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Abstract. Graph Neural Networks (GNNs) exploit signals from node features
and the input graph topology to improve node classification task performance.
Recently proposed GNNs work across a variety of homophilic and heterophilic
graphs. Among these, models relying on polynomial graph filters have shown
promise. We observe that polynomial filter models need to learn a reasonably
high degree polynomials without facing any over-smoothing effects. We find that
existing methods, due to their designs, either have limited efficacy or can be
enhanced further. We present a spectral method to learn a bank of filters using
a piece-wise polynomial approach, where each filter acts on a different subsets
of the eigen spectrum. The approach requires eigendecomposition only for a
few eigenvalues at extremes (i.e., low and high ends of the spectrum) and offers
flexibility to learn sharper and complex shaped frequency responses with low-
degree polynomials. We theoretically and empirically show that our proposed
model learns a better filter, thereby improving classification accuracy. Our model
achieves performance gains of up to ∼6% over the state-of-the-art (SOTA) models
while being only ∼2x slower than the recent spectral approaches on graphs of
sizes up to ∼169K nodes.

Keywords: Graph Neural Networks · Representation Learning · Polynomial
Filtering.

1 Introduction

We are interested in the problem of classifying nodes in a graph where a graph with
features for all nodes, and labels for a few nodes are made available for learning.
Inference is done using the learned model for the remaining nodes (aka transductive
setting). Graph Neural Networks (GNNs) perform well on such problems [1]. Most
GNNs predict a node’s label by aggregating information from its neighbours in a certain
way, making them dependent on some correlation between the structure and the node
labels1. For example, in the simplest case, GNNs work well when the node and its
⋆ Equal contribution. Work done while author was at Microsoft Research India
1 Characterizing the correlation between the graph structure and node features/labels is an active

area of research. Several metrics have been proposed including edge homophily [13,5], node
homophily [4], class homophily [27]. All these metrics show that standard GNNs perform well
when the graphs and node labels are positively correlated.
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neighbours share similar labels. However, the performance can be poor if this criterion is
not satisfied. Recently, several modeling approaches have been proposed to build/learn
robust GNN models. Some modify the aggregation mechanism [4,5,3], while others
propose to estimate and leverage the label-label compatibility matrix as a prior [6].

More recent approaches have tackled this problem from a graph filter learning
perspective [7,8,38,37,32,39]. With eigenvalues having frequency interpretations [26],
one or more filters (i.e., a bank of filters) that selectively accentuates and suppresses
various spectral components of graph signals are learned using task-specific available
information. The filtering operation enables learning better node representation which
translates to improved classification accuracy.

Designing effective graph filters is a challenging problem, and most recent meth-
ods [10,8,38,37] suggest interesting ways to learn polynomial filters having finite impulse
response (FIR) characteristics. These models are efficient and attractive, as they make use
of local neighborhood (i.e., using sparse adjacency matrix repeatedly) and do not require
to pre-compute eigendecomposition, which is expensive (when done over the entire
spectrum, i.e., for all eigenpairs). Though these models are able to learn better filters and
give good performance gains, they are still unable to learn richer and complex frequency
responses, which require higher-order polynomials. One key reason for their inability
to learn effective high-order polynomials is that they only mitigate the over-smoothing
problem. This aspect of the problem becomes clear when we analyze a general class
of FIR filters (GFIR) and find that the over-smoothing problem exists for the whole
class, of which simplified GCN [16], GPR-GNN [8] and several other models are special
cases. We also find that while constraining the model space of GFIR (e.g., [8]) helps to
mitigate over-smoothing, it is still unable to learn complex-shaped and sharper frequency
responses. Considering this background, our interest lies in learning a bank of effective
filters in spectral domain to model complex shaped frequency responses, as needed for
graphs with diverse label correlations. Our contributions are:
1. We propose a novel piece-wise polynomial filtering approach to learn a filter bank

tuned for the task at hand. Since full eigendecomposition is expensive, we present
an efficient method that makes use of only a few extremal eigenpairs and leverages
GPR-GNN to learn multiple filters. (While computing the extremal eigenpairs does
lead to an increased computational cost, we show in A.7 that such a cost is indeed
managable, i.e. the model is only ∼2x slower than recent spectral SOTA methods.)

2. We analyze, theoretically and experimentally, the shortcomings of a general class of
FIR (GFIR) filters. We show that the proposed piece-wise polynomial GNN (PP-
GNN) solution is more expressive and is capable of modeling richer and complex
frequency responses.

3. We conduct a comprehensive experimental study to compare PP-GNN with a wide
range of methods (∼20), covering both spatial and spectral convolution based meth-
ods on nearly a dozen datasets. Experimental results show that PP-GNN performs
significantly better, achieving up to ∼6% gains on several datasets.

2 Related Work

Graph Neural Networks (GNNs) have become increasingly popular models for semi-
supervised classification with graphs. [11] set the stage for early GNN models, which was
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then followed by various modifications [12,1,9,2] and improvements along with several
different directions such as improved aggregation and attention mechanisms [9,2,3],
efficient implementation of spectral convolution [12,16], incorporating random walk
information [15,13,14], addressing over-smoothing [15,10,13,14,28,29,30], etc.

Another line of research explored the question of where GNNs help. The key under-
standing is that the performance of GNN is dependent on the correlation of the graphs
with the node labels. Several approaches [13,5,31] considered edge homophily and
proposed a robust GNN model by aggregating information from several higher-order
hops. [3] also considered edge homophily and mitigated the issue by learning robust
attention models. [4] talks about node homophily and proposes to aggregate information
from neighbours in the graph and neighbours inferred from the latent space. [6] proposes
to estimate label-label compatibility matrix and uses it as a prior to update posterior
belief on the labels.

Recent approaches motivated by the developments in graph signal processing [25],
focus on learning graph filters with filter functions that operate on the eigenvalues of
the graph directly or indirectly, adapting the frequency response of graph filters for
the desired task. [7] models the filter function as an attention mechanism on the edges,
which learns the difference in the proportion of low-pass and high-pass frequency signals.
[8] proposes a polynomial filter on the eigenvalues that directly adapts the graph for
the desired task. [32] decompose the graph into low-pass and high-pass frequencies,
and define a framelet based convolutional model. [38] propose to learn graph filters
using Bernstein approximation of arbitrary filtering function. [37] suggest to learn
adaptive graph filters for different feature channels and frequencies by stacking multiple
layers. Our work is closely related to these lines of exploration. All these works still
need high-degree polynomials when sharper frequency responses are needed; however,
though improved performance is observed and over-smoothing is mitigated, further
improvements seem possible. Another class of Infinite Impulse Response (IIR) filters
have been proposed to learn complex filter responses. ARMA [39] achieves this by
using auto-regressive moving average, but empirically have been found to have limited
effectiveness. Implementing precise ARMA filters for graphs is a challenging problem
and has high computation costs. [39] proposes several approximations to mitigate the
issues, but these come with limited efficacy. In our work, we propose to learn a filter
function as a sum of polynomials over different subsets of the eigenvalues (in essence, a
bank of filters) by operating directly in the spectral domain, enabling design of effective
filters to model task-specific complex frequency responses with compute trade-offs.

3 Problem Setup and Motivation

We focus on the problem of semi-supervised node classification on a simple graph
G = (V, E), where V is the set of vertices and E is the set of edges. Let A ∈ {0, 1}n×n

be the adjacency matrix associated with G, where n = |V| is the number of nodes. Let
Y be the set of all possible class labels. Let X ∈ Rn×d be the d-dimensional feature
matrix for all the nodes in the graph. Given a training set of nodes D ⊂ V whose labels
are known, along with A and X, our goal is to predict the labels of the remaining nodes.
Let AI = A + I where I is the identity matrix. Let DAI

be the degree matrix of AI
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and Ã = D
−1/2
AI

AID
−1/2
AI

. Let Ã = UΛUT be the eigendecomposition. The spectral
convolution of X on the graph A can be defined via the reference operator Ã and a
general Finite Impulse Response (FIR) filter ([40]), parameterized by Θ as:

Z =

k∑
j=1

ÃjXΘj (1)

The term, ÃjX uniformly converges to a stationary value as the value of j increases,
making the node features indistinguishable (often referred to as the problem of over-
smoothing), thereby reducing the importance of the corresponding term for the task at
hand. We formalize the argument via commenting on the Dirichlet energy of the higher-
order terms [41]. Dirichlet energy reveals the embedding smoothness with the weighted
node pair distance. A smaller value is highly related to over-smoothing [42]. Under some
conditions, the upper bound of Dirichlet energy of higher terms is theoretically proved to
converge to 0 in the limit of infinite layers. In other words, all nodes converge to a trivial
fixed point in the embedding space and hence do not contribute to the discriminative
signals. This is formalized as follows:
Proposition 3.1: The upper bound of Dirichlet energy for the higher-order terms in the
general FIR model exponentially decreases to 0 with the order, k. Formally, with S as
any graph shift operator (in our case, the normalized adjacency), and Θk be the set of
parameters, indexed by k:

E(SkXΘk) ≤ (1− λ)2ksΘk
E(X)

where, λ is the positive eigenvalue of the graph Laplacian ∆ that is closest to 0; sΘk
is

the largest singular value of Θk. We relegate the proof of the corollary as well as the
formal definition of a few terms in section A.3 of the supplementary material.

The family of general FIR filters is ubiquitous and gives rise to various other filter
families (eg. polynomial) simply by placing constraint on the form of parameterization.
We experiment with placing simple constraints on the bare GFIR model in section A.5
of supplementary and observe that while constraining helps improving the performance,
it doesn’t helps in learning complex responses. It is not difficult to see that the models
of [12],[8], etc. are just instantiations of the GFIR family. Particularly, by restricting
Θj = αjI, we recover the linear model (without MLP) of [8], which can now be
interpreted as the polynomial filter function h operating on the eigenvalues, in the
Fourier domain [25,8] as,

Z =

k∑
j=1

αjÃ
jX = Uh(Λ)UTX (2)

with h : R → R is defined as h(λ; α) =
∑k

i=1 αiλ
i where αi’s are coefficients of the

polynomial, k is the order of the polynomial and λ is any eigenvalue from Λ. h() is
applied element-wise across Λ in Eq.2. In this process, the filter function is essentially
adapting the graph for the desired task at hand.

It is well-known that polynomial filters can approximate any graph filter [26,25].
Since polynomial filters are a class of the GFIR filter family, they inherit the same prob-
lem of over-smoothing as the order of the polynomial becomes higher. [8] show that they
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achieve the diminishing of the contribution of higher-order terms by showing that their
coefficients converge to zero during training. While this mitigates the over-smoothing
problem, use of lower-order polynomials results in an imprecise approximation when
the dataset requires a complex spectral filter for obtaining a superior performance, which
we will show is the case for certain datasets (See Figure 1 and supplementary’s A.4).
Empirical results demonstrating the key points discussed in this section: a) smoothening
of the higher-order terms (can be found in Figure 5a of the supplementary material) and
b) their effect on the test performance on a few datasets (can be found in Figure 5b and
5c of supplementary material). These problems indicate the need for a method that can
approximate arbitrarily complex filters better and at the same time mitigate the effects of
over-smoothing.

4 Proposed Approach

We propose to learn a bank of polynomial filters with each filter operating on different
parts of the spectrum, taking task-specific requirements into account. We show that our
proposed filter design can approximate the latent optimal graph filter better than a single
polynomial, and the resultant class of learnable filters is richer.

