the Regularized variants (both with and without line search) of sMDPO, MDPO, and TRPO, this was
η ∈ {2−13, 2−12, . . . , 2−1}. For fixed step-size variant of sMDPO, MDPO, TRPO, and PPO, we swept over the
inner loop step-size α ∈ {2−13, 2−12, . . . , 23} for CliffWorld (and α ∈ {2−13, 2−12, . . . , 2−2} for DeepSeaTreasure).
For PPO, we additionally considered the clipping parameter ϵ ∈ {0.01, 0.1, 0.2, 0.3 . . . , 0.8, 0.9, 0.99}. For the
Regularized + line search variant of sMDPO, MDPO, TRPO, we also considered different Armijo constants
in the set {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}, used a decay factor of 0.9, initialized the maximal step-size to 10.0 and
fixed the warm-start factor to 2.0. Finally, for the Constrained + line search variant of sMDPO, MDPO, and
TRPO, we swept over the trust region size δ ∈ {2−24, 2−22, . . . , 2−2}, used a fixed backtracking decay parameter
of 0.9, an analytically obtained maximal step-size (see Appendix F.3), and an Armijo constant of 0.0 (i.e. no
Armijo line search).

E.3 Experimental Results

Learning Curves: We show the learning curves corresponding to the best performing hyperparameters for
the four algorithms conventional sMDPO and MDPO (Regularized + fixed step-size), conventional TRPO
(Constrained + line search), and PPO in Figure 2 (main paper). To select the hyperparameters for each
setting, we ran sweeps over different configurations and chose the ones that resulted in the best final performance
at the end of 2000 iterations for CliffWorld (and 200 iterations for DeepSeaTreasure). From Figure 2, we see
that for CliffWorld, all the methods except PPO (PPO got stuck in a “safe” sub-optimal policy) were able to
converge to the optimal policy, and TRPO had the fastest convergence (learned the optimal policy in less than
200 iterations). On the other hand for DeepSeaTreasure, we note that all the methods converged to the optimal
policy, with PPO having the fastest convergence and TRPO the slowest. Additionally, we should also mention
that the TRPO’s update was the costliest (more than two times slower than the rest of the methods) in terms of
wall time, likely because of the backtracking from the line-search.

Parameter Sensitivity and Ablation Study: We show the final performance for sMDPO, MDPO, and TRPO
in Figure 3 (after 2000 iterations for CliffWorld; main paper) and Figure 6 (after 200 iterations for DeepSeaTreasure).
The different rows correspond to the variants Regularized + fixed step-size, Regularized + line search,
and Constrained + line search for each of the methods. And the different columns correspond to different
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Figure 7: The parameter sensitivity plots for PPO on the CliffWorld and DeepSeaTreasure environments for
different number of inner loop updates. The x axis shows sweep over the clipping parameter ϵ. The curve shows
the final performance of the method for the best performing inner loop stepsize α given the ϵ value.

number of inner loop updates3. The last column in each row shows the learning curves for the best performing
parameter setting. The x-axis on each subplot of the first two rows shows the regularization strength η. For the
Regularization + fixed stepsize variant, we chose the best performing α for each η, and for Regularized
+ line search variant, we chose the best performing Armijo constant for each η. The last row (constrained
variant) had only a single parameter, the trust region magnitude, δ that is shown on the x-axis.

From these figures, we see that as the value of m increased, the performance of the fixed step-size algorithms
improved. We also note that adding line search to regularized methods improved their parameter sensitivity to a
large extent. Although, for CliffWorld, none of the Regularized + line search variant were able to achieve
the optimal policy. We believe that the reason for this is that with warm-start the algorithms started using very
large stepsizes (as large as 1000), which lead to an early convergence to a locally optimal policy. To verify this
further, we tried running these algorithms (experiments not shown here) without warm start and a maximal
stepsize of 1.0; this allowed the methods to achieve the optimal policy for a small range of η values, but also made
them much more sensitive different values of η. For the constrained version, we see that all the three algorithms
achieved the optimal policy and were generally insensitive to the δ values. This is likely because the constrained
variant used the (near) optimal steepest ascent direction with the maximal stepsize, achieved via a backtracking
line search. Finally, we note that for DeepSeaTreasure, all the methods had essentially the same performance and
achieved the optimal policy in each case; we attribute this to the simplicity of the environment coupled with
access to the true gradient updates.

