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Abstract

Recently proposed privacy preserving solutions for
cloud-based localization rely on lifting traditional point-
based maps to randomized 3D line clouds. While the lifted
representation is effective in concealing private informa-
tion, there are two fundamental limitations. First, without
careful construction of the line clouds, the representation is
vulnerable to density-based inversion attacks. Secondly, af-
ter successful localization, the precise camera orientation
and position is revealed to the server. However, in many
scenarios, the pose itself might be sensitive information.

We propose a principled approach overcoming these lim-
itations, based on two observations. First, a full 6 DoF pose
is not always necessary, and in combination with egomotion
tracking even a one dimensional localization can reduce un-
certainty and correct drift. Secondly, by lifting to parallel
planes instead of lines, the map only provides partial con-
straints on the query pose, preventing the server from know-
ing the exact query location. If the client requires a full 6
DoF pose, it can be obtained by fusing the result from multi-
ple queries, which can be temporally and spatially disjoint.
We demonstrate the practical feasibility of this approach
and show a small performance drop compared to both the
conventional and privacy preserving approaches.

1. Introduction
Over the last years, an increasing number of indus-

trial solutions have emerged for cloud-based localization
and mapping in mixed reality and robotics (e.g., Microsoft
Azure Spatial Anchors [23], Facebook LiveMaps [1], or
Google VPS [35]). The need for cloud-based solutions is
primarily motivated by the requirement for scalability as
well as to enable shared experiences and crowd-sourced
mapping. This trend, however, raises a host of privacy con-
cerns [25, 33, 36, 58], as localization and mapping systems
typically rely on camera images as the primary sensory in-
formation. The first works on tackling the privacy issues
are based on the principle of lifting traditional point-based
features to lines to conceal the appearance of images and
maps [12, 17, 50, 53, 54].
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Figure 1. System architecture: We lift the original point cloud
map to privacy-preserving parallel plane maps to only allow con-
straints in a single direction. This can be duplicated with multiple
maps and localization services to accumulate different constraints
locally. The clients send their localization queries to each server,
which compute partial camera localization poses. Only the client
can assemble the full localization result from the partial answers.
Although we need three orthogonal maps for full 6 DoF pose es-
timation, additional constraints, such as localization in the ground
plane, can reduce this requirement.

As already mentioned in the first works by Speciale et
al. [53, 54], their proposed privacy-preserving representa-
tion of maps comes with two fundamental limitations. First,
without careful construction, their maps are easily attack-
able using a density analysis on the line or plane clouds, as
recently also studied in more detail by Chelani et al. [8].
Sparsifying the line cloud is one mitigation to this prob-
lem [8, 53] but comes with significant performance trade-
offs in terms of recall and accuracy of the localization re-
sults. Second, after successful server-side localization in
privacy preserving line cloud maps, the client reveals their
precise camera location in the scene. In many scenarios, the
user’s location itself is sensitive information that should be
protected [2, 4, 16, 55], especially when tracked over time.
The method presented in this paper is orthogonal to previ-
ous works in the sense that it explicitly ignores protection of
the scene appearance, but prevents leaking the user’s precise
location to the server. To this end, we accept the potential
privacy risks of sending a 3D query point cloud that were
previously discussed and tackled [34, 53].



An important observation is that, depending on the ap-
plication, it is often not even necessary to estimate the full
6 degree of freedom (DoF) pose all the time. While appli-
cations like augmented reality can only function with the
a fully known pose, many common localization tasks are
solved on a restricted manifold. As a classical example,
navigation for autonomous driving is generally restricted to
the ground plane and therefore rarely benefits from also es-
timating the vertical component. Furthermore, local ego-
motion tracking is a crucial part of many real-time local-
ization systems, where the tracking-based pose estimate
is globally corrected using less frequent full localization
queries. In these cases, the current pose is generally already
known up to some uncertainty. By only correcting the pose
estimate in one dimension at a time, the potentially revealed
pose information is significantly reduced. In the scenarios
where we do not require full 6 DoF poses, we can further
push the ideas of Speciale et al. [53, 54] and remove infor-
mation from our map representations. Our main idea is to
remove the constraints along two dimensions in the map, so
that each query can only be localized along the remaining
dimension. Instead of lifting each point to a randomly ori-
ented line, we add another degree of freedom and lift the
points to parallel planes. As such, we can only observe
the motion orthogonal to the planes. Estimating the pose
against this map using a local point cloud allows us to de-
termine three of the six degrees of freedom, namely one row
of the rotation matrix and a single translation component.

