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Abstract

Controllable text generation systems often
leverage control codes to direct various proper-
ties of the output like style and length. Inspired
by recent work on causal inference for NLP,
this paper reveals a previously overlooked flaw
in these control code-based conditional text
generation algorithms. Spurious correlations in
the training data can lead models to incorrectly
rely on parts of the input other than the control
code for attribute selection, significantly un-
dermining downstream generation quality and
controllability. We demonstrate the severity of
this issue with a series of case studies and then
propose two simple techniques to reduce these
correlations in training sets. The first technique
is based on resampling the data according to an
example’s propensity towards each linguistic
attribute (IPS). The second produces multiple
counterfactual versions of each example and
then uses an additional feedback mechanism to
remove noisy examples (feedback aware self-
training, FAST). We evaluate on 3 tasks – news
headline, meta review, and search ads genera-
tion – and demonstrate that FAST can signifi-
cantly improve the controllability and language
quality of generated outputs when compared
to state-of-the-art controllable text generation
approaches.

1 Introduction

In neural text generation, there is a growing in-
terest in controlling the presence of particular lin-
guistic attributes in the output text, for example
sentiment, length, politeness, and topic (Sennrich
et al., 2016; Kikuchi et al., 2016; Ficler and Gold-
berg, 2017; Shen et al., 2022). This is typically
accomplished via control codes: categorical vari-
ables that represent the desired output property and
are pre-pended to the model inputs during training
and testing (Keskar et al., 2019).

This paper builds on recent work in text-based
causal inference (Feder et al., 2021; Veitch et al.,
2021; Pryzant et al., 2021) to reveal a previously

overlooked flaw in control code-based text gener-
ation systems: spurious correlations in the data
can cause models to incorrectly rely on parts of
the input other than the control code for attribute
selection, undermining downstream generation per-
formance.

For example, consider a system that generates
news headlines while conditioning on article text
and a control code for headline length (e.g. long
for desktop, short for mobile) as in Murao et al.
(2019). We show in §4.1 that among publicly avail-
able news datasets, correlations exist between the
contents of an article and the length of that article’s
title. Longer articles or articles about technical top-
ics may be associated with longer titles. This leads
NLP models to struggle at generating short titles
from “long title”-looking articles.

We show how this phenomenon can introduce
confounding statistical relationships in the data,
leading to assumption violations and significantly
degrading model quality. Then we propose two sim-
ple data augmentation techniques for improving the
issue. Both algorithms operate by breaking these
spurious correlations and isolating the statistical
relationship between control codes and linguistic
attributes. In the first approach, we resample the
training set according to an inverse propensity score
(IPS, Robins et al. (1994)), boosting the presence
of rare context-attribute combinations in the data.
In the second approach (FAST) we train a prelimi-
nary model, use counterfactual data augmentation
to generate all possible attributes for each exam-
ple, then retrain on the counterfactually balanced
dataset, as illustrated in Figure 1.

We conduct experiments in 3 conditional text
generation scenarios: generating news headlines
from article contents (controlling the headline
lengths), generating the next sentence from pre-
ceding sentences (controlling the intent), and gen-
erating search ad copy from landing pages (control-
ling the rhetorical appeal of the ad). Our results
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Figure 1: Illustration of FAST algorithm.

suggest that FAST can significantly improve the
controllability and language quality of state-of-the-
art controllable generation systems.

In summary, our contributions are:

• Identifying an important flaw with recent con-
trollable text generation techniques and show-
ing how this flaw can undermine model per-
formance.

• A pair of simple yet effective data augmenta-
tion algorithms for dealing with this issue.

• Results and analysis demonstrating the effi-
cacy of the proposed algorithms, and their
ability to significantly improve controllabil-
ity and language quality over state-of-the-art
baselines.

2 Spuriously Correlated Control Codes

2.1 Controllable Generation

We focus on the case of conditional text
generation, where the training data Dtr =
{(x1, y1, a1), ..., (xn, yn, an)} is collection of
triples consisting of context text x, output text y,
and output linguistic attribute a. Note that in many
practical scenarios, a is inferred from y by a clas-
sifier C(y), e.g. a rule or deep learning model.
The goal is to learn a conditional language model
(CLM) for p(y|x, a), i.e. a text generation system
which conditions on the context and attribute to

generate texts that express the desired linguistic
attribute.

In practice, the linguistic attributes a are oper-
ationalized as control code tokens c which are in
one-to-one correspondence with the attributes (e.g.
“short”, “long”) and pre-pended to the context x be-
fore model input. This approach has been shown to
be effective in both non-conditional (Keskar et al.,
2019; Ficler and Goldberg, 2017) and conditional
(Shen et al., 2022; Fan et al., 2018) controllable
text generation.

2.2 Spurious Correlations
In theory, the correspondence between the control
code c and linguistic attribute a should cause mod-
els to rely on the control code to determine the
linguistic properties of the generated output. This
paper argues that in practice, parts of the context x
may be spuriously correlated with the attribute a,
undermining the consistency and efficacy of control
code-based systems.

These spurious correlations between the the con-
texts and attributes have a causal interpretation that
explains how they can undermine model perfor-
mance. The issue is that p(a|x) ̸= p(a), which is
similar to a violation of the ignorability assump-
tion in causal inference (Feder et al., 2021). This
implies that any spurious correlations between the
context x and target attribute a could represent
backdoor paths that confound the model’s learned
relationship between the control code c and the tar-
get attributes a. Thus, models are likely to depend
on context beyond the control code when determin-
ing output attributes, making them less likely to
generalize to rare context/control-code combina-
tions.

In this paper, we aim to break up these backdoor
paths and prevent the model from learning spurious
correlations. We accomplish this by modifying the
training data in two ways such that p(a|x) ≈ p(a),
with both techniques isolating the relationship be-
tween the control codes and target attributes.

2.3 Inverse propensity score (IPS) resampling
The first method we investigate for breaking the
aforementioned spurious correlations leverages
propensity scores. A propensity score is the con-
ditional probability of an example being assigned
to a treatment, given background variables (Rosen-
baum and Rubin, 1983). It plays a central role in
causal inference for dealing with spurious corre-
lations in observational data and therefore it is a



natural choice for us to try. In our case, the propen-
sity score for the ith example is the conditional
probability of the output text exhibiting linguis-
tic attribute ai given the context xi. This can be
written as

wi = p(a = ai|xi).

Intuitively, examples with low propensity scores
represent rare attribute-context combinations that
are especially important to learn (Tu et al., 2020).
Therefore, our procedure works by resampling the
data with replacement, setting the sample weight
of the ith example to 1/wi. The procedure should
work because the propensity scores of the resam-
pled data should be close to uniform: p(ai|xi) ∝
wi/wi.

In practice, we train a model to estimate propen-
sity scores. For the experiments we finetune
Roberta (Liu et al., 2019) as a sequence classi-
fier using {(x1, a1), ..., (xn, an)}. We then use the
model’s probability prediction for the observed cat-
egory ai as the propensity score estimate. We will
refer to this estimator as S(a|x).

