
AceNAS: Learning to Rank Ace Neural Architectures with
Weak Supervision of Weight Sharing

Yuge Zhang 1 Chenqian Yan 2 * Quanlu Zhang 1 Li Lyna Zhang 1

Yaming Yang 1 Xiaotian Gao 1 Yuqing Yang 1

Microsoft Research 1 Xiamen University 2

{Yuge.Zhang,Quanlu.Zhang,lzhani,Yang.Yaming,xiaotian.gao,yuqyang}@microsoft.com
im.cqyan@gmail.com

Abstract

Architecture performance predictors have been widely
used in neural architecture search (NAS). Although they are
shown to be simple and effective, the optimization objectives
in previous arts (e.g., precise accuracy estimation or per-
fect ranking of all architectures in the space) did not cap-
ture the ranking nature of NAS. In addition, a large num-
ber of ground-truth architecture-accuracy pairs are usually
required to build a reliable predictor, making the process
too computationally expensive. To overcome these, in this
paper, we look at NAS from a novel point of view and in-
troduce Learning to Rank (LTR) methods to select the best
(ace) architectures from a space. Specifically, we propose
to use Normalized Discounted Cumulative Gain (NDCG)
as the target metric and LambdaRank as the training algo-
rithm. We also propose to leverage weak supervision from
weight sharing by pretraining architecture representation
on weak labels obtained from the super-net and then fine-
tuning the ranking model using a small number of architec-
tures trained from scratch. Extensive experiments on NAS
benchmarks and large-scale search spaces demonstrate that
our approach outperforms SOTA with a significantly re-
duced search cost.

1. Introduction
Neural Architecture Search (NAS) has shown its effec-

tiveness on various tasks including computer vision [39, 68,
10], natural language processing [29, 13, 48], and is increas-
ingly spanning to more domains and tasks. Because of the
advantage in dealing with the complexity to manually de-
sign neural architectures, NAS is becoming a powerful tool
to facilitate the design of new deep learning models.

Early NAS [67, 68, 50] adopt Reinforcement Learning
(RL) as their search strategy. Although they have out-

*Work done as an intern at MSRA.

performed hand-crafted designed architectures on vision
tasks, the excessively expensive cost (e.g., 1,800 GPU days)
makes those methods impractical. Recent works are ded-
icated to improving the search efficiency, e.g., evolution-
ary algorithms (EA) [43], and weight-sharing based meth-
ods [4, 39, 32, 11, 10].

In particular, performance predictor based methods [3,
19, 18, 35, 55, 12, 57, 56] are gaining popularity because
of their simplicity, effectiveness [55], and easiness to inte-
grate into other search algorithms like EA to get even better
performance [57, 54]. However, little attention is paid onto
the optimization objective of performance predictor. Cur-
rent research focus either on the precise accuracy of each
architecture [18, 55], or the perfect rank of all architec-
tures [12, 57, 36], but they are not fully aligned with the na-
ture of NAS, which is to identify the best architecture. Thus,
those objectives tend to be unnecessarily over-strict, making
the algorithms difficult to optimize and less efficient.

In this paper, we propose a novel algorithm named Ace-
NAS. We review NAS from the perspective of Learning to
Rank (LTR) [33] and rethink NAS compared to the docu-
ment ranking problem in Information Retrieval (IR). With
the insight that the goal of NAS and LTR are similar by
their essence, we borrow techniques from LTR and relax
the objective to emphasize on finding those best-performing
architectures. Specifically, we propose to optimize the Nor-
malized Discounted Cumulative Gain (NDCG) [25]. Unlike
correlation metrics such as Kendall’s tau, NDCG attaches
larger weights to the best architectures, and thus encourages
identifying the top-performing ones, rather than consider-
ing each architecture equally. We utilize LambdaRank [9],
a list-wise LTR approach, to directly optimize a ranking
model that maximizes NDCG.

Another novelty of our method is that we leverage
the weak supervision obtained from weight-sharing trained
super-net to reduce the demand for architecture-accuracy
annotations dramatically. Typical weight sharing based

ar
X

iv
:2

10
8.

03
00

1v
1

 [
cs

.C
V

]
 6

 A
ug

 2
02

1

NAS algorithms [4, 39, 32, 11, 10] construct the search
space into a super-net and optimize the super-net by iter-
atively training a sampled architecture per iteration. The
shared weights are inherited to estimate architectures’ per-
formance in the search phase. Because of the mutual in-
terference in super-net training [37, 6], such estimations
are very weak (inaccurate), which makes finding the best
architectures based on these estimations challenging [65].
Instead of using the inaccurate weak performance estima-
tions directly in searching, we pretrain the ranking model on
massive number of inaccurate but easily-obtained weight-
sharing labels and then finetune the model with only a
few number of samples with accurate labels obtained from
scratch training.

We conduct extensive experiments on 12 combinations
of search spaces and datasets with benchmarks (e.g., NAS-
Bench-101 [60], NAS-Bench-201 [21]), and ProxylessNAS
search space [11]. The results demonstrate that AceNAS
consistently outperforms the state-of-the-art performance
predictors. Specifically, we achieve a same-level accu-
racy with only 110 architectures trained from scratch on
NAS-Bench-101, which reduces the search cost by 18×
than NAS-GBDT, 8× than RE, RL, BOHB, SemiNAS and
BONAS. On NAS-Bench-201, we achieve an improvement
of up to 3.67% in accuracy under similar costs. On Prox-
ylessNAS, AceNAS is twice faster than Neural Predictor,
and is comparable to the state-of-the-art under mobile set-
tings (ImageNet top-1 75.13%, 84ms). Remarkably, Ace-
NAS surpasses two GCN-based accuracy predictors on all
benchmarked search spaces with even smaller costs.

To sum up, our main contributions are listed as follows:

• We view NAS from a Learning to Rank perspective,
relax the objective from considering each architecture
equally to finding those best-performing architectures,
and propose a novel algorithm named AceNAS.

• To the best of our knowledge, we are the first work
to transfer implicit knowledge from weight sharing by
utilizing the weak labels produced by the super-net.

• We comprehensively evaluated our approach on var-
ious search spaces and datasets. The results demon-
strate the superiority of our approach on performance
and efficiency over state-of-the-art NAS. We will
open-source the whole code base to facilitate future
NAS research.

2. Related works
Learning to Rank and Information Retrieval. Learn-

ing to rank (LTR) [33] refers to a family of methods
that leverage machine learning technologies to build ef-
fective ranking models. LTR is widely used in solving
ranking problem in Information Retrieval (IR). Over the

past decades, many LTR methods have been proposed and
shown their effectiveness in modern IR systems like search
engines. They can be categorized into pointwise [16, 15],
pairwise [8, 52] and listwise [9]. Pointwise methods reduce
the problem into an ordinal regression or relevant/irrelevant
classification problem, but sometimes the problem becomes
unnecessarily too hard to solve [8] and does not directly op-
timizes for rank itself. Successive works therefore proposes
pairwise methods, which care more about the relative order
among all the items instead of the exact item scores. How-
ever, they also suffer from the burden that the ranking model
tries to improve the ranking orders at the bottom of the list
instead of the top. Naturally, listwise approaches consider a
list during training and are able to put more weights on the
top scores. They often use ranking metrics focusing on top,
e.g., NDCG [25] or Mean Reciprocal Rank (MRR) [41],
as their optimization goal. According to [33], listwise ap-
proaches are usually more practical and perform better on
large-scale experiments.

