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ABSTRACT
Details of the designs and mechanisms in support of human-AI
collaboration must be considered in the real-world fielding of AI
technologies. A critical aspect of interaction design for AI-assisted
human decision making are policies about the display and sequenc-
ing of AI inferences within larger decision-making workflows. We
have a poor understanding of the influences of making AI infer-
ences available before versus after human review of a diagnostic
task at hand. We explore the effects of providing AI assistance at the
start of a diagnostic session in radiology versus after the radiologist
has made a provisional decision. We conducted a user study where
19 veterinary radiologists identified radiographic findings present
in patients’ X-ray images, with the aid of an AI tool. We employed
two workflow configurations to analyze (i) anchoring effects, (ii)
human-AI team diagnostic performance and agreement, (iii) time
spent and confidence in decision making, and (iv) perceived useful-
ness of the AI. We found that participants who are asked to register
provisional responses in advance of reviewing AI inferences are
less likely to agree with the AI regardless of whether the advice
is accurate and, in instances of disagreement with the AI, are less
likely to seek the second opinion of a colleague. These participants
also reported that the AI advice to be less useful. Surprisingly, re-
quiring provisional decisions on cases in advance of the display of
AI inferences did not lengthen the time participants spent on the
task. The study provides generalizable and actionable insights for
the deployment of clinical AI tools in human-in-the-loop systems
and introduces a methodology for studying alternative designs for
human-AI collaboration. We make our experimental platform avail-
able as open source to facilitate future research on the influence of
alternate designs on human-AI workflows.
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1 INTRODUCTION
We explore the influences of the sequencing of the availability
of AI inferences on human decision making in a clinical imaging
setting. We assess whether eliciting initial diagnoses from the par-
ticipant before revealing the AI recommendation influences their
final decisions and overall usage of AI inferences. In the study, we
experiment with two human-AI collaboration workflow configura-
tions. In the one-step workflow, participants were asked to identify
radiographic findings given AI inferences and X-ray images at the
same time. In the two-step workflow, participants were presented
with AI inferences only after they had made a provisional decision.
The two workflows reflect distinct approaches to interleaving AI
assistance with human decision making. In practice, the joint pre-
sentation of the radiographic findings and inferential analysis at
the start provides a more comprehensive set of information sources
to the decision maker. However, as AI inferences may be erroneous,
there are concerns about the possibility of unwanted anchoring
that could lower the team’s performance [4, 10, 29, 73].

Beyond focusing on performance, deployments must also con-
sider preferences of human decision makers about alternate work-
flows when it comes to usability and adoption. While there is en-
thusiasm about bringing AI inferences into practice, resistance has
been noted to AI assistance, with basis in multiple factors, including
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changes in established patterns of practice and aversion to automa-
tion [11, 21, 33]. For example, in high-stakes domains where human
decision makers are the ultimate decision makers, there may be
concerns regarding the influence of AI assistance on predictive per-
formance, effort, and productivity. To understand the multifaceted
impact of these tools, we measured (i) anchoring effects, (ii) human-
AI team diagnostic performance and agreement, (iii) time spent and
confidence in decision making, and (iv) perceived usefulness of the
AI inferences.

We examined the influence of alternate human-AI workflows on
a clinical imaging task with 19 veterinarian radiologist participants
based at Mars, a pet healthcare company. The radiologists were
asked to inspect and identify 33 different findings in X-ray images
from real-world cases that had come to the company. In both work-
flows, the AI assistance consisted of binary AI inferences (finding
present versus absent) on each finding along with the respective
confidence scores. AI inferences were obtained from an ensemble
machine learning model that is under consideration by Mars for
deployment. The study was conducted via a web-based experimen-
tation platform (Figure 1) where participants could inspect X-ray
images, register their findings, and review AI inferences.

Key findings from the study demonstrate that alignment be-
tween participants’ diagnoses and AI inferences is strongest in the
one-step workflow, where radiologists were presented with AI as-
sistance at the beginning of the diagnostic sessions. The findings
highlight a higher risk of anchoring in the hone-step AI workflow.
While we had hypothesized an anchoring effect given the nature
of the workflow, we found that anchoring effects were minimal
for findings considered critical or life-threatening for the animal.
Although the AI outperformed participants, anchoring effects only
led to marginal gains in diagnostic performance due to over re-
liance on erroneous AI advice. From a productivity perspective, we
found that the time spent in both workflows was comparable. We
were surprised to found that participants in the two-step workflow
rarely revised their provisional diagnoses when the AI inferences
differed from their earlier assessment. In perceptions shared in a
survey, participants in the one-step workflow expressed a sense
that the AI increased their confidence and speed more than those
in the two-step workflow, and rated AI inferences as more useful.
We believe that our multi-dimensional analysis provides actionable
insights on the fielding of AI assistance in clinical imaging domains,
suggesting that automated inferences may be most beneficial to hu-
man decision making when it is least disruptive per being smoothly
integrated into the flow of human cognitive processes.

In summary, we make the following contributions:

• We conduct a user study to investigate the influence of two
human-AI workflows on the diagnoses made by expert vet-
erinary radiologists with the aid of an AI diagnostic tool.
The analysis investigates questions about the influence of
the sequencing of AI inferences on key dimensions, includ-
ing anchoring bias, diagnostic performance, agreement, time
spent, and user satisfaction.

• Based on the study results, we derive and discuss a set of
implementable takeaways for the deployment of AI tools in
human-driven decision-making processes.

• We release as open source the experimental platform, which
can be used for conducting human-in-the-loop user studies in
clinical imaging. The code is available at http://aka.ms/Exp-
HAIC.

The rest of the paper is organized as follows. In Section 2, we posi-
tion and contrast our work with previous findings in the human-AI
collaboration and decision-making literature. Section 3 contains
details of the experimental setup and the platform. Section 4 de-
scribes the study findings. Sections 5 and 6 discuss takeaways and
future research directions.