4.1 Piece-wise Polynomial Filters

We start with the expression (2) for node embedding rewritten with an MLP network
transforming input features, X, :

Z =

n∑
i=1

h(λi)uiu
T
i Zx(X;Θ) (3)

where ui is the eigenvector corresponding to the eigenvalue, λi, and Zx(X;Θ) is an
MLP network with parameters Θ. Our goal is to learn a filtering function, h(λ) jointly
with MLP network, using which we compute the node embedding, Z. We model h(λ) as
a piece-wise polynomial or spline function where each polynomial is of a lower degree
(e.g., a cubic polynomial). We partition the spectrum in [−1, 1] (or [0, 2] as needed)
into contiguous intervals and approximate the desired frequency response by fitting a
low degree polynomial in each interval. This process helps us to learn a more complex
shaped frequency response as needed for the task. Let S = {σ1, σ2, . . . , σm} denote a
partition of the spectrum, containing m contiguous intervals and hi,ki

(λ; αi) denote
a ki-degree polynomial filter function defined over the interval σi (and 0 elsewhere)
with polynomial coefficients αi. We define piece-wise polynomial GNN (PP-GNN) filter
function as:

h(λ) =
∑
σi∈S

hi,ki(λ; αi) (4)

and learn a smooth filter function by imposing additional constraints to maintain continu-
ity between polynomials of contiguous intervals at different endpoints (aka knots). This
class of filter functions is rich, and its complexity is controlled by choosing intervals (i.e.,



6 V. Lingam et al.

endpoints and number of partitions) and polynomial degrees. Given the filter function,
we compute the PP-GNN node embedding matrix as:

Z =
∑
σi∈S

Uih(λσi
)UT

i Zx(X;Θ) (5)

where Ui is a matrix with columns as eigenvectors corresponding to eigenvalues that lie
in σi and h(λσ) is the diagonal matrix with diagonals containing the hi evaluated at the
eigenvalues lying in σi. Thus, the node embedding, Z, is computed as a sum of outputs
from a bank of polynomial filters with each filter operating over a spectral interval, σi.

4.2 Practical and Implementation Considerations

The filter function (5) requires computing full eigendecomposition of Ã and is expensive,
therefore, not scalable for very large graphs. We address this problem by performing
eigendecomposition only for a few extreme values (i.e., at low and high ends of the
spectrum) for sparse matrices, for which efficient algorithms exist [43] with correspond-
ing off-the-shelf implementations. The primary motivation is that many recent works
including GPR-GNN investigated the problem of designing robust graph neural net-
works that work well across homophilic and heterophilic graphs, and, they found that
graph filters that amplify or attenuate low and high-frequency components of signals
(i.e., low-pass and high-pass filters) are critical to improving performance on several
benchmark datasets. However, there is still one question: how do we extract signals from
the remaining (middle) portion of the spectrum, and that too efficiently? We answer this
question as follows. Using the observation that the GPR-GNN method learns a graph
filter but operates on the entire spectrum by sharing the filter coefficients across the
spectrum, our proposal is to use an efficient variant of (4) as:

h̃(λ) = ηl
∑

σi∈Sl

h
(l)
i (λ; γ

(l)
i ) + ηh

∑
σi∈Sh

h
(h)
i (λ; γ

(h)
i ) + ηgprhgpr(λ; γ) (6)

where Sl consists of partitions over low-frequency components, Sh consists of partitions
over high-frequency components, the first and second terms fit piece-wise polynomials2

in low/high-frequency regions, as indicated through superscripts. We refer PP-GNN
models using only filters corresponding to the first and second terms alone in (6) as
PP-GNN (Low) and PP-GNN (High), respectively. We extract any useful information
from other frequencies in the middle region by adding the GPR-GNN filter function,
hgpr(λ; γ) (the final term in 6), which is computationally efficient. Since hgpr(λ; γ)
is a special case of (4) and the terms in (6) are additive, it is easy to see that (6) is
same as (4) with a modified set of polynomial coefficients. Furthermore, we can control
the contributions from each term by setting or optimizing over hyperparameters, ηl,
ηh and ηgpr. Thus, the proposed model offers richer capability and flexibility to learn
complex frequency response and balance computation costs over GPR-GNN. Please see
Section A.3 for implementation details.

2 For brevity, we dropped the polynomial degree dependency.
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Model Training. Like GPR-GNN, we apply SOFTMAX activation function on (5)
and use the standard cross-entropy loss function to learn the sets of polynomial coeffi-
cients (γ) and classifier model parameters (Θ) using labeled data. To ensure smoothness
of the learned filter functions, we add a regularization term that penalizes squared differ-
ences between the function values of polynomials of contiguous intervals at each other’s
interval end-points. More details can be found in the supplementary material (A.3).

Discussion. In our model (4), we alleviate the over-smoothing problem using low-
order polynomials, and learning complex and sharper frequency responses is feasible as
we approximate higher-order polynomial functions effectively using several low-order
piece-wise polynomials. However, this comes with eigendecomposition compute cost for
a few (k) extreme eigenvalues, but is controllable by choosing k in an affordable way3.
We observe this cost is (one time) pre-training cost and can be amortized over multiple
rounds of model training required for the optimization of hyperparameters. Also, we
need to compute each filter specific embedding with non-local eigen-graphs (via the
operations, UiHi(γi)U

T
i Zx(X;Θ)); thus, we lose (spatial) local neighborhood property

of conventional methods like GPR-GNN. We compute node embeddings afresh whenever
the model parameters are updated, thereby incurring an additional cost (over GPR-GNN)
of O(nkL) where k and L denote the number of selected low/high eigenvalues and
classes, respectively. We conduct a comprehensive experimental study to assess the time
taken by our method, compare against other state-of-the-art methods and present our
findings in the experiment section.

4.3 Analysis

This section is arranged as follows: (a) Theorem 1 establishes superior capabilities of our
model in approximating arbitrary filters than a standard polynomial filter; (b) Theorem 2
demonstrates the new space of filters that our model learns from, each region of which
induces a controllable, strong bias towards certain parts of the spectrum while at the
same time has dimension of the same order as the corresponding polynomial family.

Theorem 1. For any frequency response h∗, and an integer K ∈ N, let h̃ := h+hf , with
hf having a continuous support over a subset of the spectrum, σf . Assume that h and hf

are parameterized by independent K and K ′-order polynomials, p and pf , respectively,
with K ′ ≤ K. Then there exists h̃, such that min ∥h̃− h∗∥2 ≤ min ∥h− h∗∥2, where
the minimum is taken over the polynomial parameterizations. Moreover, for multiple
polynomial adaptive filters hf1 , hf2 , ..., hfm parameterized by independent K ′-degree
polynomials with K ′ ≤ K but having disjoint, contiguous supports, the same inequality
holds for h̃ = h+

∑m
i=1 hfi .

For a detailed proof please refer to A.3 of the supplementary. We also conducted an
experiment to illustrate the main conclusion of the above theorem in Section A.2 of the
supplementary material.

3 Most algorithms for this task utilize Lanczos’ iteration, convergence bounds of which depends
on the input matrix’ spectrum [34,35], which although have superlinear convergence, but are
observed to be efficient in practice.
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Next, we note that since an actual waveform is not observed in practice and instead,
we estimate it by optimizing over the observed labels via learning a graph filter, we
theoretically show that the family of filters that we learn is a strict superset of the
polynomial filter family. The same result holds for the families of the resulting adapted
graphs.

Theorem 2. Define H := {h(·) | ∀ possible K-degree polynomial parameterizations of
h} to be the set of all K-degree polynomial filters, whose arguments are n× n diagonal
matrices, such that a filter response over some Λ is given by h(Λ) for h(·) ∈ H.
Similarly H′ := {h̃(·) | ∀ possible polynomial parameterizations of h̃} is set of all
filters learnable via PP-GNN , with h̃ = h+ hf1 + hf2 , where h is parameterized by a
K-degree polynomial supported over entire spectrum, hf1 and hf2 are localized adaptive
filters parameterized by independent K ′-degree polynomials which only act on top and
bottom t diagonal elements respectively, with t < n/2 and K ′ ≤ K; then H and H′

form a vector space, with H ⊂ H′. Also, dim(H′)
dim(H) = K+2K′+3

K+1 .

Corollary 1. The corresponding adapted graph families G := {Uh(·)UT | ∀h(·) ∈
H} and G′ := {Uh̃(·)UT | ∀h̃(·) ∈ H′} for any unitary matrix U form a vector space,
with G ⊂ G′ and dim(G′)

dim(G) = K+2K′+3
K+1 .

The above theorem can be trivially extended to an arbitrary number of adaptive filters
with arbitrary support. The presence of each adaptive filter induces a bias in the model
towards learning a bank of filters that operate only on the corresponding support. Since
the number of filters and their support sizes are hyperparameters, tuning them offers
control and flexibility to model richer frequency responses over the entire spectrum.
Thus, our model learns from a more diverse space of filters and the corresponding
adapted graphs. The result also implies that our model learns from a space of filters
that is only O(1)-fold greater than that of polynomial filters4. Note that learning from
this diverse region is feasible. This observation comes from the proofs of Theorem 4.2
and Corollary 4.2.1 (A.3 and A.3 in supplementary). Using the localized adaptive filters
without any filter with the entire spectrum as support results in learning a set of adapted
graphs, Ĝ. This set is disjoint from G, with G′ = G⊕ Ĝ. We conduct various ablative
studies where we demonstrate the effectiveness of learning from Ĝ and G′.

Our model formulation is a generalization of the formulation by [8], and we show in
Section A.3 of the supplementary material by extending their analysis to our model that
it still inherits their property of mitigating oversmoothing effects when high degree poly-
nomial is used. Our experiments show that we are able to obtain superior performance
without needing the higher-order polynomials.

4.4 Comparison against other Filtering Methods

General FIR filter are a generalization of the polynomial filter family and thus a precursor
to the models based on the latter. As per the study conducted in section A.5 of the
supplementary, constraining the model is required to obtain better performance. Restrict-
ing to polynomial filters can be seen as having an implicit regularization on the same

4 We leave the formal bias-variance analysis for adapted graph families as future work.
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and we also empirically observe that such a restriction (restricting to polynomial filters)
gives much better performance than constraining GFIR (see 5.1 and A.5) by simpler
regularization methods such as L2 and/or dropout. We have also shown in theorem 2
that PP-GNN increases the space of graph filters (over GPR-GNN) and we observe
in 5.1 that this increase in graph space results in an increased performance, over other
polynomial filter methods. Thus, it requires a careful balance of the constraints imposed
on the filter family, while also appropriately increasing the graph space to obtain better
performance. A comprehensive study of this balance is beyond the scope of this work
and we leave that as future work. Below, we first show the different ways of constraining
the space (via polynomial filters) and compare them against PP-GNN.

Polynomial filters are a class of filters constructed and evaluated from polynomials.
These filters can be constructed via multiple bases (for instance monomial, Bernstein)
in the polynomial vector space.APPNP, GPR-GNN, and BERNNET are all instances
of polynomial graph filters defined in different bases and with different constraints.
Below, we illustrate the differences between these three methods and also discuss the
shortcomings of each of them.

APPNP: One of the early works, APPNP [10], can be interpreted as a fixed polyno-
mial graph filter that works with monomial basis. The polynomial coefficients correspond
to Personalised PageRank (PPR) [44]. The node embeddings are learnt by APPNP as
described in A.6. The main shortcoming of this method is the assumption that the
optimal coefficients for the polynomial filter (for all tasks) are PPR coefficients, which
need not necessarily be the case.

GPR-GNN: GPR-GNN builds on APPNP by overcoming this shortcoming by
making the coefficients γk (see A.6) learnable. [8] identified that negative coefficients
allows the model to exploit high frequency signals required for better performance on
heterophilic graphs. GPR-GNN, like APPNP, uses the monomial basis. The node
embeddings are learnt by GPR-GNN as described in A.6. While this method is an
improvement over APPNP, adapting an arbitrary filter response which requires a high-
order polynomial is difficult due to the oversmoothing problem. GPR-GNN mitigates
oversmoothing by showing that the higher order terms’ coefficients uniformly converge
to zero during training. Mitigating the oversmoothing problem limits the complexity
of the filter learnt, and therefore making GPR-GNN ineffective at learning complex
frequency responses.