We also provide the sensitivity plot for PPO for the two environments in Figure 7. We again see that increasing
the number of inner loop updates helps the performance of PPO on both the environments. We also note that for
no value of the parameters we tested, did PPO achieve the optimal policy on CliffWorld.

E.4 Discussion

These experiments served to demonstrate three major points:

1. The optimization methods might matter as much as the policy gradient objectives being considered. We
found that much of TRPO’s performance came from formalizing the optimization problem as a constrained
program and solving it using the optimal descent direction and a stepsize found using line search. In
particular, not only did TRPO’s performance suffer when we replaced the constraint with regularization,
but the performance of both sMDPO and MDPO also improved significantly when we used TRPO style of
optimization on their objectives. Additionally, we found that line search greatly improved the parameter
sensitivity of all the algorithms.

2. The optimal η values chosen by the Regularized + fixed stepsize variants of sMDPO and MDPO were
3For the Constrained + line search of each method, we observed that the performance saturated after m = 10; in

particular the sensitivity plots are identical for m = 10 and m = 100. Therefore, the performance at m = 1000 should be
exactly equivalent to the performance given at m = 100, and consequently we skipped running that experiment.



Vaswani, Bachem, Totaro, Müller, Garg, Geist, Machado, Castro, Le Roux

much larger than the values predicted by our theoretical results. For instance, the maximal η values for
CliffWorld, as studied by the FMA-PG framework, are

ηsMDPO =
1− γ

rm − rl
=

1− 0.9

100− (−1)
= 9.9× 10−4,

ηMDPO =
(1− γ)3

(rm − rl) · 2γ|A|
=

(1− 0.9)3

101× 2× 0.9× 4
= 1.4× 10−6.

Similarly for DeepSeaTreasure, they are

ηsMDPO =
1− 0.9

1− (−0.01/5)
= 1.0× 10−2

ηMDPO =
(1− 0.9)3

(1− (−0.01/5))× 2× 0.9× 2
= 2.8× 10−4.

Note that these values of η are extremely small, and while the FMA-PG framework still guarantees policy
improvement with these values, the convergence would be much slower than that shown in our experiments.
This is natural since these bounds on η are based on the smoothness of the policy objective J and from
optimization literature, we know that such bounds are usually loose. Finally, also note that the optimal η for
sMDPO found by the experiments (for instance, that given in Figure 2) is closer to that predicted by the
theory, as compared to MDPO.

3. Each of the algorithms benefited from increasing the number of inner loop updates. These off-policy type
of updates enables the PG algorithms to “maximally squeeze” out all the information present in the data
they have already collected, thereby allowing them to improve their performance without any additional
interaction with the environment. This demonstrates the strength of these methods over simpler algorithms,
such as REINFORCE (Williams, 1992), which have only a single update per batch of sampled data.

To conclude, our experiments suggest that the FMA-PG framework provides general purpose surrogate functions
with policy improvement guarantees, which when combined with existing optimization techniques can yield policy
gradient algorithms that are competitive to existing state-of-the-art methods.
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F Analytical Updates and Gradient Expressions for tabular PG Algorithms

In this section, we give the calculations for the closed form analytical solutions for sMDPO and MDPO, and the
gradient expressions for all the four algorithms employed in our implementation for tabular PG algorithms given
in Appendix E.

F.1 sMDPO with Tabular Parameterization

We begin by considering the conventional sMDPO algorithm with a regularized objective.