Performance predictor in NAS. Early NAS methods
use Reinforcement Learning (RL) [67, 2, 66], Evolution-
ary Algorithms (EA) [44, 31] or Bayesian Optimization
(BO) [7, 20, 26] to explore a huge search space. This comes
with a huge cost because even the training of one single ar-
chitecture takes hours to complete. Therefore, a good pre-
dictor of neural architecture performance becomes the key
component to help quickly filter out the bad-performing ar-
chitectures and identify the best. Various works use differ-
ent machine learning techniques to build an accurate pre-
dictor, e.g., random forests [3], LSTM [19, 35], Gaussian
Process [18] and GCN [51, 12, 55, 54, 14, 36]. Notably,
the usage of Graph Convolutional Network (GCN) [28] in
NAS has been a trend in recent works, due to the power
of GCN in extracting features from a neural architecture,
which is by its essence a graph structure. However, most of
these methods still require thousands of architectures to be
trained, which is still too expensive for large-scale search
space on large-scale datasets.

Weight sharing in NAS. Weight sharing [4, 39, 32, 11,
10] is a commonly-used technique in NAS to reduce the
massive computational cost to train each architecture inde-
pendently from scratch. Despite its efficiency, its effective-
ness is still a question under debate [61, 30, 59, 64, 1, 47, 5].
Zhang et al. [65] conducts extensive experiments on 5
search spaces to conclude that weight sharing is useful in
distinguishing relatively good architectures from bad, but
fails to identify the top ones. This inspires us to treat weight
sharing accuracy as weakly supervised labels and transfer
the knowledge from weight sharing to our performance pre-
dictor. Most recent works have shown the potentials to
leverage a cheap metric (e.g., FLOPs [17] and latency [12])
to improve the accuracy predictor. These techniques are
also shown to be helpful to us.

3. Methodology
We design AceNAS which incorporates techniques from

information retrieval and combines new NAS-specific de-
signs and adaptations. In this section, we first formulate
NAS as a Learning to Rank problem and justify NDCG as
a new optimization objective for NAS (§ 3.1). Then we de-
sign a new NAS ranking model based on LambdaRank, in
which we use GCN to capture the representation of neural
architectures (§ 3.2). As it is hard and expensive to collect
sufficient architecture-accuracy pairs, we pretrain the GCN
with weak labels obtained from a well-trained super-net to
greatly reduce architecture-accuracy pairs needed (§ 3.3).

The overall illustration of AceNAS is shown in Figure 1,
which divides into two stages. First, pretraining a GCN-
based ranking model with weakly supervised labels from a
well-trained super-net. Second, transferring the pretrained
GCN into another ranking model and training it with Lamb-
daRank with limited architecture-accuracy pairs.

3.1. NDCG: a new optimization goal on NAS

Given a search space A = {α1, α2, . . . , αn}, where n
is the search space size and αi is the i-th architecture. The
goal of NAS is to find the top-k (k is the hyper-parameter
indicating the threshold) architectures with highest scores
si, where si is the ground truth, i.e., , estimation of test
accuracy1 of architecture αi (αi ∈ A).

We find that this optimization goal is quite similar
to that in Information Retrieval (IR) which retrieves the
best matched documents from a large number of docu-
ments, where the ranking quality of high relevant docu-
ments is more important than that of low relevant docu-
ments. Correspondingly, in NAS, model developers care
more about identifying the top architecture among relatively
good-performing models, while distinguishing which one is
worse among bad-performing models is of less importance.

Instead of using rank correlation (e.g., Kendall’s tau) on
the whole search space like many NAS solutions do [12, 4,
57, 36], we propose to use Normalized Discounted Cumu-
lative Gain (NDCG) [25], a metric which has been proved
effective and widely adopted in IR [33], as the optimization
objective of NAS.

Normalized Discounted Cumulative Gain. NDCG is a
measure of ranking quality and often used to measure effec-
tiveness of a ranking model. It takes into account the graded
relevance values and encourages the highly relevant items
to come up into the top of recommended lists. In applica-
tions of IR, NDCG has shown its effectiveness in improving
top-ranked results and has been well studied in quite a few
previous works, both theoretically and empirically [27, 53].

1We will use the term “accuracy” throughout this paper. Note that this
can be easily replaced with other metrics.

Given a query, the ranking model generates a sequence
of items 1, 2, . . . , n in descending relevance order, while
the real relevance scores are rel1, rel2, . . . , reln. NDCG
is computed as:

NDCG =
DCG

IDCG
(1)

where DCG is defined as:

DCG =

n∑
i=1

2reli − 1

log2(i+ 1)
(2)

Ideal Discounted Cumulative Gain (IDCG) is DCG in
the ideal case, in which {reli} is the descendingly sorted
relevance list (rel1 ≥ rel2 ≥ · · · ≥ reln). NDCG is thus a
normalized DCG between 0 and 1. If an item with high rel-
evance score gets ranked poorly, DCG gets penalized. The
“2reli” part emphasizes on items with higher relevance, thus
encourages the model to retrieve more of them, rather than
focus on the global rank.

Adapt NDCG to NAS. It is non-trivial to apply NDCG to
NAS, because accuracy values of architectures have broader
range (e.g., 0-100) than the range of relevance scores in IR,
and more importantly, the distribution of accuracy is highly
skewed on the range. Figure 2 shows a typical distribu-
tion where 80% accuracy values are located between 60%
and 70%, while the other 20% accuracy values span from
0 to 60% (we call them outliers). Dealing with the whole
range vanishes the ability of distinguishing the accuracy of
those top 80% architectures. To alleviate the negative ef-
fect of outliers, we clip the distribution into a smaller range.
Concretely, we compute the 20%-quantile of the original
distribution obtained from training data (i.e., architecture-
accuracy pairs) as lower bound, and directly use the max-
imum accuracy in the training data as upper bound. The
values in this range are further linearly mapped to [0, U] (U
is 20 in our experiments) for computing NDCG.

NDCG vs. rank correlation. We use a simple experi-
ment to compare NDCG and Kendall’s tau in Figure 3. In
the experiment, we train a vanilla accuracy predictor [55]
using two different training configurations. The left figure
shows higher Kendall’s tau, but its ability of identifying top
architectures is weaker. The accuracy of the architectures
whose predicted accuracy are around 95% spans from 85%
to 95%, and its NDCG is very low. In contrast, the right
figure has a much higher NDCG. Accordingly, top architec-
tures are more accurately identified. Therefore, NDCG is a
better optimization objective and metric for NAS than rank
correlation. More concrete experiments are in § 4.2.1.

Standalone
Architectures

Ranking
Head LTR ModelGCN

GT Pred

Sampled
Architectures

WS-accuracy Head

FLOPs Head

Params Head

Transfer

Multi-task
Loss

Super-net Sampled
Sub-nets

Predictor
Heads

Figure 1: Overall illustration of AceNAS. (Top) AceNAS first sample weak labels on super-net to train the ranking model
with multi-task loss. (Bottom) The trained GCN is transferred to optimize the LTR model.

0 10 20 30 40 50 60 70
Test Accuracy (%) on NAS-Bench-201-CIFAR100

0

1000

2000

Ar

ch
(s

) 20%

Figure 2: Test accuracy distribution in NAS-Bench-201.

80 85 90 95 100
Predicted accuracy (%)

80

85

90

95

G
ro

un
d-

tru
th

 a
cc

. (
%

)

KdT = 0.588, NDCG = 0.066

(a) Better k-tau

80 85 90 95 100
Predicted accuracy (%)

80

85

90

95

G
ro

un
d-

tru
th

 a
cc

. (
%

)

KdT = 0.579, NDCG = 0.641

(b) Better NDCG

Figure 3: The prediction ground-truth scatter plot of two
predictors. Although two figures have a close Kendall’s tau,
in the left figure, the top architectures look more scattered,
resulting in the failure of finding the best architectures.

3.2. NAS ranking model

To optimize NDCG, we design a ranking model as the
main body of AceNAS. LambdaRank is the key of this rank-
ing model to focus on good-performing architectures. Be-
low, we briefly introduce LambdaRank, and then elaborate
the design of the ranking model.

