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Abstract
Data leakage is a well-known problem in machine learning.
Data leakage occurs when information from outside the
training dataset is used to create a model. This phenomenon
renders a model excessively optimistic or even useless in
the real world since the model tends to leverage greatly on
the unfairly acquired information. To date, detection of data
leakages occurs post-mortem using runtime methods. In this
paper, we develop a static data leakage analysis to detect
several instances of data leakages during development time.
Our analysis is constructed to be lightweight so that it can
be performed within interactive data science notebooks. We
have integrated our analysis into theNBLyzer static analyzer
framework and show its utility on real world benchmarks.
To the best of our knowledge, we propose the first static
detection of data science data leakages.

CCS Concepts: • Theory of computation → Program
analysis; • Software and its engineering → Integrated
and visual development environments.
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1 Introduction
Data science software is increasingly ubiquitous for everyday
applications. Consequently, the correctness of data science
software is vital considering its impact on society. While a
plethora of state-of-the-art static analyzers exist that can
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target various programming bugs, data science programs
contain domain specific bugs that are not supported by stan-
dard static analyzers. A notable data science specific bug is a
data leakage [6]. Data leakages arise when external data (e.g.,
from the test data set) is used to train a model. Data leakages
can be particularly insidious. For example, normalized input
data may be split into training and testing data. However,
the process of normalization transforms the data based on
the entire data set (e.g., taking the average) and thus any
splitting of the data cannot guarantee independence and may
result in a seemingly accurate model that does not perform
well in practice.

Example 1.1 (Motivating Example). Consider the program
below. In the program, a CSV file is read into a data frame
(line 8). From the data frame columns are selected to repre-
sent x and y coordinates (lines 14, 17). Each coordinate is
normalized (lines 15) and split by selecting ranges of rows
from the data frame (lines 20, 21, 23, 24). The training data
is then used to train (line 30) the model and it is then tested
(line 33) to evaluate its accuracy (line 36).� �

1 import pandas as pd
2 import numpy as np
3 from sklearn.preprocessing import MinMaxScaler
4 from sklearn.metrics import accuracy_score
5 from sklearn.naive_bayes import GaussianNB
6
7 # load dataframe
8 df = np.genfromtxt("data.csv", delimiter=',', dtype=None)
9
10 # preprocessing tools
11 min_max_scaler = MinMaxScaler ()
12
13 # feature/tabel selection
14 X = df[['col1', 'col2']]
15 X_selected = min_max_scaler.fit_transform(X)
16
17 y = df['col3']
18
19 # train/test split
20 X_train = X_selected.iloc [:3]
21 y_train = y.iloc [:3]
22
23 X_test = X_selected.iloc [4:6]
24 y_test = y.iloc [4:6]
25
26 # initiate model
27 clf = GaussianNB ()
28
29 # train model
30 clf.fit(X_train , y_train)
31
32 # predict labels
33 pred = clf.predict(X_test)
34
35 # measure score
36 acc = accuracy_score(y_test , pred)
37 print("accuracy: {}".format(acc))� �
The code above highlights the ease of inducing a data leak-

age. Even though the training and testing data is seemingly
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disjoint, the fact that the normalization function is called
before splitting means that a data leakage is possible.
Typically, a data scientist will detect data leakage post-

mortem [3]. Given a suspicious result, data analyses methods
are used to identify data dependencies. These methods are
powerful to explore the relationships between data, however
many data leakages can be detected in the code statically
and thus a static analysis be can employed as an early detec-
tion mechanism to complement postmortem data analyses
techniques.
In this paper we propose a static analysis for detecting

such data leakages. We present an abstract domain that
tracks the origin of data frame cells to determines if two data
frames originate from overlapping or tainted data sources
(i.e., it has been processed by an external library function
that could change the data in a way that can introduce a
data leak). When a variable is an argument to a function
that trains or tests a model, we assert that the variable is
disjoint and untainted. For instance, in the example above,
our analysis would identify that there is a potential taint be-
tween X_test and X_train since they both originate from
previously normalized data, despite being disjoint.
We have implemented our analysis in the NBLyzer [12]

static analysis framework for data science notebooks and
evaluated its performance using 2211 real-world competition
data science notebooks. The evaluation shows that our analy-
sis performs within the time required by the use case for the
vast majority of notebooks. We summarize our contributions
below:

• We define a novel static analysis which detects data
leakages in data science code

