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ABSTRACT
Time-series prediction is of high practical value in a wide range
of applications such as econometrics and meteorology, where the
data are commonly formed by temporal patterns. Most prior works
ignore the diversity of dynamic pattern frequency, i.e., different
granularities, suffering from insufficient information exploitation.
Thus, multi-granularity learning is still under-explored for time-
series prediction. In this paper, we propose a Multi-granularity
Residual Learning Framework (MRLF) for more effective time se-
ries prediction. For a given time series, intuitively, there are more
or less semantic overlaps and validity differences among its rep-
resentations of different granularities. Due to the information re-
dundancy, straightforward methods that leverage multi-granularity
data, such as concatenation or ensemble, can easily lead to the
model being dominated by the redundant coarse-grained trend in-
formation. Therefore, we design a novel residual learning net to
model the prior knowledge of the fine-grained data’s distribution
through the coarse-grained one. Then, by calculating the resid-
ual between multi-granularity data, the redundant information be
removed. Furthermore, to alleviate the side effect of validity dif-
ferences, we introduce a self-supervised objective for confidence
estimation, which delivers more effective optimization without the
requirement of additional annotation efforts. Extensive experiments
on the real-world datasets indicate that multi-granular information
significantly improves the time series prediction performance, and
our model is superior in capturing such information.
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1 INTRODUCTION
Time series prediction, which contributes to accurately forecasting
future values of time series given the past, has attracted great atten-
tion from both academia and industry. A good prediction of time
series trends has a broad impact on many aspects of modern society
such as financial market prediction [12, 49], climate forecasting [34],
electricity demand estimation [43], and health monitoring [44].

Along this line, most existing works [14, 39, 51] are single-
granularity oriented, which are developed on a specific granularity
of time series data, with the goal of predicting the labels at the same
level. For example, previous works utilize users’ daily frequency
electricity consumption data for daily consumption forecasting and
daily price-volume data for daily stock trend prediction. However,
multi-granularity data [40], which usually provides complementary
detailed information that is not covered in the original granularity
data, is vital for making accurate predictions. For instance, when
making investment decisions, mature analysts usually study the
state of stocks extensively in different granularities, such as weekly,
daily, and minute levels. Since long-term (i.e., coarse-grained) fea-
tures reflect overall trends, while short-term (i.e., fine-grained) fea-
tures indicate subtle changes in small time windows, both are cru-
cial to prediction quality in a specific task. This motivates us to
investigate how to leverage multi-granularity data to enhance the
time series prediction. Nevertheless, there are still some unique
challenges in designing an effective solution to integrate multi-
granularity data into time-series modeling.

On one hand, there is severe information redundancy between
different granularity data, ignoring unique information in a cer-
tain granularity. Fine-grained data usually cover the information of
coarse-grained data, since coarse-grained data are often obtained
by the aggregation of the corresponding fine-grained data. Taking
stock trading as an example, the daily highest prices are calculated
from the highest prices of minute frequency data within the same
day. Due to the information redundancy, straightforward meth-
ods that leverage multi-granularity data, such as concatenation or
ensemble, can easily lead to the model being dominated by the
redundant coarse-grained trend information. However, removing
redundant coarse-grained information from the fine-grained one is
not trivial due to the heterogeneity of multi-granularity data. There-
fore, how to utilize granularity-specific information while avoiding
the semantic overlap between coarse-grained and fine-grained data
is still a great challenge.
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Figure 1: The change patterns in fine-grained data are dom-
inated by the trend information of coarse-grained data,
making it becomes difficult to be captured straightfor-
wardly. By calculating the residual between fine and coarse-
grained data, the redundant information be removed, and
the unique fine-grained patterns can be easily captured.

On the other hand, the validity and effectiveness of different
granularity data usually change over time. Intuitively, different
granularity information has different effects on the final prediction
of the target time granularity. For example, for daily frequency elec-
tricity consumption forecasting, daily-frequency user electricity
consumption data usually plays an important role. However, at the
peak of power consumption in the summer, a user’s fine-grained
patterns, like whether using high-power appliances such as air con-
ditioners, may have a significant impact on the power consumption.
At this time, hourly frequency data may be much more effective
than daily data when forecasting the daily electricity consumption.
Therefore, due to the change of effectiveness in different granular-
ity data, we need to judge whether specific granularity data has
enough confidence for the final predictions at the time.