2.4 Feedback aware self-training (FAST)

The above IPS resampling procedure has several
shortcomings, including the duplication of exam-
ples (Lee et al., 2021; Carlini et al., 2021) and
the noise/bias inherent to estimated propensity
scores (Pearl, 2009). Therefore our second method,
though originating with the same motivation and
tackling the same issue, takes an orthogonal ap-
proach. First, use a separately trained model to
produce multiple counterfactual target sequences
for each context. Next, filter the data such that
new target sequence expresses a different linguistic
attribute. Then, we retrain on the new counterfac-
tually balanced dataset. In detail, the steps are:

1. Train a conditional language model (CLM)
using the standard control code approach on
Dtr, which is denoted as CLMbaseline.

2. Use CLMbaseline to generate multiple outputs
for each context xi, one output for every con-
trol code except that which corresponds to the
ground truth attribute. For example, the set
of control codes used for datum i would be
{∀c ∈ {1, ...,K}, c ̸= ai}.

3. Detect the linguistic attribute of the genera-
tion outputs with a classifier C, and filter out
examples where the predicted attribute does
not match the inputted control code.

4. Augment the original training set Dtr with
samples from Step 3 and retrain.

Intuitively, this procedure should also drive the
propensity scores of the data towards uniform and
break the unwanted correlations between contexts
and attributes, since every context becomes paired
with multiple targets, each having a unique at-
tribute. Step 3 uses feedback from the classifier C
to remove noisy examples, preventing errors from
propagating into the final model (§4.3). We ex-
periment with classifiers C that are given a prior,
trained on (y, a) pairs from the training data Dtr,
and trained on a separate dataset having similar
properties.

3 Experimental Setup

We perform experiments in 3 important control-
lable generation settings: generating news head-
lines from article contents (controlling the head-
line lengths), generating the next sentence of a
meta-review from preceding sentences and addi-
tional context (controlling the intent), and generat-
ing search ad copy from landing pages (controlling
the rhetorical appeal of the ad). Our results sug-
gest that the proposed methods can significantly
improve the controllability and fluency of state-of-
the-art baselines.

3.1 Datasets
We experiment using 3 datasets (Table 1) that re-
flect important real-world application scenarios for
controllable generation systems.

First, we use the PENS dataset released by
Microsoft News (Ao et al., 2021). This task in-
volves generating news headlines from news ar-
ticles, while using a binary control code “short”
or “long” to control the length of the generated
headline (useful for mobile and desktop render-
ing). We use a length threshold of 55 to determine
the long/short status of existing headlines in the
data. We evaluate on these data using (1) random
train/dev/test splits, and (2) a “balanced” test set.
There are equal numbers of long and short head-
lines per article in this balanced test set. The head-
lines were sourced from 103 college students who
wrote long or short headlines without seeing the
original headlines, for an average of 3.7 headlines
per article.

Second, we use the MReD dataset released by
Shen et al. (2022). It consists of 4 years of ICLR
meta reviews with each sentence being manually



PENS
Category train dev test rnd. test bal.
Short 31,245 3,614 4,001 5,509
Long 57,351 6,666 7,074 5,509
Total 88,596 10,280 10,240 11,018

MReD
Category train dev test
Weakness 1,491 200 200
Strength 757 200 200
Decision 716 200 200
Rebuttal process 674 200 200
Abstract 581 200 200
Suggestion 438 200 200
Rating summary 338 159 135
Misc 225 143 150
AC disagreement 24 18 18
Total 5,244 1,520 1,503

Search Ads
Category train dev test
Product or Service 1,771 44.6 43.1
Call to action 1,207 37.5 36.6
Location 931 22 21.4
Highlight 851 32 30.8
Inventory 590 19 15.7
Brand name 466 11.9 11
Price 367 21.1 18.1
Benefit 309 8.6 8.6
Customer problem 156 3.7 3.9
Total 6,649 200.5 189.2

Table 1: Summary of PENS (top), MReD (middle) and
Search Ads datasets (bottom, in thousands).

annotated into one of 9 categories. Using these
data, our task is to follow the assisted writing sce-
nario of Chen et al. (2019). We generate the ith

sentence in the meta-review, controlling the intent
of the generated sentence and conditioning on all
preceding sentences and additional context (rat-
ings, individual reviews). We reuse the original
train/dev/test splits and randomly sample sentences
with at least 4 words as the target sequences. For
the training set, we pick one sentence per review.
For dev and test sets, we pick multiple sentences
per review while ensuring a nearly equal number
of samples per category. To detect the categories
of generated sentences, we train a Roberta-base
classifier on 37,252 sentences (a superset of our
generation training set), achieving a macro-F1 of
79% on hold-out test set, implying that it has strong
generalization capabilities.

Finally, we use a Search Ads dataset consisting
of landing pages, search advertisements for those
landing pages, and labels for those ads classifying
them into one of 9 common advertising strategies.
Here, the goal is to generate search ads (title and
description) from landing pages while controlling
the rhetorical appeal of the ad copy (Golobokov
et al., 2022). To obtain the category labels, we
apply a BERT-base-uncased model (Devlin et al.,

2019) trained on a separate dataset of 5,735 manu-
ally labeled ad-category pairs. This model achieves
a macro-F1 score of 70% on hold-out test set. Un-
like the PENS data, the Search Ads data do not
contain a balanced test set. However, the train, dev
and test splits for the ads data contain an average
of 1.9, 2.3 and 2.6 ads from different categories per
landing page, respectively, so there is a moderate
degree of category depth.

3.2 Baselines

We compare against five baselines: an uncontrolled
system to establish a lower bound on performance,
and four recently published neural controllable gen-
eration systems.

Uncontrolled We train BART-base (Lewis et al.,
2020) for uncontrolled generation, where the model
is only conditioned on the context.

BART+CTRL We train BART-base for control-
lable generation using the standard control code
approach (Keskar et al., 2019). The control code
is represented as the name of the category (“long”,
“price”, etc). The paragraph symbol § is used as
delimiter to separate control code and context.

PPLM We aim to enhance controllability of
BART+CTRL by further steering its decoding
towards the desired attribute. PPLM achieves
this by using gradients from an attribute classifier
p(a|y) to update the CLM’s hidden representations
(Dathathri et al., 2020).

GeDi This is a state-of-the-art technique for con-
trolling open-ended and non-conditional generation
(Krause et al., 2021). We adapt its weighted decod-
ing formula to our conditional generation setting
by including a dependency on the context x:

pw(y|x, c) ∝ p(y|x)p(c|y)ω. (1)

The key insight from GeDi is to compute p(c|y)
using Bayes rule (i.e., leveraging p(y|c)). We train
two BART-base models for p(y|x) and p(y|c) using
the same procedure as the BART+CTRL baseline.
We pick ω = 4 for PENS and MReD, and ω = 3.5
for Ads based on a brief hyperparameter search.

GeDi+x Our last baseline involves further adapt-
ing GeDi to our application domain by conditioning
everything on the context x as well as the control
code c, i.e. we concatenate the control code c and



the context x when training BART+CTRL models.
The new decoding formula is

pw(y|x, c) ∝ p(y|x, c)p(c|y)ω, (2)

and the Bayes approximation of p(c|y) is

p(c|y) = p(c|x)p(y|x, c)∑
c′ p(c

′|x)p(y|x, c′)
, (3)

where p(c|x) is further dropped as it does not de-
pend on y. We pick ω = 1 for PENS and ω = 0.5
for both MReD and Ads based on a brief hyperpa-
rameter search. Details of the above methods are
in Appendix.

