
CLARE: A Semi-supervised Community Detection Algorithm
Xixi Wu

21210240043@m.fudan.edu.cn
Shanghai Key Laboratory of Data

Science, School of Computer Science,
Fudan University

China

Yun Xiong∗
yunx@fudan.edu.cn

Shanghai Key Laboratory of Data
Science, School of Computer Science,

Fudan University, Peng Cheng
Laboratory, Shenzhen

China

Yao Zhang
yaozhang@fudan.edu.cn

Shanghai Key Laboratory of Data
Science, School of Computer Science,

Fudan University
China

Yizhu Jiao
yizhuj2@illinois.edu

University of Illinois at
Urbana-Champaign

United States

Caihua Shan
caihuashan@microsoft.com
Microsoft Research Asia

China

Yiheng Sun
elisun@tencent.com
Tencent Weixin Group

China

Yangyong Zhu
yyzhu@fudan.edu.cn

Shanghai Key Laboratory of Data
Science, School of Computer Science,

Fudan University
China

Philip S. Yu
psyu@uic.edu

University of Illinois at Chicago
United States

ABSTRACT
Community detection refers to the task of discovering closely re-
lated subgraphs to understand the networks. However, traditional
community detection algorithms fail to pinpoint a particular kind
of community. This limits its applicability in real-world networks,
e.g., distinguishing fraud groups from normal ones in transaction
networks. Recently, semi-supervised community detection emerges
as a solution. It aims to seek other similar communities in the net-
work with few labeled communities as training data. Existing works
can be regarded as seed-based: locate seed nodes and then develop
communities around seeds. However, these methods are quite sensi-
tive to the quality of selected seeds since communities generated
around a mis-detected seed may be irrelevant. Besides, they have in-
dividual issues, e.g., inflexibility and high computational overhead.
To address these issues, we propose CLARE, which consists of two
key components, Community Locator and Community Rewriter.
Our idea is that we can locate potential communities and then refine
them. Therefore, the community locator is proposed for quickly
locating potential communities by seeking subgraphs that are simi-
lar to training ones in the network. To further adjust these located
communities, we devise the community rewriter. Enhanced by deep
reinforcement learning, it suggests intelligent decisions, such as

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539370

adding or dropping nodes, to refine community structures flexibly.
Extensive experiments verify both the effectiveness and efficiency
of our work compared with prior state-of-the-art approaches on
multiple real-world datasets.

CCS CONCEPTS
• Computing methodologies → Reinforcement learning; •
Information systems→ Clustering.

KEYWORDS
semi-supervised community detection, subgraph matching, rein-
forcement learning

ACM Reference Format:
Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Caihua Shan, Yiheng Sun,
Yangyong Zhu, and Philip S. Yu. 2022. CLARE: A Semi-supervised Com-
munity Detection Algorithm. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’22), August
14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3534678.3539370

1 INTRODUCTION
Networks are a powerful framework to represent rich relational
information among data objects from social, natural, and academic
domains [2, 25]. A crucial step to understand a network is identi-
fying and analyzing closely related subgraphs, i.e., communities.
The research task of discovering such subgraphs from networks is
known as the community detection problem [39], which can reveal
the structural patterns and inherent properties of networks.

However, traditional community detection algorithms are in-
capable of pinpointing a particular kind of community. In some
scenarios, there are various types of communities in the same net-
work, while people may only focus on a specific type, i.e., the

https://doi.org/10.1145/3534678.3539370
https://doi.org/10.1145/3534678.3539370

KDD ’22, August 14–18, 2022, Washington, DC, USA Xixi Wu et al.

, , …

Training data

Semi-supervised community detection

Community detection

communities

Network
irrelevant

communities

targeted
community

Figure 1: Tasks comparison. This is a subgraph of a trading
network with two normal communities (green circles) and
one fraud community (red circle). Traditional community
detection methods may identify both kinds of communities.
However, semi-supervised community detection methods
can utilize some fraud groups to pinpoint the remaining
fraud community.

targeted community. Traditional community detection methods
cannot handle these situations, as they rely solely on overall struc-
tural information for inference [5, 9, 36], failing to capture the
inherent features of some certain targeted communities. For ex-
ample, as shown in Figure 1, they cannot distinguish fraud groups
from normal ones in transaction networks, and instead exhaustedly
identify both kinds of communities.

Therefore, some researchers turn to semi-supervised settings
to identify targeted communities. Formally, semi-supervised com-
munity detection is defined as utilizing certain communities as
training data to recognize the other similar communities in the
network. With such training data, it can implicitly learn the distinct
features of the targeted community [41]. Semi-supervised commu-
nity detection is a promising research problem with a wide range of
real-world applications. For example, it can detect social spammer
circles in social networks to avoid malicious attacks [13].

There are existing works on semi-supervised community detec-
tion, e.g., Bespoke [4] and SEAL [41]. As shown in Figure 2, they
can be generalized as seed-based methods: first locate prospective
seed nodes (central nodes) in the network and then develop commu-
nities around seeds. However, these methods are quite sensitive to
the quality of selected seeds since communities generated around a
mis-detected seed may be irrelevant. Besides, these methods have
individual issues. For instance, Bespoke restricts community struc-
tures to 1-ego net, i.e., a central node along with its neighbors. This
makes Bespoke inflexible as failing to generalize to communities
with arbitrary structures. SEAL alleviates this issue by introducing
generative adversarial networks (GAN). It formulates the genera-
tion of a community into sequential decisions process, as the gener-
ator of GAN would add one node in each step. However, it suffers
from high computational overhead since developing a community
in such way is quite expensive.

To solve the aforementioned challenges, we infer communities
from a novel subgraph perspective: first locate potential communities
and then refine them. Specifically, we leverage the training commu-
nities to locate similar subgraphs via matching, and further adjust
them based on their structural context. The benefits are threefold:
(1) A subgraph carries more structural patterns as well as inherent
features than a single seed node, promising to bring more precise

Input

Training set
Network

SEALBespoke

Assumes communities
are all 1-ego net

Generates community
via sequential decisions

Community Locator

Candidate
Community

Ours

1

2 4

3

5

Exclude node 5

Seed node

Output

stop

agent

, ···

Community Rewriter

Seed-node Selector

Community Generator

step 1 step 2

step 3step 4

Figure 2: An illustration of Bespoke (left), SEAL (middle), and
our proposed CLARE (right). Bespoke and SEAL first locate
seed nodes and then develop communities around seeds. On
the contrary, we propose a different solution: first locate
potential communities and further rewrite them.

positioning. (2) Predicting communities directly from a subgraph
scale can avoid the expensive cost of generating communities from
scratch. (3) With the introduction of global structural patterns, the
refining process can further optimize located communities.

Inspired by the above insights, we propose a novel semi-supervised
community detection framework, CLARE. It consists of two key
components, Community Locator and Community Rewriter. The
community locator can quickly locate potential communities by
seeking subgraphs that are similar to training ones. Specifically, we
encode communities into vectors, measure the similarities between
communities in the latent space, and then discover candidates based
on the similarities with the nearest neighbors matching strategy.
The community rewriter is proposed to further adjust those can-
didate communities by introducing global structural patterns. We
frame such refinement process as a deep reinforcement learning
task and optimize this process via policy gradient. For located com-
munities, the rewriter provides two actions: adding outer nodes or
dropping existing nodes, thus refining their structures flexibly and
intelligently.

We summarize the contributions of this work as follows:
• We study the semi-supervised community detection problem
from a novel subgraph perspective. Different from existing seed-
based methods, our solution can be regarded as first locating
potential communities and then refining them.
• We propose a novel framework CLARE, consisting of Community
Locator and Community Rewriter. The community locator is

CLARE: A Semi-supervised Community Detection Algorithm KDD ’22, August 14–18, 2022, Washington, DC, USA

proposed to quickly locate potential communities by seeking
subgraphs similar to training ones. And the community rewriter
can further fine-tune those located communities. Enhanced by
deep reinforcement learning, it provides actions such as adding
or dropping nodes, refining community structures flexibly.
• We conduct experiments on real-world networks aswell as hybrid
networks containing various types of communities. Compared
with both community detection and semi-supervised commu-
nity detection baselines, our model achieves outstanding per-
formance and remains competitive on efficiency. Moreover, our
model exhibits robustness even when encountering data sparsity
or network noises.