Combining multiple partial queries in different direc-
tions enables us to obtain a 2D or full 3D pose. To maintain
the privacy of the queries, we assume that these cannot be
co-registered on the server-side. This can be achieved by
distributing the partial maps to different service providers
that must not be able to associate corresponding queries
(e.g., must not communicate or cooperate with each other).
A practical example could be a theme park aiming to pro-
vide visual localization for AR experiences to their guests
using external infrastructure. The park would be respon-
sible for creating the plane maps and distributing them to
three independent cloud service providers. Co-registration
can also be hindered client-side by submitting temporally
or spatially disjoint queries, where only the client knows
the relative pose between them (e.g., obtained via local ego-
motion tracking). In some settings, other client-side infor-
mation allows for recovering the full pose from the 1D lo-
calization. For example, a car driving in a GPS-denied ur-
ban canyon might know which street it is currently on, but
not its exact position. The remaining degree of freedom can
be recovered using our method with a single partial query.

In contrast to the random line clouds presented in [53],
our maps can be thought of as a set of parallel planes. This
representation is inherently safe from density-based attacks
as proposed by Chelani et al. [8]. With this work, we hope

to make another important step to allow for a widespread
adoption of cloud localization services in mixed reality and
robotics.

In summary, this paper makes the following contribu-
tions: (i) We present a principled approach with stronger
guarantees on the privacy-preservation of the map by pre-
venting known vulnerabilities of the existing approaches.
(ii) Our work is the first to provide location privacy in the
domain of image-based localization. (iii) Extensive experi-
ments on real-world datasets show only minor accuracy and
recall trade-offs compared to the previous approaches. This
underlines the high practical relevance of our work.

2. Related Work
Image-based Localization The state-of-the-art methods
in image-based localization have reached an impressive
level of maturity. Recent work focuses on improving the ro-
bustness to drastic appearance and illumination changes [3,
45, 56], scalability to large spaces [27, 38, 40, 62], and real-
time capability on mobile devices [5, 20, 24, 27, 28, 39].
Other recent work studied the problem of finding com-
pressed map representations [7,14] or enabling cross-device
localization and mapping [11]. The existing approaches
can be broadly characterized into structure-based meth-
ods [20, 38–40] relying on an explicit 3D map represen-
tation and retrieval [21, 52] or learning-based methods [6,
24, 48]. Typically, only structure-based approaches provide
sufficient accuracy to enable mixed reality and robotics ap-
plications [42,59]. While most current localization systems
aim to recover a full 6 DoF pose from a set of correspon-
dences, sequences of individually insufficient constraints
have been used to estimate a full pose as well [60].

Image Privacy A serious privacy risk induced by image-
based localization systems is due to the reliance on captur-
ing image information to perform the localization task. This
becomes especially problematic when the images are shared
with other devices or cloud-based localization and mapping
services [25,33,36,58]. This is also the case when only ab-
stract feature representations are used in these systems, as
model inversion techniques can easily recover the original
image content from (sparse) image features [10, 32, 34].

Speciale et al. [53, 54] was the first to address the pri-
vacy problems in image-based localization by obfuscating
the geometry of 2D image or 3D map points in structure-
based approaches. Their main objective was to mitigate the
vulnerability of the traditional methods to model inversion
techniques [32,34]. Our approach is based on the same prin-
ciple but overcomes two of its main limitations. Meanwhile,
several follow-up works also extended upon their original
idea to address the full structure-from-motion [17, 18] and
the real-time SLAM problem [50]. In addition, Dusmanu et
al. [12] showed how a similar idea can also be applied to



improve the privacy of local and global image descriptor
representations, which are the backbone of most localiza-
tion systems. Recently, Shariati et al. [49] explored the po-
tential of low-resolution cameras as an alternative to solving
the privacy problems associated with recording images.