F.1.1 Closed Form Update with Direct Representation

Our goal is to find the closed form solution to the following optimization problem (from Eq. 8, main paper):

πt+1 = argmax
π∈Π

[∑
s

dπt(s)
∑
a

pπt(a|s)
(
Aπt(s, a) +

1

η

)
log

pπ(s, a)

pπt(s, a)

]
︸ ︷︷ ︸

=:ℓ
πt
sMDPO

, (22)

subject to the constraints on policy pπ. We will solve this problem by assuming the policy π ≡ pπ as an |S| × |A|
table satisfying the standard constraints∑

a

pπ(a|s) = 1, ∀s ∈ S

pπ(a|s) ≥ 0, ∀s ∈ S, ∀a ∈ A.

We begin by formulating this problem using Lagrange multipliers {λs}s∈S and {λs,a}s,a∈S×A for all states s and
actions a:

L(pπ, λs, λs,a) =
∑
s

dπt(s)
∑
a

pπt(a|s)
(
Aπt(s, a) +

1

η

)
log

pπ(a|s)
pπt(a|s)

−
∑
s,a

λs,ap
π(a|s)−

∑
s

λs

(∑
a

pπ(a|s)− 1

)
, (23)

where we abused the notation, in L(pπ, λs, λs,a), by using λs to represent the set {λs}s∈S and λs,a to represent
the set {λs,a}s,a∈S×A. The KKT conditions (Theorem 12.1, Nocedal and Wright (2006)) for this constrained
optimization problem can be written as:

∇pπ(b|x)L(pπ, λs, λs,a) = 0, ∀x ∈ S, ∀b ∈ A (C1)∑
a

pπ(a|s) = 1, ∀s ∈ S (C2)

pπ(a|s) ≥ 0, ∀s ∈ S, ∀a ∈ A (C3)
λs ≥ 0, ∀s ∈ S (C4)

λs

(∑
a

pπ(a|s)− 1

)
= 0, ∀s ∈ S (C5)

λs,ap
π(a|s) = 0, ∀s ∈ S, ∀a ∈ A. (C6)

We now solve this system. Simplifying Eq. C1 for an arbitrary state-action pair (x, b) gives us:

∇pπ(b|x)L(pπ, λs, λs,a) = dπt(x)pπt(b|x)
(
Aπt(x, b) +

1

η

)
1

pπ(b|x)
− λx,b − λx = 0

⇒ pπ(b|x) = dπt(x)pπt(b|x)(1 + ηAπt(x, b))

η(λx + λx,b)
. (24)

Let us set
λs,a = 0, ∀s ∈ S, ∀a ∈ A. (25)
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Combining Eq. 24 with the second KKT condition gives us

λs =
1

η

∑
a

dπt(s)pπt(a|s)(1 + ηAπt(s, a)). (26)

Therefore, with the standard coverage assumption dπt(s) > 0, pπ(a|s) becomes

pπ(a|s) = pπt(a|s)(1 + ηAπt(s, a))∑
b p

πt(b|s)(1 + ηAπt(s, b))
. (27)

Note that dπt(s), pπt(a|s) ≥ 0 for any state-action pair, since they are proper measures. We also need to ensure
that

1 + ηAπt(s, a) ≥ 0

to satisfy the third and fourth KKT conditions. One straightforward way to achieve this is to define pπ(a|s) = 0
whenever 1 + ηAπt(s, a) < 0, and accordingly re-define λs. This gives us the final solution to our original
optimization problem (Eq. 22):

πt+1 = pπ(s, a) =
pπt(a|s)max(1 + ηAπt(s, a), 0)∑
b p

πt(b|s)max(1 + ηAπt(s, b), 0)
. (28)

However, it leaves us one last problem to deal with: ensuring that for any state s, there always exists at least one
action a, such that 1 + ηAπt(s, a) > 0. This is not a problem since we can put a condition on η in order to fulfill
this constraint.