2 RELATEDWORK
2.1 Community Detection
A common definition of community detection is to partition graph
nodes into multiple groups, where internal nodes are more similar
than the external. Some works [5, 9, 29] are optimization-based
methods that search a graph partition by optimizing some metrics
such as modularity. Moreover, there are matrix factorization based
methods [21, 33] which learn latent representations for communi-
ties by decomposing adjacency matrices. Studies like [36, 37] are
generative models that infer communities by fitting the original
graph. In recent years, some frameworks that combine graph rep-
resentation learning and community detection have been proposed
[7, 14, 30, 40]. For example, vGraph [30] is a probabilistic generative
model to learn community membership and node representation
collaboratively. In a word, these community detection works fail to
pinpoint a particular kind of community.

Semi-supervised community detection. This task aims to
seek the rest communities in the network with few labeled commu-
nities as training data. Existing methods [4, 41] usually pick seed
nodes in the network by leveraging training data and then develop
communities around seeds. However, they are quite sensitive to
the quality of selected seeds. Besides, they have individual issues,
e.g., inflexibility [4] and high computational overhead [41]. We
skip work [16] because their semi-supervised setting is completely
different from current discussion.

2.2 Subgraph Matching
Subgraph matching refers to the task of determining the existence
of the query graph in the target graph [38]. We will discuss the
development of subgraph matching methods as the implementation
of community locator is inspired by subgraph matching. Conven-
tional algorithms such as [32] only focus on graph structures. Other
works like [1, 10] also consider categorical node features.

Neural network based methods. As graph neural networks
(GNN) raise a surge of interest [12, 19, 34], GNN-based matching
methods have been proposed [3, 11, 20, 38] and have achieved great
results. A recent breakthrough in this domain is [38] which signifi-
cantly outperforms other subgraph matching baselines thanks to
the introduction of order embedding. Inspired by their work, we
design Community Order Embedding to capture the similarities
between communities and further match candidates. Especially, our
novelty lies in migrating the matching method into detection tasks.

2.3 Graph Combinatorial Optimization with RL
With the success of deep reinforcement learning in games [24],
researchers have attempted to utilize reinforcement learning (RL)
techniques for the graph combinatorial optimization (GCO) problem
[18, 22, 27, 41]. S2V-DQN [18] is the first attempt that models a GCO
problem into a sequential decision problem with deep Q-learning.
And in [22] the authors propose Graph Pointer Networks to solve
TSP problems. SEAL [41] adopts policy gradient to learn heuristics
for generating a community. Recently, Shan et al. [27] propose a RL-
based framework named RG-Explainer for generating explanations
for graph neural networks. Note that rewriting a community, i.e.,
adjusting its members, is also a GCO problem. Thus, in this paper,
we resort to RL for optimizing the community rewriter.

3 METHODOLOGY
Given a graph 𝐺 = (V, E,X), where V is the set of nodes, E is
the set of edges, and X is the node feature matrix. With𝑚 labeled
communities ¤C = { ¤𝐶1, ¤𝐶2, ..., ¤𝐶𝑚}(∀𝑚

𝑖=1
¤𝐶𝑖 ⊂ 𝐺) as training data,

our goal is to find the set of other similar communities Ĉ (|Ĉ | ≫ | ¤C|)
in 𝐺 . The important notations used are listed in Table 1.

Table 1: Important Notations

Notations Definition

𝐺 = (V, E,X) Network
¤C = { ¤𝐶1, ..., ¤𝐶𝑚} The set of training communities
N(𝑢) Neighbors of node 𝑢
x(𝑢) Raw features of node 𝑢
x′(𝑢) Augmented features of node 𝑢
z(𝑢) Embedding of node 𝑢
z(𝐶𝑖) Embedding of community 𝐶𝑖

𝜕𝐶 = ∪𝑢∈𝐶N(𝑢) \𝐶 Outer boundary of the community 𝐶
s𝑡 (𝑢) Representation of node 𝑢 at time 𝑡

As shown in Figure 3, we first describe the inference process of
CLARE. It consists of 2 components, Community Locator and
Community Rewriter. For a specified training community, the
locator would seek its best match from all candidate communities.
For efficiency, 𝑘-ego net (a central node along with its neighbors
within 𝑘 hops) of each node in the network is regarded as a can-
didate. Considering that the community detected by locator may
not be accurate, as its structure is fixed, we introduce Community
Rewriter for further refinement. It acts like an intelligent agent that
adjusts the community structures by performing actions. Specifi-
cally, it determines whether to exclude existing nodes or expand
towards the outer boundary (the neighbors of nodes in this com-
munity) during each step. This iterative process is repeated until
encountering “STOP” signal, at which point we obtain the final
predicted community.

3.1 Community Locator
In this subsection, we explain our community locator component.
Specifically, we implement community order embedding to encode
each community and match candidate communities. In this way,
we can quickly locate potential communities.

KDD ’22, August 14–18, 2022, Washington, DC, USA Xixi Wu et al.

Network

Community
Order Embedding

Predicted
community

Outer boundary

1:Community Locator

Match 𝑆!

𝑆!"#

Agent

2:Community Rewriter

𝑎𝑐𝑡𝑖𝑜𝑛 𝑎!

STOP

EXCLUDE EXPAND

Final Result

Candidates:
𝑘-ego net

Node 5 Virtual node

5

1
2

3

4

5

6 7
8

,

Training set

, ···

Figure 3: CLARE inference framework. For a specified training community, suppose our goal is to detect a new community
similar to it in the network. We utilize community locator for locating the best-matched candidate community. We further
rewrite this candidate community by feeding it to a well-trained structure agent. After performing incremental “EXCLUDE”
and “EXPAND” actions suggested by this agent, we obtain the final predicted community.

3.1.1 Design goal. We map each community into a 𝑑-dimensional
vector and ensure that the subgraph relationship can be properly
reflected in the embedding space: if community𝐶𝑎 is a subgraph of
community 𝐶𝑏 , then corresponding community embedding z(𝐶𝑎)
has to be in the “lower-left” of embedding z(𝐶𝑏):

z(𝐶𝑎) [𝑖] ≤ z(𝐶𝑏) [𝑖], ∀𝑑𝑖=1, iff 𝐶𝑎 ⊆ 𝐶𝑏 .

We adopt this idea of order embedding proposed in [38] to imple-
ment community order embedding. To our knowledge, migrating
the matching method into detection tasks is quite novel. When the
embeddings of two communities are very close to each other, we
consider these two communities as isomorphic. To realize this goal,
the max margin loss is utilized for training:

L =
∑︁
𝑃𝑜𝑠

𝐸

(
z(𝐶𝑎), z(𝐶𝑏)

)
+

∑︁
𝑁𝑒𝑔

max
{
0, 𝛼 − 𝐸

(
z(𝐶𝑎), z(𝐶𝑏)

)}
,

where 𝐸
(
z(𝐶𝑎), z(𝐶𝑏)

)
=

max
{
0, z(𝐶𝑎) − z(𝐶𝑏)

}2
2
. (1)

Here 𝑃𝑜𝑠 denotes the set of positive samples where community 𝐶𝑎

is a subgraph of 𝐶𝑏 in each pair (𝐶𝑎,𝐶𝑏), 𝑁𝑒𝑔 denotes the set of
negative samples, and margin 𝛼 is a distance parameter.