3.3 Protocol
Our implementation is largely based on Hugging-
face Transformers (Wolf et al., 2020) except replac-
ing beam search with a more efficient implementa-
tion (Yan et al., 2021). We use BART-base and
Roberta-base pretrained models to better emu-
late real-world production scenarios where smaller,
more efficient models are favored. We use beam
search with beam size 5 when decoding (except
for PPLM, which uses greedy decoding). In all
experiments, we train with 2 Nvidia V100 GPUs
and inference with 1 GPU, both at fp16 precision.

For BART training, we optimize all models us-
ing Adamw (Loshchilov and Hutter, 2017) and
a learning rate of 1e-5 for PENS and 5e-5 for
MReD and Ads datasets. We do not explicitly tune
other hyperparameters. We train models, evaluat-
ing on the dev sets every epoch until the validation
score begins to decrease. Then we pick the best-
performing epoch based on ROUGE-1 with the dev
set. All experiments are repeated with 5 random
seeds when we report 95% confidence intervals
from a t-distribution. We consider p < 0.05 to
be statistically significant. More details are in the
Appendix.

4 Experiments

4.1 Spurious Correlations
We begin by empirically demonstrating the exis-
tence of spurious correlations that can degrade
downstream model quality, and show how our al-
gorithms reduce these correlations in the data. We
show these trends via a series of case studies on the
PENS news dataset. Similar studies on MReD and
Search Ads datasets are in the Appendix.

In Section 2.2, we defined the spurious correla-
tion issue as unwanted dependencies between the

Method PENS MReD Ads
random guessing 50 11 11
original 80 60 45
IPS 52 18 11
FAST 59 15 24

Table 2: Accuracy of predicting attribute of output from
context on the original training set, as well as IPS re-
sampled and FAST augmented training sets.

context and attribute: p(a|x) ̸= p(a). To reveal this
property in the PENS dataset we finetune Roberta-
base with a binary classification head to predict
the attribute (long or short) from the context (news
article), which also serves as S(a|x) in §2.3. The
model achieved an accuracy of 73% on a hold-out
test set, far better than random guessing (50%) and
the majority class (64%), empirically confirming
that p(a|x) ̸= p(a) and the context x is strongly
correlated with attributes a.

Next, we identify two sources of spurious cor-
relation in the data. First, the length of a news
article is positively correlated with its long/short
headline status (point-biserial correlation rpb = 0.1,
p < 0.01). Second, we find that certain words
and phrases can be inappropriately correlated with
the attributes. We train an l2-regularized logistic
regression on the same task and data using bag-
of-words features, then examine the features hav-
ing the highest weights. The features most indica-
tive of short headlines include niche topics like
“petfinder”, “cartoonist’s homepage”, and “sail-
drone” (a weather service) while words from estab-
lished outlets that cover more general topics (“usa
today”, “cbsnewyork”) are associated with long
headlines.

To show how spurious correlations can under-
mine downstream controllable generation perfor-
mance, we train a BART-base model on the PENS
dataset using the standard control code approach
(BART+CTRL baseline). Next, for each article in
the randomly split test set, we generate using all
possible control codes (long, short) and score the
outputs according to whether they are truly long
or short. The system successfully generated the
intended headline 89.6±0.6% of the time in factual
cases (when the control code matched the ground-
truth attribute), but 64.1%±0.6% of the time in
counterfactual cases. This suggests that models
learn to rely on spurious correlations in the data,
and this reliance can undermine generalization.

We proceed to show how our data augmentation



PENS MReD Search Ads
Method R1 R2 RL Acc R1 R2 RL Acc R1 R2 RL Acc
Uncontrolled 32.1±0.2 13.2±0.1 26.7±0.1 – 18.7±0.5 4.1±0.2 16.1±0.4 – 22.9±0.1 9.2±0.1 21.5±0.1 –
BART+CTRL 32.6±0.1 13.4±0.1 27.1±0.1 78.0±0.7 21.4±0.2 5.6±0.2 18.4±0.2 76.5±1.9 27.8±0.1 11.9±0.1 26.2±0.1 68.1±1.2
PPLM 29.5±0.1 10.8±0.1 24.4±0.1 76.3±0.6 21.9±0.2 5.1±0.2 18.4±0.1 74.7±1.1 27.0±0.2 10.5±0.2 25.3±0.2 69.3±1.1
GeDi 31.7±0.1 12.6±0.1 26.2±0.1 78.5±0.6 17.3±0.6 3.7±0.4 15.3±0.5 74.9±5.3 23.2±0.6 8.2±0.4 21.9±0.5 83.3±4.6
GeDi+x 32.5±0.1 13.3±0.1 27.0±0.1 82.7±0.6 19.9±0.4 4.9±0.2 17.3±0.3 83.7±0.6 27.7±0.2 11.8±0.1 26.1±0.2 77.9±0.9
IPS 32.3±0.03 13.2±0.1 26.9±0.04 79.0±0.5 21.1±0.4 5.2±0.3 17.8±0.4 71.2±6.8 27.4±0.1 11.6±0.04 25.8±0.1 70.1±1.4
FAST 32.5±0.1 13.4±0.1 27.1±0.1 82.5±0.5 21.9±0.3 6.1±0.2 18.9±0.3 87.1±0.7 28.1±0.1 12.3±0.1 26.5±0.1 80.5±0.2

weak classifier – – – – 21.8±0.1 6.0±0.1 18.9±0.1 86.1±0.5 28.0±0.2 12.1±0.1 26.4±0.1 76.6±0.7

Table 3: Comparing different methods on PENS, MReD and Search Ads. We use ROUGE (R1, R2, and RL) to
evaluate decoding quality on (1) the “balanced” PENS test set, (2) the default MReD test set and (3) the default Ads
test set. We use Acc to evaluate controllability. This metric is calculated by generating using every control code,
detecting the attribute category from the generated texts with task-specific classifiers or rules, then comparing the
detected category with the control code to compute an accuracy. The best score is boldfaced. Multiple scores are
boldfaced if there is no statistically significant difference. The last row is an ablation experiment for FAST using a
weak classifier (logistic regression) in the feedback step.

algorithms produce datasets where these spurious
correlations have been reduced in the data. We test
the classifier predicting attributes from contexts on
the original training set, as well as on the IPS re-
sampled and FAST augmented training sets (Table
2). We find that the accuracy from the classifier is
reduced greatly on the new training sets, implying
that predictions become closer to random guessing
as the spurious correlation is reduced and therefore
p(a|x) → p(a) in the augmented data.

4.2 Overall Generation Results
We proceed to evaluate the impact of our algo-
rithms on downstream controllable generation per-
formance.

Table 3 shows results using automatic evalua-
tion metrics on the PENS, MReD and Search Ads
datasets. One might hypothesize that FAST may
outperform IPS resampling because 1) FAST does
not create duplicate examples, and 2) there is no
need to estimate propensity scores directly. Our
results support this, as the proposed FAST algo-
rithm always outperforms all baselines in either
language quality or controllability or both, espe-
cially on MReD and Ads datasets. Among the 3
baselines, GeDi has much lower ROUGE, possi-
bly because it only combines context and control
code at decoding time, while the other methods
encode context and control code together. GeDi+x
improves controllability over BART+CTRL signif-
icantly, but slightly decreases ROUGE. FAST im-
proves controllability over BART+CTRL to a sim-
ilar degree, while maintaining ROUGE on PENS
and even improving ROUGE on MReD and Ads.
On the other hand, IPS improves controllability
slightly over BART+CTRL on two datasets PENS
and Ads, which suggests that IPS resampling is

helpful in preventing the model from learning the
spurious correlation. However, it hurts ROUGE on
all datasets, which is likely due to the duplication
of data (§4.3). It appears surprising that PPLM
can have lower controllability than BART+CTRL
even though it applies additional steering during
decoding. This is because PPLM uses greedy de-
coding. For example on MReD, switching from
beam search to greedy decoding, the control ac-
curacy of BART+CTRL decreases from 76.5% to
70%. PPLM improves it to 74.7%, but it is still
behind BART+CTRL with beam search.