2 BACKGROUND
2.1 Analyses of Human-AI Teams
AI tools are being deployed to aid human decision makers in a
variety of high-stakes domains including healthcare, criminal jus-
tice, child welfare, and hiring [18, 20, 70]. In medicine, the recent
advent of deep learning methods has sparked enthusiasm about
translating prototypes in practice [31, 37, 74, 82], with systems
showing performance on par with experts on diagnostic tasks
[8, 25, 35, 40, 60–62, 72, 83, 90]. The hope is that these tools will
produce sizable gains in efficiency of human decision-making pro-
cesses [5, 52, 55, 57, 64, 75, 88]. However, evidence to date suggests
that their deployment of AI systems does not necessarily yield a
uniform improvement over the status quo [6, 24, 78, 80].

The adoption of these tools has fostered a scholarly effort on de-
signing human-AI collaborations for optimal team decision making
[4, 41, 59, 89]. Past studies in this space analyze how user perfor-
mance and trust are affected by the presence of AI explanations
[4, 54, 69, 93], the perceived and communicated AI accuracy [54, 91],
and model updates [3], among others. A common theme in this
body of work is that, when building an AI intended to collaborate
with a human, numerous details of human-centered design need to
be considered, in contrast to the dominant focus of attention on AI
accuracy. Our study contributes new insights about the importance
of workflow configurations as part of designs for human-AI collabo-
ration. In contrast to prior studies, we analyze the decision making
of domain experts, rather than of laypersons, on a diagnostic task
in the medical space.

Prior studies have also analyzed human-AI teams in the clinical
imaging setting. The studies to date largely focus on a comparison
of diagnostic performance of humans alone versus human-AI teams
[7, 36, 48, 56, 79, 81, 87]. These analyses, for the most part, report
that interactions with AI tools lead to gains in human diagnostic
performance. A handful of studies have compared the influences of
various types of AI assistance on decisions [12, 76, 84]. Results from
these investigations indicate that AI tools appropriately designed to
support decision makers can boost not only diagnostic accuracy but
also self-reported confidence, while decreasing mental effort and
the time spent on the task. At the same time, some of these analyses
have also witnessed the pitfalls of AI adoption, including increases
in the time spent on the task without corresponding gains in ac-
curacy, reductions in diagnostic performance due to reliance on
erroneous AI advice, and participants ignoring AI advice altogether
[48, 56, 84]. These are notable limitations because the performance
of machine-learned models often varies across types of instances
and can degrade over time [19, 83]. Poor integration of AI in human
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decision-making workflows can hamper the adoption of the tool
by real-world decision makers [49, 58]. Although our experiment
cannot fully emulate the clinical setting in which radiologists oper-
ate, our analysis attempts to capture the impact of the workflows
across various dimensions.

2.2 Workflow Considerations for Human-AI
Teams

A critical aspect of how AI can influence decision making revolves
around the bias of anchoring [85]. Multiple studies have demon-
strated that people may give stronger weight to their assessments
towards prior knowledge or analyses versus doing full revisions in
light of new evidence [86]. We hypothesized that anchoring effects
of the review of information would be stronger when presented
early versus late in problem solving. Thus we expected that AI infer-
ences presented at the same time as initial analysis would be more
influential than when the inferences are presented after an initial
assessment. Research on the explanation of AI inferences frames
opportunities for further study of the influences of designs for work-
flow of human-AI collaboration, including altering the timing of
AI-assistance and forcing users to spend more time on instances
where AI inferences present higher uncertainty [4, 10, 32, 67, 73].

Several studies on human-AI collaboration have focused specifi-
cally on anchoring and workflow orderings similar to those studied
in our experiment. Green and Chen [34] find that requiring partic-
ipants to register provisional predictions before AI recommenda-
tions are revealed results in marginal gains in overall predictive
performance. In a similar experimental setup, Fogliato et al. [29] do
not detect anchoring effects or differences in performance across
workflows. Buçinca et al. [10] report lower reliance on erroneous
AI advice in the two-step workflow; we find similar results. In
distinction to the these prior studies, rather than studies with lay
participants,we study the behaviors and perceptions of domain
experts on the tasks they perform in the course of their profes-
sional work. Assessments such as ours are critical requirements
for real-world deployments because experts may have deeply in-
grained processes for decision making and thus may interact with
AI tools differently from crowdworkers employed in most studies
of human-AI interaction. For example, experts may be reluctant
about reviewing and leveraging AI advice [14, 33], a phenomenon
referred to as “algorithm aversion” [21].

Beyond anchoring effects, we need to consider the cognitive cost
of different sequencing of information fusion and decision making.
Psychologists have shown that decision makers seek to minimize
cognitive effort based on considerations of the perceived costs and
benefits of the mental effort associated with different strategies
for coming to a decision [53]. In this realm of research, studies
have identified challenges with cognitive costs of aggregating new
evidence [9, 68] and with considering sets of alternatives [39]. The
cognitive effort required in a two-step versus one-step workflow
to consider new information and to re-evaluate prior assessments
has conceptual links to studies on the costs associated with task
switching, interruption, and recovery [15, 43, 46]. Cognitive costs
of re-examination when new information becomes available can be
viewed as analogous to interruption and recovery on the initial task
with new information [42, 44]. Thus, the re-opening of a completed

analysis, as required in a two-step workflow, will tend to increase
the cognitive effort required for a decision.

In findings related to cognitive effort, research on “cognitive forc-
ing” has explored methods for pushing human decision makers to
spend more time with deliberating about problems [10, 32, 67, 73].
Work in this area includes making AI assistance only available upon
request or employing a "slow algorithm" that loads while the user
waits to input their decision. While these cognitive forcing func-
tions were found to increase performance measures and decrease
AI reliance, they did so at the expense of additional time required
for decision making [30]. Findings from other studies indicate that
it is difficult for humans to revise or reverse their decisions due to
psychological phenomena of sunk cost effects [2, 23], cognitive dis-
sonance [26], and confirmation bias [51, 65]. Moreover, Kirkebøen
et al. [50] find that decision reversals are associated with higher lev-
els of post-outcome regret despite improved outcomes or predictive
performance.

3 METHODS
We now describe task, experimental design, procedures, measures,
data analysis, and experimental platform. The study received IRB
approval by Mars. All X-ray images in the study were drawn from
past patient examinations.