F.1.2 Gradient of the Loss Function with Softmax Policy Representation

Consider the softmax policy representation

pπ(b|x) = eθ(x,b)∑
c e

θ(x,c)
, (29)

where θ(x, b) for all state-action pairs (x, b) are action preferences maintained in a table (tabular parameterization).
Also note that the derivative of the policy with respect to the action preferences is given by

∂

∂θ(s, a)
pπ(b|x) = I(x = s)

(
I(b = a)− pπ(a|x)

)
pπ(b|x), (30)

where I(a = b) is the identity function when a = b and zero otherwise. We will use gradient ascent to approximately
solve Eq. 22; to do that, the quantity of interest is

∂

∂θ(s, a)
ℓπt

sMDPO =
∑
x∈S

∑
b∈A

[
∂

∂θ(s, a)
pπ(b|x)

] [
∂

∂pπ(b|x)
ℓπt

sMDPO

]
(using total derivative)

=
∑
x,b

[
I(x = s)

(
I(b = a)− pπ(a|x)

)
pπ(b|x)

] [
dπt(x)pπt(b|x)

(
Aπt(x, b) +

1

η

)
1

pπ(b|x)

]

= EX∼dπt ,B∼pπt (·|X)

[
I(X = s)

(
I(B = a)− pπ(a|x)

)(
Aπt(X,B) +

1

η

)]
(31)

= dπt(s)
∑
b

(
I(b = a)− pπ(a|s)

)
pπt(b|s)

(
Aπt(s, b) +

1

η

)

= dπt(s)

[
pπt(a|s)

(
Aπt(s, a) +

1

η

)
− pπ(a|s)

∑
b

pπt(b|s)
(
Aπt(s, b) +

1

η

)]

= dπt(s)

[
pπt(a|s)

(
Aπt(s, a) +

1

η

)
− pπ(a|s)

η

]
,

Now we can simply update the inner loop of FMA-PG (Algorithm 1, main paper) via gradient ascent:

θ(s, a) ← θ(s, a) + αdπt(s)

[
pπt(a|s)

(
Aπt(s, a) +

1

η

)
− pπ(a|s)

η

]
. (32)
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F.2 Mirror Descent Policy Optimization (MDPO)

In this section, we study the MDPO type FMA-PG update (Eq. 7 in main paper). We first calculate the analytical
solution to that optimization problem, and then calculate its gradient which we use in the experiments. However,
in the analysis that follows, we we replace the advantage function Aπt with the action-value function Qπt to make
it exactly same as the original MDPO (Tomar et al., 2020) update.

F.2.1 Closed Form Update with Direct Parameterization

While giving the MDPO type FMA-PG equation (Eq. 7), the paper considers the direct representation along
with tabular parameterization of the policy, albeit with a small change in notation as compared to the previous
subsection: π(a|s) ≡ pπ(a|s, θ). However, since this notation is more cumbersome, we will stick with our the
notation of the previous subsection: π(a|s) ≡ pπ(a|s). The constraints on the parameters pπ(s, a) are the same as
before:

∑
a p

π(a|s) = 1, ∀s ∈ S; and pπ(a|s) ≥ 0, ∀s ∈ S, ∀a ∈ A. Our goal, this time, is to solve the following
optimization problem (from Eq. 6, main paper)

πt+1 = argmax
π∈Π

[∑
s

dπt(s)
∑
a

pπt(a|s)
(
Qπt(s, a)

pπ(a|s)
pπt(a|s)

− 1

η
Dϕ(p

π(·|s), pπt(·|s))
)]

︸ ︷︷ ︸
=:ℓ

πt
MDPO

, (33)

with the mirror map as the negative entropy (Eq. 5.27, Beck and Teboulle (2003)). This particular choice of the
mirror map simplifies the Bregman divergence as follows

Dϕ(p
π(·|s), pπt(·|s)) = KL(pπ(·|s)∥pπt(·|s)) :=

∑
a

pπ(a|s) log pπ(a|s)
pπt(a|s)

. (34)