We proceed to conduct a human evaluation of
downstream generation quality for the Search Ads
dataset (Table 4). We compare our IPS and FAST
methods against BART+CTRL, omitting the PPLM
and GeDi baselines because they are prohibitively
expensive for many real-world applications.

We use the models to generate ad copy in all 9
categories for each landing page, then present each
generation to a panel of five professional judges.
The judges evaluated each example in 4 aspects:
whether the text is grammatically fluent (“language
quality”), whether it was human-like and realistic,
whether it was factual, and whether it is relevant to
the landing page. Each aspect was rated according
to a binary good/bad scale, then we report the aver-
age rating. Judges also categorized the generation
into one of the 9 attribute categories summarized
in Table 1, which we converted into a measure of
model controllability by calculating the accuracy
between the input control codes and human labeled
output categories. More details can be found in the
Appendix.

The human evaluation results are consistent with
automatic evaluation metrics. The proposed FAST



Method Language Human-like Factuality Relevance Overall Acc
BART+CTRL 93.5±0.7 99.3±0.2 99.4±0.2 99.7±0.2 92.8±0.7 52.1±2.3
IPS 92.4±0.8 99.1±0.3 99.4±0.2 99.6±0.2 91.7±0.8 51.7±2.3
FAST 94.9±0.6 99.6±0.2 99.2±0.3 99.7±0.2 94.1±0.7 58.4±2.3

Table 4: Human evaluation results for Search Ads generation. The quality of each aspect (e.g., language) is measured
by the percentage of samples in the good level. The overall quality is the percentage of samples with all 4 aspects in
the good level. Controllability is measured by the accuracy between human labeled categories of the ads vs the
control codes used during their generation. The best scores with statistical significance (under Z-test) is boldfaced.

Method Ctrl Headline

Reference
short ShakeAlertLA Did Not Fail Its Duty

long
Find out before the 6.4 magnitude quake why LA's early warning system 
did not send an alert

BART+CTRL

short Did Los Angeles' ShakeAlertLA app fail to warn of earthquakes?

long
Did Los Angeles' ShakeAlertLA smartphone app fail to provide earthquake 
early warning?

IPS
short Did Los Angeles' earthquake early warning system fail?

long (same as BART+CTRL)

FAST
short Did Los Angeles' ShakeAlertLA app fail? Not quite

long (same as BART+CTRL)

News content

LOS ANGELES Did Los Angeles' ShakeAlertLA smartphone app fail to provide an earthquake 
early warning? Los Angeles residents were asking that question after Thursday's earthquake 
that was felt through Southern California, when they didn't get an early warning from the 
much-anticipated ShakeAlertLA app, released by the city of Los Angeles earlier this year. Did 
it fail? Not quite. The ShakeAlertLA app was only designed to alert users of cellphones 
physically located in Los Angeles County if there was at least "light shaking," or level 4 on 
the Modified Mercalli Intensity Scale, expected for Los Angeles County. What was actually 
felt Thursday in Los Angeles County, while seemingly scary, was actually not that bad either 
level 2 or level 3 shaking, or “weak shaking.” … (307 more words)

Figure 2: An example from PENS dataset for news head-
line generation. Reference headlines from the balanced
test set and generated headlines from three methods cor-
responding to the same news content are shown. Key
news information that the generated headlines captured
is highlighted in orange. Parts of the headline exceeding
55 characters are highlighted in blue.

outperforms the BART+CTRL baseline in both lan-
guage quality and controllability, whereas the pro-
posed IPS algorithm underperforms its baseline in
terms of language quality while there is no percep-
tible difference in controllability.

4.3 Analysis

Qualitative evaluation Figure 2 shows exam-
ple news headlines generated from three methods.
While the BART+CTRL baseline failed to generate
a short enough headline, generations from IPS and
FAST fit within the 55 character length limit with
FAST being the most concise. More comparative
input-output examples for MReD and Ads datasets
can be found in the Appendix.

No Feedback ablation To see the importance of
feedback in Step 3 of FAST algorithm (§2.4), we
train a model without this step, i.e., self-training
alone. Compared with FAST results in Table 3, the
attribute/control-code accuracy drops by 9%, 7%
and 12% (absolute difference) on PENS, MReD

and Ads respectively. On PENS, the control accu-
racy of self-training alone is even lower than the
BART+CTRL baseline (73% vs 78%). In regular
FAST training, 38%, 25% and 40% of generated
counterfactual samples are filtered out in the feed-
back step for PENS, MReD and Ads. It is not a
surprise that including such a high percentage of
noisy samples, whose attributes contradict with the
control codes, would hurt controllability.

Classifier accuracy ablation We further study
how the generation performance depends on the
classifier accuracy. We replace the strong clas-
sifiers (Roberta-base for MReD and BERT-base-
uncased for Search Ads) with weaker classifiers: l2-
regularized logistic regression using bag-of-words
features. On the hold-out test sets, the macro-F1 of
the classifier drops from 79% to 66% for MReD
and from 70% to 58% for Search Ads. In the feed-
back step, we filter out noisy examples using these
weak classifiers and retrain the FAST models. Note
that the controllability is evaluated in the same way
with the strong classifiers. As shown in Table 3, the
control accuracy of the ablation experiment (FAST
with weak classifiers) drops from regular FAST,
but it is still much higher than the BART+CTRL
baseline. On the other hand, there is no statistically
significant difference in ROUGE scores between
ablation and regular FAST. This demonstrates that
the improvement of FAST over baselines is fairly
robust to the classifier accuracy.

IPS sampling mechanism In Table 3 we ob-
served that IPS can reduce decoding quality
(ROUGE score). We hypothesize that this may
be because our procedure resamples the data with
replacement, and the duplication of training sam-
ples can lead NLG models to memorize instead
of generalizing (Feng et al., 2021). To reduce the
spurious correlation while not duplicating exam-
ples, we subsample 10k of training set according to
IPS without replacement so each training sample
is unique. For a fair comparison, we uniformly ran-



Method R1 R2 RL Acc
BART+CTRL 31.4±0.2 12.7±0.2 26.3±0.2 71.9±1.1
IPS 31.4±0.2 12.6±0.1 26.3±0.1 74.2±0.5

Table 5: IPS subsampling ablation on PENS dataset.
Best score with statistical significance is boldfaced.

domly subsample 10k for BART+CTRL training as
the baseline. The results for the IPS subsampling
and BART+CTRL are shown in Table 5. Now
ROUGE scores between the two are close with no
statistically significant difference. In addition, IPS
improves controllability by 2.3% from 71.9% ac-
curacy to 74.2%, which is greater than its effect in
oversampling experiments (1% improvement from
78% to 79%). This demonstrates that rare exam-
ples are indeed more useful, especially if they are
not duplicated.