3.1.2 Identifying potential communities. Weutilize the well-trained
community order embedding for identifying potential communities.
In order to quickly divide the entire network into small subgraphs,
we regard the 𝑘-ego net of each node in the network as a candidate
community. As we feed these candidates to the encoder, we can get
their representations Z = {z(𝐶1), ... , z(𝐶 |V |)} where 𝐶𝑖 denotes
the 𝑘-ego net of node 𝑖 ∈ V . Similarly, training communities are
encoded as ¤Z = {z(¤𝐶1), ... , z(¤𝐶𝑚)}, each of which is treated as a
pattern for matching. Suppose our goal is to predict 𝑁 new commu-
nities, then the 𝑛 (𝑛 = 𝑁

𝑚) candidate communities closest to each
training one in the embedding space are considered as predicted
results.

We also have an alternative method for detecting arbitrary num-
bers of communities in the lack of prior knowledge 𝑁 . Specifically,
we can use some threshold [to take any community whose similar-
ity to the closest training community is above [. Since the identified
communities are ranked by the similarity measures, i.e., the distance
in the latent space, we can stop when the identified community

is not that similar to what we are looking for. In this way, the
requirement of 𝑁 can be avoided.

3.1.3 Graph Neural Networks based encoder. Here we describe the
concrete encoding process of communities. For a specific node 𝑢 ∈
V , we augment its feature as x′(𝑢) = [x(𝑢), 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑢),max(𝐷𝑁 (𝑢)),
min(𝐷𝑁 (𝑢)),mean(𝐷𝑁 (𝑢)), std(𝐷𝑁 (𝑢))] where x(𝑢) is the raw
features of node𝑢 with default value as 1 and𝐷𝑁 (𝑢) = {𝑑𝑒𝑔𝑟𝑒𝑒 (𝑣) |𝑣 ∈
N (𝑢)}. Hence, the expressive power of node attributes can be
boosted, which is crucial for networks without node features [6, 41].
We adopt graph neural networks (GNN) [12, 19, 34] as the basic
component of the encoder 𝑍 .

Firstly, the original node representations undergo a linear trans-
formation as z(0) (𝑢) = W1 · x′(𝑢). Then, the encoder propagates
and aggregates the information via a 𝑘-layers GNN. We study
the impact of different graph neural networks in the experiments
and will discuss later. Note that we ensure the number of layers is
in consistent with the choice of ego net dimension 𝑘 . Finally, we
concatenate the node embeddings in previous layers and perform
linear transformation again to obtain the final embedding z(𝑢) of
node 𝑢 as follows:

z(𝑢) = W2 · CONCAT
(
z(0) (𝑢), ... , z(𝑘) (𝑢)

)
,

where z(𝑙) (𝑢) denotes the embedding of node𝑢 in the 𝑙-th layer and
W𝑗 (𝑗 = 1, 2) are trainable parameters. For a specific community𝐶𝑖 ,
its embedding is calculated as z(𝐶𝑖) = ∑

𝑢∈𝐶𝑖 z(𝑢).
So far, the optimization process is summarized in Algorithm 1.

3.2 Community Rewriter
In Community Locator, we make an assumption on the structure
of predicted communities for efficiency while sacrificing flexibility.
Therefore, Community Rewriter is further proposed to provide
flexibility via intelligent refinement.

The core idea is that, given a raw predicted community 𝐶 , we
can either drop some irrelevant nodes in 𝐶 or absorb nodes from
its outer boundary, i.e., 𝜕𝐶 = ∪𝑢∈𝐶N(𝑢) \ 𝐶 , to obtain a more
accurate estimation. Such structural refinement can be considered
as a combinatorial optimization problem, where we need to pick
suitable nodes in a set to optimize the objective. Therefore, we adopt

CLARE: A Semi-supervised Community Detection Algorithm KDD ’22, August 14–18, 2022, Washington, DC, USA

2

3

4

5
6

7

Predicted
Community 𝐶

Outer
boundary 𝜕𝐶

Exclude-Net

Expand-Net

4

7

𝑺𝟏

8

𝑺𝟐

Stop

6

𝑺𝟑

Stop

1

2

3
4

5
6

78

𝑪𝟐

8

1

2

3

4

5
6

7

1

2

3

5
6

7

Final
Result "𝑪

1

Node in predicted community

Node in outer boundary

Node representations forward

State transition

SS S

S S S

Virtual node to stop exclusion

Virtual node to stop expansion

Output actions

S

S

𝝏𝑪𝟐

𝑪𝟑

𝝏𝑪𝟑

Figure 4: Community Rewriting Process. For a community 𝐶 detected in the first stage, we associate it with its outer boundary
𝜕𝐶. At the 𝑡-th step, Exclude-Net would pick a node in 𝐶𝑡 for exclusion. Similarly, Expand-Net selects a node from 𝜕𝐶𝑡 for
expansion. The next state is moved to after performing both Exclude and Expand actions. If both Exclude-Net and Expand-Net
have decided to “STOP”, the refinement ends and final predicted community is generated.

RL for automatically learning heuristics to rewrite communities.
An illustrative example of rewriting process is shown in Figure 4.

3.2.1 Task design. The refinement of a community detected by the
locator is regarded as an episode. Specifically, the initial state is de-
fined as 𝑆1 = 𝐶∪𝜕𝐶 where𝐶 is a raw predicted community and 𝜕𝐶 is
its boundary. At the 𝑡-th step, we have the current predicted commu-
nity𝐶𝑡 and its boundary 𝜕𝐶𝑡 . We further pick a node 𝑎exclude𝑡 in𝐶𝑡
for exclusion as well as a node 𝑎expand𝑡 from 𝜕𝐶𝑡 for expansion. We
would modify the community as𝐶𝑡+1 = 𝐶𝑡 \ {𝑎exclude𝑡 } ∪ {𝑎expand𝑡 }.
In this way, we move to the next state. It is worth noting that the
state is the combined representations of both𝐶𝑡 and 𝜕𝐶𝑡 . The action
space for exclusion is 𝐶𝑡 while 𝜕𝐶𝑡 serves for expansion. We also
assign a reward value for rewriting.

State. As mentioned before, the state at timestamp 𝑡 is denoted
as 𝑆𝑡 = 𝐶𝑡 ∪ 𝜕𝐶𝑡 . For any node 𝑢 ∈ 𝑆𝑡 , we give it a node repre-
sentation s𝑡 (𝑢). We design the initial node representation s1 (𝑢) by
augmenting its first-stage embedding z(𝑢) with the information of
raw community 𝐶:

s1 (𝑢) = CONCAT (z(𝑢), I{𝑢 ∈ 𝐶}) ,
where I{condition} is the indicator function that returns 1 if the
condition is true, otherwise 0.

Each node could further combine information from its current
neighborhood. To achieve this, we also utilize a GNN-based network
𝐷 parameterized by \ . Thus, at the 𝑡-th step, the representation of
node 𝑢 is updated as:

𝐷\ (s𝑡 (𝑢)) = GNN(s𝑡 (𝑢), {s𝑡 (𝑣) |𝑣 ∈ 𝑆𝑡 }),

s𝑡+1 (𝑢) = CONCAT (𝐷\ (s𝑡 (𝑢)), I{𝑢 ∈ 𝐶𝑡+1 }) .
Action. During each step, we consider adding a new node and

dropping an existing node simultaneously. In other words, the
action suggested at the 𝑡-th step is composed of both 𝑎exclude𝑡 and
𝑎
expand
𝑡 . Specifically, we take𝐶𝑡 as the action space for “EXCLUDE”
while 𝜕𝐶𝑡 serves for “EXPAND”.

We design respective policy networks for these two kinds of
actions. They share similarities in the overall architecture: basic
Multilayer Perceptron (MLP) [26] ends with a softmax layer to
measure the probability of taking a specified node:

𝑎exclude𝑡 = 𝑈𝜙 (𝐶𝑡) = Softmax
(
MLP𝜙 ({s𝑡 (𝑢) |𝑢 ∈ 𝐶𝑡 })

)
,

𝑎
expand
𝑡 = 𝑃𝜓 (𝜕𝐶𝑡) = Softmax

(
MLP𝜓 ({s𝑡 (𝑣) |𝑣 ∈ 𝜕𝐶𝑡 })

)
,

where 𝜙 is the trainable parameter of Exclude-Net 𝑈 and𝜓 is the
trainable parameter of Expand-Net 𝑃 .