3.1 Experimental Task
Task. Study participants were shown 40 X-ray images from in-

dividual veterinary patients, which were all dogs for study con-
sistency. The images were divided into two series of 20 images to
reduce the load of a single session. For each image, radiologists were
asked to diagnose which of 33 pre-specified radiographic findings
could be identified. As shown in Figure 1, the diagnostic task for
each of the findings required the following:

• Estimating the likelihood that the finding was present in the
X-ray.

• Assessing whether to call the finding as present or absent in
the X-ray.

• Flagging whether a second opinion from a colleague was
needed.

The questions were modeled after assessments that radiologists
make in their daily jobs. Response to the first request to assess the
likelihood of findings were provided via a 0%–100% slider with bins
of 10%. The remaining assessments were input using yes/no radio
buttons. All answers were initialized to 0% and “no” respectively.

When making diagnoses, participants were assisted by an AI
diagnostic tool that estimated the likelihood of each finding being
present in the X-ray image. See Fitzke et al. [27] for a detailed
description of the tool. The estimates are an average of predictions
generated by eight separate convolutional neural networks, trained
on a large proprietary dataset. To convert the estimates produced
by the AI tool into binary predictions, we adopted a threshold of 0.6
which corresponds to the choice made while deploying the model
in production to help radiologists label new data for AI training
purposes. This threshold was derived by calibrating each model to
maximize its probability predictions at 0.5 with regards to Youden’s
J-Statistic [92] and then further calibrating the resulting ensemble
to 0.6 due to its accuracy gains [27]. Participants had access to both

1364



FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea R. Fogliato et al.

the likelihood and the binary prediction of present versus absent
generated by the AI tool for each finding, which in the remainder
of the paper we call AI confidence and AI flags respectively.

Dataset. The X-ray images were obtained from a benchmark
dataset previously annotated by 10 to 13 expert radiologists inde-
pendently. The radiologists labeled the 33 radiographic findings.
We constructed ground truth labels based on these diagnoses by
considering the finding as present when at least half of the radi-
ologists had identified it in the image. For our study, we obtained
40 X-ray images from this dataset by oversampling those with the
lowest agreement among radiologists to boost the difficulty of the
task and thus maximize the power of our analysis on anchoring
effects. Fleiss’ kappa, a measure of inter-rater reliability, in the
ground truth annotations was 0.44, which indicates weak agree-
ment among radiologists [63]. In our final sample, only about 7%
of all findings were present according to the ground truth majority
vote annotations (91 out of 40×33=1320).

3.2 Experimental Design
Treatments. To test the impact of workflow configurations on

decision making, we employed a between-subjects design by assign-
ing each of the participants to one of two workflow configurations.
In the one-step workflow, the X-ray image and the AI inferences (AI
confidence and binary estimate) were shown at the same time. In
the two-step workflow, participants were asked to make provisional
diagnoses before the AI inferences were revealed. After seeing the
automated inferences, they were allowed to revise their initial di-
agnoses. The studied workflows represent easily implementable
human-AI team configurations that the company is considering for
deployment. All participants reviewed the same two series of 20
images. Within each series, the images were reshuffled in random
order for every participant to avoid ordering effects.

Procedure. We now describe how participants navigated through
the web-based experimental platform. Participants were first shown
a consent form and asked to provide an identifier they had been
assigned in order to preserve anonymity. Next, they followed a
series of instructions that included information about the content
of the task and a description of the AI diagnostic tool. Importantly,
we clarified in layman’s terms that the AI confidence may not reflect
frequentist probabilities. At the end of the instructions, participants
completed a screening test with 10 questions designed to ensure that
they understood the task structure and the information provided by
the AI. Participants were prompted to revise their responses until
they answered all questions correctly. After taking the screening
test, participants reviewed each of the 40 images, one at a time, in
two 20-image sessions, using the interface shown in Figure 1. The
X-ray image was shown on the left of the web page and participants
could zoom in and out, change brightness and contrast, or enlarge
it to full-screen. These operations are typically available during X-
ray evaluations. Diagnoses for each of the 33 radiographic findings
could bemade using the UI controls within the stacked frames in the
middle of the web page, which also contained the corresponding
AI confidence. To help participants easily navigate through the
findings, a navigation bar appeared on the right of the page. Red
triangles were shown next to the names of the findings flagged by

the AI, i.e., those with AI confidence≥60%. Check mark symbols
were displayed next to the findings identified by the participant
in the image. AI confidence and flags were hidden from two-step
workflow participants during their initial review of the image, and
made visible only after they clicked a button in the top right corner
of the interface. At the end of each image review, participants were
asked whether the AI help had been useful, and then could proceed
to the next image. Participants could not skip images or change
diagnoses previously made. At the end of the experiment, they
were asked to complete a questionnaire that we discuss in detail in
Section 3.3.

Participants. A total of 24 veterinary radiologists employed at
Mars were initially selected to participate in the study. Half of these
radiologists were involved in data labeling of X-ray imagery as
part of an ongoing organizational effort to embed machine learn-
ing in decision-making processes. The remaining radiologists had
never interacted with AI tools nor had they done any labeling for
AI training. Radiologists attended a one-hour orientation session
during which the lead radiologist explained the purpose of the
study (i.e., better understanding how to integrate AI in radiologists’
decision-making processes), clarified the nature of the experimen-
tal task, and addressed questions and concerns. We assigned the
radiologists to two experimental groups, one for each workflow
configuration, balancing their years of experience and previous
exposure to data labeling. In total, 19 participants started and com-
pleted the experimental task. The one- and two-step workflows had
11 and 8 submissions respectively, with five and three participants
having prior exposure to data labeling for AI training. The median
years of experience (9) was identical across workflows.

3.3 Measures and Statistical Analysis
Objective measures. We assessed the impact of workflow config-

urations through the following measures:
• Alignment between participants’ diagnoses and AI infer-
ences: Likelihood that the participants identify the same set
of findings that are flagged by the AI.

• Diagnostic performance: Classification accuracy, false posi-
tive rate, false negative rate, and positive predicted values
for both the AI and the participants’ diagnoses.