5 Related Work

Controllable generation There are two main ap-
proaches for controllable generation: training or
decoding-time steering. In the first approach, a lan-
guage model is trained conditioned on the target
attribute (Ficler and Goldberg, 2017), which can
be conveniently encoded as control codes (Keskar
et al., 2019). This approach has been used in
many conditional generation tasks for controlling
the length or content of abstractive summarization
(Kikuchi et al., 2016; Fan et al., 2018; Liu et al.,
2018), style of dialog response (See et al., 2019),
ending of a story (happy or sad, conditioning on
previous part of the story) (Peng et al., 2018), po-
liteness of translation (Sennrich et al., 2016), intent
of meta review (conditioning on individual reviews
and ratings) (Shen et al., 2022). As the training sets
are usually collected through observation rather
than intervention, we anticipate there exist shared
confounders influencing both context and target
attribute, causing the spurious correlation to be a
pervasive problem. In the second approach, recent
methods are PPLM (Dathathri et al., 2020), GeDi
(Krause et al., 2021), FUDGE (Yang and Klein,
2021) and DExperts (Yang and Klein, 2021). How-
ever, these methods exert control at the expense of
fluency, a problem improved by Gu et al. (2022) but
not completely eliminated. In contrast, our FAST
method does not suffer from this problem.

Causal inference Our IPS resampling method is
motivated by causal inference. Feder et al. (2021)
review causal inference in natural language pro-

cessing and suggest to use causal knowledge to
formalize spurious correlations and to mitigate pre-
dictor reliance on them. Hu and Li (2021) devise
a structural causal model (SCM) for controllable
generation, where the output text is the outcome
and the attribute under control is the treatment
(whether to write a short or long headline). To
proceed with causal inference, there is a common
challenge that observational (training) data is under
selection bias as the treatment choice is affected
by some confounders (context). A classical solu-
tion is IPS reweighting or resampling (Yao et al.,
2021; Pearl, 2009). An et al. (2021) suggests that
resampling works better with stochastic gradient
descents than reweighting so we choose resampling
to investigate primarily. Outside traditional causal
inference areas, IPS reweighting is successfully
applied in search ranking (Wang et al., 2016) and
recommendation systems (Schnabel et al., 2016).
Recently, it is applied to reduce social bias in text
classification tasks (Han et al., 2021). Hu and Li
(2021) also propose to use it to debias pretrained
language models.

Counterfactual data augmentation (CAD) Our
method FAST is a special case of CAD. Lu et al.
(2018) propose CAD and generate synthetic exam-
ples to reduce the spurious correlations between
gendered and gender-neutral words in training cor-
pus. Similar rule-based techniques are most com-
mon for CAD. Zhao et al. (2018) build rules with
crowd-sourced annotation to swap all male enti-
ties for female entities; Sharma et al. (2021) swap
gender terms with a dictionary similar to Lu et al.
(2018); Garg et al. (2019) swap identity terms (e.g.,
gay, straight). Counterfactual examples can also be
generated by manual post editing (Kaushik et al.,
2020; Gardner et al., 2020) or automated text rewrit-
ing (Zmigrod et al., 2019; Riley et al., 2021; Wu
et al., 2021). Using the same model to augment
data (self-training) is a common semi-supervised
algorithm for improving classifier accuracy (Zhang
et al., 2022), though less common for CAD. Most
similar to our method FAST is Gu et al. (2019) for
improving zero-shot neural machine translation via
reducing the spurious correlation between the lan-
guage of the output and the source sentence. They
first train a model on the original data and use it
to generate data in missing language pairs. A key
difference is that our FAST method uses feedback,
which is shown to be crucial in our scenario possi-
bly because our spurious correlation is less severe.



6 Conclusion

This paper argues that conditional and controllable
text generation systems are subject to spurious cor-
relations in their training data which can severely
undermine performance. We proposed a pair of
simple yet effective data augmentation algorithms
for countering this issue. One algorithm works by
resampling the data according to an inverse propen-
sity score, and the other via feedback-aware self
training. Our experiments demonstrate that the
proposed algorithms can effectively reduce the spu-
rious correlation issue across three tasks: gener-
ating ad copy, news headlines, and meta-reviews.
Furthermore these algorithms can significantly im-
prove generation quality and controllability over
popular and state-of-the-art baseline algorithms.

Further research may investigate more checks
during the feedback step, e.g., filtering out unfaith-
ful examples. In the emerging parameter efficient
fine-tuning paradigm, such as P*-tuning (Li and
Liang, 2021; Qian et al., 2022), we find IPS resam-
pling to be promising as the model is not likely to
memorize duplicate examples when updating only
few parameters. The proposed method may also be
complementary to baselines like GeDi and PPLM.

7 Limitations

While IPS is a classical technique from causal
inference to deal with spurious correlations, we
found the following limitations when applying it
to controllable text generation, which makes it
less effective than FAST. First, Tu et al. (2020)
found that large pretrained models are quite effi-
cient in learning small amounts of counterfactual
examples, which makes them more robust to spu-
rious correlations. Our IPS resampling makes the
small amounts of counterfactual examples more
important to learn, but may have limited impact on
the large pretrained models. Second, for MReD
and Search Ads, the human-labeled or classifier-
detected categories could be wrong. These exam-
ples are likely to have low propensity scores and
therefore get up-sampled by IPS method. Finally,
some unique training examples are dropped after
resampling.

For FAST method, we acknowledge two limi-
tations. First, an implicit assumption is that the
linguistic attribute of interest (headline being short
or long) should be independent of the context, there-
fore, a control code is applicable for any context.
We design ad categories with this consideration

in mind. However, in MReD dataset, categories
such as “rebuttal process” may not be applicable
for every meta review. Forcing a model to produce
a sentence in such categories may result in untruth-
ful generations. Second, FAST may struggle if
the training and pre-training data are drastically
different; the counterfactual generations may be
of low quality and propagate errors into the final
FAST model. How to generate counterfactual data
in those more challenging scenarios would be our
future research direction.
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A Appendix

A.1 Hyperparameters

Hyperparameters in use are summarized in in Ta-
ble 6. We use the default HuggingFace setup un-
less otherwise specified (e.g., default learning rate
scheduler, default length and repetition penalties).

model params PENS MReD Ads
generation batch size 64 36 96

# epochs 40 10 6
LR 1e-5 5e-5 5e-5
encoder #tokens 768 1024 314
decoder #tokens 32 72 26
train speed 70 25 190
generation speed 85 40 150

propensity batch size 64 64 64
input #tokens 512 512 314
# epochs 6 15 5
LR 1e-5 1e-5 1e-5
train speed 70 25 110
inference speed 240 170 470

Table 6: Hyperparameter settings for generation model
and propensity model on PENS and Ads datasets. Unit
for training/inference speed is number of samples per
second on one GPU.

We tune learning rate from {1e-5, 5e-5, 1e-4} and
pick the ones with the best validation metric. Num-
ber of epochs are reported for BART+CTRL base-
line training. Uncontrolled, IPS, FAST, and GeDi
are trained for similar epochs. Generation speed
is reported for BART+CTRL baseline. The max-
imum number of tokens are picked so that 99%
of the times input/ouput from training set will not
get truncated, except if it exceeds the maximum
number of tokens of the pretrained models.