To handle the above issues, in this paper, we propose Multi-
granularity Residual Learning Framework (MRLF) for time-series
prediction towards an effective exploration of multi-granularity pat-
terns. Specifically, 1) we first propose a cross-granularity residual
learning net, which contains multiple blocks with similar struc-
tures, and each block is responsible for learning information of a
specific granularity. In order to remove the redundancy and ensure
that the input of each block is unique to a certain granularity, we
introduce a novel residual design between each block. As shown
in Figure 1, we take two granularities as an example. First, the
coarse and fine-grained features are obtained from raw data. We
observe that the change patterns of fine-grained data are domi-
nated by the trend information of coarse-grained data, making it
becomes difficult to be captured straightforwardly. Nevertheless,
given the coarse-grained data, we can get prior knowledge of the
fine-grained data’s distribution, and we predict the possible fine-
grained data given coarse-grained data. Then, by calculating the
residual between multi-granularity data, the redundant informa-
tion be removed, and the unique fine-grained change patterns can
be easily captured. 2) Then, to judge whether specific granularity
data has enough confidence for the final predictions, we develop
a Multi-Granularity Confidence Estimator. Concretely, we train

a discriminator by constructing a self-supervised objective. The
discriminator measures whether the information of each granular-
ity is effective by the trend similarity between the history and the
present status.

In summary, the main contributions of this work include:
1) In this paper, we present a focused study onmulti-granularity

data for time series prediction. To the best of our knowledge,
this is among the first few studies to investigate how to
dynamically fuse multi-granularity data for time series pre-
diction task.

2) We propose a novel cross-granularity residual learning net
to remove the semantic overlap inherent in multi-granularity
data for better information exploitation, and further design
a self-supervised confidence estimator to judge the dynamic
effectiveness of each granularity.

3) Extensive experiment results on real-world datasets clearly
validate the superiority of our framework in prediction ac-
curacy compared with the state-of-the-arts.

2 PRELIMINARIES
In this section, we first introduce the related work of time series
prediction. And then, we formally formulate the single-granularity
and multi-granularity learning problems.

2.1 Related Work
As a classical research topic, time series prediction has been in-
tensively studied by researchers over the past several decades. It
has historically been a key area of both academia and industry,
forming an integral part of applications in topics such as climate
modeling [34, 37], biological sciences [15] and medicine [44], as
well as commercial decision making in retail [8, 31, 50] and fi-
nance [12, 22, 52, 53] to name a few. Existing methods for time
series prediction can be roughly grouped into two categories: con-
ventional methods and deep learning-based methods.

2.1.1 Conventional Methods. Conventional methods focus on para-
metric models informed by domain expertise, such as Auto Regres-
sion (AR) [5], Auto Regressive Integrated Moving Average (ARIMA)
[19], exponential smoothing [24], or structural time series mod-
els [16]. Most traditional methods can only learn linear relation-
ships among different timesteps, which has an inherent deficiency
in fitting many real-world time-series data that are highly nonlin-
ear. To model non-linear relationships, some variants of the Auto
Regressive model are used, such as LRidge [21], LSVR [47] and
Gaussian Process [41]. However, they assume certain distribution
or function form of time series and fail to capture different forms
of non-linearity [23].

2.1.2 Deep Learning-Based Methods. Leveraging the ability to flex-
ibly model various non-linear relationships, deep learning-based
methods adopt deep neural networks to capture shared information
across related time series for accurate forecasting. These methods
provide a means to learn temporal dynamics in a data-driven man-
ner. For example, Recurrent Neural Networks (RNNs) and its vari-
ants such as Long Short-Term Memory Networks (LSTMs) [20, 30]
and Gated Recurrent Unit (GRU) [10] have become popular due
to their automatic feature extraction abilities, complex patterns,
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Figure 2: Illustration of the Multi-Granularity Residual Learning.

and long term dependencies modeling. To predict more accurately,
complex structures such as recurrent-skip layer (LSTNet-S), tempo-
ral attention layer (LSTNet-A) [30], and a novel temporal pattern
attention mechanism (TPA) [42] have been proposed. Convolu-
tional Neural Networks (CNNs) [4, 11] are also used to enhance
feature extraction ability. The authors in [28] solve the time se-
ries problem by using the deep-learning-based generative model
Generative Adversarial Neural Networks (GANS). Recently, the
well-known self-attention-based Transformer [27, 48, 54] have been
proposed for sequence modeling and has achieved great success.
Most previous studies are single granularity oriented, which results
in information loss from a multi-granularity perspective. In fact,
a robust time series prediction model should be able to capture
temporal patterns at different time granularities. Although there
exist a few works [32, 53] using “multi-scale" information for time
series analysis, we clarify that this type of information is different
from what we refer to by “multi-granularity”. In more technical
terms [40], the concept of “scale” is associated with a subdivision
of the frequency spectrum in bands. “Multi-granularity” methods
(also called multi-resolution methods) address the challenge of han-
dling the coexistence of data with different granularities or levels
of aggregation, i.e., with different resolutions/ different time level
aggregation of statistics or features.