Despite this tremendous progress, the recent privacy-
preserving approaches are still vulnerable to leaking some
amount of image information, which has already been
pointed out as a limitation in their original work [54]. Re-
cently, Chelani et al. [8] studied this problem in more de-
tail. Their work only studies attacks on line clouds but is, in
principle, applicable to random plane clouds as well. They
conclude that, without careful sparsification of the 3D map
representation, the original point-cloud can be easily recon-
structed using a density attack on the line cloud representa-
tion. Their experiments also show that a sufficient level of
sparsification comes with significant trade-offs in terms of
accuracy and recall of the localization results. Our approach
is safe from density-based attacks on the 3D map, as each
partial map is a 1D representation of the scene. In detail,
we break their underlying assumption [8] of uniform ran-
domly distributed 3D line or plane orientations. Instead, the
planes in each partial map are disjoint sets and all of them
have the same orientation. Attacking our approach will be
significantly harder, as it requires the inversion of the full
3D map representation from a 1D projection.

Location Privacy A general privacy issue with any
location-based service concerns the tracking of user be-
havior by analyzing their location over time. This is es-
pecially concerning in the setting of image-based localiza-
tion, where a service provider knows the precise 6 DoF pose
and not only the user’s approximate location (e.g., when us-
ing GPS). Some existing works based on differential pri-
vacy [13] and k-anonymity [37] have been applied to the
general problem of location privacy [2, 4, 16, 55]. These
approaches, however, come with significant trade-offs in
terms of location accuracy, which is generally not accept-
able in the mixed reality or robotics setting, where a precise
6 DoF camera pose is required. In our work, we are the
first to tackle the problem of location privacy based on idea
of geometric lifting proposed by Speciale et al. [53, 54] in
the context of scene and image appearance hiding, which
enables us to recover precise 6 DoF camera poses

Federated Learning Federated learning [22, 26] in the
machine learning community is related to our approach, in
that one of its goals is to preserve the privacy of the train-
ing data. In particular, the underlying principle of federated
learning is to distribute training data across different ma-
chines in a data center, such that each machine only has
access to its part of the data. Similarly, our approach re-
lies on the distribution of 1D maps across different service

providers, where each partial map has much stronger pri-
vacy guarantees as compared to storing all of them on the
same machine. The advantages for user privacy are sig-
nificant. First, the data is better protected from attackers
that gain access to part of the data. Second, by implement-
ing the proposed distribution idea across different service
providers, user privacy is also further increased against the
service providers.

3. Method
In this section, we first give an overview of the system

and describe the architecture in Section 3.1. Next, we de-
scribe the detailed steps to create partial maps in Section 3.2
before we explain how to perform localization against a par-
tial map in Section 3.3.

3.1. Overview

The main idea of our method is to remove the geometric
constraints along two of the three dimensions in the map.
Consequently, a query can only be localized along the re-
maining dimension. This effectively hides the client pose
from the localization service. If a full 6 DoF pose is required
by the client, it can be fused from the results of multiple in-
dependent queries to maps constructed with different plane
normals. In order to only provide the cloud service with the
absolutely necessary information, the maps need to be cre-
ated by the client or a trusted third party before being shared
with the localization service. An illustration of our system
architecture is shown in Figure 1. We assume that the client
is able to create a small, local 3D reconstruction of the scene
for use as a query. This can be done either by active depth
sensing, or by running a Structure-from-Motion or SLAM
algorithm locally on the device.

3.2. Partial Map

A map in our system only contains the original point off-
sets along its assigned direction (this is illustrated in Fig-
ure 2). Geometrically, one can think of the map contain-
ing a set of parallel planes, which pass through the original
3D map points. This is similar to the plane maps proposed
in [53] except that they are parallel instead of randomly
oriented. As we show in Section 3.3, this only allows the
server to partially recover the pose of the query while the
full pose is not observable.