A.2 Propensity model

We finetune Roberta-base for sequence classifica-
tion with the default HuggingFace setup, to predict
the attribute of the ground truth target from the
context as input. On PENS, we do a binary clas-
sification; therefore we use a sigmoid function to
transform the score into probability. On MReD
and Ads, we do multi-class classification task and
use a softmax fucntion to convert scores into prob-
abilities. We also use the dev set to pick the best
epoch during training based on AUC for PENS and
accuracy for MReD and Ads.

A.3 PPLM

We follow the implementation from Dathathri et al.
(2020) with minimal changes to adapt it to an
encoder-decoder structure (BART). We apply per-
turbations on both cross-attention and self-attention
key-value pairs instead of only the self-attention
as in the original paper for decoder-only models
(GPT2). PPLM uses a discriminative classifier
p(a|y) to steer decoding towards having the de-
sired attribute. In addition, the classifier needs to
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have the same vocabulary as the generation model.
Therefore, we finetune Roberta-base for this pur-
pose as it shares the same vocabulary with BART.
The Roberta-base classifiers achieve 96% and 88%
macro-F1 for PENS and Ads respectively on the
default test sets. Note that on Ads data, we use a
previously built BERT-base classifier to produce at-
tribute label on the training and testing data (Table
1). This Roberta-base classifier is trained and tested
on the labels predicted by the previous BERT-base
model, thus mimicking its behavior. For MReD,
we reuse the Roberta-base classifier previously de-
scribed in §3.1.

To steer decoding, PPLM ascends p(a|y) by
propagating gradients from the classifier to the per-
turbations on key-value pairs in BART. At each
decoding step, BART outputs a probability distri-
bution p(yi|y<i, ...) for generating the current ith
token. We feed the classifier with previous i − 1
tokens plus a “soft” token for i, which is a weighted
average of embeddings

∑
yi∈V p(yi|y<i, ...)E(yi),

where V denotes the vocabulary and E(·) denotes
the input embedding of the classifier (Roberta).
Therefore, we can propagate gradients from the
classifier into BART.

We tune hyperparameters on dev set to find a
good balance between controllability and decoding
quality. We tune γgm from {0.1, 0.3, 0.5, 0.8},
λKL from {0, 0.005, 0.01}, and we settle with 0.3
and 0.01 for them respectively. As PPLM decoding
output tends to be repetitive, we additionally tune
repetition penalty to be 2.

We use greedy decoding following the original
implementation. Using beam search for PPLM
would be computationally prohibitive as it is al-
ready very slow.

A.4 GeDi

We train BART-base for the two models in GeDi.
One model p(y|x) uses context x as the encoder
input, and the other model p(y|c) uses control code
c as the encoder input. The hyperparameters are
the same as BART+CTRL baseline except that the
max number of encoder tokens for p(y|c) model
is 3, 7, and 8 on PENS, MReD, and Ads datasets
respectively. We use negative log likelihood (in-
stead of ROUGE1) as the validation metric during
training p(y|c). Same as the original GeDi, an ad-
ditional length normalization heuristic is applied
in the Bayes rule for computing the steering term

Method Training (hrs) Generation (samples/sec)
BART+CTRL 30 150
PPLM 30 0.38
GeDi 42 8
GeDi+x 30 8
IPS 30 150
FAST 85 150

Table 7: Training time and generation speed for different
methods measured on 1 Nvidia V100 GPU.

during decoding:

p(c|y) = p(c)p(y|c)1/t∑
c′∈{1,...,K} p(c

′)p(y|c′)1/t
, (4)

where t is the current length of y. We avoid tuning
hyperparameters with the following choices. We
choose uniform prior for p(c), and we do not ap-
ply the filtering heuristic during decoding but we
use the standard beam search as the other methods.
We train p(y|c) as a usual generation model condi-
tioned on control code c. In the end, we only tune
the parameter ω to control the trade-off between
controllability and decoding quality.

The original GeDi paper converts multi-class
classification into multiple binary classification
tasks with control code and anti-control code for
each class in order to improve speed. We do not do
this conversion but normalize over all K classes in
Eq. 4.

A.5 GeDi+x

We reuse our implementation of GeDi for GeDi+x
by simply switching both p(y|x) and p(y|c) models
to BART+CTRL baseline p(y|x, c). So the settings
are the same as GeDi or BART+CTRL.

A.6 Computational cost

We compare the training and inference cost for
different methods on Search Ads dataset in Table 7.
During training, FAST has the largest cost due to
the additional cost from training the initial model
and using it to generate counterfactual data. GeDi
also has higher cost than the rest of the methods
as it trains an additional model p(y|c) for steering
the decoding. During generation, PPLM is much
slower than other methods at it needs to compute
gradient several times at each decoding step. GeDi
and GeDi+x are also slow due to computing the
contrast term (e.g., Eq. 3). The rest of the methods
are equally fast.



A.7 Spurious correlation in MReD

Similar to PENS dataset, we finetune Roberta-base
to predict the next sentence’s category from the
context (all preceding sentences, ratings from indi-
vidual reviewers and their reviews). The classifier
achieves 71% AUC and 33% accuracy on hold-out
test set, which are much higher than random guess
(50% AUC, 11% accuracy) or majority class (13%
accuracy). Therefore, we empirically confirm the
existence of spurious correlation between context
and MReD category.

Results in the original MReD paper have al-
ready implied some reasons for why such corre-
lations exist. First, preceding sentences are pre-
dictive of the category of the next sentence be-
cause meta-reviews have some typical patterns, for
example, “abstract→strength→weakness”, “rating
summary→weakness→rebuttal process”, and etc.
Second, individual reviewers’ ratings and their re-
views are predictive of the category of a sentence
in the meta review. For example, there is higher
chance to get a “strength” than “weakness” in the
meta review if the individual reviewers are more
positive about a paper.

To show the damaging effect of the spurious
correlation, we use BART+CTRL baseline to gen-
erate next sentences in all 9 categories. Then we
detect the category from output using the Roberta-
base classifier. Finally, we evaluate the accuracy
between the detected category and the intended
category (control code). The system successfully
generated the intended category 90% of the time
in factual cases (when the control code matched
the ground-truth attribute), but 75% of the time
in counterfactual cases. Again, this demonstrate
the degradation of controllability when spurious
correlations break at test time.

A.8 Spurious correlation in Search Ads

Similar to PENS and MReD datasets, we fine-
tune Roberta-base to predict the ad category from
the context, which include various landing page
features. The classifier achieves 74% AUC and
36% accuracy on hold-out test set, which are much
higher than random guess (50% AUC, 11% accu-
racy) or majority class (23% accuracy). Therefore,
we empirically confirm the existence of spurious
correlation between context and ad category.

This correlation is hardly a surprise. Advertisers
write ads that perform well for their landing pages
on average, so different categories are preferred for

different landing pages. While the majority cate-
gory is product or service on all data as shown in
Table 1, by slicing data into different business in-
dustries, we find that majority category is location
for travel and tourism industry, call to action for
vehicle industry, and highlight for retail industry
(which contains promotion, shipping or other infor-
mation to make the product stand out). While an
ad in the majority category may perform well on
average, we can get an even better chance to win
the user click by generating ads in all categories
and displaying the best one at query time. For ex-
ample, while “Buy Truck Engines Now” may be a
good ad for query “truck engine”, “New & Used
Truck Engines” is a better choice for query “used
truck engine”.