The optimization problem (Eq. 33) then simplifies to

πt+1 = argmax
π∈Π

[∑
s

dπt(s)
∑
a

pπt(a|s)

(
Qπt(s, a)

pπ(a|s)
pπt(a|s)

− 1

η

∑
a′

pπ(a′|s) log pπ(a′|s)
pπt(a′|s)

)]
. (35)

Proceeding analogously to the previous subsection, we use Lagrange multipliers λs, λs,a for all states s and actions
a to obtain the function

L(pπ, λs, λs,a) =
∑
s

dπt(s)
∑
a

pπt(a|s)Qπt(s, a)
pπ(a|s)
pπt(a|s)

− 1

η

∑
s

dπt(s)
∑
a′

pπ(a′|s) log pπ(a′|s)
pπt(a′|s)

−
∑
s,a

λs,ap
π(a|s)−

∑
s

λs

(∑
a

pπ(a|s)− 1

)
. (36)

The KKT conditions are exactly the same as before (Eq. C1 to Eq. C6).

Again, we begin by solving the first KKT condition:

∇pπ(b|x)L(pπ, λs, λs,a) = dπt(x)pπt(b|x)Q
πt(x, b)

pπt(b|x)
− dπt(x)

η

[
log

pπ(b|x)
pπt(b|x)

+ 1

]
− λx,b − λx

=
dπt(x)

η

[
ηQπt(x, b)− log

pπ(b|x)
pπt(b|x)

− 1− η(λx,b + λx)

dπt(x)

]
= 0

⇒ log
pπ(b|x)
pπt(b|x)

= ηQπt(x, b)− η(λx,b + λx)

dπt(x)
− 1

⇒ pπ(b|x) = pπt(b|x) · eηQ
πt (x,b) · e−

η(λx,b+λx)

dπt (x)
−1

, (37)

where in the fourth line, we used the assumption that dπt(x) > 0 for all states x. We again set

λs,a = 0, ∀s ∈ S, ∀a ∈ A. (38)
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And, we put Eq. 37 in the second KKT condition to get

e
− ηλx

dπt (x)
−1

=

(∑
b

pπt(b|x) · eηQ
πt (x,b)

)−1

. (39)

Therefore, we obtain

pπ(a|s) = pπt(a|s) · eηQπt (s,a)∑
b p

πt(b|s) · eηQπt (s,b)
. (40)

This leaves us one last problem to deal with: ensuring λs ≥ 0 for all states s. Again, we can set the step-size η to
ensure this constraint.

F.2.2 Gradient of the MDPO Loss Function with Tabular Softmax Representation

We again take the softmax policy representation given by Eq. 29, and compute ∇θ(s,a)ℓ
πt

MDPO for the MDPO loss
(we substitute Qπt with Aπt in this calculation):

∂

∂θ(s, a)
ℓπt

MDPO =
∑
x,b

[
∂

∂θ(s, a)
pπ(b|x)

] [
∂

∂pπ(b|x)
ℓπt

MDPO

]
(using total derivative)

=
∑
x,b

[
I(x = s)

(
I(b = a)− pπ(a|x)

)
pπ(b|x)

] [dπt(x)

η

(
ηAπt(x, b)− log

pπ(b|x)
pπt(b|x)

− 1

)]

=
dπt(s)

η

∑
b

(
I(b = a)− pπ(a|s)

)
pπ(b|s)

[
ηAπt(s, b)− log

pπ(b|s)
pπt(b|s)

− 1

]

=
dπt(s)

η
pπ(a|s)

[
ηAπt(s, a)− η

∑
b

pπ(b|s)Aπt(s, b)− log
pπ(a|s)
pπt(a|s)

+ KL(pπ(·|s)∥pπt(·|s))

]
,

where in the last line, we used the fact that∑
b

pπ(b|s)
[
ηAπt(s, b)− log

pπ(b|s)
pπt(b|s)

− 1

]
= η

∑
b

pπ(b|s)Aπt(s, b)−KL(pπ(·|s)∥pπt(·|s))− 1.