3.2.1 Map Creation

For the map creation, we start from a standard 3D point
cloud reconstruction of the scene. This initial map is pri-
vacy sensitive, i.e., our proposed map creation process must
be carried out either by the client itself or by a trusted third
party. For each 3D point Xm = (xm, ym, zm), we simply
throw away two of the three dimensions and only store the
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Figure 2. Disjoint map creation: To generate multiple, disjoint
maps we split the original point cloud and project each point to
its assigned coordinate axis. Afterwards, we distribute only the
computed plane offsets along the coordinate axes to the servers.
The original point map could reveal private information, so the
map generation needs to be performed in a trusted environment.
We show the 2D case for simplicity, but the same process trivially
generalizes to 3D.

offsets along the remaining one, together with the original
point descriptors. Note that the choice of coordinate system
of the map impacts the pose ambiguity since it defines the
localization directions. We visualize this ambiguity in the
supplementary material.

To ensure privacy with multiple maps, they need to be
carefully created such that they do not reveal additional in-
formation if combined. We therefore split the original point
cloud into disjoint sets, each being projected onto a differ-
ent coordinate axis. This prevents a potential attacker with
access to all maps from gaining information by intersecting
the plane maps later on. We use random sampling to select
the points for the different sets so that each partial map still
covers the entire scene. This process is shown in Figure 2.
Note that due to the disjoint point sets, even when combined
the maps are also not vulnerable to the density-based attacks
recently proposed by Chelani et al. [8].

3.3. 1D Localization

To localize a query point cloud, we assume that each
3D query point is associated with a feature descriptor,
which allows to establish tentative correspondences to the
map planes using standard descriptor-based matching ap-
proaches. In the following derivation, we assume that map
and query point cloud have consistent scale, which is a prac-
tical assumption for most SLAM systems. We provide vari-
ants of the solver for the special cases of unknown scale of
the query and known gravity direction at query time in the
supplementary material.

In detail, assuming a point cloud map, we can split the
constraint of a 3D pose into three separate 1D constraints

RXq + t = Xm =⇒


rT1 Xq + t1 = xm

rT2 Xq + t2 = ym

rT3 Xq + t3 = zm

(1)

where Xq and Xm are corresponding 3D points in the
query and map respectively. The key insight from Eq. (1)
for our method is that the estimation problem separates
into three constraints for each map coordinate Xm =
(xm, ym, zm)T and we can use only one of the equations
for each correspondence. Consequently, given our 1D map
and a query point cloud with associated feature descriptors,
we are able to recover the query position along the local-
ization direction and a partial orientation, namely the corre-
sponding row of the rotation matrix. The server then estab-
lishes tentative correspondences with the map based on de-
scriptor matching. From these correspondences, the server
estimates the corresponding partial pose (rTk , tk). Due to
imperfect descriptor matching, we use LO-RANSAC [9] as
a robust estimator to deal with potential outlier correspon-
dences. Note that the server can only observe (rTk , tk) and
thus only partially knows the position of the query. Given
(rTk , tk) there exist three degrees of freedom left in [R t],
two in the position (the remaining translation parameters),
and one rotational degree of freedom. Furthermore, our for-
mulation of the partial pose constraint is independent of the
plane normal direction. As a consequence, the server can be
agnostic to its assigned coordinate axis and only store the
plane coordinates as simple scalar distance to the origin.

3.3.1 Minimal Solver for 1D Localization

Each localization server needs to estimate one row of the
transformation [R t]. Denote this row (r, t), where r is a
unit vector. These should then satisfy

rTX + t = x (2)

for an inlier corresponding point X ∈ R3 in the query and
x ∈ R in the map. We have 3 degrees of freedom, since we
can only enforce the unit-norm constraint on one row of the
rotation r, because each row is estimated independently.

Given three correspondences, we can minimally solve
for (r, t), collecting three correspondences asXT

1 1

XT
2 1

XT
3 1

(r
t

)
=

x1x2
x3

 . (3)

Ignoring the norm-constraint, the solutions to the under-
determined linear system above can be written as(

r
t

)
=

(
a
α

)
+ λ

(
n
ν

)
, λ ∈ R . (4)

The norm constraint now yields a quadratic equation in λ,

rTr = aTa+ 2λaTn+ λ2nTn = 1 . (5)

Solving this we can recover two solutions for (r, t).



3.3.2 Least Squares Fitting

We now consider the case where we want to fit a model to a
non-minimal (> 3) number of correspondences, i.e.

min
r,t

∑
k

(
rTXk + t− xk

)2
s.t. rTr = 1 . (6)

The optimal t w.r.t. r is then t? = 1
n

∑
k(xk − rTXk).