• We implement our analysis in the NBLyzer static anal-
ysis framework for data science notebooks

• We evaluate our analysis on real-world data science
code

2 Background
2.1 Abstract State Computation
Abstract Interpretation executes the program in a soundly
over-approximating semantics that ensure termination at the
price of false positives. Given a sequence of statements−→st , we
construct a control flow graph (CFG), a directed graph that
encodes the control flow of the statements. We define a CFG
as ⟨L,E⟩ where an edge (l , st , l ′) ∈ E reflects the semantics
of statement st associated with the CFG edge from locations
l to l ′. The set of variables in all the statements is denoted
by V and the set of non-variable symbols by S . We assume
the variables in the statements are organized in single static
assignment (SSA) form [11].

A sound over-approximation σ ♯ of a state σ is computed
by iteratively solving the semantic fixed point equation
σ ♯ = σ ♯

0 ⊔ J−→st K♯(σ ♯) using the abstract semantics J−→st K♯ for a
sequence of statements −→st and the initial abstract state (σ ♯

0 ).

2.2 Data Frames
A data frame is a table or a two-dimensional array-like struc-
ture in which each column contains values of one variable
and each row contains one set of values from each column.
Data frames have non-empty column names, with unique
row names/indexes. The data stored in a data frame can be
of numeric, factor or character type. Each column should
contain the same number of data items. Thus semantically, a
data frame has four components, namely, a data frame vari-
able or label y, a set of rows r̄ ⊆ R, a set of columns labels
c̄ ⊆ C and the contents of the data frame. Since we are not
concerned with the contents of a data frame in this work,
we ignore this component. We denote a data frame as yc̄r̄ .

3 Data Leakage Analysis
3.1 Simplified Syntax
We define a simplified syntax for succinctly describing our
analysis abstract semantics for a data frame inspired lan-
guage. We define five classes of statements that are used to
define the abstract semantics for our analysis.

1. source:
y = read(name)

where name ∈ S
2. select-project:

y = x .sel[r̄ ][c̄]

where r̄ ⊆ R, c̄ ⊆ C
3. operations:

y = op(x1,x2)

where op ∈ {union,merge, diff} and x1,x2 ∈ V
4. functions:

y = f (x̄)

where f ∈ {norm, other} and x̄ ⊆ V
5. sink:

f (x̄)

where f ∈ {test, train} and x̄ ⊆ V

The source statement reads from a source (indicated by
a label name) and stores a data frame into a variable y. For
example, this statement corresponds to pandas statements
such as read_csv, read_excel, read__fwf etc.

The select-project statement, creates a data frame in vari-
able y that holds a subset of data in x , based on a set of rows
r̄ and columns c̄ . It loosely corresponds to statements such
as iloc, loc etc. commonly found in libraries like pandas
and to select and project operations in relational algebra [9].

The operations class of statements transform data frames.
Here we assume binary operations. Depending on the func-
tion, these have different semantics. The union statement
performs a set union of two data frames. This maps to pan-
das statements such as concat etc. The merge statement
combines two data frames by element. This maps to pandas
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statements such as join etc. The diff performs a set differ-
ence of two data frames. This maps to pandas statements
such as subtract etc.
The functions statement class models external library

functions that are not atomic operations. We distinguish be-
tween two types of functions. The norm functions and other
functions. By norm, we mean a function that can invoke arbi-
trary dependencies between cells e.g., normalization function
etc. and this cannot guarantee disjointness when split.

A sink statement represents a usage of data frames (as an
argument) to either train or test a model.

3.2 Abstract Domain
In this subsection we describe our abstract domain for track-
ing the origin of data frames in variables.

3.2.1 Abstract Data Frame.

Columns: We first describe an abstract domain to track
columns in a data frame. Note, since we do not assume a
schema, we do not know a priori which columns are in a
given data source. We have observed that since columns
labels are almost always strings, it is very rare to specify
inclusion or removal as numerical indexes. For this reason
we propose an abstraction that is set based. Given a set of
column labels C , we also introduce a set of negative dual
labels in a set C̃ . For a positive element c ∈ C we denote the
negative dual element as c̃ ∈ C̃ . As is the case with negation
˜̃c = c , which also holds for sets i.e., ˜̃C = C . In other words,
the dual of the dual label is the original label. We define a
abstract domain ⟨Col ,⊑Col ⟩ for tracking the columns in a
data frames, namely,