• Inter-rater reliability: Fleiss’ kappa for measuring agreement
across participants [28].

• Time spent and confidence: Time spent reviewing each im-
age, share of second opinions sought (a proxy for confidence),
and likelihood estimates of the finding being present made
by the participants.

In a separate survey we conducted, participants reported that re-
views of complex cases encountered on the job take between 10
and 20 minutes. Thus, in the analysis of time on tasks we assumed
that participants took breaks whenever they spent more than 15
minutes on a single image. Accordingly, we did not consider those
observations (about 3% of all cases) in the analysis. The arbitrary
choice of this threshold (instead of, say, 10 or 20 minutes) does not
affect our study findings.

Taxonomy of findings. The lead radiologist determined whether
each of the 33 findings satisfied the following five non-mutually
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Figure 1: Screenshot of the interface. On the left, an X-ray image of the thorax and abdomen of a dog is displayed. In the
middle, the names of the radiographic findings with respective AI confidence are displayed in each of the boxes. Participants
are asked to estimate the likelihood of the finding being present, whether to diagnose it as present or not, and whether they
would seek a second opinion (default values are “0%”, “No”, and “No” respectively). Findings are grouped intomacro-categories
in the navigation bar on the right. When the AI flags a finding, a red triangle appears next to the name of both the finding and
of the corresponding macro-category. If the participant identifies the finding as present, a check mark is shown.

exclusive criteria: (i) is critical, i.e., it requires immediate medical
care and monitoring by healthcare professionals (vs. any other pa-
tient); (ii) is dangerous to overcall and treat if not actually present,
i.e., it is important not to identify when absent; (iii) often requires
a second opinion; (iv) has a vague definition, and (v) is common
in animals and is often overlooked. We use these tags on findings
later in Section 4 to perform a disaggregated analysis for critical
vs. non-critical findings, to investigate diagnostic performance on
findings that are dangerous to overcall, and to clarify workflow
effects for findings that are expected to have a high disagreement
(i.e., majority vote in ground truth being less reliable) versus those
where lower disagreement is expected (i.e., majority vote in ground
truth being more reliable). To this end, we would expect high dis-
agreement among radiologists in findings that are at least in two
of the categories (iii), (iv), and (v).

Subjective measures. We collected subjective measures of partic-
ipants’ confidence, diagnostic performance, and trust in the tool.
After each review, participants were asked whether the AI infer-
ences helped them to make their diagnoses. In addition, the final
questionnaire elicited answers on seven-point Likert scales ranging
from “strongly disagree” to “strongly agree” to assess the following
measures:

• Workload: We inserted two questions related to the mental
demand and frustration dimensions from the NASA-TLX
study [38].

• Usefulness: We used two questions from the technology
acceptance model (TAM) of Davis [16] related to gains in

speed and diagnostic performance obtained by using the AI
tool. Participants also reported on changes in confidence
working alongside the AI. In addition, they could describe
instances where the AI was most useful and least useful
during their decision making via free-text responses.

• Future use: Participants indicated whether they would use
a similar AI diagnostic tool in their daily jobs and could
elaborate on their preference in an open-ended question.

To analyze differences in the ratings acrossworkflows, we converted
the Likert scale ratings into integers 1–7.

Statistical analysis. Prior to data collection, we planned to study
the impact of workflow configurations on decision making by re-
porting summary statistics and the corresponding standard errors
for each workflow, e.g., point estimate% [standard errors%]. These
standard errors (e.g., of positive predicted values) are obtained via
a nonparametric block bootstrap where the resampling is done at
the participant’s level, conditioning on their prior exposure to data
labeling for AI training (see Section 3.8 of Davison and Hinkley
[17]). We test the null hypothesis of independence of outcomes for
the participant-level summary statistics and workflow configura-
tions via rank-sum permutation tests, again conditioning on prior
exposure to data labeling [45]. When relevant to the discussion,
we report the corresponding one-sided (analysis of alignment be-
tween AI and participants) and two-sided (other analyses) p-values,
considering a significance level of 0.1. We also examine partici-
pants’ reliance on AI flags by regressing their diagnoses on AI
confidence and a dummy variable that indicates the presence of the
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AI flag, interacted with workflow configuration. This approach is
inspired by regression discontinuity designs, a methodology popu-
lar in the econometric literature [1]. We fit the model via ordinary
least squares and use sandwich standard errors clustered at the
participant’s level. Statistical significance of regression coefficients
estimates is assessed via Wald tests. The plan for the analyses of the
aforementioned measures at the aggregate level and conditional
on AI inferences was laid out before running the experiment and
motivated our data collection efforts. Prior to data analysis, we
conducted a power analysis relative to our investigation of anchor-
ing effects. We estimated power to be about 60% for a 2% standard
deviation in the average agreement of participants with the AI and
a difference of 1% in participants’ agreement with the AI between
workflows. The analysis based on the findings taxonomy represents
a post-hoc investigation motivated by our study findings, which
we decided to report because it reveals valuable insights into the
nature of anchoring effects. We conducted an additional analysis
using generalized linear mixed models that account for prior partic-
ipant exposure to data labeling. The results obtained through this
methodology are similar to those described in Section 4 and thus
are omitted.

3.4 Experimental Platform
The platform was developed using the Python-based framework
Django. The platform can accommodate future studies in similar
domains by enabling researchers to bring in their own data sets of
images, lists of ground truth diagnoses, and AI flag thresholds on
algorithmic confidence. Either of the workflow configurations can
be used for such studies. The platform logs relevant data on a per
image basis regarding human diagnostic decisions, time elapsed,
and responses to subjective questions. The platform also allows
individuals to implement comprehension checks and collect data
via surveys after the diagnostic tasks are completed.