We add a special “STOP” action into the action space to learn
stopping criteria. Concretely, we construct a virtual node to rep-
resent the stop signal. It is an isolated node with all-zero features.
If Exclude-Net selects the virtual node, we will stop excluding and
merely expand towards the outer boundary. Similarly, we do not
expand when the virtual node is chosen for expansion. If both
exclusion and expansion end, so does the refinement process.

Reward. Since our rewriting goal is to obtain a more accurate
community estimation via incremental actions, we directly take
one of the evaluation metrics for reward computation, i.e., F1 score.
Given the suggested action 𝑎𝑡 at the 𝑡-th step, we define the reward
𝑟𝑡 at that time as the difference of F1 score brought by 𝑎𝑡 .

3.2.2 Optimization. We learn the rewriting agent 𝐴 = {𝜙,𝜓, \ }
via policy gradient [17, 31]. Since those three parameters share
the similar process of being updated, we take the Exclude-Net 𝑈
parameterized by 𝜙 as an example to illustrate the optimization.

Given a community 𝐶 detected in the first stage, we can form
an exclusion trajectory 𝜏 = {𝑆1, 𝑎1, 𝑆2, 𝑎2, ..., 𝑆𝑇 , 𝑎𝑇 , 𝑆𝑇+1} (we omit
the superscript “exclude” for brevity here). Then the reward 𝑟𝑡
obtained by performing the Exclude action 𝑎𝑡 is computed as:

𝑟𝑡 = 𝛿 (𝐶𝑡+1, ¤𝐶𝑖) − 𝛿 (𝐶𝑡 , ¤𝐶𝑖), (2)

where 𝛿 denotes F1 score and ¤𝐶𝑖 denotes the corresponding ground-
truth community. Following the same way, we further calculate
rewards for all Exclude actions 𝑎𝑡 (∀𝑇𝑡=1) in 𝜏 . Finally, we update
Exclude-Net𝜙 according to policy gradient:

𝜙 ← 𝜙 + 𝑙𝑟
𝑇∑︁
𝑡=1
∇𝜙 log𝑈𝜙 (𝑎𝑡 |𝑆𝑡) · 𝑟𝑡 , (3)

where 𝑙𝑟 stands for the learning rate of optimizing Exclude-Net𝑈
parameterized by 𝜙 .

To realize the above optimization objective, a lot of training
samples are constructed. Specifically, the generation of a sample
follows this way: firstly, we randomly pick a node 𝑢 from a training
community ¤𝐶𝑖 . Then, its 𝑘-ego net 𝐶𝑢 as well as corresponding
boundary 𝜕𝐶𝑢 are extracted. Repeatedly, the set of training samples
is constructed asD = {(𝐶𝑢∪𝜕𝐶𝑢 , ¤𝐶𝑖)}where𝐶𝑢 is a𝑘-ego net with

KDD ’22, August 14–18, 2022, Washington, DC, USA Xixi Wu et al.

𝑢 coming from some training community ¤𝐶𝑖 ∈ ¤C. Notably, we fix
the structure of these training samples as 𝑘-ego net to simulate the
communities detected by the community locator and ¤𝐶𝑖 is utilized
for calculating the rewards.

For a training sample (𝐶𝑢 ∪ 𝜕𝐶𝑢 , ¤𝐶𝑖), the agent will produce a
trajectory 𝜏 = {(𝑆𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑆𝑡+1)} where 𝑎𝑡 is composed of 𝑎exclude𝑡

and𝑎expand𝑡 .We calculate the reward 𝑟𝑡 associatedwith ¤𝐶𝑖 according
to Equation 2. The next state 𝑆𝑡+1 is generated by taking the action
𝑎
expand
𝑡 and 𝑎exclude𝑡 from the current state 𝑆𝑡 . When the Expand or
Exclude action selects the virtual node, this kind of action will stop.
If both expansion and exclusion are stopped, the episode ends and
we obtain a complete trajectory 𝜏 . Based on the collected trajectory
𝜏 for each training sample, we update parameters in the agent. The
detailed process is described in Algorithm 2.

3.3 Summary
We summarize the CLARE framework as shown in Algorithm 3.
Recall that with𝑚 labeled communities as training data, our goal
is to detect 𝑁 new communities in the network.

Firstly, we train the community locator by leveraging known
communities. Then we take each training community as a pattern
for matching 𝑛 closest candidate communities in the embedding
space (𝑛 = 𝑁

𝑚). Actually, the 𝑘-ego net of each node in the network
serves as a candidate. After matching, we can get 𝑁 raw predicted
communities. Next, we train the community rewriter. For each
community detected in the first stage, it is fed to this well-trained
agent and refined into a new community. Finally, we obtain 𝑁

modified communities as final results.

4 EXPERIMENTS
In this section, we conduct extensive experiments to verify both the
effectiveness and efficiency of CLARE on multiple datasets. We also
compare the robustness of existing semi-supervised community
detection algorithms under different conditions. Due to the space
limitation, we move the implementation details and parameters
study to Appendix.

4.1 Experiment Setup
Evaluation metrics. For networks with ground-truth communi-
ties, the most used evaluation metrics are bi-matching F1 score and
Jaccard score [4, 8, 14, 41]. Given 𝑀 ground truth communities
{ ¤𝐶 𝑗 } and 𝑁 generated communities {𝐶𝑖 }, we compute scores as:

1
2

(
1
𝑁

∑︁
𝑖

max
𝑗

𝛿 (𝐶𝑖 , ¤𝐶 𝑗) + 1
𝑀

∑︁
𝑗

max
𝑖

𝛿 (𝐶𝑖 , ¤𝐶 𝑗)
)
, (4)

where 𝛿 can be F1 or Jaccard function. Besides, we use the over-
lapping normalized mutual information (ONMI) [23] as a supple-
mentary metric, which is the overlapping-version of NMI score. For
more information of ONMI, please refer to [23].

Datasets. To comprehensively assess the effectiveness of our
model, we conduct experiments both on single datasets (a net-
work with partially labeled communities) and hybrid datasets
(combination of multiple different single datasets).

Table 2: Statistics of datasets. 𝐶𝑀𝑎𝑥 denotes the largest com-
munity size while 𝐶𝐴𝑣𝑔 denotes the average community size.

#𝑁 #𝐸 #𝐶 𝐶𝑀𝑎𝑥 𝐶𝐴𝑣𝑔

Amazon 6,926 17,893 1,000 30 9.38
DBLP 37,020 149,501 1,000 16 8.37

Livejournal 69,860 911,179 1,000 30 13.00

Amazon+DBLP 43,946 172,394 2,000 30 8.88
DBLP+Livejournal 106,880 1,070,680 2,000 30 10.69

Single datasets.We choose three common real-world networks
containing overlapping communities from SNAP1 (Amazon, DBLP,
and Livejournal). Note that these networks are partially labeled, i.e.,
most nodes do not belong to any community. Thus, we can view
that there are other types of communities in the networks, and our
targeted communities are the labeled ones.
Hybrid datasets. We create hybrid networks by combining two
different networks following related works [41]. For example, we
stack Amazon and DBLP by randomly adding 5,000 cross-networks
links between two graphs, resulting in a bigger network. Since
communities in different networks exhibit different features [35],
we obtain a single network with various types of communities in
this way. Similarly, we combine DBLP and Livejournal by adding
10,000 cross-networks links. These two networks are named “Ama-
zon+DBLP” and “DBLP+Livejournal”, respectively. Note that we
only add some cross-networks links, so the internal connectivity
between communities will not be disturbed.

The statistics of all datasets are shown in Table 2. For each single
dataset, we use 90 communities as the training set, 10 as the valida-
tion set, and the rest as the test set. As to hybrid datasets, we aim to
pinpoint one kind of community. For example, on Amazon+DBLP,
we would take 90 communities from Amazon for training, 10 for
validation, and the remaining communities from Amazon serve for
testing.