Col = {C ′ | C ′ ∈ ℘(C ∪ C̃) ∧ ∀c1 ∈ C ′.¬∃c2 ∈ C ′.c2 = c̃1}

We say C ′ ⊑Col C
′′ iff C ′′ ⊆ C ′ (note the inverse relation-

ship), that is an element with more information about in-
cluded or excluded columns is more precise than a column
sets with less information. The empty set is the least precise
i.e., has no information on what columns may exist and a
set of all columns (represented as positive or (exclusively)
negatives) is the most precise. We also define an operator
RedCol that reduces a non-canonical set to a canonical set
by applying the rule c̄ ∪ {x , x̄} = c̄ . We define ⊔Col operator
as RedCol ◦ ∪ and ⊓Col operator as ∩.

Example 3.1 (Column Domain). Consider the column set
C = {id,name, city, country, zip}. The abstract column set
elements C1 = {id,name, ˜city}, C2 = {id, country, city}.
HereC1 asserts that the columns are id and name columns. It
does not have a city column and it may have a country and
zip column. C2 asserts that the columns are id and country
and city. It may have all the other columns. C1 ⊔Col C2 =

{id,name, country}. Note that the intermediate result is re-
duced to not contain city. The join, C1 ⊓Col C2 = {id}.

Rows: We model the selection of rows with an interval
domain of natural numbers. Rows are not named, and a data
frame can have a large number of rows. Often ranges of
rows are added or removed. Therefore, we find the interval
domain as adequate for this task, we denote the interval
domain as Int+ [5]. We define two functions lw(r̄ ) which
takes the lowest value of r̄ , andup(r̄ )which takes the highest
value.

Data Frames: We now bring together the abstract do-
mains for columns and rows and define an abstract domain
for data frames. We define the abstract data frame as a triple:

⟨v, [l ,u], c̄⟩ ∈ L = (V ∪ S) × Int+ ×Col

For succinctness we use the notation v c̄
[l,u] for an abstract

data frame. We define join (⊔L) and meet (⊓L) operators as
follows:

x c̄
[l1,u1]

⊔L x
c̄ ′
[l2,u2]

= x c̄⊔Col c̄
′

[l1,u1]⊔Int+ [l2,u2]

x c̄
[l1,u1]

⊓L x
c̄ ′
[l2,u2]

= x c̄⊓Col c̄
′

[l1,u1]⊓Int+ [l2,u2]

Note, joins and meets are performed on data frames from
the same sources. We also define an overlap (ol) predicate
that asserts if two data frames from the same source overlap.

ol(x c̄
[l1,u1]

,x c̄
′

[l2,u2]
) =[l1,u1] ⊓Int+ [l2,u2] , ⊥

∧ (c̄ ⊓Col c̄
′ , ∅)

Moreover, we define a constraint function ↓c̄
[l,u] that con-

strains data frames from an interval and abstract column
set.

↓c̄
′

[l ′,u′]
(v c̄

[l,u]) = v
c̄⊓Col c̄ ′

[l,u]⊓Int+ [l ′,u′]

We also define a minus operator on data frames, namely
⊖:

x c̄
[l1,u1]

⊖L x
c̄ ′
[l2,u2]

=


x c̄−c̄

′

[l1,l2−1] l1 < l2 ≤ u1 ≤ u2

x c̄−c̄
′

[u2+1,u1]
l2 ≤ l1 ≤ u2 < u1

x c̄−c̄
′

⊥ l2 ≤ l1 ≤ u1 ≤ u2
x c̄−c̄

′

[l1,l2−1],x
c̄−c̄ ′
[u2+1,u1]

l1 < l2 < u2 < u1

Example 3.2 (Abstract Data Frame). A data frame with
known columns {id, city} and rows {10, 12, 13, 14} from a
source file1 can be abstracted as file1{id,city }

[10,14] . The join and
meet perform a component wise join on the same source. The
data framefile1{id }

[13,14] overlaps but the data frame f ile1{country }
[13,14]

does not. ↓{id }
[12,15] (file1

{id,city }
[10,14] ) results in file1{id }

[12,14]. Finally,

file1{id,city }
[10,14] ⊖L f ile1{id }

[13,14] yields file1
{id }
[10,12].
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Data Frame Sets: We lift the abstract data frame domain
to sets that is we define ⟨L̄,⊑L̄⟩ where L̄ = ℘(L) ordered by
⊑L̄ define as follows ⊆ and where