2.2 Problem Formulation
Most existing time series prediction methods use historical features
of single granularity to predict future trends, i.e., single granu-
larity learning, where the input and output granularity are the
same. The prediction model learns a function ŷ = FΘ (X ),where
X = [x1, · · · ,xT ] ∈ RD×T represents the features in the lag of
past T time-steps with dimension D. The time interval between
time-steps is λ.

Fine-grained data contains rich detailed information that the
original-grained data don’t have, but we rarely input only the most
fine-grained data to the model. When the input granularity is in-
consistent with the prediction granularity, it is often difficult for the
model to directly capture the law of prediction granularity. There-
fore, we propose not only using the data with the same granularity
as labels but also multiple using finer-grained data.

This paper focuses on time series prediction usingmulti-granularity
features, i.e.,multi-granularity learning. We assume the coars-
est granularity of the feature is consistent with the label. Formally,

the model learns ŷ = FΘ

(
X 1, · · · ,XM

)
, which maps the historical

multi-granularity data to the future trend label space. For each
granularitym, the data Xm =

[
xm1 , · · · ,x

m
T
]
∈ RD×Km×T repre-

sents features in the lag of past T time-steps. At each time-step
t , xmt ∈ RD×Km is composed of features from Km ∈ R equally
divided time periods within one time step, whose time interval is
λ/Km . Each time-slot contains D features.

3 METHODOLOGY
In this section, we first introduce the overall architecture of the
Multi-granularity Residual Learning Framework (MRLF) and present
the design of each component in detail. Thenwe elaborate theMulti-
Granlarity Confidence Estimator module and discuss the learning
algorithm for MRLF.

3.1 Multi-Granularity Residual Learning
Given the multi-granularity data {X 1, · · · ,XM } that X 1 to XM

represent coarse to fine features, Multi-Granularity Residual Learn-
ing process explores informative cues of time-series future trends
hidden in different granularity features. As illustrated in Figure 2,
to fully exploit the information of every granularity, the process
contains several blocks (the blue rectangles) with similar structures,
and each block is responsible for learning information of only one
granularity. Since the existence of severe redundancy between dif-
ferent granularity data may cause the model to be dominant by the
redundant coarse-grained trend information, we propose stacking
the blocks in a cascaded way from coarse to fine, and design a novel
cross-granularity residual learning method to ensure the input of
each block only contains unique information of a specific granu-
larity. In this section, we first introduce the components of the net.
Then we elaborate on how to stack them in by cross-granularity
residual learning.

3.1.1 Feature Alignment. Since the dimensions of different raw
granularity data are inconsistent, we align them to the same space
to facilitate subsequent residual learning operations, as depicted
in the green part of Figure 2. Specifically, we made a simple linear
transformation Fm

Linear to the input Xm ∈ RD×Km×T which is the
raw data of granularitym in the lag of T timesteps. The aligned
features are denoted as Fm ∈ RD×K×T . We formulate the feature
alignment process as:

Fm = Fm
Linear(X

m ). (1)
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3.1.2 Basic Block. The function of basic blocks is to learn granularity-
specific knowledge. Its architecture is depicted in the left part of
Figure 2. We describe the operation ofm-th block in this subsection
in detail. Them-th block accepts its respective input Pm and has two
outputs, rm andGm . Input Pm represents the de-redundant feature
embedding of granularity m. We elaborate on the de-redundant
process in the next subsection. The output rm aims to perform
prediction according to the current granularitym. The outputGm

approximates the block’s best estimate of the next granularity data
Fm+1, which indicates the information already learned by themodel
and with the ultimate goal of helping the downstream blocks by
removing redundant components of their input that are not helpful
for forecasting.