4 RESULTS
4.1 Alignment Between Participants and AI
Result 1: Alignment between participants’ diagnoses and
AI inferences was highest in the one-step workflow, sug-
gesting the influence of anchoring. This effect originated
mostly fromfindings considered as non-critical for animal
healthcare.
The final diagnoses made by participants matched the AI flags on
91% [standard error=1%] and 89% [1%] of the findings in the one-
and two-step workflows, respectively. The alignment observed in
the one-step workflow is significantly higher than in the two-step
workflow (p-value is 0.04). Note that, of all <image, finding> pairs,
only 11% were flagged as present by the AI, while 7% of them
were marked as present by majority vote in the dataset. The low
prevalence is explained by the fact that animals usually present
only a few (and luckily not most) of the 33 findings in our list.
Thus, all results in this section and the differences between the two
workflows need to be interpreted with this consideration in mind.

When an AI flag was present for findings, participants in the one-
step workflow were significantly more likely to identify the finding
as present in the X-ray than their counterparts in the two-step

workflow (in 71% [3%] and 65% [3%] of the findings, respectively;
alignment is higher in the one-step workflow with p-value 0.07).
When the AI flag was absent, participants in the one- and two-step
workflows identified the finding in 7% [1%] and 8% [1%] of the cases
(alignment is not significantly higher with p-value 0.18).

To better understand the impact of AI and anchoring biases in
each workflow, Figure 2 shows the likelihood that participants iden-
tify a finding in the X-ray as a function of AI confidence. We are
interested in the comparison of the discontinuity in the likelihood
at AI confidence=0.6, the value used to determine whether the AI
flag is shown. We observe that the estimated discontinuity for the
participants’ diagnoses in the one-step workflow is larger than for
those in the two-step workflow (estimates of the dummy variable
1(AI confidence≥0.6) are 0.24 [0.03] and 0.11 [0.03] in one- and
two-step workflows, respectively; difference is statistically signif-
icant with p-value<0.01). This means that the presence of an AI
flag substantially increased the likelihood that participants would
identify the finding compared to the one-step workflow. A non-
parametric analysis further corroborates this result: Findings with
AI confidence between 0.6 and 0.65 were identified by participants
48% [3%] and 40% [4%] of the times in one- and two-step workflows,
respectively. Instead, those with AI confidence between 0.55 and
0.59 were identified 20% [3%] and 25% [4%] of the times respectively.
These results indicate the presence of anchoring effects on AI flags
in the one-step workflow.

A natural follow-up question is whether participants in the one-
step workflow relied more on the AI uniformly across all of the
findings. Using the taxonomy described in Section 3.3, we can
investigate the phenomenon across two dimensions: the criticality
of the finding and the difficulty of its interpretation. With respect to
the criticality of findings (i.e., Question (i) in Section 3.3), we observe
that anchoring effects were stronger on findings categorized as non
critical. For example, when a non-critical finding was flagged by
the AI, participants identified it in the X-ray in 76% [3%] and 65%
[4%] of the cases in one- and two-step workflows respectively.
When a critical finding was flagged instead, the respective shares
were 67% [3%] and 65% [3%]. The discontinuity analysis delivers
similar results. One explanation of this result is that participants
might have put more effort into making these diagnoses, while
pondering less the possible presence of AI flags and potentially
more the value of AI confidence. We also unsurprisingly observe
that anchoring effects are salient on findings where disagreement
among radiologists is expected to be largest (based on Questions
(iii, iv, v) in Section 3.3). When one of these finding was flagged
by the AI, participants identified it in 73% [4%] and 64% [4%] of
the cases in one- and two-step workflows respectively. The gap is
virtually zero for the remaining not as difficult findings.

Finally, we briefly discuss whether and how participants in the
two-step workflow revised their provisional diagnoses after ob-
serving AI inferences. In total, these participants changed their
diagnoses on only 70 of the 10560 findings evaluated. This corre-
sponds to 5% of all findings for which their initial diagnoses did not
match the AI flags. The majority of these revisions (47) occurred
for findings that were flagged by the AI but that the participants
had not initially identified. Most of the remaining revisions (18)
also happened in cases of disagreement between AI and provisional
diagnoses, where the participant had initially identified the finding
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Figure 2: Estimated probability that a participant would identify the radiographic finding in the X-ray as a function of AI
confidence in the finding being present, for each workflow configuration. Each dot represents the share of findings that were
identified for all findings with a certain AI confidence, across the entire set of images. The size of the dots is proportional to
the number of findings. The parametric fits and corresponding 90% confidence intervals are represented by the solid black
lines and gray shaded regions respectively. The magnitude of the estimated discontinuity at 0.6 in the one-step workflow is
substantially larger than in the two-step workflow. This finding indicates that the presence of AI flags, which appeared for
findings where AI confidence≥ 0.6 (vertical dashed line), had a stronger influence on diagnoses made by one-step workflow
participants. Further analysis reveals that this impact originates mostly from non-critical findings.

in the image but the AI flag was absent. On the cases of initial
disagreement, we could not detect any association between the
tendency to revise and the criticality or difficulty of the finding.

4.2 Diagnostic Performance
Result 2: AI systemoutperformed participants acrossmost
of the performancemetrics considered. Participants in the
one-step workflow anchored more on the AI flags regard-
less of the AI accuracy, resulting in marginal gains in diag-
nostic performance when compared to the two-step work-
flow.
A critical dimension related to the impact of workflow configura-
tions on human decision making is diagnostic performance. We
conduct four related analyses of performance that consider various
characteristics of the findings (Table 1). We now describe the key
findings from each of these investigations in turn.

We start by considering all diagnoses made with AI assistance.
The performance metrics relative to AI alone, one-step workflow,
and two-step workflow participants are reported in the first three
rows of Table 1. We observe that the AI outperformed participants
on most of the metrics. Nonetheless, the only notable—yet not sta-
tistically significant difference—in performance across workflows
is in the positive predicted values (42% vs. 39% in one- and two-step
workflows respectively). Classification accuracy and false positive
rate of the one-step workflow participants are also closer to those
of the AI system, but the gains are minimal and our experiment is
underpowered to detect such small variations.

Our second analysis focuses on critical findings. Similarly to the
previous investigation, we find that, while the AI outperformed both
groups of participants, those in the one-step workflow achieved
slightly better performance, across all metrics. We repeat the analy-
sis on findings that may be dangerous to overcall, for which making

as few false positive diagnoses is crucial. We observe that the AI
achieved the lowest false positive rate (4%), followed by those of
participants in the one-step and two-step workflows (7% and 9%
respectively).