LambdaRank. Different from the ranking models that
optimize the whole rank (e.g., pair-wise ranking loss in
RankNet [8]), LambdaRank [9] uses NDCG to put higher
emphasis on good-performing architectures. It takes the po-
sition of an item (e.g., a document in IR or an architecture in
NAS) in the ranking distribution into consideration. Model
gradients are directly computed with LambdaRank. Specif-
ically, for a pair (αi, αj) whose ranking score is (s∗i , s

∗
j),

the gradient of parameter ω is computed as follows:

δL
δω

= λij

(
δs∗i
δω
−
δs∗j
δω

)
(3)

λij ≡
−σ

1 + eσ(s
∗
i−s∗j)

|∆NDCG| (4)

|∆NDCG|measures the change of NDCG when positions of
αi and αj get swapped. Swapping higher ranked items gets
more penalty, leading to larger gradient.

Ranking model architecture. A crucial step to build a
ranking model for neural architectures, is to get an appro-
priate embedding of architectures, i.e., converting dynam-
ically constructed graphs with different depth and width
into a fixed-length vector. Graph Convolutional Network
(GCN) [28] is a natural fit for generating the embedding
due to its advantage in dealing with graph-structured data,
thus it has been adopted in recent works [12, 55, 54, 14,
36, 51, 46]. We also use GCN for the embedding. Specif-
ically we choose Deep Graph Convolutional Neural Net-
work (DGCNN) [63] which performs well in our model. It
has four directed graph convolution layers followed by sort-
pooling and 1D convolution as shown in Figure 4.

Another component in the ranking model is ranking head
which is a Multi-layer Perceptron, which in our case are two

DGCNN
Architecture
Embedding
(emb)

Architecture
Hyper-parameters

(hyper)

emb | hyper Ranking head

Input graph Graph convolution layers SortPooling 1D convolution

emb

Figure 4: Architecture of our ranking model.

fully-connected layers with ReLU and dropout in between.
It predicts ranking score s∗i for an architecture αi by taking
αi’s embedding from DGCNN and corresponding hyper-
parameters. With the ranking score, we use Equation 3 and
4 to optimize the model.

The ranking model is trained using iterative sampling
which has been widely used in AutoML algorithms (e.g.,
BOHB [22] and BRP-NAS [12]). We split the training pro-
cess into multiple rounds. In each round, we train n ar-
chitectures and get n architecture-accuracy pairs, which are
used to train the ranking model. Then, the ranking model is
used to sample architectures for the next round. To balance
exploration and exploitation, in each round, we sample α ·n
best architectures with our ranking model, while the other
(1− α) · n are sampled randomly.

3.3. Weak supervision of weight sharing

As it is computationally expensive to obtain sufficient
number of architecture-accuracy pairs in ground-truth, the
training of ranking model becomes particularly challenging
and unstable. We propose to use weak supervision from
a well-trained super-net (i.e., accuracy evaluated using the
weights from super-net) to pretrain the ranking model. The
super-net is trained using uniform sampling, i.e., each mini-
batch trains a sampled architecture in the super-net [23], and
thus the computation cost is similar to training a single ar-
chitecture. The design of treating weight sharing accuracy
as weakly supervised labels is inspired by the observation in
previous research [65] that weight sharing super-net is capa-
ble of differentiating good architectures from bad ones, with
relatively high rank correlation (e.g., Kendall’s tau could be
higher than 0.6 on many search spaces).

To empower our ranking model with knowledge from
super-net, we replace ranking head in the model (Fig-
ure 4) with a WS-accuracy head, which is another two-
layer MLP to predict weight sharing accuracy. This model
is trained with mean-squared-error (MSE) loss instead of
using LambdaRank, because weight sharing labels are not
qualified for identifying the best architectures from good-
performing ones.

To further boost the effectiveness of pretraining, we in-
corporate multi-task training in the ranking model. Apart
from WS-accuracy head, additional two heads are intro-
duced to predict FLOPs and number of parameters, respec-
tively. The ranking model is trained to minimize the follow-
ing multi-task mean-squared-error (MSE) loss:

L = Lmse(acci, acc∗i) + λ1 · Lmse(flopsi,flops∗i)

+λ2 · Lmse(paramsi,params∗i)
(5)

where variables marked with stars (∗) are predictions. Em-
pirically we find that the training is not sensitive to λ1 and
λ2, after we normalize the ground truth labels by subtract-
ing mean and dividing by standard deviation. Therefore we
simply set λ1 = λ2 = 1.

4. Experiments
4.1. Experiment setup

Search space in NAS benchmarks. As shown in
Table 1, we evaluate AceNAS on 10 different bench-
marked search spaces, and three datasets including CIFAR-
10, CIFAR-100, and ImageNet16-120. Apart from NAS-
Bench-101 [60] and NAS-Bench-201 [21], which has been
evaluated by many prior works, we leverage 8 more bench-
marks from NDS [42]. These search spaces are more prac-
tical compared to NAS-Bench-101 and NAS-Bench-201, as
they originate from SOTA NAS works (e.g., NASNet [68]),
search for more dimensions (e.g., up to 13 op types, width
and depth) and hence contain even more architectures com-
pared to commonly-used spaces in NAS literature.

ProxylessNAS search space. ProxylessNAS [11] is es-
sentially different from search spaces provided in bench-
marks. It is a popular chain-wise search space that consists
of 21 sequential MB-Conv choice blocks and 2.58 · 1017

candidates. We used the latency lookup table provided by
[5] to constrain the search space so that models have com-
parable latency to ProxylessNAS-mobile (83ms – 85ms).

Weight sharing super-net. To obtain the shared-
weights models, we build the full search space into a
super-net and adopt the widely-used uniform random sam-
pling approach [23] to train the super-net. We follow
[39, 23, 49, 10] for handling the dynamic channels and
depths during super-net training in NAS-Bench-101 and
NDS. On evaluation, we calculate the batch normalization
statistics on the fly with a batch size of 512.

GCN model and weakly supervised pretraining. Our
GCN predictor has four graph convolution layers, with 128
hidden units in each layer, followed by a sort pooling layer
for aggregating all node-level information, and a fully-
connected head with 128 hidden units. We use PyTorch2

2We refer to [24] when implementing LTR algorithms.

Search space # Cells # SD # Benchmarked

NAS-Bench-101 423,624 1 423,624
NAS-Bench-201 † ‡ 15,625 1 15,625

DARTS ‡ (16, 777, 216)2 3 5,000
DARTS-fixwd (16, 777, 216)2 3 5,000

ENAS ‡ (9, 765, 625)2 3 4,999
ENAS-fixwd (16, 777, 216)2 3 5,000

PNAS ‡ (1, 073, 741, 824)2 3 4,999
PNAS-fixwd (1, 073, 741, 824)2 3 4,599

Amoeba ‡ (1, 073, 741, 824)2 3 4,983
NASNet ‡ (137, 858, 491, 849)2 3 4,846

Table 1: Characteristics of search spaces in benchmarks:
available datasets?, number of different cells in total, num-
ber of search dimension, and number of architectures avail-
able in the benchmark. ? all search spaces have CIFAR-10
data; † means it has CIFAR-100 data; ‡ means it has Ima-
geNet data (NAS-Bench-201 has ImageNet 16-120 data).

Method NAS-Bench-101 NAS-Bench-201
Budget Test Acc. Budget Test Acc.

Oracle 423,624 94.34 15,625 73.48
Random 1,000 93.42 100 69.94

NAS-GBDT [34] 2,000 94.14 - -
RE [43] 1,000 93.72 100 70.69
RL [67] 1,000 93.58 100 70.68

BOHB [22] 1,000 93.72 100 69.71
SemiNAS [51] 1,000 94.01 - -
BONAS [45] 1,000 94.24 - -

Unsup. encoding [58] 400 94.10 - 73.37
Neural Predictor [55] 219 94.04 - -

BRP-NAS [12] † 110 94.05 110 72.79

AceNAS 110 94.10 110 73.38
AceNAS (large) 1,000 94.32 500 73.47

Table 2: Comparison against SOTA NAS methods. Budget
here refers to the number of architectures sampled. † We
reproduced BRP-NAS using FLOPs for pretraining.

for GCN implementation. For the pretraining stage, we
obtain 4k weak labels, i.e., validation accuracy evaluated
on each weight sharing super-net. FLOPs and parameter
size are also obtained for the 4k architectures. More hyper-
parameter settings can be found in supplementary materials.