Internally, the basic block consists of several components. The
first part is Temporal Representation Net FEnc, which further
encode the sequential features Pm as:

Hm = FEnc(P
m ). (2)

The network architecture of FEnc can be flexible. To capture the
temporal characteristics of time series data, here we adopt a 2-layer
GRU [9]. The second part is Prediction Net FPred, which takes the
feature embedding Hm as input, and output the prediction result
rm of the specific granularity as

rm = FPred(H
m ). (3)

Another part, Finer-Grained Reconstruction Net, is donated as
FRec. It takes the feature embeddingHm as input, and output a finer-
granularity estimationGm of next level’s coarse-grained features
Fm+1. We formulate it as follow:

Gm = FRec(H
m ). (4)

Here we use two fully-connected layer to model FPred and FRec.

3.1.3 Cross-Granularity Residual Stacking. In this paper, we ad-
dress the information redundancy problem by introducing a novel
residual learning approach. Inspired by previous residual learning
works [17, 18, 36] that explicitly let stacked layers fit residual map-
ping F (x) := H(x) − x , instead of the desired underlying mapping
H(x), we propose stacking the multi-granularity blocks by residual
learning fashion with the goal of removing the redundancy.

As illustrated in the yellow rectangle in Figure 2, in a special case
of the very first block, its input is the coarsest-grained feature em-
bedding, i.e., P1 := F 1. We hypothesis that the coarse-grained data
itself has prior information about the distribution of fine-grained
data. Therefore we simulate redundant information by using fine-
grained data reconstructed from coarse-grained data. Specifically,
we let the granularity estimation Gm reconstruct the feature of
granularitym + 1. Then the blockm + 1 removes the portion of
the redundant prior signal that the previous block can approximate
well, making the downstream blocks focus on learning the finer-
granularity-specific knowledge. We formulate cross-granularity
residual learning process as:

Pm =

{
Fm ifm = 1,
Fm −Gm−1 otherwise, (5)

where Pm represents the de-redundant input of blockm. In order
to learn trend information from coarser-grained data, while also
allowing the finer-grained information to retain uniqueness after
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Figure 3: The underlying temporal patterns in time series of-
ten changewith time, the effectiveness of different granular-
ity data for future trend prediction is also dynamic. There-
fore, we propose estimating the confidence of different gran-
ularity data as a learnable process through the continuity of
different granularity data itself over time.

the residual structure, it is necessary to make the coarser-grained
information characterize of the original finer-grained information
as much as possible:

LRec =
∑

m=1,2, ...,M

Fm −Gm−12
F , (6)

∥ · ∥F denotes the Frobenius norm. In order not to affect the finer-
grained information extraction process, when optimizing Equation
(6), we fix the process of extracting fine-grained information Fm

and only optimize theGm−1.
The output rm of each block represents the specific time-series

prediction of the target granularity. In order to comprehensively
consider the information of each granularity to produce the final
prediction result, we can simply average all the results to obtain
the final prediction ŷ:

ŷ =
1
m

∑
m

rm . (7)

3.1.4 Basic Model Optimization. Combining theMSE loss of predic-
tion task, the reconstruction loss in the cross-granularity residual
learning process, and the regularization term, we reach the follow-
ing loss function:

L =

S∑
s=1

ys − ŷs
2 + λ1 S∑

s=1
LRec +

λθ
2 ∥Θ∥2F , (8)

where λ1 and λθ are the hyper-parameters to balance different
losses. ∥Θ∥2F is the L2-regularizer, S is the total number of time
series records. We use Adam algorithm [25] in mini-batches to
update our model parameters with the backpropagation.
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3.2 Self-Supervised Confidence Estimation
Since the underlying temporal patterns in time series often change
with time, the effectiveness of different granularity data for future
trend prediction is also dynamic. Therefore, we propose estimating
the confidence of different granularity data as a learnable process
to enhance the basic framework. Intuitively, the more continuous
the data trend on a certain granularity in the near future, the higher
the confidence of future prediction using this granularity. Thus, we
can estimate this effectiveness through the continuity of different
granularity data itself over time. Since there is no direct ground-
truth label, we construct additional self-supervised signals relying
on the inherent character of time series data. In this subsection,
we elaborate the confidence estimation module and the enhanced
model optimization process.

3.2.1 Confidence Estimator. As shown in figure 3, the confidence
estimator is placed at the basic block introduced in the previous
section. It outputs a score estimating the confidence of the pre-
diction for a specific granularity. The confidence weight α is set
to 1 for all the blocks when we choose to disable the confidence
estimator. In this work, we take advantage of mutual informa-
tion [6, 29, 33, 38, 46] to measure the consistence of each granular
data. If the historical trend of a certain granular data has a relatively
large mutual information with the current state, it indicates that
the historical information of the granular data may be more helpful
to future prediction results. Mutual information is a fundamental
quantity for measuring the relationship between random variables.
In contrast to correlation, mutual information captures non-linear
statistical dependencies between variables. and thus can act as a
measure of true dependence [3, 26]. Given two random variables X
and Y , it can be understood as how much knowing X reduces the
uncertainty in Y or vice verse.