⊔L̄ = Red⊔L
L̄

◦ ∪

⊓L̄ = Red⊓L
L̄

◦ ∩

We define a reduction operator Redop
L̄

as:

Red
op
L̄
=

{
{l1 op l2 | ∀l1, l2 ∈ L̄.ol(l1, l2)} ∪
{l1 | ∀l1 ∈ L̄.¬∃l2 ∈ L̄.ol(l1, l2)}

Essentially, after a join or meet is performed (op) the set
of data frames may overlap and thus the set needs to be put
into a canonical form. We also lift the ↓, and ⊖ functions
to sets where the set version perform the operations for
each element in the set. Since ⊖ returns a set, a flattening is
performed.

Example 3.3 (Data Frame Sets). Consider the data frame
sets { f ile1{id }

[1,10], f ile2{name }
[0,100] } and { f ile1{id }

[9,12], f ile3{zip }
[0,100]}. If

we naively perform a join, we can get elements which can
be joined into a single data frame i.e.,

{ f ile1{id }
[1,10], f ile1{id }

[9,12], f ile2{name }
[0,100] , f ile3{zip }

[0,100]}

The reduction makes the set canonical i.e.,

{ f ile1{id }
[1,12], f ile2{name }

[0,100] , f ile3{zip }
[0,100]}

Note, if we do not perform this reduction, it potentially
hinders performance and violation detection.

3.2.2 Abstract State. We define the abstract state as a
mapping V → D between variables in V and an abstract
domain where

D = ⟨L̄ × B × ℘({tr .ts}),⊑⟩

where we define ⊑=⊑L̄ × ⊑B × ⊆ and ⊔ = ⊔L̄ × ⊔B × ∪

and ⊓ = ⊓L̄ × ⊓B × ∩.
Intuitively, for variable we keep track of (1) the set of data

frames it is dependent on, (2) if those data frames are tainted
i.e., have data that cannot be safely decomposed and (3) if
any data frames have been used for training or testing. We
differentiate between which tuple element in the product
domain is access by σ ♯1 (first tuple element) and σ ♯2 (second
tuple element) and σ ♯3 (third tuple element).

Since data frames can have infinite ascending chains w.r.t
the row interval abstraction and column abstraction, a simple
widening operator can be applied for rows [5] and similarly,
for columns the set can be set to ∅ (the top element) if the
set of columns are detected to be reducing inside a loop.

3.2.3 Knowledge Base. We also assume knowledge bases
KBsource ,KBnorm andKBtest KBtrain which holds functions
that act as a source, introduce data leaks, and be used for
testing and training, respectively.

3.3 Abstract Semantics
We define an abstract semantics for our data frame language.
The abstract semantics for each category of statements is
described below.

1. source:

λσ ♯ .Jy = read(name)K = σ ♯[y 7→ ({name ∅
[0,∞]

}, F , ∅)]

where read ∈ KBsource

2. select-project:

λσ ♯ .Jy = x .sel[r̄ ][c̄]K =

σ ♯[y 7→ (σ ♯1(x) ↓c̄
[lw (r̄ ),up(r̄ )],σ

♯2(x),σ ♯3(x))]

3. operations:

λσ ♯ .Jy = op(x1,x2)K =

a. op = union:

σ ♯[y 7→ σ ♯(y) ⊔ (σ ♯(x1) ⊔ σ ♯(x2))]

b. op = merge:
σ ♯[y 7→ σ ♯(y) ⊔ (

σ ♯1(x1) ⊓L̄ σ
♯1(x2),

σ ♯2(x1) ⊔B σ
♯2(x2),

σ ♯3(x1) ∪ σ ♯3(x2),
)]

c. op = diff:
σ ♯[y 7→ σ ♯(y) ⊔ (

σ ♯1(x1) ⊖L̄ σ
♯1(x2),

σ ♯2(x1) ⊔B σ
♯2(x2),

σ ♯3(x1) ∪ σ ♯3(x2),
)]

4. functions:

λσ ♯ .Jy = f (x̄)K =

a. f ∈ KBtaint :
∀x ∈ x̄ .σ ♯[y 7→

(σ ♯1(y) ⊔L̄ rn(σ ♯1(x),y),

T ,σ ♯3(y) ∪ σ ♯3(x))]

b. otherwise:

σ ♯[y 7→ σ ♯(y) ⊔
⊔
x ∈x̄

σ ♯(x)]