BERNNET: While oversmoothing is one shortcoming of GPR-GNN, BERNNET iden-
tified another shortcoming that GPR-GNN and other polynomial filtering based methods
can result in ill-posed solutions and face optimization issues (converging to saddle points)
by not constraining the filter response to non-negative values. [38] proposed a model
that learns a non-negative frequency response, a constraint that can be easily enforced
by modifying the learning problem from learning the coefficients of the monomial
basis functions to learning the coefficients of the Bernstein basis functions, since the
latter are non-negative in their standard domain. [38] argue that constraining coeffi-
cients to take on non-negative values is required for stability and interpretability of the
learned filters and is the main reason for performance improvements. The node embed-
dings are learnt as described in A.6. Note that in the expression referenced, θk(∀k)
are learnable coefficients and are constrained to non-negative values. We first replace
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1
2K

(
K
r

)∑q
p=0

(
K−r
q−p

)(
r
p

)
(−1)p with αrq and then subsequently replace

∑K
r=0 θrαrq

with wq. Such an exercise was done to show that the filter defined by BERNNET does
indeed fall into the class of polynomial filters. We tabulate the important attributes of
each of the polynomial filters described above in Table 10 of the supplementary material.

All of these approaches run into the oversmoothing issue with an increase in the
degree of the polynomial filter (A.1 of supplmentary). PP-GNN, owing to its piece-
wise definition, can model more complex shaped responses better without the need to
increase the degree. Our proposed model only requires extremal eigendecomposition (i.e.
computing only the extreme eigenpairs), for which there exists efficient algorithms to
compute [45,46]. Further, as mentioned earlier, this is a one time pre-training cost, that
can be amortized over training multiple models for hyper-parameter tuning. We illustrate
this through a comprehensive empirical study in section A.7 of the supplementary
material. In the next section, we experimentally show the benefits of PP-GNN.

5 Experiments

We conduct extensive experiments to demonstrate the effectiveness and competitiveness
of the proposed method over standard baselines and state-of-the-art (SOTA) GNN
methods. We conduct ablative studies to demonstrate the usefulness of different filters
and the number of eigenpairs required in PP-GNN. We also compare the quality of
the embeddings learned and the time to train different models. We first describe our
experimental setup along with baselines and information on hyper-parameter tuning.

Datasets: We evaluate our model on several real-world heterophilic and homophilic
datasets. The heterophilic datasets include Texas5, Wisconsin5, Chameleon, Squirrel
[18] and Flickr. The homophilic datasets include Ogbn-Arxiv, Wiki-CS, Citeseer,
Pubmed, Cora, Computer, and Photos borrowed from [3]. Please refer to A.4 for
details on dataset statistics, splits and other preprocessing steps. We report the mean and
standard deviation of test accuracy over splits to compare model performance.

Baselines. We compare our method against three category of methods: (a) standard
LR (Logistic Regression) and MLP (Multi-Layer Perceptron), (b) traditional and spatial
convolution-based GNN models including GCN, SGCN, SUPERGAT, TDGNN,
H2GCN, and GEOM-GCN, and (c) recent spectral convolution-based methods (with
emphasis on graph filters) such as GPR-GNN, FAGCN, APPNP, LGC, ARMA,
ADAGNN, BERNNET, GFIR, and UFG. Our tabular results are organized as per this
grouping, along with references. In some cases, the grouping of spatial convolution-based
methods is somewhat overlapping with spectral filtering based-methods since spectral
interpretations are available for the former. Detailed descriptions for all the baselines,
hardware and software specifications are provided in the supplementary material (A.4 and
A.4). Our model implementation details along with hyper-parameters ranges description
can be found in A.4.
5.1 PP-GNN versus SOTA Models

Heterophilic Datasets. We perform comprehensive experiments to show the effective-
ness of PP-GNN on several Heterophilic graphs and tabulate the results in Table 1.

5 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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Table 1: Results on Heterophilic Datasets. ‘*’ indicates that the results were borrowed
from the corresponding papers. Bold indicates the best performing model; underline for
second-best.

Texas Wisconsin Squirrel Chameleon Cornell

LR 81.35 (6.33) 84.12 (4.25) 34.73 (1.39) 45.68 (2.52) 83.24 (5.64)

MLP 81.24 (6.35) 84.43 (5.36) 35.38 (1.38) 51.64 (1.89) 83.78 (5.80)

SGCN [16] 62.43 (4.43) 55.69 (3.53) 45.72 (1.55) 60.77 (2.11) 62.43 (4.90)

GCN [1] 61.62 (6.14) 58.82 (4.89) 47.78 (2.13) 62.83 (1.52) 62.97 (5.41)

SuperGAT [3] 61.08 (4.97) 56.47 (3.90) 31.84 (1.26) 43.22 (1.71) 57.30 (8.53)

Geom-GCN [4] 67.57* 64.12* 38.14* 60.90* 60.81*

H2GCN [5] 84.86 (6.77)* 86.67 (4.69)* 37.90 (2.02)* 58.40 (2.77) 82.16 (4.80)*

TDGNN [31] 83.00 (4.50)* 85.57 (3.78)* 43.84 (2.16) 55.20 (2.30) 82.92 (6.61)*

GFIR (unconstrained) 73.24 (6.91) 77.84 (3.21) 36.50 (1.12) 51.71 (3.11) 72.43 (7.62)

GFIR (constrained) 74.59 (4.45) 79.41 (3.10) 41.12 (1.17) 61.27 (2.42) 74.05 (7.77)

FAGCN [7] 82.43 (6.89) 82.94 (7.95) 42.59 (0.79) 55.22 (3.19) 79.19 (9.79)

APPNP [10] 81.89 (5.85) 85.49 (4.45) 39.15 (1.88) 47.79 (2.35) 81.89 (6.25)

LGC [22] 80.20 (4.28) 81.89 (5.98) 44.26 (1.49) 61.14 (2.07) 74.59 (3.42)

GPR-GNN [8] 81.35 (5.32) 82.55 (6.23) 46.31 (2.46) 62.59 (2.04) 78.11 (6.55)

AdaGNN [37] 71.08 (8.55) 77.70 (4.91) 53.50 (0.96) 65.45 (1.17) 71.08 (8.36)

BernNET [38] 83.24 (6.47) 84.90 (4.53) 52.56 (1.69) 62.02 (2.28) 80.27 (5.41)

ARMA [39] 79.46 (3.65) 82.75 (3.56) 47.37 (1.63) 60.24 (2.19) 80.27 (7.76)

UFG-ConvR [32] 66.22 (7.46) 68.63 (4.98) 42.06 (1.55) 56.29 (1.58) 69.19 (6.40)

PP-GNN 89.73 (4.90) 88.24 (3.33) 59.15 (1.91) 69.10 (1.37) 82.43 (4.27)

Table 2: Results on Homophilic Datasets.
Cora-Full Wiki-CS Citeseer Pubmed Cora Computer Photos

LR 39.10 (0.43) 72.28 (0.59) 72.22 (1.54) 87.00 (0.40) 73.94 (2.47) 64.92 (2.59) 77.57 (2.29)

MLP 43.03 (0.82) 73.74 (0.71) 73.83 (1.73) 87.77 (0.27) 77.06 (2.16) 64.96 (3.57) 76.96 (2.46)

SGCN 61.31 (0.78) 78.30 (0.75) 76.77 (1.52) 88.48 (0.45) 86.96 (0.78) 80.65 (2.78) 89.99 (0.69)

GCN 59.63 (0.86) 77.64 (0.49) 76.47 (1.33) 88.41 (0.46) 87.36 (0.91) 82.50 (1.23) 90.67 (0.68)

SuperGAT 57.75 (0.97) 77.92 (0.82) 76.58 (1.59) 87.19 (0.50) 86.75 (1.24) 83.04 (1.02) 90.31 (1.22)

Geom-GCN NA NA 77.99* 90.05* 85.27* NA NA

H2GCN 57.83 (1.47) OOM 77.07 (1.64)* 89.59 (0.33)* 87.81 (1.35)* OOM 91.17 (0.89)

TDGNN OOM 79.58 (0.51) 76.64 (1.54)* 89.22 (0.41)* 88.26 (1.32)* 84.52 (0.92) 92.54 (0.28)

GFIR (unconstrained) 60.87 (0.78) 79.15 (0.65) 75.83 (1.94) 88.47 (0.45) 87.93 (0.90) 78.39 (1.09) 89.26 (1.00)

GFIR (constrained) 60.92 (0.80) 79.15 (0.63) 76.24 (1.43) 88.47 (0.39) 87.46 (1.26) 79.57 (2.12) 89.38 (1.03)

FAGCN 60.07 (1.43) 79.23 (0.66) 76.80 (1.63) 89.04 (0.50) 88.21 (1.37) 82.16 (1.48) 90.91 (1.11)

APPNP 60.83 (0.55) 79.13 (0.50) 76.86 (1.51) 89.57 (0.53) 88.13 (1.53) 82.03 (2.04) 91.68 (0.62)

LGC 61.84 (0.90) 79.82 (0.49) 76.96 (1.73) 88.78 (0.51) 88.02 (1.44) 83.44 (1.77) 91.56 (0.74)

GPR-GNN 61.37 (0.96) 79.68 (0.50) 76.84 (1.69) 89.08 (0.39) 87.77 (1.31) 82.38 (1.60) 91.43 (0.89)

AdaGNN 59.57 (1.18) 77.87 (4.95) 74.94 (0.91) 89.33 (0..57) 86.72 (1.29) 81.27 (2.10) 89.93 (1.22)

BernNET 60.77 (0.92) 79.75 (0.52) 77.01 (1.43) 89.03 (0.55) 88.13 (1.41) 83.69 (1.99) 91.61 (0.51)

ARMA 60.23 (1.21) 78.94 (0.32) 78.15 (0.74) 88.73 (0.52) 87.37 (1.14) 78.55 (2.62) 90.26 (0.48)

UFG-ConvR 60.98 (0.82) 78.56 (0.43) 76.74 (1.33) 85.68 (0.62) 87.93 (1.52) 80.01 (1.78) 90.20 (1.41)

PP-GNN 61.42 (0.79) 80.04 (0.43) 78.25 (1.76) 89.71 (0.32) 89.52 (0.85) 85.23 (1.36) 92.89 (0.37)

Table 3: Results on Large Datasets.
LR MLP GCN SGCN SuperGAT H2GCN FAGCN APPNP LGC GPR-GNN BernNet TDGNN UFG-ConvR ARMA AdaGNN PP-GNN

Flickr 46.51 46.93 53.40 50.75 53.47 OOM OOM 50.33 51.67 52.74 52.35 OOM OOM 53.79 52.30 55.30
OGBN-arXiv 52.53 54.96 69.37 68.51 55.1* OOM OOM 69.20 69.64 68.44 69.21 OOM OOM 69.49 69.44 69.28

Table 4: Performance of different filters
Test Acc Squirrel Chameleon Citeseer Cora

PP-GNN (Low) 45.75 (1.69) 56.73 (4.03) 76.23 (1.54) 88.03 (0.79)

PP-GNN (High) 58.70 (1.60) 69.19 (1.88) 55.50 (6.38) 73.76 (2.03)

PP-GNN (GPR-GNN+Low) 50.96 (1.26) 63.71 (2.69) 78.07 (1.71) 89.56 (0.93)
PP-GNN (GPR-GNN + High) 60.39 (0.91) 67.83 (2.30) 78.30 (1.60) 89.42 (0.97)

GPR-GNN 42.06 (1.55) 56.29 (1.58) 76.74 (1.33) 87.93 (1.52)

PP-GNN 59.15 (1.91) 69.10 (1.37) 78.25 (1.76) 89.52 (0.85)
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Datasets like Texas, Wisconsin, and Cornell contain graphs with high levels of Het-
erophily and rich node features. Standard non-graph baselines like LR and MLP perform
competitively or better on these datasets compared to many spatial and spectral-based
methods. PP-GNN offers significant lifts in performance with gains of up to ∼6%.
The node features in datasets like Chameleon and Squirrel are not adequately discrim-
inative, and significant improvements are possible via convolutions, as we compare
non-graph and graph-based methods in Table 1. Spatial GNN methods, in general, offer
improvements over non-graph counterparts. In specific, methods like GCN, which also
have a spectral connotation, show better performance on these datasets. We observe
from the Table that Spectral methods offer additional improvements over models like
GCN. The difference in performance among spectral methods majorly comes from their
ability to learn better frequency responses of graph filters. Our proposed model shows
significant lifts over all the baselines with gains up to ∼6% and ∼4% on the Squirrel and
Chameleon datasets. These improvements empirically support the efficacy of PP-GNN’s
filter design.