Inserting this into (6), the problem can be rewritten as

min
r
‖Ar − b‖22 s.t. rTr = 1 , (7)

where the rows of A and b are

ATi = XT
i −

1

n

∑
k

XT
k , bi = xi −

1

n

∑
k

xk (8)

Now if b was zero, the solution could easily be found
using SVD. For the in-homogeneous case the problem is
more challenging but can be solved using a Lagrangian for-
mulation. See Gander [15] for more details about norm-
constrained least squares problems. For (7) the Lagrangian
is thenL = ‖Ar−b‖22+λ(rTr−1).Differentiating w.r.t. r

∇rL = 2ATAr − 2AT b+ 2λr = 0 , (9)

allows us to solve for r?(λ) =M−1
λ AT b, where

Mλ =
(
ATA+ λI

)
. (10)

Now inserting this into the norm constraint yields

bTATM−T
λ M−1

λ AT b = 1 , (11)

which is a rational equation in λ. From this we get a degree
6 polynomial in λ as

p(λ) = bTAT adj(Mλ)
T adj(Mλ)A

T b− det(Mλ)
2. (12)

Finding the roots of this polynomial, we can recover λ
and, by back-substitution, we can recover the corresponding
(r, t). The correct root can then be selected by evaluating
the original cost function (6) and taking the minimizer.

3.4. Combining multiple 1D localizations

If 1D localization is not sufficient, the client can recon-
struct the 3D pose [R t] by stacking the results from three
independent queries to maps with different directions, as
shown in Eq. (1). We explain how to combine results from
non-orthogonal maps in the supplementary material. Since
the estimation on each server is carried out independently,
the pairwise orthonormality constraints on the rotation ma-
trix rows cannot be enforced. Therefore, the client projects
the returned rows onto the closest valid rotation matrix us-
ing SVD [19]. In experiments we show that, in practice,

this has negligible impact on the accuracy of the final re-
sult. Finally, if an accurate and reliable source of odometry
is available, we can even combine partial localizations over
time by propagating the partial poses to a common coordi-
nate frame. We show the feasibility of this approach in our
experiments. Note that if 2D localization is sufficient we
can still recover the full 3D orientation from two queries
due to constraints on the rotation matrix.

4. Experiments
In this section, we experimentally validate the accuracy

and robustness of our proposed solution. When comparing
to standard, full pose estimation methods we query the same
pose in all three directions independently and combine the
results afterwards. The results of our evaluations show little
performance loss over its baselines and thus underline the
practical relevance of our approach.

4.1. Synthetic Data

We first validate our approach on synthetic data. We gen-
erate synthetic maps by uniformly sampling 100 3D-points
in the unit cube [0, 1]3. These points are then randomly
rotated and translated to create the query point cloud. To
each query point, we add zero-mean Gaussian noise. Out-
lier correspondences are created by randomly resampling
a subset of the map points. Finally, we generate three 1D
maps, as described in Section 3.2.1, by randomly splitting
the map into three equal parts. Figure 3 shows the dis-
tribution of the equation residuals after applying the min-
imal (Section 3.3.1) and non-minimal solver (Section 3.3.2)
to 10,000 synthetic instances. Next, we compare applying
the proposed localization method with direct point-to-point
alignment, as well as the random-plane method from Spe-
ciale et al. [54]. For each method, we use LO-RANSAC [9]
with a fixed number of iterations to estimate the transfor-
mation between the map and query. For our approach, we
report the result of three independent 1D localizations. Fig-
ure 4 shows the average rotation error obtained for varying
noise levels added to the query. For this experiment, we set
the outlier ratio to zero. We see that the proposed approach
is slightly more sensitive to noise in the query compared to
the two competing methods. Note that σ = 0.1 is an ex-
tremely high noise level, corresponding to 10% of the point
cloud extent. Next, we vary the outlier ratio and fix the
noise level to σ = 0.005. Figure 5 shows the percentage of
instances, where the rotation error is below 5 degrees. Note
that the method from Speciale et al. [54] needs to sample
six plane-point correspondences in each iteration, making it
more sensitive to outliers. The proposed approach only re-
quires three points (same as for point-to-point alignment),
but instead needs to perform three independent RANSAC
optimizations, which reduce the overall robustness. More
synthetic results can be found in the supplementary.
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4.2. Real Data