F.3 Trust Region Policy Optimization (TRPO)

At each step of the policy update, TRPO (Eq. 14, Schulman et al. (2015)) solves the following problem:

max
θ

∑
s

dπt(s)
∑
a

pπθ (a|s)Qπt(s, a)︸ ︷︷ ︸
=:JTRPO

subject to
∑
s

dπt(s) ·KL(pπt(·|s)∥pπθ (·|s))︸ ︷︷ ︸
=:CTRPO

≤ δ. (41)

Unlike the sMDPO and the MDPO updates, an analytical solution cannot be derived for this update (since
it would require solving a system of non-trivial non-linear equations). Therefore, we will use gradient based
methods to approximately solve this problem. From Appendix C of Schulman et al. (2015), the descent direction
is given by s ≈ A−1g where the vector g is defined as g(s,a) := ∂

∂θ(s,a)JTRPO, and the matrix A is defined
as A(s,a),(s′,a′) :=

∂
∂θ(s,a)

∂
∂θ(s′,a′)CTRPO. We analytically compute the expression for this direction assuming a

softmax policy (Eq. 29). The vector g can be readily calculated as

∂

∂θ(s, a)
JTRPO =

∑
x

dπt(x)
∑
b

Qπt(x, b)
∂pπθ (b|x)
∂θ(s, a)

=
∑
x

dπt(x)
∑
b

Qπt(x, b)I(x = s)
(
I(b = a)− pπθ (a|x)

)
pπθ (b|x)

=
∑
x

dπt(x)I(x = s)

[∑
b

I(b = a)pπθ (b|x)Qπt(x, b)− pπθ (a|x)
∑
b

pπθ (b|x)Qπt(x, b)

]

= dπt(s)pπθ (a|s)

[
Qπt(s, a)−

∑
b

pπθ (b|s)Qπt(s, b)

]
. (42)
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For calculating the matrix A, we use the law of total derivative to obtain

∂

∂θ(s, a)
CTRPO =

∑
x,b

[
∂

∂θ(s, a)
pπθ (b|x)

][
∂

∂pπθ (b|x)
∑
s

dπt(s)
∑
a

pπt(a|s) log pπt(a|s)
pπθ (a|s)

]

=
∑
x,b

[
I(x = s)

(
I(b = a)− pπθ (a|x)

)
pπθ (b|x)

] [
−dπt(x)

pπt(b|x)
pπθ (b|x)

]
= −dπt(s)

∑
b

(
I(b = a)− pπθ (a|s)

)
pπt(b|s)

= −dπt(s)

[∑
b

I(b = a)pπt(b|s)− pπθ (a|s)
∑
b

pπt(b|s)

]
= dπt(s)

[
pπθ (a|s)− pπt(a|s)

]
. (43)

Finally, using the above result yields

∂

∂θ(s, a)

∂

∂θ(s′, a′)
CTRPO =

∂

∂θ(s, a)
dπt(s′)

[
pπθ (a′|s′)− pπt(a′|s′)

]
= dπt(s′) · ∂

∂θ(s, a)
pπθ (a′|s′)

= I(s′ = s) · dπt(s′)
(
I(a′ = a)− pπθ (a|s′)

)
pπθ (a′|s′) (44)

⇒ A(s,:),(s,:) = dπt(s)
(
diag(pπθ (·|s))− pπθ (·|s)pπθ (·|s)⊤

)
, (45)

where pπθ (·|s) ∈ R|A| is the vector defined as [pπθ (·|s)]a = pπθ (a|s) and A(s,:),(s,:) denotes the square sub-block of
the matrix A corresponding to the given state s and all the actions. In our experiments, since our A matrix is
small, we directly take its inverse to compute the update direction, thereby bypassing the conjugate method.
Once we have the update direction, we then compute the maximal stepsize β and perform a backtracking line
search similar to the TRPO paper.