Homophilic Datasets. The input graphs for these datasets contain informative
signals, and one can expect competitive task performance from even basic spatial-
convolution based methods as observed in Table 2. We can see that spatial models are
among the top performers for several Homophilic datasets. Existing spectral methods
marginally improve over spatial methods on a few datasets. Not surprisingly, our PP-
GNN model with effective filter design can exploit additional discriminatory signals
from an already rich informative source of signals. PP-GNN offers additional gains up
to 1.3% over other baselines.

Large Datasets. We also observe gains on moderately large datasets like Flickr
and perform competitively on the OGBN-arXiv dataset. Please note that our latter
numbers are slightly inferior for baselines like GCN compared to the leaderboard 6

numbers. These differences are because we turn off the optimization tricks like Batch
Normalization.

(a) Squirrel (b) Citeseer

Fig. 1: Learned filter responses of PP-GNN,GPR-GNN, and BERNNET.

6 https://tinyurl.com/oarxiv
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5.2 PP-GNN Model Investigation

We conducted several experimental studies to understand and illustrate how the PP-GNN
model works. Our studies include: (a) how does the frequency response of PP-GNN look
like?, (b) what happens when we learn only individual sub-filter banks (e.g., PP-GNN
(Low), PP-GNN(Low + GPR-GNN)? and (c) does PP-GNN learn better embedding?

Frequency Response. In Figure 1a and 1b, we show the learned frequency responses
(i.e., h(λ)) of the overall PP-GNN model, GPR-GNN component of PP-GNN (PP-GNN
(GPR-GNN)), stand-alone (GPR-GNN) model and BERNNET model on the Squirrel
and Citeseer datasets. For Squirrel (a heterophilic dataset), we can observe that while
GPR-GNN and BERNNET learns the importance of low and high-frequency signals, it is
unable to capture their relative strengths/importance adequately, and this happens due to
the restriction of learning a single polynomial globally. PP-GNN learns sharper and richer
responses at different parts of the spectrum, thereby improving classification accuracy.
For Citeseer (a homophilic dataset) we can observe that all the models in comparison
learn a smooth polynomial, GPR-GNN is not able to capture the complex transition
that can be seen at the lower end of the spectrum, while BERNNET is doing it some
degree. This inability to capture the complex transition leads to a lower classification
accuracy. A similar trend can be found on two other datasets in A.4.

Role of Different Filter-banks. Recall that the PP-GNN model is a filter-bank
model comprising several polynomial filters operating at different parts of the spectrum.
We evaluate PP-GNN’s performance by learning each group of filters alone (e.g., PP-
GNN(Low), PP-GNN(High)) and report results on several datasets in Table 4. We see
that the Heterophilic datasets (like Squirrel and Chameleon) largely benefit from high-
frequency signals. In contrast, Homophilic datasets (Cora and Citeseer) exhibit a reverse
trend. Incorporating the GPR-GNN filter as part of the PP-GNN filter helps to get
improved performance over individual filters (PP-GNN(Low) or PP-GNN (High)) and
shows considerable improvements over a wide variety of datasets.

Quality of learned embeddings: We qualitatively assess the difference in the learned
embedding of PP-GNN, GPR-GNN and BERNNET. Towards this, we generated t-SNE
plots of the learned node embeddings and visually inspected them. From Figure 2a, 2b
and 2c, we observe that PP-GNN discovers more discriminative features resulting in
discernible clusters on the Squirrel dataset compared to GPR-GNN and BERNNET,
enabling PP-GNN to achieve significantly improved performance.

5.3 Training Time Comparison
We conducted a comprehensive training time evaluation study to compare the running-
time performance of various models on diverse datasets. This study included measure-
ment of the time taken for end-end training and by individual components over several
hyperparameter configurations. Due to space constraints, we present several key ob-
servations here. We emphasize that eigenpairs’ computation is a one time cost, and
this cost can be amortized over the model training cost required to optimize on total
hyper-parameters configurations. We also observe that the eigenpairs’ compute cost,
even for medium-sized graphs like Ogbn-ArXiv and Flickr is relatively low. Our end-end
training time comparison results show that PP-GNN is ∼4x slower than GCN, ∼2x
slower than GPR-GNNand BERNNET, and ∼2x faster than ADAGNN. Please refer to
section A.7 of supplementary for more details.
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(a) PP-GNN (b) GPRGNN (c) BERNNET

Fig. 2: t-SNE plots of learned embeddings on the Squirrel dataset

5.4 Additional Experiments
We summarize a list of experiments that can be found in the supplementary material.
Studies on varying the number of eigenvectors used by PP-GNN and the importance of
MLP can be found in Sections A.4 and A.4 respectively. Analysis on the effect of varying
the order of GPR-GNN’s polynomial on performance is presented in A.1. Experimental
details for PP-GNNwith boundary regularization is in A.3.

6 Conclusion

Several recently proposed methods attempt to build robust models for diverse graphs
exhibiting different correlations between graph and node labels. We build on the filter-
based approach of GPR-GNN which can be extended further with Generalized FIR
models. This work proposed an effective polynomial filter bank design using a piece-wise
polynomial filtering approach. We combine GPR-GNN with additional polynomials
resulting in a bank of filters that adapt to low and high-end spectrums using multiple
polynomial filters. While our method makes an unconventional choice of extremal eigen-
decomposition, it does help to get improved performance, albeit with some additional
but manageable cost. Our experiments demonstrate that the proposed approach can learn
effective filter functions that improve node classification accuracy significantly across
diverse graphs. While our work shows merit, it is still founded upon the polynomial
formulation, and even though piecewise polynomial filters are more expressive than
conventional polynomial filters, they still retain the properties of the polynomial filters
locally. Hence, there is still room for even more expressive filter formulations that are
well motivated, and we leave their exploration as future work.

References

1. Kipf, T. & Welling, M. Semi-Supervised Classification with Graph Convolutional Networks.
International Conference On Learning Representations (ICLR). (2017)
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A Appendix

The appendix is structured as follows. In Section A.1, we present additional evidence
of the limitations of GPR-GNN. In Section A.2, we show a representative experiment
that motivates Section 4. In Section A.3, we provide proofs for theorems, propositions
and corollaries defined in Section 3 and 4.3. In Section A.4, we provide more details
regarding the baselines, datasets, their respective splits and additional implementation
details including hyper-parameter ranges. We also provide details and results of ad-
ditional experiments. In Section A.5, we provide details on GFIR and compare our
proposed model against it. Section A.6 provides additional information on differences
between our model and other polynomial filtering methods. In Section A.7, we provide a
comprehensive timing analysis.

A.1 Motivation

Node Feature Indistinguishably Plots In the main paper (Figure 5a), we plot the
average of pairwise distances between node features for the Cora dataset, after computing
ÃjX for increasing j values, and showed that the mean pairwise node feature distance
decreases as j increases. We observe that this is consistent across three more datasets:
Citeseer, Chameleon and Squirrel. This is observed in Figure 3.

(a) Chameleon (b) Squirrel (c) Citeseer

Fig. 3: Average of pairwise distances between node features, after computing ÃjX , for
increasing j values

We also observed the mean of the variance of each dimension of node features, after
computing ÃjX , for increasing j values. We observe that this mean does indeed reduce
as the number of hops increase. We also observe that the variance of each dimension of
node features reduces for Cora, Squirrel and Chameleon as the number of hops increase;
however, we don’t observe such an explicit phenomenon for Citeseer. See Figure 4.

Effect of varying the order of the GPR-GNN Polynomial In the main paper (Fig-
ure 5a), we plot the test accuracies of the GPR-GNN model while increasing the order
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(a) Cora (b) Citeseer

(c) Squirrel (d) Chameleon

Fig. 4: Variance of each dimension of node features

(a) (b) (c)

Fig. 5: In (a), we plot the average of pairwise distances between node features for the
Cora dataset, after computing ÃjX for increasing j values. X-axis represents the various
powers j and the Y-axis represents the average of pairwise distances between node
features. In (b) and (c), we plot the test accuracies of the model in [8] for increasing
order of polynomials for Cora and Chameleon dataset respectively. X-axis represents the
order of the polynomial and Y-axis represents the test accuracy achieved for that order.

of the polynomials for the Cora and Chameleon dataset, respectively. We observe that on
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increasing the polynomial order, the accuracies do not increase any further. We can show
a similar phenomenon on two other datasets, Squirrel and Citeseer, in Figure 6.

(a) Citeseer (b) Squirrel

Fig. 6: Accuracy of the GPR-GNN model on inceasing the order of the polynomial

In Section 3 of the main paper, we claim that due to the over-smoothing effect,
even on increasing the order of the polynomial, there is no improvement in the test
accuracy. Moreover, in Figure 1 we can see that our model can learn a complicated filter
polynomial while GPR-GNN cannot. This section shows that even on increasing the
order of the GPR-GNNpolynomial, neither does the test accuracy increase nor does the
waveform become as complicated as PP-GNN. See Figure 7.

A.2 Fictitious Polynomial

In Section 4, we claim that having multiple disjoint low order polynomials can approxi-
mate a complicated waveform more effectively than a single higher-order polynomial.
To demonstrate, we create a representative experiment that shows this phenomenon by
creating a fictitious complicated polynomial and try to fit it using a single unconstrained
polynomial (representative of GPR-GNN), a single constrained polynomial (indicative
of BERNNET, where the coefficients should be non-negative) and a disjoint piece-wise
polynomial (indicative of PP-GNN). We setup a least square optimization problem to
obtain the coefficients for these different polynomial variants. We evaluate and plot these
polynomials in Figure 8. To quantify the effectiveness of different polynomial variants,
we compute the approximation error (RMSE) with respect to the optimal waveform. We
observe that piece-wise polynomials achieve much lower RMSE (1.5053) compared to
constrained polynomial (3.9659) and unconstrained polynomial (3.3854)

A.3 Proposed Approach

Details regarding boundary regularization To induce smoothness in the learned
filters, we add a regularization term that penalizes squared differences between function
values of polynomials at knots (endpoints of contiguous bins). Our regularization term
looks as follows:
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(a) Chameleon (b) Citeseer

(c) Cora (d) Squirrel

Fig. 7: Varying Polynomial Order in GPR-GNN

m−1∑
i=1

exp−(σmax
i −σmin

i+1 )2(hi(σ
max
i )− hi+1(σ

min
i+1 ))

2 (7)

In equation 7, σmax
i and σmin

i refer to the maximum and minimum eigenvalues in
σi (Refer to Section 4). This regularization term is added to the Cross-Entropy loss.
We perform experiments with this model and report the performance in Table 5. We
observe that we are able to reach similar performance even without the presence of this
regularization term. Therefore, majority of the results reported in our Main paper are
without this regularization term.