Evaluations of diagnostic performance can be inherently prob-
lematic: radiologists often disagree on whether a certain finding
is actually present, even in the original dataset. We mentioned
this phenomenon when describing the ground truth annotations
in Section 3.1. Thus, for some of the findings, a certain degree of
disagreement between the diagnoses made by our study partici-
pants and ground truth should be expected. Our fourth analysis of
performance focuses solely on the findings where we expect dis-
agreement among radiologists to be lowest and thus ground truth
annotations to be most reliable (again according to Questions (iii,
iv, v) in Section 3.3). We find that diagnoses made in the one-step
workflow achieved higher accuracy and lower false positive rates
than those made in the two-step workflow. This mirrors our previ-
ous findings. However, given that the AI outperformed participants
by a considerable margin, why don’t we observe larger gains in per-
formance? One explanation is that even the diagnoses made in the
one-step workflow did not always match AI flags. Moreover, these
participants tended to agree more with the AI flags even when they
were inaccurate. The last four rows of Table 1 report participants’
diagnostic performance conditional on the accuracy of AI flags for
these findings. We observe that, when AI advice was correct (e.g., a
finding that was present was flagged), participants in the one-step
workflow achieved better performance than those in the two-step
workflow. When AI advice was wrong (e.g., a finding that was
absent was flagged), they achieved worse performance, across all
metrics. We observe an analogous phenomenon for critical findings
with low expected disagreement, despite the minimal anchoring
effects. These results demonstrate that the stronger alignment be-
tween AI and participants observed in the one-step workflow was
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Table 1: Diagnostic performance of AI alone and of participants’ diagnoses made with AI assistance [standard error %].

Accuracy False Positive Rate False Negative Rate Positive Predicted Values % Predicted Positives

All findings
AI 94% 6% 18% 52% 11%
One-step workflow 91% [1%] 8% [1%] 16% [3%] 42% [3%] 14% [1%]
Two-step workflow 90% [1%] 9% [1%] 17% [3%] 39% [3%] 14% [1%]

Critical findings
AI 95% 5% 9% 55% 9%
One-step workflow 94% [1%] 6% [1%] 14% [3%] 46% [5%] 10% [1%]
Two-step workflow 92% [1%] 7% [1%] 15% [3%] 41% [4%] 12% [1%]

Findings
dangerous
to overcall

AI 96% 4% 10% 51% 8%
One-step workflow 92% [1%] 7% [2%] 15% [4%] 35% [4%] 11% [2%]
Two-step workflow 91% [1%] 9% [1%] 15% [4%] 32% [3%] 12% [1%]

Findings with
lowest expected
disagreement

One-step workflow, AI correct 96% [1%] 4% [1%] 11% [2%] 56% [4%] 8% [1%]
Two-step workflow, AI correct 94% [1%] 6% [1%] 8% [2%] 46% [5%] 10% [1%]
One-step workflow, AI incorrect 62% [2%] 41% [3%] 27% [4%] 32% [1%] 47% [3%]
Two-step workflow, AI incorrect 66% [4%] 36% [4%] 25% [7%] 35% [3%] 44% [4%]

not always warranted: Showing the AI flags directly made partic-
ipants more likely to identify the finding not only when it was
actually present but also also when ground truth indicated that it
was not. These results explain the fact that anchoring led to only
marginal gain in participants’ overall performance.

4.3 Inter-rater Reliability
Result 3: Inter-rater reliability was highest for diagnoses
made in the one-step workflow.
We have mentioned at several points in the paper that the diagnoses
in the ground truth annotations from individual radiologists often
differed. In our experiment, we expected the presence of the AI to
affect agreement among radiologists differently across workflows.
More specifically, we hypothesized that, as consequence of anchor-
ing, (i) on findings where AI flags were accurate, agreement would
be highest in the one-step workflow, i.e., one-step workflow partic-
ipants would be more likely to make the same diagnoses; and (ii)
on findings where AI flags were most likely inaccurate, agreement
would be lowest in the one-step workflow. For (ii), we consider the
findings on which we expected low disagreement among radiol-
ogists as described in Section 3.3. Thus, the hypothesized effects
would run in different directions. We find that overall inter-rater
reliability in the one-step workflow is higher than in the two-step
workflow, with the respective estimates of Fleiss’ kappa being 0.55
and 0.49. For (i), the inter-rater reliability measured on diagnoses
made in the one-step workflow is higher compared to those in the
two-step workflow; the respective estimates of Fleiss’ kappa are
0.54 and 0.49. We find that the gap in kappas across workflows is
largest on findings that are considered as non-critical for animal
healthcare, for which we also observe the largest anchoring effects.
We do not find evidence in support of (ii): Fleiss’ kappas on find-
ings with expected low disagreement are 0.37 and 0.35 in one- and
two-step workflows respectively.

4.4 Time Spent on Decision Making and
Confidence

Result 4: Time spent on the task did not differ across work-
flow configurations. In cases of disagreement with the AI,

one-step workflow participants sought more often second
opinions than their counterparts. Evidence suggests that
theymight haveweighedAI inferencesmoremeaningfully.
We expected that requiring participants to make provisional diag-
noses before AI inferences were revealed would substantially slow
down their decision making. The distribution of the time partici-
pants spent reviewing the images and making the diagnoses for
each workflow is shown in Figure 3 (left). We observe that partici-
pants in the two-step workflow did not spend more time on the task
than those in the one-step workflow, neither in terms of the average
nor of the median times (the respective medians are 152 [standard
error=20] and 139 [38] seconds, while averages are 189 [22] and 191
[36] seconds). We have identified two factors that may explain this
surprising result. First, there exists a large variability in the time
spent by participants, which calls for a larger sample size. Indeed,
the fastest participant made the diagnoses in an average time of
slightly more than one minute, while reviews took over six minutes
to the slowest participant. A second hypothesis is that one-step
workflow participants might have considered AI inferences more
carefully.

