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Abstract—Public cloud hosting environments offer convenient
computation and storage resources for cloud service providers,
and these resources are also beneficial for adversaries to host
malicious web-based attacks. As a result, cloud-based virtual
machines are often attacked. In the paper, we conduct a long-
term deployment and analysis of honeypots in a public cloud
hosting environment. In particular, we deploy five low-interaction
honeypots and one medium-interaction honeypot and measure
the attack patterns over eleven months. In our study, we found
that the low-interaction honeypots were attacked repeatedly, but
the activity on the medium-interaction honeypot was small. We
first provide an overview of the attack traffic activity. We then
use Latent Dirichlet Allocation (LDA) to discover topics in the
log data.

Index Terms—honeypot, low-interaction, medium-interaction,
public cloud

I. INTRODUCTION

Public cloud providers offer virtual computational and stor-
age resources which can be dynamically provisioned to rapidly
adjust according to increasing loads. In addition, the cloud-
based computing environments are designed to easily develop
and host web-based cloud services. These services are also
attractive to adversaries who seek to compromise legitimate
cloud resources to launch their attack, run command and con-
trol operations, and mine cryptocurrencies. As a result, cloud-
based resources are often attacked after they are deployed.

Previous research [1] has investigated short-term brute force
attempts on cloud-based VMs. In this work, we instead seek
to understand long-term attack trends on virtual machines
(VMs) hosted in a public cloud environment. To this end,
we deployed a collection of five low-interaction honeypots
and one medium-interaction honeypot in VMs hosted in the
Azure public cloud. In order to observe attack patterns due
to the adversary’s behavior alone, we did not update the
honeypots after their initial deployment. Furthermore, we left
these honeypots running for eleven months and report the
attack patterns observed in the honeypots’ activity log files.
Our goal from this research is to provide new insights into
attack techniques for both public, private and hybrid cloud
providers and users of these services.

From the immutable honeypot logs, we conduct two types of
analysis. First, we analyze all of the traffic to understand how
attackers interact with the honeypots. Second, we investigate
the content of the files which were dropped on the honeypots.
To this end, we analyze all of the content with latent Dirich-
let allocation (LDA). The main contributions of this paper

include: 1) we construct both low- and medium-interaction
honeypots and deploy them in a public cloud environment over
a period of eleven months, and 2) we report on the external
activity directed towards these honeypots and the content of
the dropped files.

II. HONEYPOTS

A honeypot is a tool used to collect intelligence on adver-
sarial tactics, tools, and procedures. This is generally done
by using deception to make the attacker believe they are
interacting with and potentially exploiting a real system. The
more time the adversary spends on and with the system and the
more they interact, the more data is collected. The deployment
and development of honeypots often entails a feedback loop
where the information gathered is used to improve the system’s
camouflage, deception, and interaction levels.

Honeypots are classified into low-, medium-, and high-
interaction [2] based on their level of system emulation or
in the case of high-interaction, using a real system. Low-
and medium-interaction honeypots, like emulated SSH, web,
or email services, are often preferred due to the simplic-
ity of deployment, management, and their low increase to
the security risk. They often only implement a subset of a
services features and are vulnerable to fingerprinting. Low-
and medium-interaction honeypots are often used to collect
quantitative data and allow a more high-level view on the
threat landscape. Although they could pose a security risk
as they expose a real system and require additional ethical
considerations, high-interaction honeypots are considered to
produce more high-quality data as they are vulnerable to
previously unknown exploits.

III. SYSTEM

To measure the long-term interaction between the attackers
with cloud-hosted VMs, we deployed a collection of honeypots
(HPs) in the Azure public cloud. Figure 1 shows that five low-
interaction honeypots (LIHPs) and one medium-interaction
honeypot (MIHP) were deployed in Azure over a period of
eleven months. In order to protect the log data generated by
the honeypots in case they were compromised, new log entries
were quickly rewritten into an isolated and immutable data
store in Azure Data Lake storage.
Infrastructure. The honeypots, including both the LIHPs
and the MIHP, were hosted as individually isolated docker
containers on an Azure Web App service. Each honeypot
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Fig. 1. Honeypot deployment in the Azure Public Cloud.

presented a web frontend resembling regular websites. LIHPs
resembled blogs and general textual websites, additionally
including hidden text inviting attacks. The MIHP instead
looked more like a Content Management System or a Forum,
where users could add content and interact with a database
driven system. Furthermore, the MIHP included a mocked
back-admin system which could be accessed using common
vulnerable paths and credentials.
Logging. The largest source of data collection with the HPs
was verbose logging of each interaction with the system. Every
request made to the server was logged and analyzed using a
family of handlers. The logs were broken into daily segments
and pushed to Azure Data Lake storage for analysis.
Handlers. The handlers are modules that are deployed to
respond to different kinds of attacks. Real-time analysis of the
interaction generated responses where the handlers acted in a
way the attacker desired within a secure setup and allowing
the capture of more content. A common category of handlers
involved shell commands including wget to fetch the malicious
scripts, which were captured and stored for analysis by the
handlers. Another handler often used by the system detected
the use of the sqlmap SQL injection tool and generated
responses similar to vulnerabilities.