F.4 Proximal Policy Optimization (PPO)

The Proximal Policy Optimization algorithm (Schulman et al., 2017) solves the following optimization problem at
each iteration step:

max
θ

∑
s

dπt(s)
∑
a

pπt(a|s) ·min

( pπθ (a|s)
pπt (a|s)A

πt(s, a),

clip
[
pπθ (a|s)
pπt (a|s) , 1− ϵ, 1 + ϵ

]
Aπt(s, a)

)
︸ ︷︷ ︸

=:JPPO

. (46)

The gradient of the objective JPPO can be shown to be equivalent to

∇JPPO =
∑
s

dπt(s)
∑
a

pπt(a|s) · I
(
cond(s, a)

)∇pπθ (a|s)
pπt(a|s)

Aπt(s, a), (47)

where

cond(s, a) =
(
Aπt(s, a) > 0

∧ pπθ (a|s)
pπt(a|s)

< 1 + ϵ

) ∨ (
Aπt(s, a) < 0

∧ pπθ (a|s)
pπt(a|s)

> 1− ϵ

)
. (48)
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Repeating our usual drill, we assume a softmax policy to obtain:

∂

∂θ(s, a)
JPPO

=
∑
x

dπt(x)
∑
b

I
(
cond(x, b)

)∂pπθ (b|x)
∂θ(s, a)

Aπt(x, b)

=
∑
x

dπt(x)
∑
b

I
(
cond(x, b)

)
I(x = s)

(
I(b = a)− pπθ (a|x)

)
pπθ (b|x)Aπt(x, b)

= dπt(s)

[∑
b

I(b = a)I
(
cond(s, b)

)
pπθ (b|s)Aπt(s, b)− pπθ (a|s)

∑
b

I
(
cond(s, b)

)
pπθ (b|s)Aπt(s, b)

]

= dπt(s)pπθ (a|s)

[
I
(
cond(s, a)

)
Aπt(s, a)−

∑
b

pπθ (b|s)I
(
cond(s, b)

)
Aπt(s, b)

]
. (49)

The PPO gradient (Eq. 49) is exactly the same as the TRPO gradient (Eq. 42) except for the additional condition
on choosing only specific state-action pairs while calculating the difference between advantage under the current
policy and the approximate change in advantage under the updated policy.

F.5 MDPO with Constraints

In this section, we calculate the second derivative of the MDPO constraint as given in Table 1. This will allow
us compute the Hessian AMDPO, which is the analog of the A matrix from TRPO implementation, and help us
implement MDPO with a constrained objective and line search.

Continuing from the gradient of the MDPO constraint given in Table 2, we get

∂

∂pπ(b|x)
∂CMDPO

∂θ(s′, a′)
=

∂

∂pπ(b|x)
dπt(s′)pπ(a′|s′)

(
log

pπ(a′|s′)
pπt(a′|s′)

−
∑
c

pπ(c|s′) log pπ(c|s′)
pπt(c|s′)

)

= I(x = s′)dπt(s′)

[
I(b = a′)

(
log

pπ(a′|s′)
pπt(a′|s′)

−
∑
c

pπ(c|s′) log pπ(c|s′)
pπt(c|s′)

)

+ pπ(a′|s′) I(b = a′)

pπ(a′|s′)
− pπ(a′|s′)

(
log

pπ(b|s′)
pπt(b|s′)

+ 1

)]

= I(x = s′)dπt(s′)

[
I(b = a′) · Titd(s

′, a′)− pπ(a′|s′)
(
log

pπ(b|s′)
pπt(b|s′)

+ 1

)]
, (50)

where we introduced an intermediate variable Titd(s
′, a′) := log pπ(a′|s′)

pπt (a′|s′) −KL(pπ(·|s′)∥pπt(·|s′)) + 1. Now, using
the law of total derivative, we obtain

∂

∂θ(s, a)