LTR training. After pretraining, the ground truths (i.e.,
architecture-accuracy pairs) are used to train the Lamb-
daRank ranking model. The training budget is split into 5
rounds. For example, if 100 architectures are sampled in to-
tal, 20 architectures are sampled in each round. We take α =
0.5, which means half are sampled with ranking model and
half are sampled randomly. Then k architectures top-ranked
by the ranking model are retrained from scratch. We select
the model with highest validation accuracy, and report its
test accuracy as the final result (i.e., top-k accuracy).

4.2. AceNAS on NAS benchmarks

Comparison with state-of-the-art results. We first
evaluate AceNAS by comparing to prior works on NAS-
Bench-101 and 201. We list out the results in Table 2. Com-
pared to prior performance predictors, we achieve a com-
parable accuracy with only 110 ground truth architectures
on NAS-Bench-101. This cost is 18× smaller than NAS-
GBDT, and 8× smaller than RE, RL, BOHB, SemiNAS and
BONAS. On NAS-Bench-201, we achieve 0.59% – 3.67%
higher accuracy when the same number of ground truths are
sampled. When we increase the number of samples to 1,000
on NAS-Bench-101 and 500 on NAS-Bench-201, AceNAS
significantly outperforms other predictors. It achieves sim-
ilar accuracy with the best architecture (oracle), with only
0.02% and 0.01% gap on NAS-Bench-101 and NAS-Bench-
201, respectively.

Results on different search spaces. We now further
demonstrate the effectiveness of AceNAS on other search
spaces. We implement two most related GCN-based ap-
proaches: (i) Vanilla, a basic GCN predictor proposed in
[55] and (ii) BRP-NAS, a binary-relation predictor that also
leverages FLOPs and latency in pretraining. To show our
effectiveness with fewer samples, we train all the predictors
with 20, 40, 60, 80, and 100 architectures. We report the
highest accuracy of top 10 models returned by predictors
and repeat each experiment for 50 times.

We show the results in Figure 5. On all 10 search spaces,
AceNAS consistently find a higher accuracy model than
Vanilla and BRP-NAS under the same number of samples.
Remarkably, AceNAS also outperforms Vanilla and BRP-
NAS under 20 samples, where we can see that AceNAS
achieves higher accuracy than Vanilla (up to 0.62%) and
BRP-NAS (up to 0.11%).

4.2.1 Improvement in NDCG

Correlation between NDCG and end-to-end accuracy.
To answer the question whether NDCG is a good indica-
tor, we collect Kendall’s tau and NDCG of all experiments
and runs covered in § 4.2, and calculate their Pearson cor-
relation coefficient with top-10 accuracy respectively (Fig-
ure 6). Compared to the Kendall’s tau, the correlation co-
efficients of NDCG are significantly higher than that of
Kendall’s tau (1.3 - 1.8 times), proving that it is much better
correlated with the end-to-end performance of NAS.

NDCG improved by AceNAS. To further prove the ef-
fectiveness of NDCG and our methods, the top-10 accuracy
vs. NDCG for each methods on different search spaces are
illustrated in Figure 7. In this figure, each point corresponds
to an experiment (i.e., a ranking model trained with a spe-
cific seed and budget). The upward trends in the figure show
the correlation between NDCG and accuracy. The distribu-
tion of different methods illustrates how AceNAS improves

20 40 60 80 100
94.6

94.7

94.8

94.9

To
p-

10
 T

es
t A

cc
. (

%
)

DARTS

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100

93.8

93.9

94.0

94.1

94.2
DARTS-fix-w-d

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100

94.5

94.6

94.7

94.8

94.9

95.0
ENAS

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100
93.7

93.8

93.9

94.0

94.1

ENAS-fix-w-d

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100

94.8

94.9

95.0

To
p-

10
 T

es
t A

cc
. (

%
)

PNAS

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100

94.0

94.1

94.2

94.3

PNAS-fix-w-d

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100
94.4

94.5

94.6

94.7

94.8

Amoeba

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100

94.4

94.6

94.8

95.0

NASNet

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100
Sampled Architectures

93.2

93.4

93.6

93.8

94.0

To
p-

10
 T

es
t A

cc
. (

%
)

NAS-Bench-101

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100
Sampled Architectures

71.5

72.0

72.5

73.0

73.5
NB201-CIFAR100

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100
Sampled Architectures

93.8

94.0

94.2

94.4

NB201-CIFAR10

Vanilla
BRP-NAS
AceNAS

20 40 60 80 100
Sampled Architectures

45.0

45.5

46.0

46.5
NB201-ImageNet

Vanilla
BRP-NAS
AceNAS

Figure 5: AceNAS consistently surpasses Vanilla and BRP-NAS on all search spaces.

DARTS

DARTS-fix
-w

-d
ENAS

ENAS-fix
-w

-d
PNAS

PNAS-fix
-w

-d

Amoe
ba

NASNet

NAS-B
en

ch
-10

1

NB20
1-C

IFAR10
0

NB20
1-C

IFAR10

NB20
1-I

mag
eN

et
0.0

0.2

0.4

0.6

0.8

Pe
ar

so
n

C
or

re
la

tio
n

KdT vs. Top-10
NDCG vs. Top-10

Figure 6: Pearson correlation coefficients of different met-
rics with respect to top-10 accuracy.

NDCG and accuracy. Compared to points from Vanilla and
BRP-NAS, most points from AceNAS are at the top-right
corner, meaning that they enjoy both a better NDCG and a
better accuracy.

4.2.2 Ablation study

Effectiveness of ranking model. We first evaluate the
effectiveness to train a ranking model. We implement a
weight sharing guided search [40] as our baseline for com-
parison, which selects top-100 architectures with the high-
est accuracy on super-net. For AceNAS, we also sample
100 architectures, but the first 80 are selected by iterative

0.5 0.6 0.7 0.8

94.2

94.4

94.6

94.8

95.0

To
p-

10
 T

es
t A

cc
. (

%
)

DARTS

Vanilla
BRP-NAS
AceNAS

0.45 0.50 0.55 0.60 0.65 0.70 0.75

93.00

93.25

93.50

93.75

94.00

94.25

DARTS-fix-w-d

Vanilla
BRP-NAS
AceNAS

0.75 0.80 0.85 0.90
NDCG

88

90

92

94

To
p-

10
 T

es
t A

cc
. (

%
)

NAS-Bench-101

Vanilla
BRP-NAS
AceNAS

0.65 0.70 0.75 0.80 0.85 0.90
NDCG

92.0

92.5

93.0

93.5

94.0

94.5

NB201-CIFAR10

Vanilla
BRP-NAS
AceNAS

Figure 7: AceNAS achieves better NDCG and accuracy on
different search spaces. The upward trends show the corre-
lation between NDCG and accuracy.

sampling, and the rest 20 are selected by the final ranking
model. As shown in Figure 8, AceNAS outperforms the
baseline with the same search cost (100 samples). Remark-

Amoe
ba

DARTS

NB20
1-I

mag
eN

et

ENAS

NB20
1-C

IFAR10
0

ENAS-fix
-w

-d
PNAS

PNAS-fix
-w

-d

NB20
1-C

IFAR10

DARTS-fix
-w

-d

NASNet

NAS-B
en

ch
-10

1
0.00

0.25

0.50

0.75

1.00

1.25

1.50

Te
st

 R
eg

re
t (

%
)

Weight-sharing
AceNAS

Figure 8: Comparison of test regret between weight-
sharing-guided greedy search and AceNAS on 100 samples.

ably, we reduce test regret3 by 3% on NAS-Bench-201.
Effectiveness of LambdaRank. We replace Lamb-

daRank in AceNAS with either MSE loss or RankNet loss.
RankNet [8] loss is essentially the same as LambdaRank but
does not take into account the changes in NDCG and treat
all pairs equally. We report the test regret of top-10 archi-
tectures. As shown in Figure 9 (top), on all search spaces,
AceNAS with LambdaRank achieves much smaller test re-
grets than MSE and RankNet. This echoes the findings in
§ 3 and demonstrates the effectiveness of LambdaRank.