We can investigate the second hypothesis by examining partici-
pants’ need of second opinions across workflows. As a reminder,
our study participants were asked whether, were they to encounter
the same patient in their daily job, they would seek the opinion
of a colleague before making the final call on the diagnosis. This
option was rarely chosen and the overall rates of second opinions
were similar across workflows (about 1% of all findings evaluated).
However, the two cohorts of participants tended to seek second
opinions in different circumstances. On the one hand, one-step
workflow participants sought second opinions more often in cases
where they disagreed with the AI inferences. For findings that were
identified by participants but were not flagged by the AI, the rates of
second opinions were 11% [4%] and 6% [3%] for one- and two-step
workflows respectively. For findings that were flagged by the AI
but were not identified by participants, the respective rates were
2% [1%] and 1% [1%]. On the other hand, one-step workflow par-
ticipants sought second opinions less often in cases where they
agreed with AI inferences. This occurred in 1% [1%] and 3% [1%]
of these findings that were flagged by both AI and participants in
one- and two-step workflows respectively. The magnitude of these
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Figure 3: Time spent by participants on decisionmaking. The plot on the left shows the estimated densities of the time spent by
participants reviewing the individual images and making the diagnoses, in each workflow. The vertical solid lines correspond
to first, second (median), and third quartiles. The small vertical lines at the bottom represent individual observations, i.e., one
image reviewed by one participant. The plot on the right shows the time participants in the two-step workflow spent before
and after observing the AI inferences on each image (vertical and horizontal axes respectively). If the time spent did not differ
across phases, the dots, which represent individual cases, would lie around the 45 degree dashed red line. For visualization
purposes, we have limited the scales of the axes.

differences is substantially larger in case of findings that are critical
or difficult to interpret according to our taxonomy (Question (iii)
in Section 3.3). For example, for critical findings identified by the
participant but not flagged by AI, second opinions were sought in
22% [7%] and 9% [6%] of the cases in one-and two-step workflows
respectively. However, the rates of second opinions largely differed
across participants as some of the participants never sought sec-
ond opinions at all (those with more years of experience did so
less often). Nonetheless, these empirical results appear to support
the observation that participants in the one-step workflow con-
sidered the AI advice more meaningfully, and varied the need of
second opinions according to their agreement with the recommen-
dations. At the same time, we show in Section 4.1 that two-step
workflow participants revised only a small number of their provi-
sional diagnoses. Consistently, Figure 3 (right) highlights that these
participants often spent a small amount of time reviewing the AI
assistance (horizontal axis), supporting a similar interpretation as
the analysis of second opinions.

It is possible that variations in confidence were reflected by the
participants’ subjective likelihood judgments of the findings being
present. About three fourths of the collected estimates correspond
to 0%, which was the default value. In all these cases, it is possible
that participants believed that the finding was certainly absent or,
in the interest of time, that they didn’t bother changing the de-
fault answer. Consequently, we focus our analysis only on findings
that participants identified in the images. On these findings, the
investigation of second opinions suggests that one-step workflow
participants were less confident about their diagnoses compared to
two-step workflow participants when the the AI flag was absent.
However, we find that the average likelihood estimates for these
findings are comparable across workflows (0.75 [0.02] and 0.77
[0.03] for one- and two-step workflows respectively, mean absolute
differences between AI confidence and participants’ estimates are

0.33 vs. 0.35). For findings that were instead flagged by the AI and
were also identified by participants, two effects may be at play. On
the one hand, one-step workflow participants may have anchored
on the AI confidence. On the other hand, the analysis of second
opinions suggests that their confidence may have been bolstered
by the presence of the AI flag, yielding likelihood estimates higher
than the AI’s. The average values of the likelihood estimates are
similar across workflows (0.89, [0.01] and 0.90 [0.02] in one- and
two-step workflows, respectively). The discrepancy between these
estimates and the AI confidence (0.15 and 0.16 respectively) is also
comparable across workflows. Thus, the analysis suggests that the
magnitude of subjective likelihood estimates did not vary across
workflows.

4.5 Perceptions about AI inferences
Result 5: Participants in the one-step workflow rated the
AI advice as more useful.
After reviewing each image and making their diagnoses, partici-
pants were asked whether the AI advice had been useful. Those
assigned to the one-step workflow reported that the AI was useful
for 36% [standard error=7%] of the images, whereas the two-step
workflow participants found it useful in only 17% [4%] of the cases
(p-value for hypothesis of independence is 0.11). The difference
across workflows in the share of instances where the AI help was
deemed useful is less than 10% for the first five images shown in
the experiment and as large as 30% for the last five. Three questions
in the final questionnaire can help us disentangle the AI’s utility,
or the lack thereof, into gains in accuracy, speed, and confidence in
the diagnoses. Figure 4 shows the distribution of these ratings. We
observe that participants assigned to the two-step workflow gave
substantially lower ratings (or equivalently less utility) across all
three dimensions. For gains in accuracy, the average ratings on the
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Figure 4: Questions and corresponding answers in the final survey elicited on a seven-point Likert scale. The questions, re-
ported in panel titles, concern perceived workload, future use of the AI tool, and perceived utility of the AI inferences.

converted 1–7 Likert scale are 4.4 and 3.1 for one- and two-step
workflows respectively. The respective ratings for confidence are
4.3 and 3.0 respectively. The difference relative to gains in speed is
particularly striking: The average rating is 4.2 for one-step work-
flow participants and only 2.5 for those in the two-step workflow.
This indicates that two-step workflow participants felt that the AI
slowed down their decision making more than those in the one-step
workflow. Two-sided p-values for tests of independence relative
to confidence and speed are 0.1 and 0.05 respectively, while the
p-value relative to accuracy is 0.26. In line with these results, we
observe that two-step workflow participants reported the task to
be slightly more stressful and the workload to be more demanding
than their counterparts (average aggregate scores are 3.8 and 4.4
for one- and two-step workflows, with lower means indicating less
stress and demand; however, we do not reject the null hypothesis
of independence).