At time-step t , we denote the representation of a certain granular
datam as htm . To extract the historical trend information buried in
previous t − 1 time-steps, we apply an autoregressive model AR(·)
to summarize all h<t

m = [h1m ,h
2
m , · · · ,h

t−1
m ] in the latent space

and produce a trend latent representation ctm = AR(h<t
m ). Since

the precise value of MI is difficult to compute, we utilize neural
estimators to maximize the lower-bound of MI instead [35]:

MI
(
htm ,c

t
m
)
≥ log(N ) − LC

N , (9)

where LC
N is the contrastive loss function, that is defined as:

LC
N = − E

Pl


log

Dω
(
htm ,c

t
m
)

Dω
(
htm ,c

t
m
)
+

∑
h̃
l
m ∈Ĥt

m

Dω

(
h̃
t
m ,c

t
m

)

, (10)

where Pl represents the joint distribution of the historical trend
and the current state, i.e.,

(
htm ,c

t
m
)
∼ Pl . h̃

l
m denotes the negative

sample randomly sampled from the marginal distribution of current
state from other samples within one mini-batch, forming a set
of N − 1 elements, denoted by Ĥt

m . Dω (·, ·) is the discriminator
parameterized by ω, we define it in the form of log-bilinear:

Dω
(
htm ,c

t
m
)
= exp

(
htm

⊤
·W · ctm

)
, (11)

whereW is a learnable linear transformation matrix. The loss in
Equation (10) is the categorical cross-entropy of classifying the
positive sample correctly.

After optimizing the Equation (10), we can prove that the op-
timal value for Dω

(
htm ,c

t
m
)
in Equation (11) is proportional to

the density ratio and this is independent of the choice of the num-
ber of negative samples N − 1. We prove that as follow, remind
that Equation (9) is the categorical cross-entropy loss of classifying
the positive sample correctly, with Dω∑

M Dω
being the prediction

model where setM = {htm } ∪ Ĥt
m contains 1 positive sample and

N − 1 negative samples. Let us rewrite the optimal probability for
LC
N as p

(
d = i | M,ctm

)
with [d = i] representing sample i is the

‘positive’ sample ht,(i)m . While others d , i represent negative sam-
ples ht,(d )m ∈ Ĥt

m . The probability that sample d is positive can be
derived as follows:

p(d = i | M,ctm ) =
p(ht,(i)m ,ctm )

∏
k,i p(h

t,(k )
m )∑N

j=1 p(h
t,(j)
m ,ctm )

∏
k,j p(h

t,(k )
m )

=

p(ht, (i )m ,c tm )

p(ht, (i )m )p(c tm )∑N
j=1

p(ht, (j )m ,c tm )

p(ht, (j )m )p(c tm )

.

(12)

Hence, the optimal value DP∗
ω (htm ,c

t
m ) in Equation (10) is propor-

tional to the density ratio p(htm,c tm )

p(htm )p(c tm )
, and this is independent of

the choice of the number of negative samples N − 1. Therefore, we
conclude that:

Dω
(
htm ,c

t
m
)
∝

p
(
htm ,c

t
m
)

p
(
htm

)
p
(
ctm

) . (13)

Since the Pointwise Mutual Information (PMI) of a pair of samples
is defined as: PMI (x ,y) = log p(x,y)

p(x )p(y) , where x ∈ X and y ∈ Y .
Consequently, the discriminative scores computed by the optimal
discriminators D∗

ω are:

α tm = D∗
ω
(
htm ,c

t
m
)
, (14)

Then we utilize a softmax layer to normalize the PMI value of each
granular information:

α tm =
α tm∑
i α

t
i
, (15)

where α tm is the final confidence score of granularm. We rewrite
the final prediction (Equation (7)) as confidence weighted sum of
each extractor:

ŷ =
1
m

∑
m

α tm · rm . (16)

3.2.2 Model Optimization. Combining the MSE loss of prediction
task, the reconstruction loss in the cross-granularity residual learn-
ing process, the contrastive loss to train confidence estimator, and
the regularization term, we rewrite the Equation (8) and reach the
following complete loss function:

L =

S∑
s=1

∥ys − ŷs ∥2 +λ1
S∑
s=1

LRec +λ2
S∑
s=1

M∑
m=1

T∑
t=1

LC
N +

λθ
2 ∥Θ∥2F , (17)
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Table 1: Performance of MRLF and Comparison Methods on Electricity Data and Stock Data.