Compared baselines. We compare CLARE with the following
methods: (1) BigClam [36] and (2) its assisted version BigClam-A, (3)
ComE [7], (4) CommunityGAN [14], (5) vGraph [30], (6) Bespoke [4]
and (7) SEAL [41]. Methods (1)-(5) are strong community detection
baselines while (6)-(7) are semi-supervised methods requiring train-
ing communities. Other simple baselines like GCN+K-Means have
been shown inferior performance [7, 40], and thus we skip those
methods. We limit the numbers of their outputs to 1000 communi-
ties. For methods (1)-(5), we filter detected communities who have
more than 50% overlaps with communities in training/validation
sets as SEAL [41] does. The data pre-processing steps and compar-
ing methods are detailed in Appendix A.1 and A.2, respectively.

4.2 Overall Performance
Experimental results are shown in Table 3. For hybrid dataset “Ama-
zon+DBLP”, we conduct experiments that utilize 100 communities
from DBLP as prior knowledge to detect the remaining DBLP com-
munities in the combined network, as well as utilizing 100 commu-
nities from Amazon to detect the remaining Amazon communities.

1http://snap.stanford.edu/data/

CLARE: A Semi-supervised Community Detection Algorithm KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 3: Summary of the performance in comparison with baselines. N/A means the model fails to converge in 2 days. We
report the results of CLARE with 𝑘=1 on DBLP while 𝑘=2 on all other datasets.

Dataset BigClam BigClam-A ComE CommunityGAN vGraph Bespoke SEAL CLARE

F1

Amazon 0.6885 0.6562 0.6569 0.6701 0.6895 0.5193 0.7252 0.7730
DBLP 0.3217 0.3242 N/A 0.3541 0.1134 0.2956 0.2914 0.3835

Livejournal 0.3917 0.3934 N/A 0.4067 0.0429 0.1706 0.4638 0.4950
Amazon∗DBLP 0.1759 0.1745 N/A 0.0204 0.0769 0.0641 0.2733 0.3988
DBLP∗Amazon 0.2363 0.2346 N/A 0.0764 0.1002 0.2464 0.1317 0.2901

DBLP∗Livejournal 0.0909 0.0859 N/A 0.0251 0.0131 0.0817 0.1906 0.2480
Livejournal∗DBLP 0.2183 0.2139 N/A 0.0142 0.0206 0.1893 0.2291 0.2894

Jaccard

Amazon 0.5874 0.5623 0.5691 0.6045 0.5721 0.4415 0.6792 0.6827
DBLP 0.2186 0.2203 N/A 0.2830 0.0645 0.2593 0.2143 0.3132

Livejournal 0.3102 0.3076 N/A 0.3183 0.0222 0.1324 0.3795 0.4027
Amazon∗DBLP 0.1102 0.1095 N/A 0.0109 0.0421 0.0488 0.2419 0.3241
DBLP∗Amazon 0.1485 0.1478 N/A 0.0610 0.0555 0.2135 0.0879 0.2166

DBLP∗Livejournal 0.0523 0.0485 N/A 0.0120 0.0066 0.0756 0.1485 0.1893
Livejournal∗DBLP 0.1505 0.1464 N/A 0.0097 0.0105 0.1503 0.1907 0.2308

ONMI

Amazon 0.5865 0.5625 0.5570 0.6040 0.5532 0.4129 0.6862 0.7015
DBLP 0.1113 0.1110 N/A 0.2324 0.0020 0.2347 0.1603 0.2600

Livejournal 0.2696 0.2641 N/A 0.3171 <1e-4 0.1024 0.3695 0.3703
Amazon∗DBLP 0.0305 0.0334 N/A <1e-4 < 1e-4 0.0364 0.2475 0.3126
DBLP∗Amazon 0.0471 0.0477 N/A 0.0523 <1e-4 0.1780 0.0380 0.1566

DBLP∗Livejournal 0.0113 0.0065 N/A <1e-4 <1e-4 0.0723 0.1155 0.1331
Livejournal∗DBLP 0.0858 0.0795 N/A 0.0053 <1e-4 0.1248 0.1906 0.2012

They are denoted as DBLP∗Amazon and Amazon∗DBLP, respec-
tively. Similarly, we conduct experiments named DBLP∗Livejournal
and Livejournal∗DBLP. From Table 3, we find that:
• CLARE achieves noticeable improvements on almost all datasets
compared with all the baselines, demonstrating its exceptional
performance. The improvements on hybrid datasets are more
significant, indicating its superiority in pinpointing the targeted
community.
• Community detection algorithms are shown their unsuitability
in targeting a specific kind of community, as they perform poorly
on hybrid datasets. For example, CommunityGAN [14] is the
best baseline model on DBLP while its performance degrades
dramatically on all hybrid datasets. CommunityGAN learns node-
community membership matrix and assigns each node into some
community. vGraph [30] also assumes that each node belongs to
multiple communities. These approaches are more like cluster-
ing all nodes in the network rather than locating some specific
type of communities. On hybrid datasets, assigning total 106,880
nodes into 1000 clusters could generate irrelevant communities
on extremely large scale, resulting in inferior performance.
• Semi-supervised community detection models (CLARE, SEAL
[41], and Bespoke [4]) gain better predicted results on both kinds
of datasets generally. For example, SEAL is the best baseline
model on most datasets.
• Bespoke performs well on DBLP, because the community struc-
tures on this dataset is closest to its assumption, 1-ego net. When
other datasets do not conform to this structural assumption, the
performance degrades. This also exposes the inflexibility and
poor generalization of Bespoke.

4.3 Ablation Study
To evaluate the effectiveness of both components of CLARE, we
conduct ablation experiments. The ONMI results are shown in
Table 4. Due to space limitation, we omit the results of F1 score and
Jaccard score, which show similar trends with ONMI.

Community Locator. We report the communities detected by
the community locator as “Locator” in Table 4. For an intuitive
comparison, we also generate the same number of random sub-
graphs in the form of 𝑘-ego net. We can see that the locator already
obtains excellent performance as the improvement compared with
random subgraphs is significant. Notably, solely locator has out-
performed most baselines, showing the effectiveness of locating
targeted communities from the matching approach.

Community Rewriter. By comparing the results between “Lo-
cator” and “CLARE”, it is clear that the introduction of rewriter
can obtain better performance. The improvements on DBLP related
datasets are relatively marginal. This is because the community
structures on DBLP are very close to 1-ego net form, it only takes
few actions to rewrite.

We conduct a case study to see how rewriter works as shown in
Figure 5. It learns quite different heuristics for different networks,
demonstrating its adaptability and flexibility. For example, on Ama-
zon, many nodes in the same ground-truth community are not
detected in the first stage, but the rewriter can intelligently absorb
them. Besides, on Livejournal, though raw predicted results include
few irrelevant nodes (not in the same ground-truth community
with others), many of them can be correctly eliminated.

KDD ’22, August 14–18, 2022, Washington, DC, USA Xixi Wu et al.

Table 4: Ablation Study on ONMI score. “𝑘-ego subgraph” is generated by randomly selecting some subgraphs in the form
of 𝑘-ego net. “Locator” denotes raw communities detected by the community locator. Note that “CLARE” are obtained via
rewriting those communities detected by the locator.

Amazon DBLP Livejournal Amazon∗DBLP DBLP∗Amazon DBLP∗Livejournal Livejournal∗DBLP

𝑘-ego subgraph 0.4323 0.1112 0.1140 0.0632 0.0855 0.0365 0.0726
Locator 0.6586 0.2585 0.3592 0.3088 0.1546 0.1322 0.1964
CLARE 0.7015 0.2600 0.3703 0.3126 0.1566 0.1331 0.2012

Amazon LiveJournal

Before
Rewriting

After
Rewriting

Node in the same ground-truth community Node not in the same ground-truth community

Figure 5: Case study of the community rewriter. On Amazon,
many undetected nodes can be correctly absorbed while ir-
relevant nodes are correctly removed on Livejournal.