When asked for which diagnoses the AI advice had been most
helpful, most of the participants (among those who answered) indi-
cated that the AI helped them identify minor or incidental findings
that would be less important in terms of decision making to the
evaluating radiologist. This observation is consistent with the re-
sults of the quantitative analyses in Section 4.1 that highlighted
more alignment between participants and AI inferences for non-
critical findings. Participants also responded that the AI tool “was
very helpful to reinforce [their] confidence”, could be used when
they were “on the fence about a finding instead of asking a col-
league their opinion”, and made them second guess their opinions
by asking themselves whether they “could ‘see’ why it may have
read it that way”. When asked about the diagnoses for which the
AI advice had been least helpful, participants indicated that for
findings are erroneously flagged by the AI tool “it’s an extra step to
‘ignore’ it” and that they spent “time searching for something that
[they] ultimately decided isn’t there”. We did not identify notable
differences in the answers across workflows.

Two-step workflow participants also appeared to be less willing
to use this AI tool in their daily jobs (average ratings for one- and
two-step workflows were 4.2 and 3.2 respectively), although we
cannot reject the null hypothesis of independence. The participants
who were reluctant to use the tool in the future expressed their

frustration with the fact that the tool did not smoothly integrate
into their workflows. Some reported that the AI tool was often (in
their opinion) inaccurate and nudged them to spend extra time
evaluating certain findings. This echoes the results described in the
previous paragraph. One participant argued that, while the utility
of the AI in its current form appeared to be limited, “if the tool
were able to correctly interpret the images as [they] would and
incorporate those findings into a report that [they] could then edit
this could increase productivity”.

5 DISCUSSION

Task realism. Several limitations need to be considered while
interpreting the results of this study. First, the task setup did not
include background clinical information on the patient (e.g., notes or
historical background on the animal), which is typically available
to the radiologist. Second, radiologists generally have access to
multiple X-ray images and views from the patient. In our study,
only one image was provided. The choice was motivated by the
fact that the AI is only trained on individual images and does not
leverage other clinical information. Having more views and clinical
information available, radiologists may have exhibited different
behaviors. Third, it is possible that some participants might pay
more attention in their daily assessments than they did in our
experiment given that they knew that these decisions would not
impact animal treatment. Fourth, our study included only a short
onboarding process covering the task and description of the AI tool.
In real-world deployments, this phase should ideally be longer and
provide more detailed information on the tool and its intended use
[13, 47, 77].

Choices of interaction design. The platform entailed a series of
design choices that require further analysis in future studies as
they may have important effects in the interaction design of the
workflow. Were the UI to change, for example through the removal
of the AI flags from the navigation bar, our results could be affected.
Examples of alternative designs include participants being asked to
evaluate only a few of the findings at a time or review only the cases
of disagreement with the AI inferences perhaps at a later stage.
Further modifications of the interface could involve a dynamic
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selection of the workflow depending on findings based on the AI
confidence. For instance, we observed that the agreement between
participants and AI flags increased with AI confidence. Thus, it may
be preferable for radiologists to first investigate findings where the
uncertainty of AI inferences is highest. This proposal partially aligns
with approaches explored by prior work, where human review was
required for the assessment of the most difficult tasks [59, 71]. Our
findings also suggest that adjusting the threshold used to set AI
flags by finding type (0.6 in our case) can influence final diagnostic
decisions. Additionally, our participants used a novel experimental
platform over two task sessions. Learning effects may have also
impacted our experiment, particularly in terms of trust, ease of
use, and time-related analyses. Such effects might have been more
visible if the experiment had included more sessions.

Appropriate reliance. This study frames a question about the
possibility of developing designs that could provide the best of
both workflows: How might we obtain higher user satisfaction and
engagement with the AI inferences seen in the one-step process
while avoiding the increased tendency to anchor on erroneous AI
inferences? We believe there is promise in studying modifications
of the one-step workflow. For example, similarly to judges who
deviate from sentencing guidelines per special considerations of
the situation [66], radiologists could be asked to write down the
reasons behind their diagnoses in case of disagreement with the AI
inferences on a critical finding where AI confidence is far from the
decision boundary. Alternatively, the opinion of a second radiol-
ogist may be required. This is, for example, what occurs in child
welfare hotline screening decisions, where calls regarding children
at high risk of out-of-home placement can only be screened out
pending supervisor’s approval [18]. At the same time, these po-
tential modifications must be balanced with prior findings that
cognitive forcing functions decrease trust and willingness to work
with AI assistants [10]. Another possible strategy for trust calibra-
tion is represented by model explanations, beyond the likelihood
estimates presented as AI confidence in our work. This direction
has been explored by past work and holds potential in the clinical
imaging context [22, 86].

6 CONCLUSIONS
We evaluated two methods for integrating AI inferences about ra-
diographic findings into the workflows of veterinary radiologists,
seeking to understand how the different approaches influence de-
cision making. Our findings revealed that radiologists’ diagnoses
were more aligned with AI advice when it was shown immediately
than in workflows where AI inferences were displayed after the
radiologist had rendered a provisional assessment. The alignment,
however, was similar across workflows for findings that were con-
sidered to be critical for the animal. Diagnoses made in the one-step
workflowwere characterized bymarginal gains in diagnostic perfor-
mance and higher levels of inter-rater reliability compared to those
in the two-step workflow. Radiologists in the one-step workflow
more frequently sought second opinions in cases of disagreement
with the AI than in the two-step workflow and rated the AI tool
was rated as more useful.

These results suggest that the one-step workflow can be meshed
more smoothly with the current decision-making processes of radi-
ologists than the two-step workflow. The dissatisfaction with AI
assistance observed in the two-step workflow may be explained by
the costs of task switching, interruption, and recovery described
in Section 2. Adding a second step requires radiologists to stop,
reassess, and reaffirm the diagnoses they had just completed. As
a result, the AI advice shown after an analysis by the radiologists
appears more prone to being disregarded. However, alignment be-
tween AI and radiologists was stronger in the one-step workflow
even when AI inferences were inaccurate, suggesting increases in
inappropriate reliance and anchoring on AI inferences.

At the highest level, our experiment demonstrates the impor-
tance of interaction design for clinical AI systems.We have explored
a fundamental dimension of human-AI workflow, considering the
effects of whether the AI inferences are made available immediately
or following an AI-free analysis. Much remains to be explored.
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