IV. EVALUATION

The evaluation and analysis of the activity and content
captured by the honeypots uses the interaction logs on each
honeypot along with the data collected by the handlers.
Overall Statistics. The number of interactions depends on
the honeypot. Also, the medium-interaction honeypot did not
encounter significant activity. We analyze this data under two
categories including activity and content which are summa-
rized in Table I for each of the deployed honeypots. The Total
Log Sessions aggregates all of the session activity recorded
by each honeypot, while the Content Upload Sessions pro-
vides the number of sessions where an individual honeypot’s
handlers were able to successfully store uploaded content files.

Since the vast majority of the overall activity occurred on
LIHP-4, we analyze and report the activity on this honeypot
in the remainder of this analysis. We investigated the activity
for the other honeypots, and they showed similar, but less fre-
quent activity. A few attackers found the medium-interaction
honeypot, but they did not upload any content.
Activity Analysis. We first investigate different aspects of
the honeypots’ activity patterns and make several observations
from this activity.

TABLE I
HONEYPOT INTERACTION METRICS.

Honeypot Total Log Sessions Content Upload Sessions
MIHP-1 138 0
LIHP-1 331 1
LIHP-2 186 0
LIHP-3 1,863 28
LIHP-4 31,204 78
LIHP-5 378 0

Hour of the Day: Short reconnaissance activity happens
consistently during all hours of the day, but longer attack
sessions are more likely to occur during the evening hours
at the data center.

Figure 2a depicts the distribution of the length of total
number of log entries beginning at each hour in the day. Each
entry in the log records a network command received by the
honeypot from a distinct IP address. The length is the total
number of lines in the logs corresponding to all individual
sessions. The hour represents the starting time for the attack
and is based upon the local time of the honeypot in its
data center. Figure 2a indicates log activity with significantly
higher number of lines was specifically observed during late
evenings as compared to other hours during the day. Also,
attackers visited the honeypots for short sessions with similar
frequencies over each hour in the day.

(a) (b)

Fig. 2. (a) Log activity length versus the time of day (hours). The hour
represents the data center local time when the attack interaction started. (b)
Starting day of individual attacks. The x-axis indicates the day when the attack
interaction began.

Day of the Week: Attack session patterns are consistent and
do not vary according to the day of the week.

Next, we plot the distribution of the attack length for the
days of the week in Figure 2b. The figure shows that the
attack patterns are relatively consistent for each day of the
week. These results indicate that these attacks are most likely
automated.

Number of Sessions: Most of the attacks per day are short
and include only one or two sessions. The number of sessions
per day are shown in Figure 3a, where each point is considered
to be an attacker with a distinct IP address. The figure indicates
that the honeypot (LIHP-4) was consistently attacked while it
was deployed. The overall majority of these attacks were short
and consisted of only one or two sessions per day. However, a
few of the interactions included between three and ten sessions
per attack.
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Fig. 3. (a) Number of sessions over time. (b) Interaction sizes over time.

Attack Interaction Size: The total number of log entries
per session is small. We report the interaction size per day in
Figure 3b which shows the majority of log entries per session
is small.

Attack Origination: Attacks were launched from all over the
world. The countries corresponding to the attack location are
shown in Figure 4a. The majority of the attacks were initiated
from Brazil. A comparable number of attacks were launched
from the United States and China. The country with the next
highest number of attacks was Russia.

(a) (b)

Fig. 4. (a) Total number of interactions based on the originating country. (b)
Average attack payload size based on the originating country.

Attack Size from Different Countries: The average message
payload size based on the originating country is depicted in
Figure 4b, and we can observe that it is significantly different
than the attack origination. The average size of the payload
from regions like Russia, Australia, and Europe is much larger
than the averages from the United States, even with a lower
interaction count.

Attack Patterns over Time: We also report the distribution
of session lengths (in seconds) for each attack on the honeypot
in Figure 5a. Since we were able to extract the host IP address
from the requests, we also report the duration between the first
and last attack by each IP address and present the distribution
over the number of days in Figure 5b.