In this section, we evaluate our proposed solution on
real localization datasets. We assume that the client is
either equipped with a SLAM system or has depth sens-
ing hardware to obtain the client-side query point clouds,
and we evaluate both setups in different scenarios. First,
we consider the case of large-scale outdoor localization
based on multiple internet image collections datasets [61].
In this scenario, specialized sensors are not commonly
used, and active depth sensing in consumer devices tends
to fail in outdoor environments. We therefore build
the queries from multiple images using a Structure-from-
Motion pipeline [44, 47]. Second, we evaluate on the 7
scenes [51] dataset consisting of 7 different indoor scenes
captured with a Microsoft Kinect as an RGB-D sensor.

For both scenarios, we compare our method to two dif-
ferent baselines: traditional point cloud alignment [57]
(Point-to-Point) and the privacy preserving solution of
aligning the query points to a map of randomly oriented
planes, as presented by Speciale et al. [54] (Point-to-Plane).
Note that for the Point-to-Plane [54] approach, the plane
map is vulnerable to density attacks [8] and, upon success-

ful localization, the client pose is revealed to the server.
We report pose accuracies as the recall within different

error thresholds. We use three different combinations of ori-
entation and position error thresholds: (0.05m, 2◦), (0.2m,
5◦), and (0.5m, 10◦).

4.3. Structure-from-Motion Queries

Dataset For the Structure-from-Motion evaluation we
rely on the well-known 1DSFM dataset by Wilson and
Snavely [61]. The scenes Alamo (703 images), Gendar-
menmarkt (825 images), Madrid Metropolis (279 images),
Roman Forum (1275 images), and Tower of London (577
images) cover tourist attractions around the world and are
crowd-sourced from the internet. Additionally, we use
the city-scale datasets Aachen [41, 43, 63] (6697 images)
and Dubrovnik6K [28] (5856 images) to showcase the ap-
plicability of our method for even larger scenes. For
each scene, we first generate a complete model using the
COLMAP [44, 46] Structure-from-Motion pipeline to ob-
tain pseudo-ground-truth poses. We then manually scale the
ground-truth models to approximately metric scale to pro-
vide meaningful error measures. Finally, we only consider
registered images by COLMAP for our evaluation.

Setup To generate the evaluated multi-image queries, we
first select a single image from the model. For the selected
image, we find the 3 images with the most commonly ob-
served points and a minimum baseline of 1m to the query
image to enable triangulation. We subsequently use the
query images to triangulate the query point cloud by op-
timizing the observed 3D structure only from constraints
between the selected set of four images. In addition, we
carefully remove the query images and all of their feature
observations from the map and optimize the structure with-
out these constraints. Finally, we use raw, pairwise SIFT
feature matches [29] without two-view geometric verifica-
tion to obtain correspondences between query and map. We
select each image in the model once as the query image and
choose the corresponding image set automatically.

Results For each method, we select the best RANSAC in-
lier thresholds by maximizing the area under curve (AUC)
of the position precision-recall plot between errors of 0m
and 5m. This strategy leads to thresholds 0.15m, 0.05m, and
0.25m for Point-to-Point, Point-to-Plane, and ours, respec-
tively. Table 1 shows the recall for the different error thresh-
olds. Overall our method provides comparable localization
accuracy as the randomly-oriented plane maps from Spe-
ciale et al. [54], while providing better protection against
density-based attacks and hiding the pose from the server.
Still, our method exhibits higher variance in the accuracy,
and recall for τ3 is slightly below [54]. This is likely due to
the higher number of required correspondences.
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Scene Method

Point-to-Point [57] Point-to-Plane [54] Ours

τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3

Alamo 21.3 60.8 86.1 12.6 54.5 86.1 22.1 62.6 79.5
Gendarmenmarkt 7.7 40.8 72.4 4.6 33.4 61.6 5.6 31.1 56.7
Madrid Metropolis 4.7 32.1 68.2 1.8 23.0 59.9 6.6 36.1 62.8
Roman Forum 11.3 53.0 79.2 7.6 47.5 76.8 12.2 43.8 66.8
Tower of London 5.9 43.7 73.9 3.3 37.1 72.3 8.7 37.1 58.9