101 102 103 104

Time on Amazon

0.4

0.5

0.6

0.7

0.8

0.9

F
1
 s

c
o

r
e

101 102 103 104

Time on DBLP

0.0

0.1

0.2

0.3

0.4

0.5

102 103 104

Time on LiveJournal

0.00

0.13

0.26

0.39

0.52

0.65BigClam ComE CommunityGAN vGraph Bespoke SEAL CLARE

102 103 104

Time on Amazon*DBLP

0.0

0.1

0.2

0.3

0.4

0.5

F
1
 s

c
o

r
e

102 103 104

Time on DBLP*Amazon

0.00

0.09

0.18

0.27

0.36

102 103 104 105

Time on DBLP*LiveJournal

0.00

0.08

0.16

0.24

0.32

102 103 104 105

Time on LiveJournal*DBLP

0.00

0.09

0.18

0.27

0.36

Figure 6: Efficiency comparison with all baselines.

4.4 Efficiency Study
We evaluate the efficiency of CLARE by directly comparing the
total running time (training plus testing) with all baselines. In this
evaluation, all parameters for baselines are set following their orig-
inal papers. Figure 6 illustrates the performance (F1 score) and
running time (second). Since ComE fails to converge in two days
on all datasets except Amazon, we do not show it on those datasets.

Notably, the running time of CLARE is consistently competitive.
Even on the largest dataset with totally 106,800 nodes, it takes
CLARE only about 1000 seconds. Simultaneously, its performance
(F1 score) beats that of other quicker models.

4.5 Discussions
In this section, we compare the robustness of existing semi-supervised
community detection algorithms under different conditions: (1)

10 20 50 75 100 125 200

Train

0.05

0.12

0.19

0.26

0.33

F
1
 s

c
o

r
e

Performance on Livejournal*DBLP

CLARE

SEAL

Bespoke

(a) Number of training communities

0 1k 5k 10k 15k 20k 25k

Cross-Networks links

0.05

0.12

0.19

0.26

0.33

F
1
 s

c
o

r
e

Performance on Livejournal*DBLP

CLARE

SEAL

Bespoke

(b) Number of cross-networks links

Figure 7: The performance trend of semi-supervised commu-
nity detection algorithms under different conditions.

different numbers of training communities; (2) different levels of
network noises, i.e., different numbers of cross-networks links.

4.5.1 Different numbers of training communities. With the num-
ber of training communities (Livejournal) ranging from 10 to 200
progressively, we compare the performance of Bespoke, SEAL, and
CLARE on Livejournal*DBLP. As shown in Figure 7(a), we find that:

• CLARE can learn from training data progressively. With the
number of training communities increasing, the performance of
CLARE firstly undergoes improvement and then remains stable.
Actually, richer subgraph patterns and rewriting patterns can
be sampled from increasing training communities, resulting in
more accurate results.
• On the contrary, Bespoke and SEAL show fluctuations on perfor-
mance. This is because their performance relies heavily on the
seed selector, which is vulnerable to limited training data.

4.5.2 Different numbers of cross-networks links. Recall that we
create hybrid datasets via adding cross-networks links. We view
different numbers of added links as different levels of network
noises. Because with the number of added links increasing, there
will be some new densely connected subgraphs, promising to be
mis-detected. We set the number of cross-networks links ranging
from 0 to 25,000 and report the results in Figure 7(b). We can see
CLARE is quite robust while SEAL and Bespoke are rather volatile.
This also indicates that these seed-based methods are susceptible
to interference from network noises.

4.6 Application on the attributed graphs
Considering that our experimental networks are non-attributed
graphs, we supplement an experiment to show that our model can
also achieve good performance on the attributed graphs. We use

CLARE: A Semi-supervised Community Detection Algorithm KDD ’22, August 14–18, 2022, Washington, DC, USA

the Facebook dataset in SEAL [41], consisting of 3,622 nodes, 76,596
edges, 317 node attributes, and 130 communities. We follow the
same experimental settings with SEAL.

From Table 5, we can see that CLARE outperforms SEAL even
without node attributes and performs much better when attributes
are available. It indicates that CLARE not only captures the struc-
tural features of training communities but also effectively utilizes
node attributes to obtain more accurate predicted results.

Table 5: Experimental results on attributed network Face-
book. CLARE w/o attr. means CLARE without attributes.

SEAL CLARE w/o attr. CLARE Improv

F1 0.3402 0.3829 0.4126 21.28%
Jaccard 0.2491 0.2815 0.3047 22.32%

5 CONCLUSION
In this paper, we study the semi-supervised community detection
problem from a new subgraph perspective. We propose CLARE
where the community locator can quickly locate communities and
the community rewriter further refines their structures. Specifically,
we formulate the structural refinement as a graph combinatorial
optimization based on RL. Experiments on real-world datasets prove
both the effectiveness and efficiency of our proposal. As for future
work, we will try other RL-based optimization methods to further
improve the effectiveness of rewriting.

ACKNOWLEDGMENTS
This work is funded in part by the National Natural Science Founda-
tion of China Projects No. U1936213 and No. U1636207. This work is
also supported in part by NSF under grants III-1763325, III-1909323,
III-2106758, and SaTC-1930941.

REFERENCES
[1] Boanerges Aleman-Meza, Christian Halaschek-Wiener, Satya Sanket Sahoo, A.

Sheth, and Ismailcem Budak Arpinar. 2005. Template Based Semantic Similarity
for Security Applications. In ISI.

[2] Lars Backstrom, Daniel P. Huttenlocher, Jon M. Kleinberg, and Xiangyang Lan.
2006. Group formation in large social networks: membership, growth, and
evolution. In KDD.

[3] Yunsheng Bai, Haoyang Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei
Wang. 2019. SimGNN: A Neural Network Approach to Fast Graph Similarity
Computation. In WSDM.

[4] Arjun Bakshi, Srinivasan Parthasarathy, and Kannan Srinivasan. 2018. Semi-
Supervised Community Detection Using Structure and Size. In ICDM. 869–874.

[5] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment 2008 (2008), 10008.

[6] Chen Cai and YusuWang. 2019. A simple yet effective baseline for non-attributed
graph classification. arXiv:1811.03508 [cs.LG]

[7] Sandro Cavallari, V. Zheng, HongYun Cai, K. Chang, and E. Cambria. 2017. Learn-
ing Community Embedding with Community Detection and Node Embedding
on Graphs. In CIKM.

[8] Tanmoy Chakraborty, Ayushi Dalmia, Animesh Mukherjee, and Niloy Ganguly.
2016. Metrics for Community Analysis: A Survey. arXiv:1604.03512 [cs.SI]

[9] Aaron Clauset, Mark E. J. Newman, and Cristopher Moore. 2004. Finding com-
munity structure in very large networks. Physical review. E, Statistical, nonlinear,
and soft matter physics 70 6 Pt 2 (2004).

[10] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub)
graph isomorphism algorithm for matching large graphs. In PAMI.

[11] Michelle Guo, Edward Chou, De-An Huang, Shuran Song, Serena Yeung, and
Li Fei-Fei. 2018. Neural Graph Matching Networks for Fewshot 3D Action
Recognition. In ECCV.

[12] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NIPS.

[13] Xia Hu, Jiliang Tang, and Huan Liu. 2014. Online Social Spammer Detection. In
AAAI.

[14] Yuting Jia, Qinqin Zhang, Weinan Zhang, and Xinbing Wang. 2019. Community-
GAN: Community Detection with Generative Adversarial Nets. In WWW.

[15] Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong
Zhu. 2020. Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning. In ICDM.

[16] Di Jin, Ziyang Liu, Weihao Li, Dongxiao He, and Weixiong Zhang. 2019. Graph
Convolutional Networks Meet Markov Random Fields: Semi-Supervised Com-
munity Detection in Attribute Networks. In AAAI.