We then use BART+CTRL baseline to generate
ads in all 9 categories. Then we detect the category
from output using the BERT-base-uncased classi-
fier. Finally, we evaluate the accuracy between the
detected category and the intended category (con-
trol code). The system successfully generated the
intended category 76% of the time in factual cases
(when the control code matched the ground-truth
attribute), but 65% of the time in counterfactual
cases. Again, this demonstrate the degradation of
controllability when spurious correlations break at
test time.

A.9 Details on human evaluation

As opposed to crowd sourced judges, our judges
are paid with hourly wages and they are doing the
labeling task for a long term, therefore they demon-
strate more consistent labeling quality. They have
been trained to ensure understanding the tasks cor-
rectly and they get feedback from us to ensure their
labeling quality and consistency.

The quality of an ad is labelled in 4 aspects:
1) language, which checks spelling/capitalization,
grammar, fluency; 2) human-like, which checks
if the ad sounds like human written rather than
machine generated and if it agrees with common
sense; 3) factuality, which checks if the ad contains
false claims (e.g., free shipping) not existing in
the landing page; and 4) relevance, which checks
if the ad is relevant for the landing page. Judges
should visit the landing page and read it carefully
for checking factuality and relevance. Judges can
also skip an example in cases such as the text is
in a foreign language or the landing page is not
accessible.



For category labeling, judges first select if an ad
is scorable to prevent cases such as text is in a for-
eign language or quality is too poor to understand.
Judges are trained before they start labeling by go-
ing through our judgement guideline and passing
our test judgement task. In our judgement guide-
line, we explain definition of each category with
examples. We also explain the idea behind design-
ing these categories that advertising is commonly
surrounding three roles – advertisers (their name or
brand), products (what’s the product, purchasing in-
formation such as price, shipping), and customers
(what’s the benefit for customer, call to action) – to
help judges better differentiate these categories.

A.10 Examples of generated meta reviews
We provide an example of generations from 3 mod-
els (BART+CTRL baseline, IPS and FAST) in Fig-
ure 3. In this example, the individual reviews are
quite positive, and so is the ground truth meta re-
view. The BART+CTRL model seems to struggle
in generating a sentence in the “weakness” cate-
gory, but it is preferring “strength”, thereby ignor-
ing the control code, which is also the case for
“rating summary”. On the other hand, FAST is able
to generate a “weakness” sentence correctly. For
“AC disagreement” category, even FAST struggles
to generate it correctly. This is likely due to the
fact that there are only 24 training examples in this
category. Interestingly, IPS generates a correct ex-
ample in this category, which seems to the case
in general as we examined more examples. How-
ever, IPS suffers from worse language quality. It
generates a sentence with repetition issue in the
“suggestion” category. We note that the “rebuttal
process” category should not be applicable for this
meta review, as there is no such information from
the context.

A.11 Examples of generated ads
We provide examples of generated ads from 3 mod-
els (BART+CTRL baseline, IPS and FAST) in Fig-
ure 4 and 5. As the difference between the 3 models
are not huge as seen from the human evaluation re-
sults (although statistically significant), we pick
those examples to highlight the typical difference
between the 3 models. In actual online serving, up
to 3 titles can be concatenated together with delim-
iter | to form a longer title, and up to 2 descriptions
can be concatenated together.



Previous i
sentences

this submission proposes an efficient parametrization of a recurrent neural net by using two transition functions (one large 
and one small) to reduce the amount of computation (though, without actual improvement on GPU.)

ratings R1 rating score: 7, R2 rating score: 7, R3 rating score: 8. 

Individual 
reviews

The paper proposes a way to speed up the inference time of RNN via Skim mechanism where only a small part of hidden 
variable is updated once the model has decided a corresponding word token seems irrelevant w.r.t. a given task. While the 
proposed idea might be too simple, the authors show the importance of it via thorough experiments. (skipped 298 words)
<REVBREAK> Summary: The paper proposes a learnable skimming mechanism for RNN. The model decides whether to send 
the word to a larger heavy-weight RNN or a light-weight RNN. The heavy-weight and the light-weight RNN each controls a 
portion of the hidden state. The paper finds that with the proposed skimming method, they achieve a significant reduction 
in terms of FLOPS. Although it doesn't contribute to much speedup on modern GPU hardware, there is a good speedup on 
CPU, and it is more power efficient. Contribution: - The paper proposes to use a small RNN to read unimportant text. Unlike 
(Yu et al., 2017), which skips the text, here the model decides between small and large RNN. Pros: - Models that dynamically 
decide the amount of computation make intuitive sense and are of general interests. - The paper presents solid 
experimentation on various text classification and question answering datasets. - The proposed method has shown 
reasonable reduction in FLOPS and CPU speedup with no significant accuracy degradation (increase in accuracy in some 
tasks). - The paper is well written, and the presentation is good. Cons: - Each model component is not novel. The authors 
propose to use Gumbel softmax, but does compare other gradient estimators. It would be good to use REINFORCE to do a 
fair comparison with (Yu et al., 2017 ) to see the benefit of using small RNN. - The authors report that training from scratch 
results in unstable skim rate, while Half pretrain seems to always work better than fully pretrained ones. This makes the 
success of training a bit adhoc, as one need to actively tune the number of pretraining steps. - Although there is difference 
from (Yu et al., 2017), the contribution of this paper is still incremental. Questions: - Although it is out of the scope for this 
paper to achieve GPU level speedup, I am curious to know some numbers on GPU speedup. - One recommended task 
would probably be text summarization, in which the attended text can contribute to the output of the summary. 
Conclusion: - Based on the comments above, I recommend Accept 
<REVBREAK> This paper proposes a skim-RNN, (skip 112 words) Cons. - The idea is quite simple and the novelty is 
incremental by considering the difference from skip-RNN. (skipped 122 words)

Ground truth 
continuation

the reviewers found the submission very positive. <sep> please, do not forget to include all the result and discussion on the 
proposed approach's relationship to VCRNN which was presented at the same conference just a year ago.

Control BART+CTRL IPS FAST
Abstract The paper shows that the 

proposed method achieves a 
significant reduction in FLOPS and 
CPU speedup.

The paper shows that the skimming 
mechanism can reduce the amount of 
computation needed for the model to 
perform well on a variety of tasks.

The paper shows that the proposed 
method achieves a significant reduction 
in FLOPS and CPU speedup with no 
significant accuracy degradation.

Strength The paper is well written and the 
presentation is good.

The reviewers agree that the idea is 
interesting and well-motivated.

(same as BART+CTRL)

Weakness The reviewers agree that the 
paper is well written and the 
presentation is good. (strength)

The reviewers agree that the novelty of the 
idea is limited, and there are some concerns 
about the performance of the method, but 
overall, the reviewers agree that it is worth 
pursuing. (strength)

The reviewers agree that the paper is 
well written and the presentation is 
good, but there are some concerns 
about the novelty of the approach.

Rating 
summary

The reviewers agree that the 
paper is well written and the 
presentation is good.

All reviewers recommend acceptance. The reviewers were unanimous in their 
vote to accept the paper.

AC 
disagreem
ent

I agree with the reviewers that 
the paper is well written and the 
presentation is good. (strength)

there's been some sentiment by the 
reviewers that the paper might not be ready 
for publication in its current form, but after 
further discussion with another AC and PC's, 
we have concluded that it may be ready for 
publication in its current form.