Another metric for understanding the attacks is the size of
the message payload that the adversary is transmitting to the
honeypot. As shown in Figure 5a, most of the attacking IPs
only interacted with the honeypot for a short duration, but for
the ones with longer interaction periods, we computed their
message payload sizes over the months. A sample interaction
from one attacker is shown in Figure 6 where the message
payload size is reported in bytes.
Content Analysis. The content generated by the activity on
LIHP-4 is further analyzed to draw relevant patterns. The
logging methodology followed by our system allowed the

(a) (b)

Fig. 5. (a) Log-scale histogram of session lengths in seconds. (b) Log-scale
histogram of overall interaction length per IP address over days.

Fig. 6. Message payload sizes in bytes over time from a single host IP.

interaction logs to be captured in two categories: ‘raw‘ and
‘request‘. Since each interaction log is through an HTTPS
request, we also noted the request type for the interaction.
Among the requests, 90.96% were GET requests, while 8.35%
were POST. We also observed 0.69% HEAD requests.

Raw logs: These are pure traffic logs recorded by the server,
capturing everything in the requests made to the server. The
logs, containing text in the ‘utf-8’ character set, are then
analyzed using Latent Dirichlet Allocation (LDA) [3] models.
After training the model to learn 20 topics, the model was able
to place the logs in buckets of words with a topic defining
words that occur commonly together across all the logs. The
number of individual log entries, serving as the documents for
the LDA model was 166,416, with 9,049 unique tokens used
after filtering the extremes.

Request logs: The request logs are pre-processed at the
request stage and capture cleaner request data in the form of
arguments attached to the messages. By analyzing this data
separately, we are able to capture cleaner interaction data
without being overpowered by the rest of the payload. By
learning LDA topic models on these logs, using 20,135 entries
and 176 unique tokens, we derived 20 topics. The top 5 topics
are shown in Table II. As can be seen, these topics represent
different families of vulnerabilities and attacks. For instance,
Topic 1 is associated with attacks on the PHP framework-
based systems, whereas Topic 4 shows the commands involved
with the NMAP network scanner. An additional advantage of
learning these topics from interactive logs is that real-time
network activity can be validated against these topics, and in



case of strong inclination towards a topic, the request can be
handled accordingly.

TABLE II
TOPIC MODELS TRAINED ON INTERACTION KEYWORDS.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
php cgi html Nmap txt
index tmUnblock manager folder robots
echo vars sitemap scripts known
public call user func array xml admin security
TP function asp
htm invokefunction

V. RELATED WORK

In [4], Pouget and Holz deployed low-interaction alongside
high-interaction honeypots for a qualitative and quantitative
comparison of the two approaches. They concluded that ”high
interaction honeypots are somehow superfluous in the large-
scale deployment of statistical sensors” but complement low-
interaction honeypots by providing high accuracy data and
the identification of ”[...]very specific attacks and weird phe-
nomena”. This complementation was also demonstrated in [5]
with the additional observation that there seems to be no
attempts by adversaries made to identify the honeypots as
such. In [6], it was shown that high-interaction IoT honeypots
are generally more attractive for attackers than their emulated
counterparts. It was also observed that the location and novelty
of the attack vector had significant effects on the number
of events observed. Faust [7] deployed five SSH honeypots
in Asia, Europe, and Northern America. In his analysis, he
focused on the credential combinations and the distribution
over time looking for recurring patterns. In [8], Udhani et
al. found a way to distinguish between an automated and a
human attack. Their model can be used to identify advanced
attacks against an SSH server. In [9], Fraunholz et al. stated
multiple hypotheses regarding the data captured in a long-
term, distributed deployment and showed a diverse spatial
and temporal distribution of attacks, correlation between the
number of attempts and the protocol, and a significant number
of Mirai related events. For a better understanding of the
Mirai and Mirai like botnets, Antonakakis et al. extensively
researched [10] this malware family. Vetterl and Clayton
investigated the potential to systemically fingerprint honey-
pots in [11] and found multiple low- and medium-interaction
honeypots to be vulnerable to a trivial single packet detection
method. Together with Walden they also researched how up
to date a popular SSH honeypot is in the wild and found
in [12] that many deployments are outdated and often in the
default configuration making them very prone to fingerprint-
ing. Similar research was done by Mukkamala et al. focusing
on virtual environments and low interaction honeypots. Holz
and Raynal also considered debuggers in their research on
detecting honeypots and suspicious environments in [13].
Tsikerdekis et al. analyzed the methodologies behind attackers
identifying honeypots and provided recommendations on how
to improve their evasion strategies [14].

VI. CONCLUSION

Cloud services are constantly attacked by those who seek
to use compromised resources for malicious purposes. To
understand the current attack strategies, it is important to
create and deploy honeypots in data centers. We found that
low-interaction honeypots are attacked frequently, however
we could not find much evidence that attackers visited and
interacted with our medium-interaction honeypot.
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