[17] Sham M. Kakade. 2001. A Natural Policy Gradient. In NIPS.
[18] Elias Boutros Khalil, Hanjun Dai, Yuyu Zhang, Bistra N. Dilkina, and Le Song.

2017. Learning Combinatorial Optimization Algorithms over Graphs. In NIPS.
[19] Thomas Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph

Convolutional Networks. ArXiv abs/1609.02907 (2017).
[20] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.

Graph Matching Networks for Learning the Similarity of Graph Structured Ob-
jects. In ICML.

[21] Ye Li, Chaofeng Sha, XinHuang, and Yanchun Zhang. 2018. Community Detection
in Attributed Graphs: An Embedding Approach. In AAAI.

[22] Qiang Ma, Suwen Ge, Danyang He, Darshan D. Thaker, and Iddo Drori. 2019.
Combinatorial Optimization by Graph Pointer Networks and Hierarchical Rein-
forcement Learning. ArXiv abs/1911.04936 (2019).

[23] Aaron F. McDaid, Derek Greene, and Neil Hurley. 2013. Normalized Mu-
tual Information to evaluate overlapping community finding algorithms.
arXiv:1110.2515 [physics.soc-ph]

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518 (2015),
529–533.

[25] Bryan Perozzi, Leman Akoglu, Patricia Iglesias Sánchez, and Emmanuel Müller.
2014. Focused clustering and outlier detection in large attributed graphs. In KDD.

[26] Frank Rosenblatt. 1963. PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS
AND THE THEORY OF BRAIN MECHANISMS. American Journal of Psychology
76 (1963), 705.

[27] Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, and Dongsheng Li. 2021. Rein-
forcement Learning Enhanced Explainer for Graph Neural Networks. In NIPS.

[28] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. ArXiv
abs/1811.05868 (2018).

[29] Jianbo Shi and Jitendra Malik. 1997. Normalized cuts and image segmentation.
In CVPR. 731–737.

[30] Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, and Jian Tang.
2019. vGraph: A Generative Model for Joint Community Detection and Node
Representation Learning. In NIPS.

[31] Richard S. Sutton, David A. McAllester, Satinder Singh, and Y. Mansour. 1999. Pol-
icy Gradient Methods for Reinforcement Learning with Function Approximation.
In NIPS.

[32] Julian R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. Journal of
the ACM (JACM) 23 (1976), 31 – 42.

[33] Xiao Wang, Di Jin, Xiaochun Cao, Liang Yang, and Weixiong Zhang. 2016. Se-
mantic Community Identification in Large Attribute Networks. In AAAI.

[34] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks? ArXiv abs/1810.00826 (2019).

[35] Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network com-
munities based on ground-truth. Knowledge and Information Systems 42 (2012),
181–213.

[36] Jaewon Yang and Jure Leskovec. 2013. Overlapping community detection at scale:
a nonnegative matrix factorization approach. In WSDM. 587–596.

[37] Jaewon Yang, Julian McAuley, and Jure Leskovec. 2013. Community Detection in
Networks with Node Attributes. In ICDM.

[38] Rex Ying, Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, and
Jure Leskovec. 2020. Neural Subgraph Matching. arXiv:2007.03092 [cs.LG]

[39] Hongyi Zhang, Irwin King, and Michael R. Lyu. 2015. Incorporating Implicit
Link Preference Into Overlapping Community Detection. In AAAI.

[40] Tianqi Zhang, Yun Xiong, Jiawei Zhang, Yao Zhang, Yizhu Jiao, and Yangyong
Zhu. 2020. CommDGI: Community Detection Oriented Deep Graph Infomax. In
CIKM.

[41] Yao Zhang, Yun Xiong, Yun Ye, Tengfei Liu, Weiqiang Wang, Yangyong Zhu, and
Philip S. Yu. 2020. SEAL: Learning Heuristics for Community Detection with
Generative Adversarial Networks. In KDD. 1103–1113.

https://arxiv.org/abs/1811.03508
https://arxiv.org/abs/1604.03512
https://arxiv.org/abs/1110.2515
https://arxiv.org/abs/2007.03092

KDD ’22, August 14–18, 2022, Washington, DC, USA Xixi Wu et al.

A REPRODUCIBILITY
We release CLARE at https://github.com/FDUDSDE/KDD2022CLARE.
We implement CLARE in Pytorch2, PyG3, and DeepSNAP4. All ex-
periments are conducted on a single NVIDIA Tesla V100 SXM2
with 32G memory.

A.1 Data Pre-processing
We use the networks with ground-truth communities (Amazon,
DBLP, and Livejournal) provided by SNAP. For conducting experi-
ments, we perform the following pre-processing:

(1) We omit communities whose size are beyond the 90-th per-
centile. For example, the largest community in DBLP contains 7,556
nodes, while the 90-th percentile is only 16. By doing so, we can
exclude outliers.

(2) Furthermore, we randomly select 1000 communities from
these retrieved ones. This number is a trade-off between maintain-
ing a relatively large network and being scalable on most baselines.
Note that ComE [7], CommunityGAN [14], and vGraph [30] mainly
use networks with thousands of nodes in their original papers. They
can hardly execute on networks consisting of total communities
due to huge memory utilization.

(3) For each dataset, we extract a subgraph that contains only the
nodes in communities and their corresponding outer boundaries.
In this way, we obtain the final datasets for experiments.

For hybrid datasets, given that Amazon and Livejournal are
significantly different in size (almost 1:10 in scale), we skip merging
these two datasets and just consider Amazon+DBLP and
DBLP+Livejournal combinations.

A.2 Comparing methods
During experiments, we consider both community detection and
semi-supervised community detection strong baselines.
Community detection algorithms:
• BigClam [36]: This is a strong baseline for overlapping commu-
nity detection based on matrix factorization. We also consider
an assisted version of BigClam following the work [4], denoted
by BigClam-A.
• ComE [7]: This is a framework that jointly optimizes community
embedding, community detection, and node embedding.
• CommunityGAN [14]: This is a method that extends the gener-
ative model of BigClam from edge level to motif level.
• vGraph [30]: This is a probabilistic generative model to learn
community membership and node representation collaboratively.

Semi-supervised community detection algorithms:
• Bespoke [4]: This is a semi-supervised community detection
algorithm based on structure and size information.
• SEAL [41]: This is the start-of-the-art semi-supervised commu-
nity detection algorithm that aims to learn heuristics for commu-
nity detection based on GAN.
Executable file for BigClam is from SNAP. Codes for ComE, Com-

munityGAN, vGraph, Bespoke, SEAL are provided by the authors.

2https://pytorch.org/
3https://pytorch-geometric.readthedocs.io/
4https://snap.stanford.edu/deepsnap/

ComE [7] can not be convergedwithin 2 days onmost datasets, so
we report N/A. CommunityGAN [14] and vGraph [30] suffer from
high memory utilization. So we employ the mini-batch strategy
with the batch size of 5000 or 15000 for optimizing vGraph. As
to CommunityGAN, we replace its Adam optimizer with a SGD
optimizer for reducing memory usage. In addition, we all follow
their default parameters settings.

A.3 Implementation Details
In this section, we emphasize some details of CLARE implementa-
tion. Hyper-parameters are summarized in Table 7.

Community Size: From Table 2 we can see some networks are
rather dense and sometimes the size of 1-ego net may exceed the
maximum size of communities. Therefore, we set the maximum
size for generated communities as the maximum size of training
ones.

Outer Boundary Size: As mentioned before, some networks
are quite dense, the size of a specific outer boundary may by huge,
resulting in slow convergence for the optimization of the rewriter.
Thus, we fix the maximum size of outer boundary as 10.