5. sink:

λσ ♯ .Jf (x̄)K =


∀x ∈ x̄ .σ ♯[x 7→ (σ ♯1(x),σ ♯2(x) ⊔ {tr })]
iff f ∈ KBtrain
∀x ∈ x̄ .σ ♯[x 7→ (σ ♯1(x),σ ♯2(x) ⊔ {ts})]
iff f ∈ KBtest
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In the above abstract semantics the read statement produces a
mapping between the data frame variable y and the filename.
Because we do not statically know any information about
the file data, we simply do not constrain columns (empty set)
or rows (unbounded interval).
For the union, merge and diff statement, we perform a

corresponding data frame operation on the two data frames
x1 and x2, namely, join, meet and minus and add it to the
previous state of y.

For the norm function, we reset themapping, by setting the
outgoing variable as the source mapping using the rename
(rn) function which simply renames all source variables in
the first argument to the variable in the second argument.
We omit the definition of rn as it is intuitive. We also set the
flag to true (T ). If the function is not a norm function, we
simply propagate the state information.
Finally in the case of a sink statement we mark each ar-

gument with a {tr} element if it is an argument to a train
function, and {ts} if it is an argument to a test function.

Example 3.4 (Motivating Example (Cont.)). Consider our
motivating example again. In the program a CSV file is read
into a data frame (line 8). This creates a mapping of

d f 7→ ({data∅
[0,∞]

}, F , ∅)

From the data frame columns are selected to represent x and
y co-ordinates (lines 14, 17). This adds constraints so that

x 7→ ({data {col1,col2}
[0,∞]

}, F , ∅)

y 7→ ({data {col3}
[0,∞]

}, F , ∅)

When each coordinate is normalized (lines 15) we flip the
second tuple in the domain to T and reset the source by
setting the source to the variable that holds the normalized
data. When we split by selecting ranges of rows from the
data frame (lines 20, 21, 23, 24) we perform a selection and
get mappings

X_train 7→ ({x_selected {col1,col2}
[0,2] },T , ∅)

X_test 7→ ({x_selected {col1,col2}
[4,5] },T , ∅)

The training data is then used to train (line 30) the model
and it is then tested (line 33) to evaluate its accuracy (line 36).
At the end we obtain:

X_train 7→ ({x_selected {col1,col2}
[0,2] },T , {tr })

X_test 7→ ({x_selected {col1,col2}
[4,5] },T , {ts})

which violates the error conditions because they have the
same source, and despite being disjoint, both passed through
a function which tainted them. Consider if normalization
was called after splitting.X_train andX_test would have dif-
ferent sources and be disjoint. We would then assert that no
data leak occurred. Also consider there is no tainted normal-
izing function and no splitting. Without the flag, we would
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Figure 1. Inter Cell Analysis

have to assert false positives (any two variables with same
source can’t be trained and tested).

4 Integration into NBLyzer
We have integrated our analysis intoNBLyzer, a static analy-
sis framework for data science notebooks as described in [12].
The analysis technique is depicted in Figure 1.

The analyzer ingests the statements as a CFG as defined in
Subsection 2.1. The analysis operates by performing standard
static analysis intra cell. At the cell level this computation is
defined as Fci which we refer to a abstract cell transformer.
Fci takes an abstract state and computes a fix-point solu-
tion [10, 13] in the abstract domain. At each execution, a cell
transformer Fci for a cell ci is applied with the current state,
returning an updated new state i.e., Fci (σ ♯) = σ ♯′.

For inter cell analysis, the abstract state needs to be prop-
agated from one cell to another for a fixed depth of K or
until a notebook wide fixed point is reached (K = ∞). It
relies on an inter cell dependency graph which is defined by
a predicate ϕ. Each analysis needs to define ϕ along with its
abstract semantics. Moreover, each cell has preconditions
prec j , typically the set of unbound variables. If ϕ holds, the
abstract state is propagated to the dependent cells, for which
the incoming abstract state is treated as a initial state. For
each cell the abstract state is checked for correctness cri-
teria, if an error is found a report is updated which serves
as instruction for notebook clients to alert the user to the
consequences of the event (e.g., by cell highlighting etc.).