Table 5: Results with and without boundary regularization

Test Acc Computer Chameleon Citeseer Cora Squirrel

PPGNN (With Reg) 83.53 (1.67) 67.92 (2.05) 76.85 (2) 88.19 (1.19) 55.42 (2.1)

PPGNN 85.23 (1.36) 69.10 (1.37) 78.25 (1.76) 89.52 (0.85) 59.15 (1.91)
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(a) Fitting single 10-degree polynomial

Fig. 8: To demonstrate the effectiveness of adaptive polynomial filter, we try to approxi-
mate a complex waveform (green dashed line) via (a) 10 disjoint adaptive polynomial
filters of order 4 (colored blue) (b) a single constrained order 10 polynomial (colored
red), (c) an unconstrained order 10 polynomial (colored purple). The corresponding
RMSE values are: (a) 1.5053, (b) 3.9659, (c) 3.3854

Implementing the Filter in Practice We provide more details to explain the filtering
operation. An Equation similar to Equation 2 can be derived for our model by substituting
Equation 6 from the paper into Equation 5. On substitution, we get:

Z = ηl
∑
σi∈Sl

k1∑
j=1

γ
(l)
ij U

(l)
σi

(
Λ(l)
σi

)j
U (l)T
σi

Z0(X; θ)+

ηh
∑

σi∈Sh

k2∑
j=1

γ
(h)
ij U (h)

σi

(
Λ(h)
σi

)j
U (h)T
σi

Z0(X; θ)+

ηgpr

k3∑
j=1

γjÃ
jZ0(X; θ) (8)

where
Ã

(l)
i = U (l)

σi
Λ(l)
σi
U (l)T
σi

, σi ∈ Sl

Ã
(h)
i = U (h)

σi
Λ(h)
σi

U (h)T
σi

, σi ∈ Sh
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U
(l)
(σi)

, Λ(l)
(σi)

are the matrices containing eigenvectors and eigenvalues corresponding

to the partition σi of the low frequency components and U
(h)
(σi)

, Λ(h)
(σi)

are the matrices
containing eigenvectors and eigenvalues corresponding to the partition σi of the high
frequency components and Ã (See Equation 1 in the main paper) where U(σi) ∈ Rn×|σi|

and Λ(σi) ∈ R|σi|×|σi| with latter being a diagonal matrix.

The way we have implemented the filter is that we pre-compute the top and bottom
eigenvalues/vectors of Ã and use them to compute partition specific node embeddings.
Note that Equation 8 can be rewritten as:

Z = ηl
∑
σi∈Sl

U (l)
σi

H(l)
σi

U (l)T
σi

Z0(X; θ)

+ ηh
∑

σi∈Sh

U (h)
σi

H(h)
σi

U (h)T
σi

Z0(X; θ)

+ ηgpr

k3∑
j=1

γjÃ
jZ0(X; θ)

(9)

where H
(l)
σi =

∑k1

j=1 γ
(l)
ij

(
Λ
(l)
σi

)j
and H

(h)
σi =

∑k2

j=1 γ
(h)
ij

(
Λ
(h)
σi

)j
form the effective

low and high frequency component filters. Thus, a weighted combination of low and
high frequency component based embeddings (i.e., the first and second term in Equation
above) and the GPR-GNN term based embedding (i.e., third term) is computed. We
implement our model based on equation 9.

Note that the following discussion is just for illustration purpose and we do not
explicitly calculate the newer terms introduced here: We can also interpret the GPR-
GNN term in terms of piece-wise polynomial filters defined on a mutually exclusive
partition of the spectrum, with a difference that the coefficients and the order of the
polynomial are shared across all partitions:

ηgpr

k3∑
j=1

γjÃ
jZ0(X; θ) = ηgpr(

∑
σi∈Sl

U (l)
σi

H(gpr)
σi

U (l)T
σi

+
∑

σi∈Sh

U (h)
σi

H(gpr)
σi

U (h)T
σi

+
∑

σi∈Smid

U (mid)
σi

H(gpr)
σi

U (mid)T
σi

)Z0(X; θ) (10)

where Smid := S − (Sl ∪Sh), and H
(gpr)
σi =

∑k3

j=1 γj

(
Λ
(mid)
σi

)j
. Hence, we can club

the respective terms of the partitions and obtain the final embeddings as:
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Z =
∑
σi∈Sl

U (l)
σi

(ηlH
(l)
σi

+ ηgprH
(gpr)
σi

)U (l)T
σi

Z0(X; θ)

+
∑

σi∈Sh

U (h)
σi

(ηhH
(h)
σi

+ ηgprH
(gpr)
σi

)U (h)T
σi

Z0(X; θ)

+ ηgpr
∑

σi∈Smid

U (mid)
σi

H(gpr)
σi

U (mid)T
σi

Z0(X; θ)

(11)

From equation 11, it is clear that PP-GNN also adapts the responses from the middle
parts of the spectrum, albeit by a single polynomial. One can also interpret each term of
equation 11 as an effective polynomial filter acting only on the corresponding part of the
spectrum, with each effective polynomial filter can be influenced by a shared polynomial
filter.

Notation Used Vectors are denoted by lower case bold Roman letters such as x, and
all vectors are assumed to be column vectors. In the paper, h with any sub/super-script
refers to a frequency response, which is also considered to be a vector. A superscript T
denotes the transpose of a matrix or vector; Matrices are denoted by bold Roman upper
case letters, such as M. A field is represented by K; sets of real and complex numbers
are denoted by R and C respectively. K[x1, . . . , xn] denotes a multivariate polynomial
ring over the field K, in indeterminates x1, . . . , xn. Set of n× n square matrices with
entries from some set S are denoted by Mn(S). Moore-Penrose pseudoinverse of a
matrix A is denoted by A†. Eigenvalues of a matrix are denoted by λ, with λ1, λ2, . . .
denoting a decreasing order when the eigenvalues are real. A matrix Λ denotes a
diagonal matrix of eigenvalues. Set of all eigenvalues, i.e., spectrum, of a matrix is
denoted by σA or simply σ when the context is clear. Lp norms are denoted by ∥ · ∥p.
Frobenius norm over matrices is denoted by ∥ · ∥F . Norms without a subscript default
to L2 norms for vector arguments and Frobenius norm for matrices. ⊕ denotes a direct
sum. For maps fi defined from the vector spaces V1, · · · , Vm, with a map of the form
f : V 7→ W , with V = V1 ⊕ V2 ⊕ · · · ⊕ Vm, the the phrase ”f : V 7→ W by mapping
f(vi) to fi(g(vi))” means that f maps a vector v = v1 + . . . + vm with vi ∈ Vi to
f1(g(v1)) + . . .+ fm(g(vm))

Proof of Theorem 1

Theorem. For any desired frequency response h∗, and an integer K ∈ N, let h̃ := h+hf ,
with hf having a continuous support over a subset of the spectrum, σf . Assuming h
and hf to be parameterized by independent K and K ′-order polynomials p and pf
respectively, with K ′ ≤ K, then there exists h̃, such that min ∥h̃−h∗∥2 ≤ min ∥h−h∗∥2,
where the minimum is taken over the polynomial parameterizations. Moreover, for
multiple polynomial adaptive filters hf1 , hf2 , ..., hfm parameterized by independent
K ′-degree polynomials with K ′ ≤ K but having disjoint, contiguous supports, the same
inequality holds for h̃ = h+

∑m
i=1 hfi .

Proof. We make the following simplifying assumptions:
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1. |σfi | > K, ∀i ∈ [m], i.e., that is all support sizes are lower bounded by K (and
hence K ′)

2. All eigenvalues of the reference matrix are distinct

For methods that use a single polynomial filter, the polynomial graph filter, hK(Λ) =
diag(Vγ) where γ is a vector of coefficients (i.e, γ parameterizes h), with eigenvalues
sorted in descending order in components, and V is a Vandermonde matrix:

V =


1 λ1 λ2

1 · · · λK
1

1 λ2 λ2
2 · · · λK

2

...
...

...
. . .

...

1 λn λ2
n · · · λK

n


And to approximate a frequency response h∗, we have the following objective:

min ∥h− h∗∥22 := min
γ

∥diag(h∗)− diag(Vγ)∥2F

= min
γ

∥h∗ −Vγ∥22

= min
γ

∥ep(γ)∥22

Where ∥∥F and ∥∥2 are the Frobenius and L2 norms respectively. Due to the assump-
tions, the system of equations h∗ = Vγ is well-defined and has a unique minimizer,
γ∗ = V†h∗, and thus ∥ep(γ∗)∥ = minγ ∥ep(γ)∥. Next we break this error vector as:

ep(γ
∗) := h∗ −Vγ∗

=

m∑
i=1

(h∗
i −Viγ

∗) + (h∗
L −VLγ

∗)

:=
m∑
i=1

e∗pi
+ e∗pL

Where e∗pi
:= (h∗

i −Viγ
∗) with similar definition for epL

; h∗
i is a vector whose value

at components corresponding to the set σ(hfi) is same as that of h∗ and rest are zero.
Similarly, V∗

i is a matrix whose rows corresponding to the set σ(hfi) are same as that
of V with other rows being zero. Also, VL = V −

∑m
i=0 Vi and h∗

L = h∗ −
∑m

i=0 h
∗
i .

Note that as a result of this construction, [ep∗
i
] ∪ ep∗

L
is a linearly independent set since

the supports [σ(hfi)] form a disjoint set (note the theorem statement). We split the proof
in two cases:

Case 1: K ′ = K. We now analyze the case where we have m polynomial adaptive
filters added, all having an order of K, where the objective is min ∥h̃− h∗∥, which can
be written as:
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min
γ,[γi]

∥∥∥∥∥diag(h∗)− diag

(
Vγ +

m∑
i=0

Viγi

)∥∥∥∥∥
2

F

= min
γ,[γi]

∥∥∥∥∥h∗ −Vγ −
m∑
i=0

Viγi

∥∥∥∥∥
2

2

= min
γ,[γi]

∥eg(γ, [γi])∥22

Before characterizing the above system, we break a general error vector as:

eg(γ, [γi]) := h∗ −Vγ −
m∑
i=0

Viγi

=

m∑
i=1

(h∗
i −Vi(γ + γi)) + (h∗

L −VLγ)

:=

m∑
i=1

egi + egL

Where egi := (h∗
i −Vi(γ + γi)) with similar definition for egL . Clearly, the systems of

equations, egi = 0, ∀i and egL = 0 are well-defined due to the assumptions 1 and 2.
Since all the systems of equations have independent argument, unlike in the polynomial
filter case where the optimization is constrained over a single variable; one can now
resort to individual minimization of squared norms of egi which results in a minimum
squared norm of eg . Thus, we can set:

γ = V†
Lh

∗
L = γ∗

g γi = V†
ih

∗
i −V†

Lh
∗
L = γ∗

i , ∀i ∈ [m]

to minimize squared norms of egi and egL . Note that [egi ]∪egL is a linearly independent
set since the supports [σ(hfi)] form a disjoint set and by the above construction, this is
also an orthogonal set, and hence we have ∥eg∥2 =

∑m
i=1 ∥egi∥

2
+ ∥egL∥

2, and hence
the above assignment implies:

∥eg(γ∗
g , [γ

∗
i ])∥ = min

γ,[γi]
∥eg(γg, [γi])∥ := min ∥h̃− h∗∥2

Hence, it follows that, minx ∥h∗
i −Vix∥2 =

∥∥e∗gi∥∥2 ≤
∥∥e∗pi

∥∥2 = ∥h∗
i −Viγ

∗∥2

and minx ∥h∗
L −VLx∥2 =

∥∥e∗gL∥∥2 ≤
∥∥e∗pL

∥∥2 = ∥h∗
L −VLγ

∗∥2. Hence,

m∑
i=1

∥∥e∗gi∥∥2 + ∥∥e∗gL∥∥2 ≤
m∑
i=1

∥∥e∗pi

∥∥2 + ∥∥e∗pL

∥∥2
min ∥h̃− h∗∥ ≤ min ∥h− h∗∥

Case 2: K ′ < K. We demonstrate the inequality showing the existence of an h̃ that
achieves a better approximation error. By definition, the minimum error too will be
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bounded above by this error. For this, we fix γ, the parameterization of h as γ =
V†h∗ = γ∗

p (say). Note that γp∗ = argminγ ∥ep(γ)∥. Now our objective function
becomes

eg(γ
∗
p , [γi]) := h∗ −Vγ∗

p −
m∑
i=0

V′
iγi

=

m∑
i=1

(h∗
i −Viγ

∗
p +V′

iγi) + (h∗
L −VLγ

∗
p)

=

m∑
i=1

e′gi + e′gL

Where h∗
i , h

∗
L,Vi,VL have same definitions as that in case 1 and V′

i is a matrix con-
taining first K ′ + 1 columns of Vi as its columns (and hence has full column rank), and,
γi ∈ RK′+1. By this construction, we have

∥eg(γ∗
p ,0)∥ = min

γ
∥ep(γ)∥ = ∥ep(γ∗

p)∥

Our optimization objective becomes min[γi] ∥eg(γ∗
p , [γi])∥, which is easy since the

problem is well-posed by assumption 1 and 2. The unique minimizer of this is obtained
by setting

γi = V′†
i (h

∗
i −Viγ

∗
p) = γ∗

i (say) ∀i ∈ [m]

Now,
∥eg(γ∗

p , [γ
∗
i ])∥ = min

[γi]
∥eg(γ∗

p , [γi])∥ ≤ ∥eg(γ∗
p ,0)∥

and,

∥eg(γ∗
p ,0)∥ = min

γ
∥ep(γ)∥ = min ∥h− h∗∥

By the definition of minima, minγ,[γi] ∥eg(γ, [γi])∥ ≤ min[γi] ∥eg(γ∗
p , [γi])∥, and

by the definition, min ∥h̃− h∗∥ = minγ,[γi] ∥eg(γ, [γi])∥, we have:

min ∥h̃− h∗∥ ≤ min ∥h− h∗∥

Proof of Theorem 2

Theorem. Define H := {h(·) | ∀ possible K-degree polynomial parameterizations of h}
to be the set of all K-degree polynomial filters, whose arguments are n × n diagonal
matrices, such that a filter response over some Λ is given by h(Λ) for h(·) ∈ H. Sim-
ilarly H′ := {h̃(·) | ∀ possible polynomial parameterizations of h̃} is set of all filters
learn-able via PP-GNN , with h̃ = h + hf1 + hf2 , where h is parameterized by a
K-degree polynomial supported over entire spectrum, hf1 and hf2 are adaptive filters
parameterized by independent K ′-degree polynomials which only act on top and bottom
t diagonal elements respectively, with t < n/2 and K ′ ≤ K; then H and H′ form a
vector space, with H ⊂ H′. Also, dim(H′)

dim(H) = K+2K′+3
K+1 .
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Proof. We start by constructing the abstract spaces on top of the polynomial vector
space. Consider the set of all the univariate polynomials having degree at most K in the
vector space over the ring Kx

n := K[x1, . . . , xn] where K is the field of real numbers.
Partition this set into n subsets, say V1, . . . , Vn, such that for i ∈ [n], Vi contains all
polynomials of degree up to K in xi. It is easy to see that V1, . . . , Vn are subspaces of
K[x1, . . . , xn]. Define V = V1 ⊕ V2 ⊕ · · · ⊕ Vn where ⊕ denotes a direct sum. Define
the matrix Di[c] whose (i, i)th entry is c and all the other entries are zero. For i ∈ [n],
define linear maps ϕi : Vi → Mn (Kx

n) by f(xi) 7→ Di[f(xi)]. Im(ϕi) forms a vector
space of all diagonal matrices, whose (i, i) entry is the an element of Vi. Generate a
linear map ϕ : V → Mn(Kx

n) by mapping ϕ(f(xi)) to ϕi(f(xi)) for all i ∈ [n] as
the components of the direct sum present in its argument. Note that ϕi for i ∈ [n] are
injective maps, making ϕ an injective map. This implies that H ⊂ Im(ϕ) is a subspace
with basis Bh := {ϕ(x0

1 + · · · + x0
n), ϕ(x1 + · · · + xn), . . . , ϕ(x

K
1 + · · · + xK

n )},
making dim(H) = K + 1. Similarly we have, H′ ⊂ Im(ϕ), a subspace with basis
Bh′ := Bh

⋃
{ϕ(x0

1+· · ·+x0
t +0+· · ·+0), ϕ(x1+· · ·+xt+0+· · ·+0), . . . , ϕ(xK′

1 +
· · · + xK′

t + 0 + · · · + 0)}
⋃

{ϕ(0 + · · · + 0 + x0
n−t+1 + · · · + x0

n), ϕ(0 + · · · + 0 +

xn−t+1 + · · · + xn), . . . , ϕ(0 + · · · + 0 + xK′

n−t+1 + · · · + xK′

n )} where x0
i and 0 are

the corresponding multiplicative and additive identities of Kx
n, implying H ⊂ H′ and

dim(H′) = K + 2K ′ + 3.

Proof of Corollary 1

Corollary. The corresponding adapted graph families G := {Uh(·)UT | ∀h(·) ∈ H}
and G′ := {Uh̃(·)UT | ∀h̃(·) ∈ H′} for any unitary matrix U form a vector space,
with G ⊂ G′ and dim(G′)

dim(G) = K+2K′+3
K+1 .

Proof. Consider the injective linear maps f1, f2 : Mn(Kx
n) → Mn(Kx

n) as f1(A) =
UTA and f2(A) = AU. Define f3 : H → Mn(Kx

n) and f4 : H′ → Mn(Kx
n) as

f3(A) = (f1 ◦ f2)(A) for A ∈ H and f4(A) = (f1 ◦ f2)(A) for A ∈ H′. Since U is
given to be a unitary matrix, f3 and f4 are monomorphisms. Using this with the result
from Theorem 4.2, H ⊂ H′, we have G ⊂ G′.

PPGNN mitigates oversmoothing For showing that our model mitigates oversmoothing
for the higher orders, we extend a few results by [8].

Lemma 1. Assume that the nodes in an undirected and connected graph G have one of
C labels. Then, for k large enough, we have,

Hk
:j = βjπ + ok(1)

(Hk
σi
):j =

{
βjπ + ok(1), if ±1 ∈ σi

0, otherwise

for j ∈ [C]. Here πi =

√
D̃ii√∑

v∈V D̃vv

and βT = πTH0.
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Proof. The first equality is a standard result. For the second equality, note that all Sσi

have nullspace of dimension n− |σi|, and rest eigenvalues have their absolute values
≤ 1. By definition, Â is a doubly stochastic matrix, the stationary distribution for Sσi

can only be reached if it contains an eigenvalue of absolute value 1. (easily seen that the
largest eigenvalue of Â is 1).

Thus, whenever the label prediction is dominated by higher order Hk
(), all nodes

have a representation proportional to τβ, giving same label prediction for each node.

Definition 1. (Oversmoothing). If oversmoothing occurs in PPGNN for K sufficiently
large, we have Z:j = c1βjπ, ∀j ∈ [C] for some c1 > 0 if τk > 0 and Z:j =
−c1βjπ, ∀j ∈ [C] for some c1 > 0 if τk < 0.

Following lemma is the extended from the corresponding lemma of [8].

Lemma 2. Let L =
∑

i∈T Li =
∑

i∈T − log
(
⟨PT

i: ,Y
T
i: ⟩
)

be the cross-entropy loss
and T be the training set. The gradient of τk for k large enough is ∂L

∂τk
=
∑

i∈T πi⟨Pi:−
Yi:,β⟩+ ok(1)

Now the main result follows in same way as [8] from the above lemmas:

Theorem 3. (Extension of Theorem 4.2 of [8]) If the training set contains nodes from
each of C classes, then PP-GNN can always avoid over-smoothing. That is, for a large
enough k and for a parameter associated with a k-order term, τ ∈ [γi] ∪ [γ

(h)
i ] ∪

[γ
(l)
i ], i ∈ [K] ∪ {0}, we have:

∂L

∂τ
=

{∑
i∈T πi

(
maxj∈[C] βj − β1[Yi:]

)
+ ok(1), τ > 0∑

i∈T πi

(
minj∈[C] βj − β1[Yi:]

)
+ ok(1), τ < 0

Where, πi =

√
D̃ii√∑

v∈V D̃vv

and βT = πTH0. This implies that all parameters, τ and

their gradients ∂L
∂τ are of same sign for sufficiently high orders. Since the gradients are

bounded, higher order parameters τ will approach to 0 until we escape oversmoothing.

A.4 Experiments

Datasets We evaluate on multiple benchmark datasets to show the effectiveness of our
approach. Detailed statistics of the datasets used are provided in Table 6. We borrowed
Texas, Cornell, Wisconsin from WebKB7, where nodes represent web pages and edges
denote hyperlinks between them. Actor is a co-occurrence network borrowed from [17],
where nodes correspond to an actor, and and edge represents the co-occurrence on the
same Wikipedia page. Chameleon, Squirrel are borrowed from [18]. Nodes correspond

7 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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to web pages and edges capture mutual links between pages. For all benchmark datasets,
we use feature vectors, class labels from [3]. For datasets in (Texas, Wisconsin, Cornell,
Chameleon, Squirrel, Actor), we use 10 random splits (48%/32%/20% of nodes for
train/validation/test set) from [4]. We borrowed Cora, Citeseer, and Pubmed datasets
and the corresponding train/val/test set splits from [4]. The remaining datasets were
borrowed from [3]. We follow the same dataset setup mentioned in [3] to create 10
random splits for each of these datasets. We also experiment with two slightly larger
datasets Flickr [20] and OGBN-arXiv [21]. We use the publicly available splits for these
datasets.

Table 6: Dataset Statistics.
Properties Texas Wisconsin Actor Squirrel Chameleon Cornell Flickr Cora-Full OGBN-arXiv Wiki-CS Citeseer Pubmed Cora Computer Photos

Homophily Level 0.11 0.21 0.22 0.22 0.23 0.30 0.32 0.59 0.63 0.68 0.74 0.80 0.81 0.81 0.85

#Nodes 183 251 7600 5201 2277 183 89250 19793 169343 11701 3327 19717 2708 13752 7650

#Edges 492 750 37256 222134 38328 478 989006 83214 1335586 302220 12431 108365 13264 259613 126731

#Features 1703 1703 932 2089 500 1703 500 500 128 300 3703 500 1433 767 745

#Classes 5 5 5 5 5 5 7 70 40 10 6 3 7 10 8

#Train 87 120 3648 2496 1092 87 446625 1395 90941 580 1596 9463 1192 200 160

#Val 59 80 2432 1664 729 59 22312 2049 29799 1769 1065 6310 796 300 240

#Test 37 51 1520 1041 456 37 22313 16349 48603 5487 666 3944 497 13252 7250

Baselines We provide the methods in comparison along with the hyper-parameters
ranges for each model. For all the baseline models, we sweep the common hyper-
parameters in the same ranges. Learning rate is swept over [0.001, 0.003, 0.005, 0.008, 0.01],
dropout over [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], weight decay over [1e − 4, 5e − 4, 1e −
3, 5e− 3, 1e− 2, 5e− 2, 1e− 1], and hidden dimensions over [16, 32, 64]. For model-
specific hyper-parameters, we tune over author prescribed ranges. We use undirected
graphs with symmetric normalization for all graph networks in comparison. For all
models, we report test accuracy for the configuration that achieves the highest validation
accuracy. We report standard deviation wherever applicable.