Method Electricity Stock

CORR↑ RMSE↓ MAE↓ CORR↑ RMSE↓ MAE↓

GRU 0.9763 0.1281 0.0377 0.0759 2.3429 2.1634
LSTM 0.9582 0.1761 0.0837 0.0747 2.4507 2.2274

Transformer 0.9725 0.1410 0.0551 0.0639 3.6961 3.6304
DeepAR 0.9634 0.1655 0.0801 0.0751 2.4075 2.1923
Informer 0.9788 0.1276 0.0371 0.0868 2.2753 2.1206

SFM 0.9669 0.2571 0.1579 0.0857 2.8251 2.6348
ALSTM 0.9661 0.2606 0.1569 0.0736 2.8251 2.4941

ADV-ALSTM 0.9750 0.2237 0.1331 0.0790 3.1770 2.8754

Coarse-Grained RNN 0.9728 0.1376 0.0544 0.0759 2.3429 2.1634
Fine-Grained RNN 0.9751 0.1327 0.0498 0.0873 2.2680 2.1067
Multi-Grained RNN 0.9782 0.1297 0.0473 0.0885 2.0784 1.8209

Ensemble 0.9753 0.1307 0.0494 0.0894 3.6913 3.5862

MRLF (attention) 0.9792 0.1266 0.0358 0.0891 2.2898 1.6511
MRLF (w/o CE) 0.9772 0.1278 0.0365 0.0853 2.6085 1.9439

MRLF 0.9852 0.1118 0.0308 0.0953 0.7262 0.6919

where λ1, λ2, λθ are the hyper-parameters to balance different
losses. ∥Θ∥2F is the L2-regularizer, S is the total number of time
series records. We use Adam algorithm [25] in mini-batches to
update our model parameters with the backpropagation.

4 EXPERIMENTS
In this section, we conduct experiments on real-world datasets to
verify the feasibility of our proposed model. We then analyze the
experiment results and demonstrate the precision promotion by
comparing it with various baselines.

4.1 Experiment Settings
4.1.1 Datasets. We extensively perform experiments on two real-
world datasets.

• Electricity Data. The UCI electricity dataset1 collects the
electricity consumption (kWh) every 15minutes of 321 clients
from 2012 to 2014. The train/val/test is 24/6/6 months. We
aim to predict the daily consumption of each client. The
granularity of input features is 1 day, 12 hours, 4 hours, 1
hour, and 15 minutes.

• Stock Data. We use the quantitative investment platform
Qlib2 to collect stock sequences consisting of 1-min high-
frequency statistics over the constituent stocks from the ma-
jor stock indice CSI300. The datasets range from Feb. 16, 2007
to Jan. 1, 2020 with 908,606 records of 749 stocks. We split the
sequences by time, the train/val/test is 94/12/12 months. 6
commonly used statistics are extracted as features, including
the highest price, the opening price, the lowest price, the
closing price, volume-weighted average price, and trading
volume. The data are adjusted for dividends and splits, and
normalized by the Z-Score method. Following [7, 13, 52],
we aim to predict the daily return ratio of a stock which is

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014
2https://github.com/microsoft/qlib

formalized as y = pT+2/pT+1 − 1, where pt represents the
volume-weighted average price of the stock at day t . The
granularity of input features is 1 day, 1 hour, 15 mins, 5 mins,
and 1 min.

4.1.2 Comparison Methods. The competitive baselines we com-
pared can be categorized into four groups.

• The first group consists of general time series forecasting
models, includingGRU,LSTM,Transformer [48],DeepAR
[1] and Informer [54]. DeepAR produces accurate proba-
bilistic forecasts by constructing a powerful auto-regressive
method. Informer is an efficient transformer-based model
and is the SOTA on the Electricity Data.

• The second group consists of current top systems for stock
trend prediction. SFM [53] aims to capture trading patterns
from investors with different trading modes inspired by
Fourier Transform. ALSTM [39] contains a temporal atten-
tive aggregation layer based on normal LSTM.Adv-ALSTM
[14] is a variant of ALSTM with adversarial training method,
which is claimed to be the state-of-the-art method for daily
trend prediction.