To integrate into the NBLyzer framework we specify the
additional ϕ condition for inter-cell propagation as follows:

ϕ(σ ♯
ci ,prec j ) =prec j ⊆ {v : (v 7→ x c̄

[l,u]) ∈ σ ♯
ci ∧ [l ,u] , ⊥}

∧ prec j , ∅

This rule stipulates the condition by which a successor
cell should be analyzed. That is, it states that if variables
with rows (do not map to ⊥ interval) in the abstract state of
the current notebook cell, are also unbound in the succes-
sor notebook cell (prec j ), then we proceed to propagate the
abstract state to that successor cell.
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Table 1. Kaggle Notebook Benchmark Characteristics

Characteristic Mean SD Max Min
Cells (per-notebook) 23.58 20.21 182 1
Lines of code (per-cell) 9.12 13.55 257 1
Branching instructions (per-cell) 0.43 2.49 76 0
Functions (per-notebook) 3.33 7.11 72 0
Classes (per-notebook) 0.14 0.64 11 0
Non-parsing cells (per-notebook) 0.5 0.98 20 0
Variables (per-cell) 8.2 2.3 552 0
Unbound variables (per-cell) 2.1 1.06 12 0

5 Experimental Evaluation
Experimental Setup: All experiments were performed in

an Intel(R) Xeon W-2265 CPU @ 3.50 GHz with 64 GB RAM
running a 64 bit Windows 10 operating system. Python 3.8.8
was used to execute NBLyzer. We evaluate the execution-
time of our static analyses running within NBLyzer on the
full set of Kaggle notebooks.

We use a benchmark suite consisting for 2211 executable
real-world notebooks from the Kaggle competition[1] that
has previously been used to evaluate data science static ana-
lyzers [8]. The benchmark characteristics are summarized in
Table 1. We emphasise that this is a fair reflection of typical
notebook code.

We see on average, the notebooks in the benchmark suite
have 24 cells, where each cell on average has 9 lines of code.
In addition, on average branching instructions appear in 33%
of cells. Each notebook has on average 3 functions and 0.1
classes defined. We note that these characteristics of low
amount of branching, functions and classes are typically
advantageous for static analysis precision. We found that
every second notebook had a cell that could not be parsed
and analyzed due to syntax errors in it. Overall, this affected
4% of cells in the benchmarks. 2.1 of variables were unbound,
from an average of 8.2 variables per cell.

Performance Evaluation: We evaluate the performance
of the data leakage analysis. This analysis is run on the
NBLyzer setting K = ∞ (propagate till fixed point). In Fig-
ure 2 the average and maximum data leakage analysis for
executions are shown. The results how that the average
data leakage analysis on a notebook takes 41.45 millisec-
onds. The average maximum analysis per notebook take
880.9 milliseconds, with a global maximum of 233 seconds.
Since this analysis is run as a what-if analysis in a notebook,
we require fast response times (ideally < 1000ms) to retain
the interactive notebook experience [2]. The analysis time
for average case is well under the threshold for users

to notice any delay and does not degrade the user expe-
rience. The average maximum recorded analysis time
is above the immediate fell threshold, but below the
threshold for the task feeling out of flow (1000ms). The
global maximum does cause considerable delay and user
degradation. Moreover, only 4% of all analyses execute for
more than 1000ms and only 1% for more than 5000ms.

6 Related Work
Static Analysis for Data Science. Static analysis for

data science is an emerging area in the program analysis
communities. A comprehensive state of the art is outlined
in [14]. In [12] is a static analysis framework for data science
notebooks. We implement our technique inside this frame-
work. Our analysis can benefit from analyses such as the one
presented in [7] and [15].

Data Leakage Detection and Avoidance. Several tech-
niques exist to avoid and discover data leakages in data sci-
ence code. For example, a popular technique is the use of
data science piplelines [4] that stage the phases of sourcing,
cleaning, splitting, normalization, and training to avoid per-
forming a normalization step before splitting. This, however,
requires manual effort and is not widely used among the
millions of data scientists. For this reason tools such as [3]
exist that perform dynamic instrumentation to detect a data
leakage.

7 Conclusion
We have presented a method for detecting data science data
leakages statically. Our technique has been integrated into
the NBLyzer static analyzer. We believe this is the first static
analysis for detecting data science data leakages. In our cur-
rent prototype we have not implemented all operations but
have reasonable coverage of pandas data frames. Our anal-
ysis does not model several dynamic langauge constructs.
However, we believe in principle given an appropriate (light-
weight) alias analysis this can be achieved. We also note
that data science code is simple compared to mainstream
programs, and rarely employs dynamic features.
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