The reviewers agree that the paper is 
well written, and the presentation is 
good, but there are some concerns 
about the novelty of the approach. 
(weakness)

Rebuttal 
process

The rebuttal addressed some of 
the concerns raised by the 
reviewers, but not enough to 
convince the reviewers to accept 
the paper.

The reviewers were impressed by the 
contribution of the paper and the authors' 
response to the reviewers' comments.

The authors have addressed some of 
the concerns raised by the reviewers in 
the rebuttal.

SuggestionI encourage the authors to 
incorporate the reviewers' 
comments in the final version of 
the paper.

The reviewers agree that the paper could 
benefit from a more comprehensive 
exploration of the benefits of the method, as 
well as a more comprehensive evaluation of 
the benefits of the method. (repetition)

I encourage the authors to take 
reviewers' comments into account 
when revising the paper for the camera 
ready.

Decision The paper is well written and the 
presentation is good, so I 
recommend acceptance.

The reviewers all found the idea interesting 
and the results convincing enough to warrant 
acceptance to *CONF*.

The reviewers and AC agree that the 
paper is worthy of publication at 
*CONF*.

Misc We hope that the reviewers' 
comments help you improve your 
submission for the camera ready.

The reviewers liked the paper. The reviewers had a number of
questions and concerns about the 
paper.

Figure 3: Example of generated next sentence for a meta review. Key information in the input that the generations
are based on is highlighted in orange. Issues with generations are highlighted in red with a brief explanation.



Landing page features

Display Domain: academyinteriorsltd.co.uk § Document Title: Fitted Bedroom | Cheap Fitted Wardrobes | Academy Interiors 
§ Meta Description: Browse our wide range of fitted bedrooms and wardrobes collections. At Academy Interiors we will 
combine your ideas with our expert knowledge to create an aesthetically pleasing s § First Good Snippet: Our clever design 
and intelligent use of space coupled with over 20 years experience is why the end result will always look stunning and retain 
its appearance for years to come. W § Multi Instance Title: fitted bedroom cheap fitted wardrobes academy interiors ; cheap 
fitted wardrobes ; academy interiors ; fitted bedroom § Heading: Bedrooms ; Wardrobes ; Bedroom fittings § Best Snippet: 
Walk into an Academy Interiors bedroom and you will always feel at home. Whichever beautiful style you choose from our 
wide range, every aspect is carefully designed to compliment

Control code BART+CTRL IPS FAST

Product or Service Fitted Wardrobes Fitted Bedroom (same as BART+CTRL)

Location Fitted Wardrobes Near Me Fitted Wardrobes Near Me (same as BART+CTRL)

Inventory and Selection Fitted Wardrobes Fitted Bedroom (same as BART+CTRL)

Call to Action Buy Fitted Wardrobes Buy Fitted Bedroom (same as BART+CTRL)

Advertiser Name or Brand Academy Interiors Ltd (same as BART+CTRL) (same as BART+CTRL)

Price and Fees Cheap Fitted Wardrobes Cheap Fitted Bedroom Affordable Fitted Wardrobes

Benefit Transform Your Bedroom (same as BART+CTRL) (same as BART+CTRL)

Customer Problem Looking For A New Wardrobe? Looking For A New Bedroom? (same as BART+CTRL)

Highlight Fitted Wardrobes Fitted Bedroom Over 20 Years Experience

Figure 4: Example of generated ad titles. For this landing page, only FAST generates title correctly in “Highlight”
category. Key information in the landing page that the generated ads are based on is highlighted in orange.



Landing page features

Display Domain: eventstable.com § Document Title: Buy Our Backyard Wedding Bundle, Plastic Folding Chairs & Tables, Party 
Packages | EventStable.com § Meta Description: Shop for Backyard Wedding Bundle containing 40 Resin Folding Chairs, 4 
Folding Tables and Peak High Tents at wholesale prices. Enjoy Free Shipping and other Event Furniture § First Good Snippet: 
The store will not work correctly in the case when cookies are disabled. JavaScript seems to be disabled in your browser. For
the best experience on our site, be sure to turn on J § Multi Instance Title: buy our backyard wedding bundle plastic folding 
chairs tables party packages eventstable com ; … § Heading: Buy today - pay later. Net 30 terms at 0% or extend payments 
up to 60 months. Learn more ; Titan Event Furniture™ ; Outdoor Dining Bundle with Vineyard Estate Cross Back Chairs ; Qty 
§ Best Snippet: Move your dining room to the fresh air with our Outdoor Dining Bundle featuring 24 of our Vineyard Estate 
Cross Back Chair - Mark II. Whether you live where it's summer all the ti §

Control 
code BART+CTRL IPS FAST

Product or 
Service

Our Backyard Wedding Bundle 
Includes 40 Resin Folding Chairs, 4 
Folding Tables & Peak High Tents

Our Backyard Wedding Bundle 
Includes 40 Resin Folding Chairs, 4 
Folding Tables & Peak High Tents.

40 Resin Folding Chairs, 4 Folding 
Tables and Peak High Tents.

Location Vineyard Estate Cross Back Chair -
Mark II

Vineyard Estate Cross Back Chair 
Mark II, Mark II, Mark II, Mark II, & 
More. (repetition issue)

Vineyard Estate Cross Back Chair -
Mark II.

Inventory 
and 
Selection

40 Resin Folding Chairs, 4 Folding 
Tables and Peak High Tents

40 Resin Folding Chairs, 4 Folding 
Tables, Peak High Tents

(same as BART+CTRL)

Call to 
Action

We Have Everything You Need for 
Your Next Event in One Place. Shop 
Online Today!

Shop Our Backyard Wedding Bundle 
Including 40 Resin Folding Chairs, 4 
Folding Tables & More.

We Have Everything You Need for 
Your Next Event. Order Online or 
Call Us Today!

Advertiser 
Name or 
Brand

Titan Event Furniture™ is your one 
stop shop for all your event needs.

EventStable.com Is Your One Stop 
Shop For All Things Event Furniture.

(same as BART+CTRL)

Price and 
Fees

Shop for Backyard Wedding Bundle 
containing 40 Resin Folding Chairs, 4 
Folding Tables & Peak Tents

Shop Our Backyard Wedding Bundle 
Including 40 Resin Folding Chairs, 4 
Folding Tables & More.

Buy today - pay later. Net 30 terms 
at 0% or extend payments up to 60 
months

Benefit Make Your Event Unforgettable with 
Our Extensive Range of High Quality
Event Furniture.

Move Your Dining Room To The 
Fresh Air With Our Outdoor Dining 
Bundle.

Move your dining room to the fresh 
air with our outdoor dining bundle.

Customer 
Problem

Planning your next event? We've 
got you covered.

Looking for Backyard Wedding 
Packages? EventStable Has 
Everything You Need.

Looking for the best folding chairs 
for your next event? We've got you 
covered.

Highlight Shop for Backyard Wedding Bundle. 
40 Resin Folding Chairs, 4 Folding 
Tables & Peak Tents.

Shop Backyard Wedding Packages at 
EventStable.com. Order Online 
Today!

40 Resin Folding Chairs, 4 Folding 
Tables and Peak High Tents at 
Wholesale Prices.

Figure 5: Example of generated ad descriptions. For this landing page, only FAST generates description correctly in
“Price and Fees” category. One description from IPS model has repetition issue. Key information in the landing
page that the generated ads are based on is highlighted in orange