Effectiveness of weak supervision of weight-sharing.
Finally, we investigate the effectiveness of using weight
sharing labels to pretrain GCN. Our comparison baseline
is Parameters & FLOPs, that removes weight sharing from
AceNAS (i.e., Params. & FLOPs & Weight-sharing). Fig-
ure 9 (bottom) shows test regrets on 12 search spaces and
datasets. With the weak supervision of weight sharing la-
bels, we significantly reduce the test regret by up to 0.39%.

4.3. AceNAS on ProxylessNAS

To run AceNAS on ProxylessNAS, we first train a super-
net and pretrain our ranking model on weight sharing ac-
curacy. After this, we randomly sample 80 architectures
and fine-tune the model with LambdaRank. In the follow-
ing stages, we run iterative sampling, with α = 0.667 to
sample 10 random and 20 best architectures every iteration.
The 20 best is taken from as random set of 100,000 archi-
tectures, following [55]. In the final stage, we follow [54]
to run evolution algorithm with the ranking model function-
ing as a surrogate function. We use an exactly same train-
ing setup as [5]. During the full search process (including
super-net training), architectures are evaluated on a 50,046-
image validation set selected from the original training set,
and we used the original validation set only in the final test.

Results are shown in Table 3. With 234 architectures
trained and evaluated (in the final stage), AceNAS reaches
75.93% on validation set and 75.13% on test set (an aver-
age over 3 runs that report 75.29%, 75.09%, 75.00% respec-

3Test regret: the gap between test accuracy and the best test accuracy
on search space.

DARTS

DARTS-fix
-w

-d
ENAS

ENAS-fix
-w

-d
PNAS

PNAS-fix
-w

-d

Amoe
ba

NASNet

NAS-B
en

ch
-10

1

NB20
1-C

IFAR10
0

NB20
1-C

IFAR10

NB20
1-I

mag
eN

et
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
st

 R
eg

re
t (

%
)

MSE
RankNet
LambdaRank

DARTS

DARTS-fix
-w

-d
ENAS

ENAS-fix
-w

-d
PNAS

PNAS-fix
-w

-d

Amoe
ba

NASNet

NAS-B
en

ch
-10

1

NB20
1-C

IFAR10
0

NB20
1-C

IFAR10

NB20
1-I

mag
eN

et
0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 R
eg

re
t (

%
)

Params & FLOPs
Params & FLOPs & Weight-sharing

Figure 9: Comparison among top-10 test regrets when using
different LTR loss (top) and when pretrained with different
labels (bottom). Number of sampled architectures is fixed
to 100. Each bar is an average of 50 runs.

Test Acc. (%) Latency (ms)

Neur. Predictor [55] 74.75 84.95
TuNAS [5] 75.0 84.0

ProxylessNAS [11] 74.6† 84.4
MnasNet-B1 [50] 74.5 84.5

AceNAS (Stage 1) 74.73 83.30
AceNAS (Final) 75.13 84.59

Table 3: Experiment results on ProxylessNAS. †: [5] reports
74.8% with an improved training setup.

tively), outperforming ProxylessNAS by as much as 0.53%.
Remarkably, at the first stage, with only 100 architectures
trained, AceNAS has reached 74.73%, which is comparable
to Neural Predictor but at least twice faster.

We further understand why AceNAS works by running
a qualitative ablation study on the two key components
of AceNAS, i.e., NDCG and weak supervision of weight
sharing. We run training and validation on 250 random
architecture-accuracy pairs provided by [5] and test whether
it can distinguish the top-performing architectures reported
in MnasNet, TuNAS and ProxylessNAS. The test architec-
tures are of higher accuracy than training and validation ar-
chitectures, so they are isolated in y-axis. A good model
should be able to distinguish them by prediction scores (x-
axis). As shown in the middle of Figure 10, without NDCG,
the predictor performs well (score is linearly to true accu-
racy) in a wide range on training and validation data, but
fails to isolate test data in x-axis (overlaps between test data
and others in x-axis). When empowered by NDCG (left),

AceNAS is encouraged to emphasize the top-ranked archi-
tectures other than the whole range, and the testing archi-
tectures seem to be more isolated instead of mixed up with
the random samples. Pretraining also plays an important
role. Without pretraining on a large number of weak labels,
learning on hundreds of samples is harder and points in Fig-
ure 10 (right) look more scattered than the others.

0.6 0.8
AceNAS prediction

71

72

73

74

75

76

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

0.72 0.74
Pred. w.o. NDCG

0.7 0.8
Pred. w.o. WS

Train
Val
Test

Figure 10: Qualitative ablation study of AceNAS on Prox-
ylessNAS. The x-axis is prediction score of an architecture
(in the range of [0, 1], greater is better) and y-axis is the val-
idation accuracy (ground-truth). In the middle figure, we
exclude NDCG and replace it with a MSE loss. In the right
figure, we exclude the whole pretraining process.

5. Conclusion
We observe and empirically prove that NDCG is a bet-

ter optimization goal for NAS. Based on this, we intro-
duce AceNAS, a GCN ranking model that directly opti-
mizes NDCG via LambdaRank and incorporates weak su-
pervision of weight sharing. AceNAS demonstrates consis-
tent improvement over various settings. We hope our work
will encourage future NAS researches to think of NAS from
a Learning to Rank perspective, and even incorporate with
research in other directions.

References
[1] George Adam and Jonathan Lorraine. Understanding neural

architecture search techniques, 2019. 2
[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-
forcement learning. arXiv preprint arXiv:1611.02167, 2016.
2

[3] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil
Naik. Accelerating neural architecture search using perfor-
mance prediction. arXiv preprint arXiv:1705.10823, 2017.
1, 2

[4] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vi-
jay Vasudevan, and Quoc Le. Understanding and simpli-
fying one-shot architecture search. volume 80 of Proceed-
ings of Machine Learning Research, pages 550–559, Stock-
holmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.
1, 2, 3

[5] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang
Cheng, Pieter-Jan Kindermans, and Quoc V Le. Can weight
sharing outperform random architecture search? an investi-
gation with tunas. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14323–14332, 2020. 2, 5, 8, 12

[6] Yassine Benyahia, Kaicheng Yu, Kamil Bennani Smires,
Martin Jaggi, Anthony C. Davison, Mathieu Salzmann, and
Claudiu Musat. Overcoming multi-model forgetting. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning
Research, pages 594–603. PMLR, 09–15 Jun 2019. 2

[7] James Bergstra, Daniel Yamins, and David Cox. Making
a science of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. In Inter-
national conference on machine learning, pages 115–123,
2013. 2

[8] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt
Deeds, Nicole Hamilton, and Greg Hullender. Learning to
rank using gradient descent. In Proceedings of the 22nd in-
ternational conference on Machine learning, pages 89–96,
2005. 2, 4, 8

[9] Christopher J Burges, Robert Ragno, and Quoc V Le. Learn-
ing to rank with nonsmooth cost functions. In Advances
in neural information processing systems, pages 193–200,
2007. 1, 2, 4