Aachen 12.4 76.4 95.5 8.6 67.7 91.6 12.0 57.9 81.5
Dubrovnik 4.8 35.3 60.8 2.7 27.1 54.6 3.9 24.0 45.7

τ1 = (0.05m / 2◦) τ2 = (0.2m / 5◦) τ3 = (0.5m / 10◦)

Table 1. Structure-from-Motion results: Percentage of poses
below different combined position and orientation error thresholds
for the compared methods. The queries are built from multiple
images using a Structure-from-Motion pipeline.

We also evaluate how close the estimated transform is to
a proper rotation and translation. For each query we com-
pute the angle between the rows of the rotation matrix be-
fore and after projecting with SVD. Figure 6 shows the dis-
tribution of the angles for the 1DSfM datasets. Even though
the orthogonality constraints are not enforced during esti-
mation, the composed rotation matrices are close to proper
rotations, and the projection only yields small corrections.

4.4. 2D Trajectory Queries

Dataset We use the Oxford RobotCar dataset [30, 31] to
highlight the special setup that emerges in localization for
autonomous driving. We build a map from run 2014-12-
09-13-21-02 and use images of run 2014-11-28-12-07-13
as queries. Hereby we ignore query images outside of the
mapped area. We use all three wide-angle cameras for map-
ping, but only query with images of mono rear.

Setup We first find feature matches between both runs us-
ing image retrieval and pairwise feature matching. Then we
jointly optimize the structure and camera poses of both runs
together to account for small errors in the provided calibra-
tion and ground truth poses. Afterwards we split the two
runs and retriangulate all points separately while keeping
the camera poses constant. We generate two plane maps
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Figure 7. Disjoint query precision-recall: 2D position precision-
recall plot with poses combined from two queries at the same
pose, and with 4m and 10m distance between the queries using
the RobotCar dataset. Relative poses between the two query lo-
cations are computed using the provided INS data. Point-to-Point
alignment combines the constraints of both queries using the same
relative pose estimate.

with orthogonal, horizontal plane normals and ignore the
vertical component during localization. Note that we still
estimate the 3 DoF orientation, although a single yaw angle
would likely be sufficient. The two map queries can either
be based on a single pose, or on two different locations,
with the relative pose between two queries known from the
provided INS data. We then combine the two partial poses
into a 2D position and 3D orientation. As reference, we
also combine all point-to-point constraints of the two im-
ages and perform standard point cloud alignment, but drop
the point-to-plane method as second baseline.

Results Figure 7 shows the precision vs. recall curves of
our method compared to point-to-point alignment from a
single pose, or with 4m or 10m distance between the two
queries. Compared to point-to-point alignment our method
suffers more from noise in the relative poses, likely due to
the inability to overfit to only one part of the query. We pro-
vide additional evaulation with high quality relative poses
in the supplementary material.

4.5. Depth Sensor Queries

Dataset The 7 scenes dataset [51] consists of high-
framerate video sequences, capturing seven different indoor
scenes. To reduce redundancy and simplify the experi-
ments, we first downsample the frames, keeping only every
tenth image for both the train and test sequences.

Setup We use the training images for building the map
and evaluate the localization accuracy on the test images.
We keep the train/test split as given by the dataset and use
COLMAP to create the initial map. To obtain compara-
ble poses for testing, we then use the ground-truth image
positions to align the COLMAP model to the ground-truth
coordinate system. As the dataset does not provide camera
calibration data, we manually estimate the transformation
between the depth and RGB camera and project the Kinect
depth measurements into the color image. We build the 3D
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Figure 8. Depth sensor precision-recall: Position precision-
recall plot for a subset of 7 scenes. For most scenes accuracy and
robustness of our method is comparable with the baselines. Please
refer to the supplementary material for the remaining scenes.

query points by unprojecting the detected SIFT keypoints
with valid depth measurements. To localize we again find
correspondences based on unverified SIFT feature matches
between the query and map images. We optimize the
RANSAC inlier threshold for each method independently
on the RedKitchen scene, maximizing the AUC of the po-
sition precision-recall plot up to an error of 0.1m (0.04m,
0.01m, and 0.06m for Point-to-Point, Point-to-Plane, and
ours, respectively).