• The third group contains variants of our model using differ-
ent granularities of data. Coarse-grained RNN and Fine-
grainedRNN use only coarsest-grained data or finest-grained
data, respectively. The input of Multi-grained RNN is the
concatenation of two granularity data. Ensemble stands for
the ensemble result for five independent training models
with different granularity data. The basic architectures of
these methods are consistent with MRLF.

• The fourth group contains two ablation counterparts of
MRLF.MRLF (w/o CE) andMRLF (attention) represents
MRLF without the confidence estimation mechanism and
MRLF replace Confidence Estimator with a canonical soft at-
tention mechanism [2], respectively. ForMRLF (attention),
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Table 2: Influence of granularity choice on Electricity Data and Stock Data.

Granularity Choices Electricity Stock

CORR↑ RMSE↓ MAE↓ CORR↑ RMSE↓ MAE↓

g1 0.9728 0.2332 0.1376 0.0729 2.8312 2.5545
g2 0.9738 0.2289 0.1355 0.0857 1.8422 1.6696
g3 0.9749 0.2241 0.1330 0.0859 2.3426 2.2971
g4 0.9749 0.2243 0.1332 0.0884 4.7757 4.6461
g5 0.9751 0.2232 0.1327 0.0841 4.4289 4.1074

g1+g2 (w/o CE) 0.9759 0.2195 0.1302 0.0753 7.9910 6.0631
g1+g2 0.9789 0.2149 0.1287 0.0721 6.1520 4.5026
g1+g3 (w/o CE) 0.9761 0.2186 0.1299 0.0757 3.4731 2.5433
g1+g3 0.9793 0.2057 0.1282 0.0744 3.1533 2.3123
g1+g4 (w/o CE) 0.9774 0.2184 0.1281 0.0824 5.8018 4.4477
g1+g4 0.9801 0.2012 0.1216 0.0806 4.9504 3.6768
g1+g5 (w/o CE) 0.9782 0.2175 0.1297 0.0852 5.0155 3.8347
g1+g5 0.9820 0.1794 0.1135 0.0864 1.3564 1.1276

g1+g3+g5 (w/o CE) 0.9788 0.1889 0.1263 0.0822 2.1274 1.3492
g1+g3+g5 0.9844 0.1786 0.1124 0.0834 0.8846 0.7403

g1+g2+g3+g4+g5 (w/o CE) 0.9772 0.1910 0.1278 0.0853 2.6085 1.9439
g1+g2+g3+g4+g5 0.9852 0.1755 0.1118 0.0953 0.7262 0.6919

query is the hidden state of FEnc(P1) at time-stepT − 1, keys
are P1 to PM .

4.1.3 Implementation Details. 1) Hyperparameters: For the au-
toregressive model, we use a 2-layer GRU. All the hidden size are set
to 64. For all the methods, we optimize them by mini-batch Adam
until convergence and tune the hyper-parameters via grid search on
the validation set with the learning rate selected from [10−4, 10−3,
10−2]. We set the λ1 and λ2 in Equation (17) to 1. The coefficient of
L2 regularization λ3 is tuned amongst [10−5, 10−4, 10−3, 10−2]. For
a fair comparison, RNN backbones in ALSTM and Adv-ALSTM are
searched from the traditional RNN and its variants LSTM and GRU,
and the number of layers is chosen from [1, 2]. The Transformer we
compared has 2 encoder layers, and the number of heads is searched
from [2, 5]. We tune the hyper-parameters of the baseline methods
both from the values listed in their source code and similar range as
used for the proposed method, and we report the best performance.
2) Platform: All the models were trained/tested on a single Nvidia
RTX 2080Ti 11GB GPU. 3) Evaluation Metrics: Following some
previous works [45, 51, 54], we adopt three commonly used evalu-
ation metrics, including Pearson correlation coefficients (CORR),
Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE).
For CORR, higher values are better. For RMSE and MSE, lower
values are better.

4.2 Experiment Results
4.2.1 Comparison with Baselines. To demonstrate the effectiveness
of our proposed model, we compare MRLF with other state-of-the-
art methods of both general time series prediction and stock trend
prediction, as well as model variants using different granularity
data. The comparison results are shown in Table 1. Overall, our pro-
posed MRLF substantially achieves the best results on two datasets

and three evaluation metrics. We also make the following observa-
tions: Multi-Granined RNN achieves better performance than all
single-granularity models, which verifies that introducing multi-
granularity features can boost the performance. Furthermore. MRLF
significantly outperforms the Multi-Granularity RNN, demonstrat-
ing that our model integrates the features better than baselines. We
also observe that both MRLF (attention) and MRLF (w/o CE) surpass
Multi-Grained RNN, and MRLF shows superior performance over
the two variants, verifying the validity of different granularity is dy-
namic and further justify our self-supervised confidence estimator
can better model the dynamic.