[10] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019. 1, 2, 5

[11] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware, 2019.
1, 2, 5, 8

[12] Thomas Chau, Łukasz Dudziak, Mohamed S Abdelfattah,
Royson Lee, Hyeji Kim, and Nicholas D Lane. Brp-
nas: Prediction-based nas using gcns. arXiv preprint
arXiv:2007.08668, 2020. 1, 2, 3, 4, 5, 6, 12

[13] Junkun Chen, Kaiyu Chen, Xinchi Chen, Xipeng Qiu,
and Xuanjing Huang. Exploring shared structures and
hierarchies for multiple nlp tasks. arXiv preprint
arXiv:1808.07658, 2018. 1

[14] Hsin-Pai Cheng, Tunhou Zhang, Shiyu Li, Feng Yan, Meng
Li, Vikas Chandra, Hai Li, and Yiran Chen. Nasgem: Neu-
ral architecture search via graph embedding method. arXiv
preprint arXiv:2007.04452, 2020. 2, 4

[15] William S Cooper, Fredric C Gey, and Daniel P Dabney.
Probabilistic retrieval based on staged logistic regression. In
Proceedings of the 15th annual international ACM SIGIR
conference on Research and development in information re-
trieval, pages 198–210, 1992. 2

[16] Koby Crammer and Yoram Singer. Pranking with ranking.
Advances in neural information processing systems, 14:641–
647, 2001. 2

[17] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-
jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew
Yu, Peter Vajda, and Joseph E. Gonzalez. Fbnetv3: Joint

architecture-recipe search using neural acquisition function,
2020. 2

[18] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin,
Fei Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yim-
ing Wu, Yangqing Jia, Peter Vajda, Matt Uyttendaele, and
Niraj K. Jha. Chamnet: Towards efficient network design
through platform-aware model adaptation, 2018. 1, 2

[19] Boyang Deng, Junjie Yan, and Dahua Lin. Peephole: Pre-
dicting network performance before training. arXiv preprint
arXiv:1712.03351, 2017. 1, 2

[20] Tobias Domhan, Jost Tobias Springenberg, and Frank Hut-
ter. Speeding up automatic hyperparameter optimization of
deep neural networks by extrapolation of learning curves. In
Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015. 2

[21] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search, 2020. 2, 5

[22] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb:
Robust and efficient hyperparameter optimization at scale.
arXiv preprint arXiv:1807.01774, 2018. 5, 6

[23] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling, 2020. 5,
12

[24] haowei01. pytorch-examples. https://github.com/
haowei01/pytorch-examples, 2020. 5

[25] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-
based evaluation of ir techniques. ACM Transactions on In-
formation Systems (TOIS), 20(4):422–446, 2002. 1, 2, 3

[26] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider,
Barnabas Poczos, and Eric P Xing. Neural architecture
search with bayesian optimisation and optimal transport. In
Advances in neural information processing systems, pages
2016–2025, 2018. 2

[27] Evangelos Kanoulas and Javed A. Aslam. Empirical justi-
fication of the gain and discount function for ndcg. In Pro-
ceedings of the 18th ACM Conference on Information and
Knowledge Management, CIKM ’09, page 611–620, New
York, NY, USA, 2009. Association for Computing Machin-
ery. 3

[28] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 2, 4

[29] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova,
Mikhail Salnikov, Maxim Fedorov, and Evgeny Bur-
naev. Nas-bench-nlp: Neural architecture search bench-
mark for natural language processing. arXiv preprint
arXiv:2006.07116, 2020. 1

[30] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search, 2019. 2

[31] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 19–34, 2018. 2

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 1, 2

[33] Tie-Yan Liu. Learning to rank for information retrieval.
Springer Science & Business Media, 2011. 1, 2, 3

[34] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen,
and Tie-Yan Liu. Neural architecture search with gbdt. arXiv
preprint arXiv:2007.04785, 2020. 6

[35] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan
Liu. Neural architecture optimization. In Advances in neural
information processing systems, pages 7816–7827, 2018. 1,
2

[36] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and
Huazhong Yang. A generic graph-based neural architec-
ture encoding scheme for predictor-based nas. arXiv preprint
arXiv:2004.01899, 2020. 1, 2, 3, 4

[37] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yong Guo,
Peilin Zhao, Junzhou Huang, and Mingkui Tan. Disturbance-
immune weight sharing for neural architecture search, 2020.
2

[38] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu
Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large
mini-batch object detector. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018. 12

[39] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. arXiv preprint arXiv:1802.03268, 2018. 1, 2, 5

[40] Aloı̈s Pourchot, Alexis Ducarouge, and Olivier Sigaud. To
share or not to share: A comprehensive appraisal of weight-
sharing, 2020. 7

[41] Dragomir R Radev, Hong Qi, Harris Wu, and Weiguo
Fan. Evaluating web-based question answering systems. In
LREC, 2002. 2

[42] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo,
and Piotr Dollár. On network design spaces for visual recog-
nition, 2019. 5, 12

[43] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search, 2019. 1, 6

[44] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc Le, and Alex Kurakin.
Large-scale evolution of image classifiers. arXiv preprint
arXiv:1703.01041, 2017. 2

[45] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T. Kwok,
and Tong Zhang. Bridging the gap between sample-based
and one-shot neural architecture search with bonas, 2020. 6

[46] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik,
Margret Keuper, and Frank Hutter. Nas-bench-301 and the
case for surrogate benchmarks for neural architecture search,
2020. 4

[47] Prabhant Singh, Tobias Jacobs, Sebastien Nicolas, and Mis-
cha Schmidt. A study of the learning progress in neural ar-
chitecture search techniques, 2019. 2

[48] David R So, Chen Liang, and Quoc V Le. The evolved trans-
former. arXiv preprint arXiv:1901.11117, 2019. 1

[49] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios
Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Mar-
culescu. Single-path nas: Designing hardware-efficient con-
vnets in less than 4 hours, 2019. 5

https://github.com/haowei01/pytorch-examples
https://github.com/haowei01/pytorch-examples

[50] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2820–2828, 2019. 1, 8

[51] Yehui Tang, Yunhe Wang, Yixing Xu, Hanting Chen, Boxin
Shi, Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. A semi-
supervised assessor of neural architectures. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1810–1819, 2020. 2, 4, 6

[52] Ming-Feng Tsai, Tie-Yan Liu, Tao Qin, Hsin-Hsi Chen, and
Wei-Ying Ma. Frank: a ranking method with fidelity loss.
In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information re-
trieval, pages 383–390, 2007. 2

[53] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, Tie-Yan Liu,
and Wei Chen. A theoretical analysis of ndcg type ranking
measures, 2013. 3

[54] Chen Wei, Chuang Niu, Yiping Tang, and Jimin Liang. Npe-
nas: Neural predictor guided evolution for neural architec-
ture search. arXiv preprint arXiv:2003.12857, 2020. 1, 2, 4,
8

[55] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Ben-
der, and Pieter-Jan Kindermans. Neural predictor for neural
architecture search. In European Conference on Computer
Vision, pages 660–676. Springer, 2020. 1, 2, 3, 4, 6, 8, 12

[56] Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen,
Mengchen Liu, Ye Yu, Zhangyang Wang, Zicheng Liu, Mei
Chen, and Lu Yuan. Weak nas predictors are all you need,
2021. 1

[57] Yixing Xu, Yunhe Wang, Kai Han, Yehui Tang, Shangling
Jui, Chunjing Xu, and Chang Xu. Renas:relativistic evalua-
tion of neural architecture search, 2021. 1, 3

[58] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang.
Does unsupervised architecture representation learning help
neural architecture search?, 2020. 6

[59] Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci.
Nas evaluation is frustratingly hard, 2019. 2

[60] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,
Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In International
Conference on Machine Learning, pages 7105–7114, 2019.
2, 5

[61] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat,
and Mathieu Salzmann. Evaluating the search phase of neu-
ral architecture search, 2019. 2

[62] Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang,
Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. Con-
text encoding for semantic segmentation, 2018. 12

[63] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin
Chen. An end-to-end deep learning architecture for graph
classification. In Thirty-Second AAAI Conference on Artifi-
cial Intelligence, 2018. 4

[64] Yuge Zhang, Zejun Lin, Junyang Jiang, Quanlu Zhang, Yu-
jing Wang, Hui Xue, Chen Zhang, and Yaming Yang. Deeper
insights into weight sharing in neural architecture search,
2020. 2

[65] Yuge Zhang, Quanlu Zhang, and Yaming Yang. How does
supernet help in neural architecture search?, 2020. 2, 5

[66] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin
Liu. Practical block-wise neural network architecture gener-
ation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2423–2432, 2018. 2

[67] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 1, 2, 6

[68] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710,
2018. 1, 5

A. Pseudo-code of AceNAS
In Algorithm 1, we present the pseudo-code for our al-

gorithm.