∂CMDPO

∂θ(s′, a′)
=
∑
x,b

∂pπ(b|x)
∂θ(s, a)

× ∂

∂pπ(b|x)
∂CMDPO

∂θ(s′, a′)

=
∑
x,b

I(x = s)
[
I(b = a)− pπ(a|x)

]
pπ(b|x)× I(x = s′)dπt(s′)

×

[
I(b = a′) · Titd(s

′, a′)− pπ(a′|s′)
(
log

pπ(b|s′)
pπt(b|s′)

+ 1

)]
= I(s = s′)dπt(s) · Taux, (51)
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where the auxillary term Taux is

Taux :=
∑
b

[
I(b = a)− pπ(a|s)

]
pπ(b|s)

[
I(b = a′) · Titd(s, a

′)− pπ(a′|s)
(
log

pπ(b|s)
pπt(b|s)

+ 1

)]
(52)

= Titd(s, a
′)
∑
b

I(b = a)pπ(b|s)I(b = a′)− pπ(a′|s)
∑
b

I(b = a)pπ(b|s)
(
log

pπ(b|s)
pπt(b|s)

+ 1

)
− pπ(a|s)Titd(s, a

′)
∑
b

pπ(b|s)I(b = a′) + pπ(a′|s)pπ(a|s)
∑
b

pπ(b|s)
(
log

pπ(b|s)
pπt(b|s)

+ 1

)
= Titd(s, a

′)pπ(a|s)I(a = a′)− pπ(a′|s)pπ(a|s)
(
log

pπ(a|s)
pπt(a|s)

+ 1

)
− pπ(a|s)Titd(s, a

′)pπ(a′|s) + pπ(a′|s)pπ(a|s)
(
KL(pπ(·|s)∥pπt(·|s)) + 1

)
= I(a = a′)pπ(a|s)Titd(s, a

′)− pπ(a′|s)pπ(a|s)
[
Titd(s, a

′) + Titd(s, a)
]
+ pπ(a′|s)pπ(a|s). (53)

Therefore,

∂

∂θ(s, a)

∂CMDPO

∂θ(s′, a′)
= I(s = s′)dπt(s)

[
I(a = a′)pπ(a|s)Titd(s, a

′)− pπ(a|s)pπ(a′|s)Titd(s, a
′)

− pπ(a′|s)pπ(a|s)Titd(s, a) + pπ(a′|s)pπ(a|s)
]

(54)

⇒ AMDPO
(s,:),(s,:) = dπt(s) ·

[
diag

(
Tvec(s)

)
− pπ(·|s)Tvec(s)

⊤

− Tvec(s)p
π(·|s)⊤ + pπ(·|s)pπ(·|s)⊤

]
, (55)

where we introduced yet another intermediate term Tvec(s), defined as

Tvec(s) := pπ(·|s)⊙ Titd(s, ·) (56)

= pπ(·|s)⊙
[
log
(
pπ(·|s)⊘ pπt(·|s)

)
−KL(pπ(·|s)∥pπt(·|s))1|A| + 1|A|

]
, (57)

and ⊘ in the above equation represents the elementwise vector division defined as [a⊘ b]i := ai/bi for any two
vectors a and b. As a sanity check, note that the matrix AMDPO is symmetric, as any Hessian matrix should be.
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G Additional experiments on MuJoCo environments

In this section, we present results on a series of MuJoCo environments where learning rate decay and gradient
clipping have not been applied. Figure 8 shows that, while sPPO (in orange) still learns something, PPO is
unable to make progress, regardless of the capping (ϵ) and the number of inner loop steps (m), further reinforcing
our intuition that the softmax paramaterization leads to a more robust optimization.

Figure 8: Average discounted return and 95% confidence interval (over 180 runs) for PPO and softmax PPO on 4
environments (env - rows) and for four different clipping strengths (epsilon - columns). We see that sPPO is more
robust to large values of clipping, even more so when the number of updates in the inner loop grows (linestyle).
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