4.2.2 Effectiveness of Residual Learning. To study the effectiveness
of the cross-granularity residual learning net, we implement two
MRLF variants which replace the cross-granularity residual learn-
ing with the commonly used feature fusion process: MRLF-Add and
MRLF-Concat. The two variants take the feature addition {F 1, F 1 +
F 2, · · · , F 1 + · · · + FM } and the concatenation {F 1, [F 1F 2], · · · ,
[F 1 · · · FM ]} as each block’s input, respectively. The result are pre-
sented in Figure 4. We find that the residual learning net is consis-
tently better than MRLF-Add and MRLF-Concat. This demonstrates
that the proposed cross-granularity residual learning net indeed
helps each block learn granularity-specific information and there-
fore boosting the performance of time series prediction.

4.2.3 Influence of Granularity Choice. We study how granularity
choices affect model performance. The results are presented in
Table 2. д1, · · · ,д5 denote five granularities from coarse to fine.
We first examine single granular models’ performance, and then
increased to two granularities and three granularities. We add the
intermediate granularity д3 on the basis of the coarsest granularity
д1 and finest granularity д5, and the model effect improves. We
find that the addition of the confidence estimation module further
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(a) Electricity Data. (b) Stock Data.

Figure 4: Effectiveness of Cross-Granularity Residual Learn-
ing Process on Electricity Data and Stock Data.

improved the effectiveness of the model, suggesting that the mod-
ule captures the dynamic validity at different granularities. Finally,
we test the 5 granularity model. Overall, it is clear that increas-
ing the amount of granularity significantly improves the results,
which demonstrates that the introduction of multi-granularity in-
formation effectively improves the performance of the time series
prediction model. However, the marginal benefit is diminishing
with the increase of granularity amounts.

4.2.4 Case Study. To intuitively explore the effectiveness of the
confidence estimation mechanism, we illustrate the changes in
confidence weights of some clients. For each client, we calculate
the Z-Score normalized confidence weight of the 5 granularities
during the test period. The results are presented in Figure 5, in
which the horizontal axis represents the date, and each line reflects
the change of different granularity’s confidence weight.

We expect to observe the change patterns of confidence weights
on some special dates when user electricity consumption habits may
change. From Figure 5(a), the confidence weight of the user’s fine-
grained data (1h) has risen sharply in two US statutory holidays:
Columbus Day and Halloween. To celebrity the festivals, users’
power consumption habits have changed. The model captures the
original daily frequency information is no longer applicable. More
fine-grained patterns should be captured. From Figure 5(b), we find
that in summer day (late-August to mid-September), the confidence
weight of finer-grained data (15min, 1h, 4h) increases, while the
weight of coarser-grained data (12h, 1day) decreases. This phenom-
enon indicates that for the user MT_001, during the peak of summer
electricity consumption, finer-grained electricity usage rules (for
instance whether to use high-power appliances such as air condi-
tioners at a fine-grained time) are more crucial for electricity usage
prediction. In Figure 5(c), user MT_007 also has this phenomenon,
but it is from mid-July to early-September. This further proves that
our model has discovered the user’s personalized summer electric-
ity usage date pattern, which is more flexible and effective than the
rule-based model.

5 CONCLUSION AND FUTUREWORK
In this paper, we uncover the importance of exploringmulti-granularity
patterns for time series prediction and propose a multi-granularity
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Figure 5: The Changes in Confidence Weights of Some
Clients on Electricity Data. The horizontal axis represents
the data, and each line reflects the change of different gran-
ularity’s confidence weight.

learning framework. Specifically, to overcome the semantic overlap
betweenmulti-granularity data, we design a novel cross-granularity
residual learning method to avoid the model being dominated by
the redundant coarse-grained trend information. A confidence esti-
mation module is designed to strengthen the effectiveness of MRLF
further. The experiments on real-world data demonstrated the effec-
tiveness of MRLF for enhancing the time series prediction capacity.

In the future, we will study how to make the generation process
of multi-granularity data learnable rather than manually specified
directly. Reinforcement learning, meta learning, information theory
and other ideas may be integrated into the modeling process, so
that multi-granularity input data can provide more information to
improve the final prediction effect.
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