B. Implementation details
B.1. Experiments on NAS benchmarks

B.1.1 Hyper-parameter settings

We list important hyper-parameters used in super-net train-
ing in Table 4. We run our training on a single Nvidia Tesla
V100 with 16GB memory.

Batch size 192∗

Number of epochs 600
Optimizer SGD
Initial learning rate 0.05
Ending learning rate 0
Learning rate schedule Cosine decay
Weight decay 0.0001
Gradient clip 5
Evaluate batch size 512

Table 4: Important hyper-parameters used in super-net
training. ∗: In search spaces provided by NDS [42], we
set batch size to 128 due to limited GPU memory.

We list important hyper-parameters used to train the
ranking model in AceNAS in Table 5. For BRP-NAS [12]
and Neural predictor [55], we follow the hyper-parameters
used in their paper.

Batch size 20
Number of epochs 300
Optimizer Adam
Initial learning rate 0.005
Ending learning rate 0
Learning rate schedule Cosine decay
Weight decay 0.0005
Early stop patience 50

Table 5: Important hyper-parameters used in ranking model
training. In pre-training stage, we use the same hyper-
parameters, except initial learning rate = 0.001, weight de-
cay = 10−5 and early stop is disabled.

B.1.2 Handling neural networks as graphs

Following [55], we encode one type of cell into a di-
rected graph. The type of operator is encoded into
a one-hot tensor that is treated as node attributes, and
the connections between operators are encoded as edges.
Some other pseudo-nodes are necessary to make the graph

connected, for example the nodes that are labeled as
add/input/output/concatenate. In search spaces provided
by NDS, the neural networks search for multiple different
types of cells and a series of architecture hyper-parameters
(e.g., number of cells stacked, channel size multiplier). The
graphs are then feeded into GCN and the embedded features
are concatenated with hyper-parameter features.

B.2. Experiments on ProxylessNAS

To run experiment on ProxylessNAS, we first train a
super-net with Single-path One Shot [23]. The hyper-
parameters used are slightly different from those listed in
Table 5. We list them in Table 6. We followed the im-
plementation in [5] to sample skip connection at 0.5 prob-
ability, although we did not apply other tricks, e.g., merg-
ing convolution kernels. After super-net training is done,
we sampled 10000 architectures, where half of them satisfy
the latency constraint (83 – 85ms) and the other half are
randomly sampled from the distribution used in super-net
training phase.

Batch size 2048 ∗

Number of epochs 360
Warm-up epochs 5
Optimizer SGD
Initial learning rate 0.48
Ending learning rate 0
Learning rate schedule Cosine decay
Weight decay 0.00005
Accelerator 16 GPUs

Table 6: Important hyper-parameters used in super-net
training of ProxylessNAS. ∗: We split the 2048 batch size
into 16 GPUs and in each mini-batch every GPU samples
architectures independently.

To train GCN, we used hyper-parameters identical to Ta-
ble 5, except that initial learning rate is decreased to 0.001.

To train the searched architecture (both in the validation
setting and test validation), we followed the settings pro-
posed by [5] but re-implement it with PyTorch as the orig-
inal implementation supports TPU only. To align the batch
size (4096) with the original setting, we use 16 V100 GPU
so that each GPU takes a mini-batch of 256 samples. Ide-
ally, Sync-BN [38, 62] should be applied to synchronize
batch normalization on all GPUs, however, we find that it
harms the training speed by about 50%. To balance training
speed and performance, we used Distribute-BN that syn-
chronizes running statistics of batch normalization at the
end of each epoch.

Algorithm 1 AceNAS

Input: Search Space A, budget for each round n, budget after training k, number of rounds R, exploration-exploitation
factor α.

Output: The Ranking Model M , the best architecture a†, the best test accuracy acc†.
. Pre-training
Build a weight sharing super-net S based on A.
while not converged do

Random sample one sub-net a from super-net.
Optimize weights corresponding to a and update in S.

end while
Sample sufficient architectures from A and evaluate accuracy, FLOPs and number of parameters on S
Optimize M to minimize Lmse(acci, acc∗i) + λ1 · Lmse(flopsi,flops∗i) + λ2 · Lmse(paramsi,params∗i).

. Fine-tuning
Initialize sampled architectures A = ∅
for i = 1, ..., R do

if i = 1 then
A′ ← randomly sampled n architectures.

else
A′ ← best α · n architectures predicted by M and (1− α) · n random architectures.

end if
A← A ∪ {(a, validationAccuracy(a) | a ∈ A′}. . This is the most costly step.
Fine-tune ranking model M on A with LambdaRank.

end for
A′ ← top-k architectures and their validation accuracy predicted by M .
A← A ∪A′.
a† ← architecture with best validation accuracy on A.
acc† ← accuracy of a† on test dataset.

C. Iterative sampling visualization
In Figure 11, we visualize the whole process of AceNAS

on NAS benchmarks. As the 100 architectures are itera-
tively sampled in 5 folds, there are jumps at the point of 20,
40, 60, 80 and 100. Compared with baselines, the results
have shown consistent improvements.

Similarly, we shown the sampling process on Proxyless-
NAS search space. In Figure 12, we shown an example
where we sample 80 architectures in initialization phase,
20-greedy-10-random in the following 3 stages, and 30-
greedy in stage 4. The 20 “greedy architectures” are se-
lected by the ranking model, from 100,000 random archi-
tectures satisfying the latency constraint. In the final stage,
we exploit the ranking model by using evolution to find the
architectures with the best predicted scores.

D. Quality of searched architectures
For NAS benchmarks, we show in Table 7 the test ac-

curacy, test regret and rank of our searched architecture.
AceNAS is approximately able to find the best architecture
out of one thousand architectures. Remarkably, on NAS-
Bench-201-ImageNet, it almost finds the best validation ar-

chitecture on the search space (the negative test regret es-
timation is caused by variance). Despite that the best vali-
dation architecture has been located, it still ranks 2.14 out
of 1000, which means that some architectures have a even
better test accuracy, which is due to the gap between vali-
dation dataset and test dataset, and the best on validation is
not necessarily the best on test.

For ProxylessNAS search space, we show the architec-
tures found by 3 different runs, and name them AceNAS-
M1, AceNAS-M2, and AceNAS-M3, respectively (M for
Mobile). The network structures are shown in Figure 13
and the accuracy and latency on ImageNet test set (com-
monly called validation set for historical reasons) are shown
in Table 8. Pretrained checkpoints of these models will be
released.