The hyper-parameter search space as described above, was prescribed in [47] where
the authors have shown that with thorough tuning, GCN(s) thoroughly outperform
several existing SOTA models. Training and observing the results of all the models on
this hyper-parameter search space, while also maintaining a consistent number of Optuna
Trials (per SOTA model, per dataset, per split), is a convincing indicator of the fact that
our proposed method does hold merit, and is not attributed to a statistical anomaly.

LR and MLP: We trained Logistic Regression classifier and Multi Layer Perceptron
on the given node features. For MLP, we limit the number of hidden layers to one.

GCN: We use the GCN implementation provided by the authors of [8].
SGCN: SGCN [16] is a spectral method that models a low pass filter and uses a

linear classifier. The number of layers in SGCN is treated as a hyper-parameter and
swept over [1, 2].

SUPERGAT: SUPERGAT [3] is an improved graph attention model designed to also
work with noisy graphs. SUPERGAT employs a link-prediction based self-supervised
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task to learn attention on edges. As suggested by the authors, on datasets with homophily
levels lower than 0.2 we use SUPERGATSD. For other datasets, we use SUPERGATMX.
We rely on authors code for our experiments.

GEOM-GCN: GEOM-GCN [4] proposes a geometric aggregation scheme that
can capture structural information of nodes in neighborhoods and also capture long
range dependencies. We quote author reported numbers for Geom-GCN. We could
not run Geom-GCN on other benchmark datasets because of the unavailability of a
pre-processing function that is not publicly available.

H2GCN: H2GCN [5] proposes an architecture, specially for heterophilic settings,
that incorporates three design choices: i) ego and neighbor-embedding separation, higher-
order neighborhoods, and combining intermediate representations. We quote author
reported numbers where available, and sweep over author prescribed hyper-parameters
for reporting results on the rest datasets. We rely on author’s code for our experiments.

FAGCN: FAGCN [7] adaptively aggregates different low-frequency and high-
frequency signals from neighbors belonging to same and different classes to learn better
node representations. We rely on author’s code for our experiments.

APPNP: APPNP [10] is an improved message propagation scheme derived from
personalized PageRank. APPNP’s addition of probability of teleporting back to root
node permits it to use more propagation steps without oversmoothing. We use GPR-
GNN’s implementation of APPNP for our experiments.

LINEARGCN (LGC): LINEARGCN (LGC) [22] is a spectrally grounded GCN that
adapts the entire eigen spectrum of the graph to obtain better node feature representations.

GPR-GNN: GPR-GNN [8] adaptively learns weights to jointly optimize node
representations and the level of information to be extracted from graph topology. We
rely on author’s code for our experiments.

TDGNN: TDGNN [31] is a tree decomposition method which mitigates feature
smoothening and disentangles neighbourhoods in different layers. We rely on author’s
code for our experiments.

ARMA: ARMA [39] is a spectral method that uses K stacks of ARMA1 filters
in order to create an ARMAK filter (an ARMA filter of order K). Since [39] do not
specify a hyperparameter range in their work, following are the ranges we have followed:
GCS stacks (S): [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], stacks’ depth(T ): [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
However we only select configurations such that the number of learnable parameters are
less than or equal to those in PP-GNN. The input to the ARMAConv layer are the node
features and the output is the number of classes. This output is then passed through a
softmax layer. We use the implementation from the official PyTorch Geometric Library 8

BernNet: BernNet [38] is a method that approximates any filter over the normalised
Laplacian spectrum of a graph, by a Kth Order Bernstein Polynomial Approximation.
We use the model specific hyper-parameters prescribed by the authors of the paper. We
vary the Propagation Layer Learning Rate as follows: [0.001, 0.002, 0.01, 0.05]. We also
vary the Propagation Layer Dropout as follows: [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. We rely
on the authors code for our experiments.

8 https://pytorch-geometric.readthedocs.io/en/latest/\_modules/
torch\_geometric/nn/conv/arma\_conv.html\#ARMAConv
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AdaGNN: AdaGNN [37] is a method that captures the different importance’s for
varying frequency components for node representation learning. We use the model
specific hyper-parameters prescribed by the authors of the paper. The No. of Layers
hyper-parameter is varied as follows: [2, 4, 8, 16, 32, 128]. We rely on the authors code
for our experiments.

UFG: UFG [32] decompose the graph into low-pass and high-pass frequencies,
and define a framelet based convolutional model. We use the model specific hyper-
parameters as prescribed by the authors of the paper. We rely on the authors code for our
experiments.

GFIR - Unconstrained Setting: In this setting, we do not impose any regularization
constraints such as dropout and L2 regularization.

GFIR - Constrained Setting: In this setting, we impose dropouts as well as L2
regularization on the GFIR model. Both dropouts and L2 regularization were applied on
the Hk’s (the learnable filter matrices from the above equation).

Links to the authors’ codebases can be found in Table 7.

Table 7: Links to the codebases of certain baselines.
Method Code Links Commit ID

GCN https://github.com/jianhao2016/GPRGNN dc246833865af87ae5d4e965d189608f8832ddac

SuperGAT https://github.com/dongkwan-kim/SuperGAT 2d3f44acbb10af5850aa17a3903dea955a29d2e2

H2GCN https://github.com/GemsLab/H2GCN 08011c5199426e1c49b80ee2944d338dfd55e2b5

FAGCN https://github.com/bdy9527/FAGCN 23bb10f6bf0b1d2e5874140cd4b266c60a7c63f3

APPNP https://github.com/jianhao2016/GPRGNN dc246833865af87ae5d4e965d189608f8832ddac

GPRGNN https://github.com/jianhao2016/GPRGNN dc246833865af87ae5d4e965d189608f8832ddac

TDGNN https://github.com/YuWVandy/TDGNN 505b1af90255aace255744ec81a7033a5d682b90

BernNet https://github.com/ivam-he/BernNet 7b9c1652dbe43730f52d647957761bf6d3f17425

AdaGNN https://github.com/yushundong/AdaGNN f178d3144921c8845027234cac68a7f0dd057fe2

UFG https://github.com/YuGuangWang/UFG 229acd89b33f4f4e1bab2c0d92fb93d146127fd1

Implementation Details In this subsection, we present several important points that
are useful for practical implementation of our proposed method and other experiments
related details. Our approach is based on adaptation of a few eigen graphs constructed
using eigen components. Following [1], we use a symmetric normalized version (Ã)
of adjacency matrix A with self-loops: Ã = D̃− 1

2 (A+ I)D̃− 1
2 where D̃ii = 1 +Dii,

Dii =
∑

j Aij and D̃ij = 0, i ̸= j. We work with eigen matrix and eigen values of Ã.
To reduce the learnable hyper-parameters, we separately partition the low-end and

high-end eigen values into several contiguous bins and use shared filter parameters
for each of these bins. The number of bins, which can be interpreted as number of
filters, is swept in the range [2, 4, 5]. The orders of the polynomial filters are swept in
the range [2, 4, 6]. The number of EVD components are swept in the range [256, 1024].
In our experiments, we set ηl = ηh and we vary the ηl parameter in range (0, 1) and
ηgpr = 1 − ηl. The range of ηl, ηh and ηgpr is kept between (0, 1) in order to have
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a bounded and weighted contribution of every term. Since previous works either use
directly or use a variant of the GPR term, these ranges make it feasible to carry out
an analysis of how the term contributes to the learning of the representations and also
to compare it with the contribution of the terms of the proposed model, as keeping
parameters between (0, 1), adding to 1 provides room for a weighted contribution of
each term.

For optimization, we use the Adam optimizer [19]. We set early stopping to 200 and
the maximum number of epochs to 1000. We utilize learning rate with decay, with decay
factor set to 0.99 and decay frequency set to 50. All our experiments were performed on
a machine with Intel Xeon 2.60GHz processor, 112GB Ram, Nvidia Tesla P-100 GPU
with 16GB of memory, Python 3.6, and PyTorch 1.9.0 [24]. We used Optuna [23] and
set the number of trials to 20 to optimize the hyperparameter search for PP-GNN. For
other baseline models, we set the number of trials to 100.

Note: Several baselines report elevated results on some of our benchmark datasets.
This difference is because of the difference in splits. We use the splits from [4]. Baselines
including BERNNET, GPR-GNN evaluate on random splits with 60/20/20 distribution
for train/val/test labels.

Adaptable Frequency Responses In Figure 1 of the main paper, we observe that
PP-GNN learns a complicated frequency response for a heterophilic dataset (Squirrel)
and a simpler frequency response for a homophilic dataset (Citeseer). We observe
that this trend follows for two other datasets Chameleon (heterophilic) and Computer
(homophilic). See Figure 9.

Effect of number of eigenvalues/vectors (EVs). Since the number of EVs to adapt
might not be known apriori, we conducted a study to assess the effect of using different
number of EVs on test performance. We report results on a few representative datasets.
From Figure 10a, we see that Homophilic datasets can benefit by adapting as small
as 32 eigen components. Heterophilic datasets achieve peak performance by adapting
(∼250-500) number of eigen components. These results indicate that the number of
EVs required to get competitive/superior performance is typically small, therefore,
computationally feasible and affordable.

Does the MLP even matter? In PP-GNN there is a two layered MLP (that transforms
the input node features) followed by a single graph filtering layer similar to GPR-GNN.

To understand MLP’s significance, we ran an additional experiment, where we have
used a single linear layer, instead of the two layered MLP. We continue to observe
competitive (with respect to our original PP-GNN model) performance, across most
datasets. The results can be found in Table 8. Also, the two layer MLP is not the
significant contributor towards performance. This can also be seen by comparing GPR-
GNN’s performance with that of LGC’s. LGC can be interpreted as a linear version of
GPR-GNN, and achieves comparable performance as GPR-GNN.

Table 8 seems to suggest that PP-GNN (Linear) is competitive to PP-GNN (Original).
We can infer that adding MLP may give marginal improvements over the linear version.
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(a) Squirrel (b) Citeseer

(c) Chameleon (d) Computer

Fig. 9: Learnt Frequency Responses

This phenomenon is also observed in GPR-GNN. To illustrate this, we can compare
GPR-GNN with LGC (linear version of GPR-GNN). We can observe in Table 8 that
GPR-GNN and LGC are comparable in performance.

A.5 Comparison against general FIR filters

Instead of using a polynomial filter, we can use a general FIR filter (GFIR) which is
described by the following equation:

Z =

K∑
k=0

SkXHk

where S is the graph shift operator (which in our case is Ã), X is the node feature matrix
and Hk’s are learnable filter matrices. One can see GCN, SGCN, GPR-GNN as special
cases of this GFIR filter, which constrain the Hk in different ways.
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(a) Varying No. of EVs

Fig. 10: Analyzing varying number of eigenvalues on performance

Table 8: Comparision of Linear GPR-GNN and Linear PP-GNN with respect to other
pertinent baselines.

Computers Chameleon Citeseer Cora Squirrel Texas Wisconsin

GPR-GNN 82.38 (1.60) 62.59 (2.04) 76.84 (1.69) 87.77 (1.31) 46.31 (2.46) 81.35 (5.32) 82.55 (6.23)

LGC 83.44 (1.77) 61.14 (2.07) 76.96 (1.73) 88.02 (1.44) 44.26 (1.49) 80.20 (4.28) 81.89 (5.98)

PP-GNN (Original) 85.23 (1.36) 69.10 (1.37) 78.25 (1.76) 89.52 (0.85) 59.15 (1.91) 89.73 (4.90) 88.24 (3.33)

PP-GNN (Linear) 84.27 (1.19) 67.88 (1.62) 77.86 (1.74) 88.43 (0.69) 55.11 (1.72) 85.58 (4.70) 86.24 (3.23)

We first demonstrate that constraint on the GFIR filter is necessary for getting
improvement in performance, particularly on heterophilic datasets. Towards this, we
build two versions of GFIR: one with regularization (constrained), and the other without
regularization (unconstrained). We ensure that that the number of trainable parameters
in these models are comparable to those used in PP-GNN. We provide further details of
the versions of the GFIR models below and report the results in Table 9 below:

– Unconstrained Setting: In this setting, we do not impose any regularization con-
straints such as dropout and L2 regularization.