Table 7: Hyper-parameters in CLAER

Component Hyper-parameter Value

Locator

Batch size 32
Number of samples in one batch 50

Number of epochs 2
Embedding dimension 64

𝑘 & GNN layers Searched from {1, 2}
Learning rate 1e-4
Optimizer Adam

Dropout rate 0.2
Margin 𝛼 0.4

Rewriter

MLP of Exclude-Net 65-32-1
MLP of Expand-Net 65-32-1
Embedding updater 65-64 GIN

Optimizer Adam
Maximum size of outer boundary 10

Epoch 1200
Episode for one epoch 20

k=1 k=2 k=3 k=4
0.55

0.60

0.65

0.70

0.75

O
N
M
I

Locator CLARE

(a) Performance on Amazon

k=1 k=2 k=3 k=4
0.10

0.15

0.20

0.25

O
N
M
I

Locator CLARE

(b) Performance on DBLP

Figure 8: Comparison with different choices of 𝑘

https://github.com/FDUDSDE/KDD2022CLARE

CLARE: A Semi-supervised Community Detection Algorithm KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 6: Comparison with different graph neural network encoders. Locator results are reported.

Amazon DBLP Livejournal
F1 Jaccard ONMI F1 Jaccard ONMI F1 Jaccard ONMI

GCN 0.7438 0.6473 0.6586 0.3819 0.3116 0.2585 0.4899 0.3953 0.3592
GIN 0.7169 0.6196 0.6313 0.3841 0.3100 0.2561 0.4943 0.4004 0.3660
GAT 0.7231 0.6235 0.6318 0.3751 0.3021 0.2446 0.4745 0.3806 0.3405

Algorithm 1: Community Locator Optimization
Input: A graph𝐺 (V, E,X) , the set of training communities ¤C

1 Compute augmented feature matrix X′ based on X
2 Initialize Encoder 𝑍
3 while not converge do
4 Generate positive pairs

B𝑝𝑜𝑠 = {(𝐶𝑖 ,𝐶 𝑗) |𝐶𝑖 ⊂ 𝐶 𝑗 ⊆ ¤𝐶𝑘 ∈ ¤C}
5 Generate negative pairs B𝑛𝑒𝑔 = {(𝐶𝑖 ,𝐶 𝑗) |𝐶𝑖 ⊈ 𝐶 𝑗 ,𝐶𝑖 ⊆

¤𝐶𝑝 ,𝐶 𝑗 ⊆ ¤𝐶𝑞, ¤𝐶𝑝 , ¤𝐶𝑞 ∈ ¤C}
6 for each pair (𝐶𝑖 ,𝐶 𝑗) ∈ B𝑝𝑜𝑠 ∪ B𝑛𝑒𝑔 do
7 Encode𝐶𝑖 ,𝐶 𝑗 as z(𝐶𝑖) = 𝑍 (𝐶𝑖) , z(𝐶 𝑗) = 𝑍 (𝐶 𝑗)
8 Traverse over B𝑝𝑜𝑠 ∪ B𝑛𝑒𝑔 to compute 𝑙𝑜𝑠𝑠 as Equation 1
9 Update 𝑍 ’s parameters using gradient descent to minimize 𝑙𝑜𝑠𝑠
Output: Encoder 𝑍

Algorithm 2: Community Rewriter Optimization
Input: Graph𝐺 (V, E,X) , encoder 𝑍 , and training communities ¤C

1 Initialize Agent 𝐴 with parameters 𝜙,𝜓, \
2 while not converge do
3 Generate a set of training samples D
4 for each sample (𝐶𝑢 ∪ 𝜕𝐶𝑢 , ¤𝐶𝑖) in D do
5 Feed forward𝐶𝑢 ∪ 𝜕𝐶𝑢 to 𝐴 and obtain the trajectory 𝜏
6 Update 𝜙,𝜓, \ with 𝜏 based on Equation 3

Output: Agent 𝐴

Algorithm 3: CLARE Algorithm
Input: A graph𝐺 (V, E,X) , the set of training communities

¤C (| ¤C | =𝑚) , and the number of output communities 𝑁
1 Train Encoder 𝑍 according to Algorithm 1
2 Ctmp, Ĉ ← ∅, ∅
3 𝑛 ← 𝑁

𝑚

4 Encode training communities as ¤Z = {z(¤𝐶𝑖) | ¤𝐶𝑖 ∈ ¤C, 𝑖 = 1, ...,𝑚}
5 Encode candidate communities as Z = {z(𝐶𝑢) |𝑢 ∈ V}
6 for each z(¤𝐶𝑖) ∈ ¤Z do
7 Find the set of 𝑛 closest candidate communities in the

embedding space C, Ctmp = Ctmp ∪ C
8 Train Agent 𝐴 according to Algorithm 2
9 for each𝐶 ∈ C𝑡𝑚𝑝 do
10 Feed𝐶 to Agent 𝐴 and obtain a refined community𝐶
11 Ĉ = Ĉ ∪ {𝐶 }

Output: The set of final predicted communities Ĉ

8 16 32 64 128

Embedding dim

0.00

0.15

0.30

0.45

0.60

0.75

F
1
 s

c
o

r
e

Amazon

DBLP

LiveJournal

Amazon*DBLP

DBLP*Amazon

DBLP*LiveJournal

LiveJournal*DBLP

(a) Different embedding dimensions

0.2 0.4 0.6 0.8 1.0

Margin

0.00

0.15

0.30

0.45

0.60

0.75

F
1
 s

c
o

r
e

Amazon

DBLP

LiveJournal

Amazon*DBLP

DBLP*Amazon

DBLP*LiveJournal

LiveJournal*DBLP

(b) Different settings of margin 𝛼

Figure 9: Parameters study with Locator results reported

B EXPERIMENTS
B.1 Design of Architectures
Design of Encoder in Community Locator: For better architec-
ture and performance, we conduct experiments about the design
of encoder in the community locator. We choose three different
graph neural networks as the encoder to learn node and commu-
nity representations, including graph convolutional network (GCN)
[19], graph isomorphism network (GIN) [34], and graph attention
network (GAT) [12]. For the fairness of comparison, on DBLP, we
fix the number of GNN layers as 1while 2 on Amazon and Livejour-
nal. We report Locator results in Table 6. As can be observed, GCN
achieves the best performance on Amazon and DBLP. Although
GIN can be competitive on Livejournal, because GIN demands more
training time and memory, we choose GCN as our encoder finally.
Since our encoding objects are small subgraphs, simple graph neural
networks are expressive enough [15, 28].

B.2 Parameters Study
In this part, we examine the influence of three key parameters.

Choices of 𝑘: Due to communities in different datasets exhibit-
ing distinct features [35], actually 𝑘 is an important parameter that
needs to be tuned. The comparison with different choices of 𝑘 is
depicted in Figure 8. The trend on different datasets varies, as Ama-
zon undergoes performance improvement with the increase of 𝑘
while DBLP deteriorates. Therefore, we set 𝑘=1 for DBLP while 𝑘=2
for the remaining datasets during experiments.

Embedding dimension: Figure 9(a) shows the dimension sensi-
tivity experiment results on all datasets. Our model exhibits robust-
ness under different settings of embedding dimensions. In general,
CLARE can reach the peak of F1 score with embedding dimension as
64 on most datasets. Therefore, our model chooses 64 as a standard
setting.

Margin 𝛼 : As shown in Figure 9(b), our model is quite stable
under different settings of 𝛼 on all datasets. During experiments,
we choose 0.4 as a standard setting for all datasets.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Community Detection
	2.2 Subgraph Matching
	2.3 Graph Combinatorial Optimization with RL

	3 Methodology
	3.1 Community Locator
	3.2 Community Rewriter
	3.3 Summary

	4 Experiments
	4.1 Experiment Setup
	4.2 Overall Performance
	4.3 Ablation Study
	4.4 Efficiency Study
	4.5 Discussions
	4.6 Application on the attributed graphs

	5 Conclusion
	References
	A REPRODUCIBILITY
	A.1 Data Pre-processing
	A.2 Comparing methods
	A.3 Implementation Details

	B EXPERIMENTS
	B.1 Design of Architectures
	B.2 Parameters Study