E. Pretraining quality

In Figure 14, we show how our ranking model is good
at capturing the information (i.e., WS-accuracy, FLOPs
and number of parameters) in the pretraining stage. Apart
from 4k architectures that were used in training, we sam-
pled extra 1k architectures per search space to evaluate the

0 50 100 150 200

94.5

94.6

94.7

94.8

94.9

95.0

Be
st

 T
es

t A
cc

ur
ac

y
(%

)

DARTS

Vanilla
BRP-NAS
NASRank

0 50 100 150 200
93.6

93.8

94.0

94.2

DARTS-fix-w-d

Vanilla
BRP-NAS
NASRank

0 50 100 150 200

94.4

94.6

94.8

95.0

95.2
ENAS

Vanilla
BRP-NAS
NASRank

0 50 100 150 200

93.6

93.8

94.0

94.2

ENAS-fix-w-d

Vanilla
BRP-NAS
NASRank

0 50 100 150 200

94.6

94.7

94.8

94.9

95.0

95.1

95.2

Be
st

 T
es

t A
cc

ur
ac

y
(%

)

PNAS

Vanilla
BRP-NAS
NASRank

0 50 100 150 200

94.0

94.1

94.2

94.3

94.4

PNAS-fix-w-d

Vanilla
BRP-NAS
NASRank

0 50 100 150 200

94.4

94.6

94.8

Amoeba

Vanilla
BRP-NAS
NASRank

0 50 100 150 200

94.2

94.4

94.6

94.8

95.0

95.2
NASNet

Vanilla
BRP-NAS
NASRank

0 50 100 150 200
Trained Architectures

93.25

93.50

93.75

94.00

94.25

Be
st

 T
es

t A
cc

ur
ac

y
(%

)

NAS-Bench-101

Vanilla
BRP-NAS
NASRank

0 50 100 150 200
Trained Architectures

70

71

72

73

74

NB201-CIFAR100

Vanilla
BRP-NAS
NASRank

0 50 100 150 200
Trained Architectures

93.50

93.75

94.00

94.25

94.50

94.75
NB201-CIFAR10

Vanilla
BRP-NAS
NASRank

0 50 100 150 200
Trained Architectures

44

45

46

47

NB201-ImageNet

Vanilla
BRP-NAS
NASRank

Figure 11: The test accuracy of the architecture with best validation accuracy, with respect to number of architectures trained.
The vertical black line (100 architectures) indicates the ending of ranking model training. The budget of 100 architectures is
splitted into 5 rounds. Each line is an average of 50 runs.

Init. Stage 1 Stage 2 Stage 3 Stage 4 Evo.

71

72

73

74

75

76

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Random
Greedy

Figure 12: AceNAS optimization process on Proxyless-
NAS.

model. We compute R2 scores (coefficient of determina-
tion), which can be as good as 1. We found that for parame-
ters and FLOPs, our model hits> 0.98 for all search spaces,
which means that the model is very good at predicting the
model size. On WS-accuracy, R2 scores vary between 0.4
and 1, implying that it always learn information from super-
net, at least to some extent. Clearly, on some benchmarks
(e.g., NAS-Bench-101 and NAS-Bench-201), it looks bet-
ter than others. We conjecture that search spaces with lower

Search space Test acc. Test regret∗ Rank (‰) †

NAS-Bench-101 94.10±0.20 0.24 0.33
NB201-CIFAR100 73.38±0.51 0.10 0.16
NB201-CIFAR10 94.52±0.15 0.04 0.05
NB201-ImageNet 46.34±0.56 -0.08 2.14

Amoeba 94.84±0.07 0.09 0.80
DARTS 94.92±0.07 0.14 1.20

DARTS-fix-w-d 94.16±0.12 0.16 1.00
ENAS 94.97±0.11 0.20 0.60

ENAS-fix-w-d 94.13±0.04 0.06 0.40
NASNet 95.02±0.15 0.25 0.41
PNAS 95.06±0.06 0.13 0.60

PNAS-fix-w-d 94.34±0.09 0.16 1.54

Table 7: Test accuracy and rank of the best architecture, av-
eraged over 50 runs. For test accuracy, we report the mean
and standard deviation. For test regret and rank, we only re-
port the mean. ∗: the gap between test accuracy of searched
architecture and the best validation architecture. †: the av-
erage rank of test accuracy within all test accuracies.

diversity are easier to learn.

3x
22

4x
22

4

C
on

v
3x

3 32
x1

12
x1

12

M
B

1
3x

3 16
x1

12
x1

12

M
B

6
3x

3 24
x5

6x
56

M
B

3
3x

3 24
x5

6x
56

M
B

3
5x

5 32
x2

8x
28

M
B

3
3x

3 32
x2

8x
28

M
B

3
5x

5 32
x2

8x
28

M
B

6
3x

3 64
x1

4x
14

M
B

3
5x

5 64
x1

4x
14

M
B

6
7x

7 96
x1

4x
14

M
B

6
3x

3 96
x1

4x
14

M
B

6
3x

3 96
x1

4x
14

M
B

3
7x

7 96
x1

4x
14

M
B

6
7x

7 16
0x

7x
7

M
B

6
7x

7 16
0x

7x
7

M
B

3
7x

7 16
0x

7x
7

M
B

3
7x

7 16
0x

7x
7

M
B

6
7x

7 32
0x

7x
7

Po
ol

in
g

FC

(a) AceNAS-M1

3x
22

4x
22

4

C
on

v
3x

3 32
x1

12
x1

12

M
B

1
3x

3 16
x1

12
x1

12

M
B

3
5x

5 24
x5

6x
56

M
B

6
3x

3 32
x2

8x
28

M
B

3
3x

3 32
x2

8x
28

M
B

3
5x

5 32
x2

8x
28

M
B

6
7x

7 64
x1

4x
14

M
B

6
5x

5 64
x1

4x
14

M
B

6
5x

5 96
x1

4x
14

M
B

3
5x

5 96
x1

4x
14

M
B

6
5x

5 96
x1

4x
14

M
B

6
3x

3 96
x1

4x
14

M
B

6
7x

7 16
0x

7x
7

M
B

6
5x

5 16
0x

7x
7

M
B

3
5x

5 16
0x

7x
7

M
B

6
5x

5 16
0x

7x
7

M
B

6
7x

7 32
0x

7x
7

Po
ol

in
g

FC

(b) AceNAS-M2

3x
22

4x
22

4

C
on

v
3x

3 32
x1

12
x1

12

M
B

1
3x

3 16
x1

12
x1

12

M
B

3
3x

3 24
x5

6x
56

M
B

6
3x

3 24
x5

6x
56

M
B

3
5x

5 32
x2

8x
28

M
B

3
3x

3 32
x2

8x
28

M
B

6
5x

5 64
x1

4x
14

M
B

6
7x

7 64
x1

4x
14

M
B

6
3x

3 64
x1

4x
14

M
B

6
7x

7 96
x1

4x
14

M
B

3
7x

7 96
x1

4x
14

M
B

3
7x

7 96
x1

4x
14

M
B

3
5x

5 96
x1

4x
14

M
B

6
7x

7 16
0x

7x
7

M
B

3
7x

7 16
0x

7x
7

M
B

6
7x

7 16
0x

7x
7

M
B

3
3x

3 16
0x

7x
7

M
B

6
5x

5 32
0x

7x
7

Po
ol

in
g

FC

(c) AceNAS-M3

Figure 13: Searched architecture on ProxylessNAS search space.

Architecture Test acc. (%) Latency (ms)

AceNAS-M1 75.25 84.60
AceNAS-M2 75.07 84.59
AceNAS-M3 75.11 84.92

Table 8: Test accuracy and latency of architectures searched
on ProxylessNAS (shown in Figure 13).

Am
oe

ba

D
AR

TS

D
AR

TS
-fi

x-
w

-d

EN
AS

EN
AS

-fi
x-

w
-d

N
AS

-B
en

ch
-1

01

N
AS

N
et

N
B2

01
-C

IF
AR

10

N
B2

01
-C

IF
AR

10
0

N
B2

01
-Im

ag
eN

et

PN
AS

PN
AS

-fi
x-

w
-d

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
2

Sc
or

e

FLOPs
Parameters
WS-Accuracy

Figure 14: The validation R2 score in pretraining stage, in-
dicating how good our ranking model is good at predicting
weight sharing accuracy, number of parameters and FLOPs.