Results We show the percentages of poses within the
three combined error thresholds in Table 2. A detailed dis-
tribution of the position errors for a subset of the scenes is
shown in Figure 8. For the medium and large thresholds,
our method’s results are comparable to the baselines. For
the stairs scene, our results are significantly worse than the
baselines. This is explained by very few reliably matchable
features in the scene and thus only few correspondences are
found. The effect is also visible in the baseline poses, but
our method suffers significantly due to only having roughly
a third of the correspondences available for each dimension.
This could be avoided by not dividing the map at the begin-
ning and using all map points for each partial map. How-
ever, this would also have implications on the privacy as-
pect, as we discuss in Section 5. Interestingly, for some
scenes our method achieves higher accuracy than the base-
line methods. However, this is likely caused by the impact
of the different thresholds for these particular scenes.

5. Discussion
With this work, we made another step towards provid-

ing strong privacy guarantees for image-based localization
in cloud services. The benefits in data protection come at
the cost of either obtaining fewer constraints on the pose
or requiring multiple, independent services, together with
a small reduction in localization accuracy and recall. The
reduced accuracy mostly stems from the fact that only a
fraction of the correspondences is available to each local-
ization service, and that we cannot enforce the full rotation
matrix constraints during the partial localizations. In the

Scene Method

Point-to-Point [57] Point-to-Plane [54] Ours

τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3

chess 46.5 99.5 100.0 38.0 99.5 100.0 24.0 97.5 99.5
fire 52.0 99.5 100.0 49.5 99.0 100.0 35.0 97.0 99.0
heads 33.0 76.0 89.0 26.0 80.0 89.0 39.0 77.0 82.0
office 18.5 64.8 97.5 20.8 61.3 97.0 16.8 59.0 95.2
pumpkin 2.0 51.5 90.5 1.0 53.0 89.5 0.0 51.0 90.5
redkitchen 23.4 83.6 98.8 20.8 82.8 99.8 26.6 87.0 99.6
stairs 7.0 62.0 89.0 5.0 41.0 80.0 0.0 11.0 48.0

τ1 = (0.05m / 2◦) τ2 = (0.2m / 5◦) τ3 = (0.5m / 10◦)

Table 2. Depth sensor results: Percentage of poses below the er-
ror thresholds for the compared methods with the 7 scenes dataset.

case of multiple services, we require that neither the partial
maps nor localization results are shared between those ser-
vices. Furthermore, an attacker must not gain access to, or
intercept all servers. This is important to guarantee the pro-
tection of location privacy, as the full localization result can
be composed from access to the partial maps or the partial
responses. By only storing disjoint subsets of the full map
in each 1D part, both trivial intersection and more sophisti-
cated density-based attacks [8] do not apply.

In this work we ignored potential privacy violations from
point clouds with feature descriptors as this was already ap-
proached in other works. However, the currently available
methods can not be combined with our approach, so new
methods will be required to protect both the scene appear-
ance and client location. Further, we ignored any issues
arising from scaling the system up to scene sizes that re-
quire pose priors (e.g., GPS) to select map partitions for the
local area. There are many closed-scene scenarios of lim-
ited size that do not require globally registered map, e.g.,
theme parks. Even if selecting a local map partition is re-
quired, we believe that hiding the exact client pose within
this area can still significantly benefit the client’s privacy.

Directions for future research include a more optimal
subset selection for the 1D maps considering uncertainty
of the 3D points as well as finding an optimal orientation of
the coordinate axes to maximize plausible camera poses.

6. Conclusion

We presented a new cloud-based localization approach
that provides additional guarantees on the level of pri-
vacy preservation of the map representation, which over-
comes one of the major limitations of the existing ap-
proaches [53, 54]. Furthermore, our approach is the first to
provide location privacy in the context of image-based lo-
calization in mixed reality and robotics. By reducing the full
pose estimation problem to the absolute minimum amount
of data required for the problem at hand, we significantly
limit the risk of leaking confidential information for both
consumers as well as cloud providers.
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