– Constrained Setting: In this setting, we impose dropouts as well as L2 regularization
on the GFIR model. Both dropouts and L2 regularization were applied on the Hk’s
(the learnable filter matrices from the above equation).

We also compare PP-GNN (the proposed model) as well as GPR-GNN to the General
FIR filter model (GFIR).

We can make the following observation from the results reported in Table 9:

– Firstly, constrained GFIR performs better than the unconstrained version, with
performance lifts of up to ∼10%. This suggests that regularization is important for
GFIR models.

– GPR-GNN outperforms the constrained GFIR version. It is to be noted that GPR-
GNN further restricts the space of graphs explored as compared to GFIR. This
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Table 9: Comparing PP-GNN and GPR-GNN against the GFIR filter models.
Train Acc /Test Acc Computers Chameleon Citeseer Cora Squirrel Texas Wisconsin

GFIR (Unconstrained) 78.39 (1.09) 51.71 (3.11) 75.83 (1.94) 87.93 (0.90) 36.50 (1.12) 73.24 (6.91) 77.84 (3.21)

GFIR (Constrained) 79.57 (2.12) 61.27 (2.42) 76.24 (1.43) 87.46 (1.26) 41.12 (1.17) 74.59 (4.45) 79.41 (3.10)

GPR-GNN 82.38 (1.60) 62.59 (2.04) 76.84 (1.69) 87.77 (1.31) 46.31 (2.46) 81.35 (5.32) 82.55 (6.23)

PP-GNN 85.23 (1.36) 67.74 (2.31) 78.25 (1.76) 89.52 (0.85) 56.86 (1.20) 89.73 (4.90) 88.24 (3.33)

suggests that regularization beyond simple L2/dropout kind of regularization (poly-
nomial filter) is beneficial.

– PP-GNN performs better than GPR-GNN. Our model slightly expands the space of
graphs explored (as compared to GPR-GNN, but lesser than GFIR), while retaining
good performance. This suggests that there is still room for improvement on how
regularization is done.

PP-GNN has shown one possible way to constrain the space of graphs while im-
proving performance on several datasets, however, it remains to be seen whether there
are alternative methods that can do even better. We hope to study and analyze this aspect
in the future.

A.6 More details on comparison against polynomial filtering methods

More details on section 4.4 are given below:

APPNP: The node embeddings are learnt by APPNP as described below:

Z =

K∑
k=0

γkÃ
k
symZx(X,Θ)

APPNP uses fixed γk = α(1 − α)k with γK = (1 − α)K where α is a hyper-
parameter, Zx(X,Θ) are the node features transformed by MLP with parameter Θ.

GPR-GNN: The node embeddings are learnt by GPR-GNN as described below:

Z =

K∑
k=0

γkÃ
k
symZx(X,Θ)

Where γk(∀k) are now learnable parameters, Zx(X,Θ) are the node features trans-
formed by MLP with parameter Θ.

BERNNET:The node embeddings for BERNNET are learnt as described below:
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Z =

K∑
k=0

θk
2K

(
K

k

)
(2I − L)K−kLkZx(X,Θ)

=

K∑
k=0

θk
2K

(
K

k

)
(Asym + I)K−k(I −Asym)kZx(X,Θ)

=

K∑
q=0

[

K∑
r=0

θk
2K

(
K

r

) q∑
p=0

(
K − r

q − p

)(
r

p

)
(−1)p]Aq

symZx(X,Θ)

=

K∑
q=0

[

K∑
r=0

θrαrq]A
q
symZx(X,Θ)

=

K∑
q=0

wqA
q
symZx(X,Θ)

The following table summarizes recent key polynomial filtering based methods and
a short description of the constraints/variant they employ.

Table 10: Different polynomial filtering based methods. Note that the coefficients of
APPNP are fixed (not learnable) PPR coefficients (γk ∀ k) and the coefficients of GPR-
GNN (γk ∀k)and BERNNET (θk ∀k) are learnable.

Method Polynomial Basis Filter Response Constraints

APPNP Monomial h(λ) =
∑K

k=0 γkλ
k γk = α(1− α)k; γK = (1− α)K ; α is a hyper-parameter

GPR-GNN Monomial h(λ) =
∑K

k=0 γkλ
k γk are unconstrained

BERNNET Bernstein h(λ) =
∑K

k=0
θk
2K

(
K
k

)
(2− λ)K−kλk θk ≥ 0

A.7 Training Time Analysis

In the following subsections, we provide comprehensive timing analysis.

Computational Complexity: Listed below is the computational complexity for each
piece in our model for a single forward pass. Notation n: number of nodes, |E|: the
number of edges, A: symmetric normalized adjacency matrix, F : features dimensions,
d: hidden layer dimension, C: number of classes, e∗ denotes the cost of EVD, K:
polynomial/hop order, l: number of eigenvalues/vectors in a single partition of spectrum
(for implementation, we keep l same for all such intervals), m: number of partitions of a
spectrum.

– MLP: O(nFd+ ndC)
– GPR-term: O(K|E|C) + O(nKC). The first term is the cost for computing AKf(X)

for sparse A. The second term is the cost of summation
∑

k A
kf(X).
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– Excess terms for PP-GNN: O(mnlC). This is obtained by the optimal matrix
multiplication present in Equation 5 of the main paper (Ui is n× l, Hi(γi) is l × l,
Z0() is n× C). The additional factor m is because we have m different contiguous
intervals/different polynomials. Typically n is much larger than l.

– EVD-term: e∗, the complexity for obtaining the eigenvalues/vectors of the adjacency
matrix, which is usually very sparse for the observed graphs. Most publicly available
solvers for this task utilize Lanczos’ algorithm (which is a specific case of a more
general Arnoldi iteration). However, the convergence bound of this iterative proce-
dure depends upon the starting vectors and the underlying spectrum (particularly
the ratio of the absolute difference of two largest eigenvalues to the diameter of the
spectrum) [[34], [35], [36]]. Lanczos’ algorithm is shown to be a practically efficient
way for obtaining extreme eigenpairs for a similar and even very large systems. We
use ARPACK’s built-in implementation to precompute the eigenvalues/vectors for
all datasets before training, thus amortizing this cost across training with different
hyper-parameters configuration.

Per Component Timing Breakup: In Table 11, we provide a breakdown of cost incurred
in seconds for different components of our model. Since the eigenpairs’ computation is
a one time cost, we amortize this cost over the total hyper-parameters configurations and
report the effective training time in the last column on of Table 11.

Average Training Time: In Table 12, we report the training time averaged over 20
hyper-parameter configurations for several models. To understand the relative perfor-
mance of our model with respect to GCN, we compute the relative time taken and report
it in Table 13. We can observe in Table 13 that PP-GNN is ∼ 4x slower than GCN,
∼ 2X slower than GPR-GNN and BernNET, and ∼ 2X faster than AdaGNN. However,
it is important to note that in our average training time, the time taken to compute K top
and bottom eigenvalues/vectors is amortized across the number of trials
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Table 11: PP-GNN’s per component timing cost. Training Time refers to the end to
end training time (without eigen decomposition) averaged across 20 trials. EVD cost
refers to the time taken to obtain x top and bottom eigenvalues. This x can be found in
the ‘Number of EV’s obtained’ column. Since EVD is a one time cost, we average this
cost over the total number of trials and add it to the training time. We refer to this cost as
the Effective Training Time.

PP-GNN Training Time EVD Cost Number of EV’s obtained Effective Training Time

Texas 11.89 0.00747 183 (All EVs) 11.89

Cornell 11.63 0.03271 183 (All EVs) 11.63

Wisconsin 12.08 0.01225 251 (All EVs) 12.08

Chameleon 21.44 3.71883 2048 21.63

Squirrel 31.38 15.8152 2048 32.17

Cora 22.46 54.3684 2048 25.18

Citeseer 20.51 56.9744 2048 23.36

Cora-Full 63.98 155.304 2048 71.75

Pubmed 52.54 256.71 2048 65.38

Computers 28.63 76.2738 2048 32.44

Photo 19.3 48.3683 2048 21.72

Flickr 161.16 304.114 2048 176.37

ArXiv 189.94 412.504 1024 210.57

WikiCS 27.92 65.4376 2048 31.19

Table 12: Training Time (in seconds) across Models

Dataset GPR-GNN PP-GNN MLP GCN BernNet ARMA AdaGNN

Texas 9.27 11.89 1.08 3.46 5.59 6.00 13.97

Cornell 9.41 11.63 1.06 3.69 5.37 5.51 12.56

Wisconsin 9.67 12.08 1.07 3.42 5.69 5.36 13.57

Chameleon 14.69 21.63 2.60 6.42 12.46 7.84 28.77

Squirrel 18.94 32.17 5.04 7.52 17.82 28.87 90.36

Cora 12.90 25.18 1.95 5.94 12.25 10.67 22.15

Citeseer 10.62 23.36 3.72 4.56 9.52 19.5 35.34

Cora-Full 24.98 71.75 7.77 8.01 31.26 40.21 175.58

Pubmed 14.00 65.38 6.21 11.73 12.64 27.76 162.01

Computers 7.67 32.44 2.24 6.68 7.48 27.76 118.43

Photo 8.58 21.72 1.68 5.1 7.95 14.34 45.46

Flickr 42.64 176.37 21.00 30.4 62.11 119.3 178.7371

ArXiv 118.35 210.57 78.9 102.88 693.92 771.59 307.84

WikiCS 14.37 31.19 3.34 10.8 11.43 30.79 73.63
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Table 13: Training Time of models relative to the training time of GCN

Dataset GPR-GNN PP-GNN MLP GCN BernNet ARMA AdaGNN

Texas 2.68 3.44 0.31 1.00 1.62 1.73 4.04

Cornell 2.55 3.15 0.29 1.00 1.46 1.49 3.40

Wisconsin 2.83 3.53 0.31 1.00 1.66 1.57 3.97

Chameleon 2.29 3.37 0.40 1.00 1.94 1.22 4.48

Squirrel 2.52 4.28 0.67 1.00 2.37 3.84 12.02

Cora 2.17 4.24 0.33 1.00 2.06 1.80 3.73

Citeseer 2.33 5.12 0.82 1.00 2.09 4.28 7.75

Cora-Full 3.12 8.96 0.97 1.00 3.90 5.02 21.92

Pubmed 1.19 5.57 0.53 1.00 1.08 2.37 13.81

Computers 1.15 4.86 0.34 1.00 1.12 4.16 17.73

Photo 1.68 4.26 0.33 1.00 1.56 2.81 8.91

Flickr 1.40 5.80 0.69 1.00 2.04 3.92 5.88

ArXiv 1.15 2.05 0.77 1.00 6.74 7.50 2.99

WikiCS 1.33 2.89 0.31 1.00 1.06 2.85 6.82

Average 2.03 4.39 0.50 1.00 2.19 3.18 8.39

Table 14: End to end training time (in HH:MM:SS) for optimizing over 20 hyper-
parameter configurations
Dataset Chameleon Citeseer Computers Cora Cora-Full Photo Pubmed Squirrel Texas Wisconsin OGBN-ArXiv

Time 00:03:46 00:10:17 00:34:37 00:05:24 00:59:29 00:10:31 00:57:40 00:10:38 00:02:27 00:02:33 01:03:20


